linux/arch/mips/kernel/perf_event_mipsxx.c
<<
>>
Prefs
   1/*
   2 * Linux performance counter support for MIPS.
   3 *
   4 * Copyright (C) 2010 MIPS Technologies, Inc.
   5 * Copyright (C) 2011 Cavium Networks, Inc.
   6 * Author: Deng-Cheng Zhu
   7 *
   8 * This code is based on the implementation for ARM, which is in turn
   9 * based on the sparc64 perf event code and the x86 code. Performance
  10 * counter access is based on the MIPS Oprofile code. And the callchain
  11 * support references the code of MIPS stacktrace.c.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#include <linux/cpumask.h>
  19#include <linux/interrupt.h>
  20#include <linux/smp.h>
  21#include <linux/kernel.h>
  22#include <linux/perf_event.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/irq.h>
  26#include <asm/irq_regs.h>
  27#include <asm/stacktrace.h>
  28#include <asm/time.h> /* For perf_irq */
  29
  30#define MIPS_MAX_HWEVENTS 4
  31#define MIPS_TCS_PER_COUNTER 2
  32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  33
  34struct cpu_hw_events {
  35        /* Array of events on this cpu. */
  36        struct perf_event       *events[MIPS_MAX_HWEVENTS];
  37
  38        /*
  39         * Set the bit (indexed by the counter number) when the counter
  40         * is used for an event.
  41         */
  42        unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  43
  44        /*
  45         * Software copy of the control register for each performance counter.
  46         * MIPS CPUs vary in performance counters. They use this differently,
  47         * and even may not use it.
  48         */
  49        unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
  50};
  51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  52        .saved_ctrl = {0},
  53};
  54
  55/* The description of MIPS performance events. */
  56struct mips_perf_event {
  57        unsigned int event_id;
  58        /*
  59         * MIPS performance counters are indexed starting from 0.
  60         * CNTR_EVEN indicates the indexes of the counters to be used are
  61         * even numbers.
  62         */
  63        unsigned int cntr_mask;
  64        #define CNTR_EVEN       0x55555555
  65        #define CNTR_ODD        0xaaaaaaaa
  66        #define CNTR_ALL        0xffffffff
  67#ifdef CONFIG_MIPS_MT_SMP
  68        enum {
  69                T  = 0,
  70                V  = 1,
  71                P  = 2,
  72        } range;
  73#else
  74        #define T
  75        #define V
  76        #define P
  77#endif
  78};
  79
  80static struct mips_perf_event raw_event;
  81static DEFINE_MUTEX(raw_event_mutex);
  82
  83#define C(x) PERF_COUNT_HW_CACHE_##x
  84
  85struct mips_pmu {
  86        u64             max_period;
  87        u64             valid_count;
  88        u64             overflow;
  89        const char      *name;
  90        int             irq;
  91        u64             (*read_counter)(unsigned int idx);
  92        void            (*write_counter)(unsigned int idx, u64 val);
  93        const struct mips_perf_event *(*map_raw_event)(u64 config);
  94        const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  95        const struct mips_perf_event (*cache_event_map)
  96                                [PERF_COUNT_HW_CACHE_MAX]
  97                                [PERF_COUNT_HW_CACHE_OP_MAX]
  98                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  99        unsigned int    num_counters;
 100};
 101
 102static struct mips_pmu mipspmu;
 103
 104#define M_PERFCTL_EVENT(event)          (((event) << MIPS_PERFCTRL_EVENT_S) & \
 105                                         MIPS_PERFCTRL_EVENT)
 106#define M_PERFCTL_VPEID(vpe)            ((vpe)    << MIPS_PERFCTRL_VPEID_S)
 107
 108#ifdef CONFIG_CPU_BMIPS5000
 109#define M_PERFCTL_MT_EN(filter)         0
 110#else /* !CONFIG_CPU_BMIPS5000 */
 111#define M_PERFCTL_MT_EN(filter)         (filter)
 112#endif /* CONFIG_CPU_BMIPS5000 */
 113
 114#define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
 115#define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
 116#define    M_TC_EN_TC                   M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
 117
 118#define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |            \
 119                                         MIPS_PERFCTRL_K |              \
 120                                         MIPS_PERFCTRL_U |              \
 121                                         MIPS_PERFCTRL_S |              \
 122                                         MIPS_PERFCTRL_IE)
 123
 124#ifdef CONFIG_MIPS_MT_SMP
 125#define M_PERFCTL_CONFIG_MASK           0x3fff801f
 126#else
 127#define M_PERFCTL_CONFIG_MASK           0x1f
 128#endif
 129
 130
 131#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 132static int cpu_has_mipsmt_pertccounters;
 133
 134static DEFINE_RWLOCK(pmuint_rwlock);
 135
 136#if defined(CONFIG_CPU_BMIPS5000)
 137#define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
 138                         0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 139#else
 140/*
 141 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
 142 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
 143 */
 144#define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
 145                         0 : smp_processor_id())
 146#endif
 147
 148/* Copied from op_model_mipsxx.c */
 149static unsigned int vpe_shift(void)
 150{
 151        if (num_possible_cpus() > 1)
 152                return 1;
 153
 154        return 0;
 155}
 156
 157static unsigned int counters_total_to_per_cpu(unsigned int counters)
 158{
 159        return counters >> vpe_shift();
 160}
 161
 162#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 163#define vpe_id()        0
 164
 165#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 166
 167static void resume_local_counters(void);
 168static void pause_local_counters(void);
 169static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 170static int mipsxx_pmu_handle_shared_irq(void);
 171
 172static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 173{
 174        if (vpe_id() == 1)
 175                idx = (idx + 2) & 3;
 176        return idx;
 177}
 178
 179static u64 mipsxx_pmu_read_counter(unsigned int idx)
 180{
 181        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 182
 183        switch (idx) {
 184        case 0:
 185                /*
 186                 * The counters are unsigned, we must cast to truncate
 187                 * off the high bits.
 188                 */
 189                return (u32)read_c0_perfcntr0();
 190        case 1:
 191                return (u32)read_c0_perfcntr1();
 192        case 2:
 193                return (u32)read_c0_perfcntr2();
 194        case 3:
 195                return (u32)read_c0_perfcntr3();
 196        default:
 197                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 198                return 0;
 199        }
 200}
 201
 202static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 203{
 204        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 205
 206        switch (idx) {
 207        case 0:
 208                return read_c0_perfcntr0_64();
 209        case 1:
 210                return read_c0_perfcntr1_64();
 211        case 2:
 212                return read_c0_perfcntr2_64();
 213        case 3:
 214                return read_c0_perfcntr3_64();
 215        default:
 216                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 217                return 0;
 218        }
 219}
 220
 221static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 222{
 223        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 224
 225        switch (idx) {
 226        case 0:
 227                write_c0_perfcntr0(val);
 228                return;
 229        case 1:
 230                write_c0_perfcntr1(val);
 231                return;
 232        case 2:
 233                write_c0_perfcntr2(val);
 234                return;
 235        case 3:
 236                write_c0_perfcntr3(val);
 237                return;
 238        }
 239}
 240
 241static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 242{
 243        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 244
 245        switch (idx) {
 246        case 0:
 247                write_c0_perfcntr0_64(val);
 248                return;
 249        case 1:
 250                write_c0_perfcntr1_64(val);
 251                return;
 252        case 2:
 253                write_c0_perfcntr2_64(val);
 254                return;
 255        case 3:
 256                write_c0_perfcntr3_64(val);
 257                return;
 258        }
 259}
 260
 261static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 262{
 263        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 264
 265        switch (idx) {
 266        case 0:
 267                return read_c0_perfctrl0();
 268        case 1:
 269                return read_c0_perfctrl1();
 270        case 2:
 271                return read_c0_perfctrl2();
 272        case 3:
 273                return read_c0_perfctrl3();
 274        default:
 275                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 276                return 0;
 277        }
 278}
 279
 280static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 281{
 282        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 283
 284        switch (idx) {
 285        case 0:
 286                write_c0_perfctrl0(val);
 287                return;
 288        case 1:
 289                write_c0_perfctrl1(val);
 290                return;
 291        case 2:
 292                write_c0_perfctrl2(val);
 293                return;
 294        case 3:
 295                write_c0_perfctrl3(val);
 296                return;
 297        }
 298}
 299
 300static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 301                                    struct hw_perf_event *hwc)
 302{
 303        int i;
 304
 305        /*
 306         * We only need to care the counter mask. The range has been
 307         * checked definitely.
 308         */
 309        unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 310
 311        for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 312                /*
 313                 * Note that some MIPS perf events can be counted by both
 314                 * even and odd counters, wheresas many other are only by
 315                 * even _or_ odd counters. This introduces an issue that
 316                 * when the former kind of event takes the counter the
 317                 * latter kind of event wants to use, then the "counter
 318                 * allocation" for the latter event will fail. In fact if
 319                 * they can be dynamically swapped, they both feel happy.
 320                 * But here we leave this issue alone for now.
 321                 */
 322                if (test_bit(i, &cntr_mask) &&
 323                        !test_and_set_bit(i, cpuc->used_mask))
 324                        return i;
 325        }
 326
 327        return -EAGAIN;
 328}
 329
 330static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 331{
 332        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 333
 334        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 335
 336        cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 337                (evt->config_base & M_PERFCTL_CONFIG_MASK) |
 338                /* Make sure interrupt enabled. */
 339                MIPS_PERFCTRL_IE;
 340        if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
 341                /* enable the counter for the calling thread */
 342                cpuc->saved_ctrl[idx] |=
 343                        (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
 344
 345        /*
 346         * We do not actually let the counter run. Leave it until start().
 347         */
 348}
 349
 350static void mipsxx_pmu_disable_event(int idx)
 351{
 352        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 353        unsigned long flags;
 354
 355        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 356
 357        local_irq_save(flags);
 358        cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 359                ~M_PERFCTL_COUNT_EVENT_WHENEVER;
 360        mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 361        local_irq_restore(flags);
 362}
 363
 364static int mipspmu_event_set_period(struct perf_event *event,
 365                                    struct hw_perf_event *hwc,
 366                                    int idx)
 367{
 368        u64 left = local64_read(&hwc->period_left);
 369        u64 period = hwc->sample_period;
 370        int ret = 0;
 371
 372        if (unlikely((left + period) & (1ULL << 63))) {
 373                /* left underflowed by more than period. */
 374                left = period;
 375                local64_set(&hwc->period_left, left);
 376                hwc->last_period = period;
 377                ret = 1;
 378        } else  if (unlikely((left + period) <= period)) {
 379                /* left underflowed by less than period. */
 380                left += period;
 381                local64_set(&hwc->period_left, left);
 382                hwc->last_period = period;
 383                ret = 1;
 384        }
 385
 386        if (left > mipspmu.max_period) {
 387                left = mipspmu.max_period;
 388                local64_set(&hwc->period_left, left);
 389        }
 390
 391        local64_set(&hwc->prev_count, mipspmu.overflow - left);
 392
 393        mipspmu.write_counter(idx, mipspmu.overflow - left);
 394
 395        perf_event_update_userpage(event);
 396
 397        return ret;
 398}
 399
 400static void mipspmu_event_update(struct perf_event *event,
 401                                 struct hw_perf_event *hwc,
 402                                 int idx)
 403{
 404        u64 prev_raw_count, new_raw_count;
 405        u64 delta;
 406
 407again:
 408        prev_raw_count = local64_read(&hwc->prev_count);
 409        new_raw_count = mipspmu.read_counter(idx);
 410
 411        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 412                                new_raw_count) != prev_raw_count)
 413                goto again;
 414
 415        delta = new_raw_count - prev_raw_count;
 416
 417        local64_add(delta, &event->count);
 418        local64_sub(delta, &hwc->period_left);
 419}
 420
 421static void mipspmu_start(struct perf_event *event, int flags)
 422{
 423        struct hw_perf_event *hwc = &event->hw;
 424
 425        if (flags & PERF_EF_RELOAD)
 426                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 427
 428        hwc->state = 0;
 429
 430        /* Set the period for the event. */
 431        mipspmu_event_set_period(event, hwc, hwc->idx);
 432
 433        /* Enable the event. */
 434        mipsxx_pmu_enable_event(hwc, hwc->idx);
 435}
 436
 437static void mipspmu_stop(struct perf_event *event, int flags)
 438{
 439        struct hw_perf_event *hwc = &event->hw;
 440
 441        if (!(hwc->state & PERF_HES_STOPPED)) {
 442                /* We are working on a local event. */
 443                mipsxx_pmu_disable_event(hwc->idx);
 444                barrier();
 445                mipspmu_event_update(event, hwc, hwc->idx);
 446                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 447        }
 448}
 449
 450static int mipspmu_add(struct perf_event *event, int flags)
 451{
 452        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 453        struct hw_perf_event *hwc = &event->hw;
 454        int idx;
 455        int err = 0;
 456
 457        perf_pmu_disable(event->pmu);
 458
 459        /* To look for a free counter for this event. */
 460        idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 461        if (idx < 0) {
 462                err = idx;
 463                goto out;
 464        }
 465
 466        /*
 467         * If there is an event in the counter we are going to use then
 468         * make sure it is disabled.
 469         */
 470        event->hw.idx = idx;
 471        mipsxx_pmu_disable_event(idx);
 472        cpuc->events[idx] = event;
 473
 474        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 475        if (flags & PERF_EF_START)
 476                mipspmu_start(event, PERF_EF_RELOAD);
 477
 478        /* Propagate our changes to the userspace mapping. */
 479        perf_event_update_userpage(event);
 480
 481out:
 482        perf_pmu_enable(event->pmu);
 483        return err;
 484}
 485
 486static void mipspmu_del(struct perf_event *event, int flags)
 487{
 488        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 489        struct hw_perf_event *hwc = &event->hw;
 490        int idx = hwc->idx;
 491
 492        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 493
 494        mipspmu_stop(event, PERF_EF_UPDATE);
 495        cpuc->events[idx] = NULL;
 496        clear_bit(idx, cpuc->used_mask);
 497
 498        perf_event_update_userpage(event);
 499}
 500
 501static void mipspmu_read(struct perf_event *event)
 502{
 503        struct hw_perf_event *hwc = &event->hw;
 504
 505        /* Don't read disabled counters! */
 506        if (hwc->idx < 0)
 507                return;
 508
 509        mipspmu_event_update(event, hwc, hwc->idx);
 510}
 511
 512static void mipspmu_enable(struct pmu *pmu)
 513{
 514#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 515        write_unlock(&pmuint_rwlock);
 516#endif
 517        resume_local_counters();
 518}
 519
 520/*
 521 * MIPS performance counters can be per-TC. The control registers can
 522 * not be directly accessed across CPUs. Hence if we want to do global
 523 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 524 * can not make sure this function is called with interrupts enabled. So
 525 * here we pause local counters and then grab a rwlock and leave the
 526 * counters on other CPUs alone. If any counter interrupt raises while
 527 * we own the write lock, simply pause local counters on that CPU and
 528 * spin in the handler. Also we know we won't be switched to another
 529 * CPU after pausing local counters and before grabbing the lock.
 530 */
 531static void mipspmu_disable(struct pmu *pmu)
 532{
 533        pause_local_counters();
 534#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 535        write_lock(&pmuint_rwlock);
 536#endif
 537}
 538
 539static atomic_t active_events = ATOMIC_INIT(0);
 540static DEFINE_MUTEX(pmu_reserve_mutex);
 541static int (*save_perf_irq)(void);
 542
 543static int mipspmu_get_irq(void)
 544{
 545        int err;
 546
 547        if (mipspmu.irq >= 0) {
 548                /* Request my own irq handler. */
 549                err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 550                                  IRQF_PERCPU | IRQF_NOBALANCING |
 551                                  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 552                                  IRQF_SHARED,
 553                                  "mips_perf_pmu", &mipspmu);
 554                if (err) {
 555                        pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 556                                mipspmu.irq);
 557                }
 558        } else if (cp0_perfcount_irq < 0) {
 559                /*
 560                 * We are sharing the irq number with the timer interrupt.
 561                 */
 562                save_perf_irq = perf_irq;
 563                perf_irq = mipsxx_pmu_handle_shared_irq;
 564                err = 0;
 565        } else {
 566                pr_warn("The platform hasn't properly defined its interrupt controller\n");
 567                err = -ENOENT;
 568        }
 569
 570        return err;
 571}
 572
 573static void mipspmu_free_irq(void)
 574{
 575        if (mipspmu.irq >= 0)
 576                free_irq(mipspmu.irq, &mipspmu);
 577        else if (cp0_perfcount_irq < 0)
 578                perf_irq = save_perf_irq;
 579}
 580
 581/*
 582 * mipsxx/rm9000/loongson2 have different performance counters, they have
 583 * specific low-level init routines.
 584 */
 585static void reset_counters(void *arg);
 586static int __hw_perf_event_init(struct perf_event *event);
 587
 588static void hw_perf_event_destroy(struct perf_event *event)
 589{
 590        if (atomic_dec_and_mutex_lock(&active_events,
 591                                &pmu_reserve_mutex)) {
 592                /*
 593                 * We must not call the destroy function with interrupts
 594                 * disabled.
 595                 */
 596                on_each_cpu(reset_counters,
 597                        (void *)(long)mipspmu.num_counters, 1);
 598                mipspmu_free_irq();
 599                mutex_unlock(&pmu_reserve_mutex);
 600        }
 601}
 602
 603static int mipspmu_event_init(struct perf_event *event)
 604{
 605        int err = 0;
 606
 607        /* does not support taken branch sampling */
 608        if (has_branch_stack(event))
 609                return -EOPNOTSUPP;
 610
 611        switch (event->attr.type) {
 612        case PERF_TYPE_RAW:
 613        case PERF_TYPE_HARDWARE:
 614        case PERF_TYPE_HW_CACHE:
 615                break;
 616
 617        default:
 618                return -ENOENT;
 619        }
 620
 621        if (event->cpu >= 0 && !cpu_online(event->cpu))
 622                return -ENODEV;
 623
 624        if (!atomic_inc_not_zero(&active_events)) {
 625                mutex_lock(&pmu_reserve_mutex);
 626                if (atomic_read(&active_events) == 0)
 627                        err = mipspmu_get_irq();
 628
 629                if (!err)
 630                        atomic_inc(&active_events);
 631                mutex_unlock(&pmu_reserve_mutex);
 632        }
 633
 634        if (err)
 635                return err;
 636
 637        return __hw_perf_event_init(event);
 638}
 639
 640static struct pmu pmu = {
 641        .pmu_enable     = mipspmu_enable,
 642        .pmu_disable    = mipspmu_disable,
 643        .event_init     = mipspmu_event_init,
 644        .add            = mipspmu_add,
 645        .del            = mipspmu_del,
 646        .start          = mipspmu_start,
 647        .stop           = mipspmu_stop,
 648        .read           = mipspmu_read,
 649};
 650
 651static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 652{
 653/*
 654 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 655 * event_id.
 656 */
 657#ifdef CONFIG_MIPS_MT_SMP
 658        return ((unsigned int)pev->range << 24) |
 659                (pev->cntr_mask & 0xffff00) |
 660                (pev->event_id & 0xff);
 661#else
 662        return (pev->cntr_mask & 0xffff00) |
 663                (pev->event_id & 0xff);
 664#endif
 665}
 666
 667static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 668{
 669
 670        if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 671                return ERR_PTR(-EOPNOTSUPP);
 672        return &(*mipspmu.general_event_map)[idx];
 673}
 674
 675static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 676{
 677        unsigned int cache_type, cache_op, cache_result;
 678        const struct mips_perf_event *pev;
 679
 680        cache_type = (config >> 0) & 0xff;
 681        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 682                return ERR_PTR(-EINVAL);
 683
 684        cache_op = (config >> 8) & 0xff;
 685        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 686                return ERR_PTR(-EINVAL);
 687
 688        cache_result = (config >> 16) & 0xff;
 689        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 690                return ERR_PTR(-EINVAL);
 691
 692        pev = &((*mipspmu.cache_event_map)
 693                                        [cache_type]
 694                                        [cache_op]
 695                                        [cache_result]);
 696
 697        if (pev->cntr_mask == 0)
 698                return ERR_PTR(-EOPNOTSUPP);
 699
 700        return pev;
 701
 702}
 703
 704static int validate_group(struct perf_event *event)
 705{
 706        struct perf_event *sibling, *leader = event->group_leader;
 707        struct cpu_hw_events fake_cpuc;
 708
 709        memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 710
 711        if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 712                return -EINVAL;
 713
 714        for_each_sibling_event(sibling, leader) {
 715                if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 716                        return -EINVAL;
 717        }
 718
 719        if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 720                return -EINVAL;
 721
 722        return 0;
 723}
 724
 725/* This is needed by specific irq handlers in perf_event_*.c */
 726static void handle_associated_event(struct cpu_hw_events *cpuc,
 727                                    int idx, struct perf_sample_data *data,
 728                                    struct pt_regs *regs)
 729{
 730        struct perf_event *event = cpuc->events[idx];
 731        struct hw_perf_event *hwc = &event->hw;
 732
 733        mipspmu_event_update(event, hwc, idx);
 734        data->period = event->hw.last_period;
 735        if (!mipspmu_event_set_period(event, hwc, idx))
 736                return;
 737
 738        if (perf_event_overflow(event, data, regs))
 739                mipsxx_pmu_disable_event(idx);
 740}
 741
 742
 743static int __n_counters(void)
 744{
 745        if (!cpu_has_perf)
 746                return 0;
 747        if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
 748                return 1;
 749        if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
 750                return 2;
 751        if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
 752                return 3;
 753
 754        return 4;
 755}
 756
 757static int n_counters(void)
 758{
 759        int counters;
 760
 761        switch (current_cpu_type()) {
 762        case CPU_R10000:
 763                counters = 2;
 764                break;
 765
 766        case CPU_R12000:
 767        case CPU_R14000:
 768        case CPU_R16000:
 769                counters = 4;
 770                break;
 771
 772        default:
 773                counters = __n_counters();
 774        }
 775
 776        return counters;
 777}
 778
 779static void reset_counters(void *arg)
 780{
 781        int counters = (int)(long)arg;
 782        switch (counters) {
 783        case 4:
 784                mipsxx_pmu_write_control(3, 0);
 785                mipspmu.write_counter(3, 0);
 786        case 3:
 787                mipsxx_pmu_write_control(2, 0);
 788                mipspmu.write_counter(2, 0);
 789        case 2:
 790                mipsxx_pmu_write_control(1, 0);
 791                mipspmu.write_counter(1, 0);
 792        case 1:
 793                mipsxx_pmu_write_control(0, 0);
 794                mipspmu.write_counter(0, 0);
 795        }
 796}
 797
 798/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 799static const struct mips_perf_event mipsxxcore_event_map
 800                                [PERF_COUNT_HW_MAX] = {
 801        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 802        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 803        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 804        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 805};
 806
 807/* 74K/proAptiv core has different branch event code. */
 808static const struct mips_perf_event mipsxxcore_event_map2
 809                                [PERF_COUNT_HW_MAX] = {
 810        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 811        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 812        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 813        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 814};
 815
 816static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
 817        [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 818        [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 819        /* These only count dcache, not icache */
 820        [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 821        [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 822        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 823        [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 824};
 825
 826static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
 827        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 828        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 829        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 830        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 831};
 832
 833static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 834        [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 835        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 836        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 837        [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
 838        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 839        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 840        [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 841};
 842
 843static const struct mips_perf_event bmips5000_event_map
 844                                [PERF_COUNT_HW_MAX] = {
 845        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
 846        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 847        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 848};
 849
 850static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
 851        [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 852        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
 853        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
 854        [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
 855        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
 856        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
 857};
 858
 859/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
 860static const struct mips_perf_event mipsxxcore_cache_map
 861                                [PERF_COUNT_HW_CACHE_MAX]
 862                                [PERF_COUNT_HW_CACHE_OP_MAX]
 863                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 864[C(L1D)] = {
 865        /*
 866         * Like some other architectures (e.g. ARM), the performance
 867         * counters don't differentiate between read and write
 868         * accesses/misses, so this isn't strictly correct, but it's the
 869         * best we can do. Writes and reads get combined.
 870         */
 871        [C(OP_READ)] = {
 872                [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
 873                [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 874        },
 875        [C(OP_WRITE)] = {
 876                [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
 877                [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 878        },
 879},
 880[C(L1I)] = {
 881        [C(OP_READ)] = {
 882                [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
 883                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
 884        },
 885        [C(OP_WRITE)] = {
 886                [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
 887                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
 888        },
 889        [C(OP_PREFETCH)] = {
 890                [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
 891                /*
 892                 * Note that MIPS has only "hit" events countable for
 893                 * the prefetch operation.
 894                 */
 895        },
 896},
 897[C(LL)] = {
 898        [C(OP_READ)] = {
 899                [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
 900                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
 901        },
 902        [C(OP_WRITE)] = {
 903                [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
 904                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
 905        },
 906},
 907[C(DTLB)] = {
 908        [C(OP_READ)] = {
 909                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 910                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 911        },
 912        [C(OP_WRITE)] = {
 913                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 914                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 915        },
 916},
 917[C(ITLB)] = {
 918        [C(OP_READ)] = {
 919                [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
 920                [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
 921        },
 922        [C(OP_WRITE)] = {
 923                [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
 924                [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
 925        },
 926},
 927[C(BPU)] = {
 928        /* Using the same code for *HW_BRANCH* */
 929        [C(OP_READ)] = {
 930                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
 931                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
 932        },
 933        [C(OP_WRITE)] = {
 934                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
 935                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
 936        },
 937},
 938};
 939
 940/* 74K/proAptiv core has completely different cache event map. */
 941static const struct mips_perf_event mipsxxcore_cache_map2
 942                                [PERF_COUNT_HW_CACHE_MAX]
 943                                [PERF_COUNT_HW_CACHE_OP_MAX]
 944                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 945[C(L1D)] = {
 946        /*
 947         * Like some other architectures (e.g. ARM), the performance
 948         * counters don't differentiate between read and write
 949         * accesses/misses, so this isn't strictly correct, but it's the
 950         * best we can do. Writes and reads get combined.
 951         */
 952        [C(OP_READ)] = {
 953                [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
 954                [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
 955        },
 956        [C(OP_WRITE)] = {
 957                [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
 958                [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
 959        },
 960},
 961[C(L1I)] = {
 962        [C(OP_READ)] = {
 963                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 964                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 965        },
 966        [C(OP_WRITE)] = {
 967                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 968                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 969        },
 970        [C(OP_PREFETCH)] = {
 971                [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
 972                /*
 973                 * Note that MIPS has only "hit" events countable for
 974                 * the prefetch operation.
 975                 */
 976        },
 977},
 978[C(LL)] = {
 979        [C(OP_READ)] = {
 980                [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
 981                [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
 982        },
 983        [C(OP_WRITE)] = {
 984                [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
 985                [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
 986        },
 987},
 988/*
 989 * 74K core does not have specific DTLB events. proAptiv core has
 990 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
 991 * not included here. One can use raw events if really needed.
 992 */
 993[C(ITLB)] = {
 994        [C(OP_READ)] = {
 995                [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
 996                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
 997        },
 998        [C(OP_WRITE)] = {
 999                [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1000                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1001        },
1002},
1003[C(BPU)] = {
1004        /* Using the same code for *HW_BRANCH* */
1005        [C(OP_READ)] = {
1006                [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1007                [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1008        },
1009        [C(OP_WRITE)] = {
1010                [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1011                [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1012        },
1013},
1014};
1015
1016static const struct mips_perf_event i6x00_cache_map
1017                                [PERF_COUNT_HW_CACHE_MAX]
1018                                [PERF_COUNT_HW_CACHE_OP_MAX]
1019                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1020[C(L1D)] = {
1021        [C(OP_READ)] = {
1022                [C(RESULT_ACCESS)]      = { 0x46, CNTR_EVEN | CNTR_ODD },
1023                [C(RESULT_MISS)]        = { 0x49, CNTR_EVEN | CNTR_ODD },
1024        },
1025        [C(OP_WRITE)] = {
1026                [C(RESULT_ACCESS)]      = { 0x47, CNTR_EVEN | CNTR_ODD },
1027                [C(RESULT_MISS)]        = { 0x4a, CNTR_EVEN | CNTR_ODD },
1028        },
1029},
1030[C(L1I)] = {
1031        [C(OP_READ)] = {
1032                [C(RESULT_ACCESS)]      = { 0x84, CNTR_EVEN | CNTR_ODD },
1033                [C(RESULT_MISS)]        = { 0x85, CNTR_EVEN | CNTR_ODD },
1034        },
1035},
1036[C(DTLB)] = {
1037        /* Can't distinguish read & write */
1038        [C(OP_READ)] = {
1039                [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1040                [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1041        },
1042        [C(OP_WRITE)] = {
1043                [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1044                [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1045        },
1046},
1047[C(BPU)] = {
1048        /* Conditional branches / mispredicted */
1049        [C(OP_READ)] = {
1050                [C(RESULT_ACCESS)]      = { 0x15, CNTR_EVEN | CNTR_ODD },
1051                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN | CNTR_ODD },
1052        },
1053},
1054};
1055
1056static const struct mips_perf_event loongson3_cache_map
1057                                [PERF_COUNT_HW_CACHE_MAX]
1058                                [PERF_COUNT_HW_CACHE_OP_MAX]
1059                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1060[C(L1D)] = {
1061        /*
1062         * Like some other architectures (e.g. ARM), the performance
1063         * counters don't differentiate between read and write
1064         * accesses/misses, so this isn't strictly correct, but it's the
1065         * best we can do. Writes and reads get combined.
1066         */
1067        [C(OP_READ)] = {
1068                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1069        },
1070        [C(OP_WRITE)] = {
1071                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1072        },
1073},
1074[C(L1I)] = {
1075        [C(OP_READ)] = {
1076                [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1077        },
1078        [C(OP_WRITE)] = {
1079                [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1080        },
1081},
1082[C(DTLB)] = {
1083        [C(OP_READ)] = {
1084                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1085        },
1086        [C(OP_WRITE)] = {
1087                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1088        },
1089},
1090[C(ITLB)] = {
1091        [C(OP_READ)] = {
1092                [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1093        },
1094        [C(OP_WRITE)] = {
1095                [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1096        },
1097},
1098[C(BPU)] = {
1099        /* Using the same code for *HW_BRANCH* */
1100        [C(OP_READ)] = {
1101                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1102                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1103        },
1104        [C(OP_WRITE)] = {
1105                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1106                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1107        },
1108},
1109};
1110
1111/* BMIPS5000 */
1112static const struct mips_perf_event bmips5000_cache_map
1113                                [PERF_COUNT_HW_CACHE_MAX]
1114                                [PERF_COUNT_HW_CACHE_OP_MAX]
1115                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1116[C(L1D)] = {
1117        /*
1118         * Like some other architectures (e.g. ARM), the performance
1119         * counters don't differentiate between read and write
1120         * accesses/misses, so this isn't strictly correct, but it's the
1121         * best we can do. Writes and reads get combined.
1122         */
1123        [C(OP_READ)] = {
1124                [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1125                [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1126        },
1127        [C(OP_WRITE)] = {
1128                [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1129                [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1130        },
1131},
1132[C(L1I)] = {
1133        [C(OP_READ)] = {
1134                [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1135                [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1136        },
1137        [C(OP_WRITE)] = {
1138                [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1139                [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1140        },
1141        [C(OP_PREFETCH)] = {
1142                [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1143                /*
1144                 * Note that MIPS has only "hit" events countable for
1145                 * the prefetch operation.
1146                 */
1147        },
1148},
1149[C(LL)] = {
1150        [C(OP_READ)] = {
1151                [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1152                [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1153        },
1154        [C(OP_WRITE)] = {
1155                [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1156                [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1157        },
1158},
1159[C(BPU)] = {
1160        /* Using the same code for *HW_BRANCH* */
1161        [C(OP_READ)] = {
1162                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1163        },
1164        [C(OP_WRITE)] = {
1165                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1166        },
1167},
1168};
1169
1170
1171static const struct mips_perf_event octeon_cache_map
1172                                [PERF_COUNT_HW_CACHE_MAX]
1173                                [PERF_COUNT_HW_CACHE_OP_MAX]
1174                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1175[C(L1D)] = {
1176        [C(OP_READ)] = {
1177                [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1178                [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1179        },
1180        [C(OP_WRITE)] = {
1181                [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1182        },
1183},
1184[C(L1I)] = {
1185        [C(OP_READ)] = {
1186                [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1187        },
1188        [C(OP_PREFETCH)] = {
1189                [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1190        },
1191},
1192[C(DTLB)] = {
1193        /*
1194         * Only general DTLB misses are counted use the same event for
1195         * read and write.
1196         */
1197        [C(OP_READ)] = {
1198                [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1199        },
1200        [C(OP_WRITE)] = {
1201                [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1202        },
1203},
1204[C(ITLB)] = {
1205        [C(OP_READ)] = {
1206                [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1207        },
1208},
1209};
1210
1211static const struct mips_perf_event xlp_cache_map
1212                                [PERF_COUNT_HW_CACHE_MAX]
1213                                [PERF_COUNT_HW_CACHE_OP_MAX]
1214                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1215[C(L1D)] = {
1216        [C(OP_READ)] = {
1217                [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1218                [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1219        },
1220        [C(OP_WRITE)] = {
1221                [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1222                [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1223        },
1224},
1225[C(L1I)] = {
1226        [C(OP_READ)] = {
1227                [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1228                [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1229        },
1230},
1231[C(LL)] = {
1232        [C(OP_READ)] = {
1233                [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1234                [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1235        },
1236        [C(OP_WRITE)] = {
1237                [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1238                [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1239        },
1240},
1241[C(DTLB)] = {
1242        /*
1243         * Only general DTLB misses are counted use the same event for
1244         * read and write.
1245         */
1246        [C(OP_READ)] = {
1247                [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1248        },
1249        [C(OP_WRITE)] = {
1250                [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1251        },
1252},
1253[C(ITLB)] = {
1254        [C(OP_READ)] = {
1255                [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1256        },
1257        [C(OP_WRITE)] = {
1258                [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1259        },
1260},
1261[C(BPU)] = {
1262        [C(OP_READ)] = {
1263                [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1264        },
1265},
1266};
1267
1268#ifdef CONFIG_MIPS_MT_SMP
1269static void check_and_calc_range(struct perf_event *event,
1270                                 const struct mips_perf_event *pev)
1271{
1272        struct hw_perf_event *hwc = &event->hw;
1273
1274        if (event->cpu >= 0) {
1275                if (pev->range > V) {
1276                        /*
1277                         * The user selected an event that is processor
1278                         * wide, while expecting it to be VPE wide.
1279                         */
1280                        hwc->config_base |= M_TC_EN_ALL;
1281                } else {
1282                        /*
1283                         * FIXME: cpu_data[event->cpu].vpe_id reports 0
1284                         * for both CPUs.
1285                         */
1286                        hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1287                        hwc->config_base |= M_TC_EN_VPE;
1288                }
1289        } else
1290                hwc->config_base |= M_TC_EN_ALL;
1291}
1292#else
1293static void check_and_calc_range(struct perf_event *event,
1294                                 const struct mips_perf_event *pev)
1295{
1296}
1297#endif
1298
1299static int __hw_perf_event_init(struct perf_event *event)
1300{
1301        struct perf_event_attr *attr = &event->attr;
1302        struct hw_perf_event *hwc = &event->hw;
1303        const struct mips_perf_event *pev;
1304        int err;
1305
1306        /* Returning MIPS event descriptor for generic perf event. */
1307        if (PERF_TYPE_HARDWARE == event->attr.type) {
1308                if (event->attr.config >= PERF_COUNT_HW_MAX)
1309                        return -EINVAL;
1310                pev = mipspmu_map_general_event(event->attr.config);
1311        } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1312                pev = mipspmu_map_cache_event(event->attr.config);
1313        } else if (PERF_TYPE_RAW == event->attr.type) {
1314                /* We are working on the global raw event. */
1315                mutex_lock(&raw_event_mutex);
1316                pev = mipspmu.map_raw_event(event->attr.config);
1317        } else {
1318                /* The event type is not (yet) supported. */
1319                return -EOPNOTSUPP;
1320        }
1321
1322        if (IS_ERR(pev)) {
1323                if (PERF_TYPE_RAW == event->attr.type)
1324                        mutex_unlock(&raw_event_mutex);
1325                return PTR_ERR(pev);
1326        }
1327
1328        /*
1329         * We allow max flexibility on how each individual counter shared
1330         * by the single CPU operates (the mode exclusion and the range).
1331         */
1332        hwc->config_base = MIPS_PERFCTRL_IE;
1333
1334        /* Calculate range bits and validate it. */
1335        if (num_possible_cpus() > 1)
1336                check_and_calc_range(event, pev);
1337
1338        hwc->event_base = mipspmu_perf_event_encode(pev);
1339        if (PERF_TYPE_RAW == event->attr.type)
1340                mutex_unlock(&raw_event_mutex);
1341
1342        if (!attr->exclude_user)
1343                hwc->config_base |= MIPS_PERFCTRL_U;
1344        if (!attr->exclude_kernel) {
1345                hwc->config_base |= MIPS_PERFCTRL_K;
1346                /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1347                hwc->config_base |= MIPS_PERFCTRL_EXL;
1348        }
1349        if (!attr->exclude_hv)
1350                hwc->config_base |= MIPS_PERFCTRL_S;
1351
1352        hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1353        /*
1354         * The event can belong to another cpu. We do not assign a local
1355         * counter for it for now.
1356         */
1357        hwc->idx = -1;
1358        hwc->config = 0;
1359
1360        if (!hwc->sample_period) {
1361                hwc->sample_period  = mipspmu.max_period;
1362                hwc->last_period    = hwc->sample_period;
1363                local64_set(&hwc->period_left, hwc->sample_period);
1364        }
1365
1366        err = 0;
1367        if (event->group_leader != event)
1368                err = validate_group(event);
1369
1370        event->destroy = hw_perf_event_destroy;
1371
1372        if (err)
1373                event->destroy(event);
1374
1375        return err;
1376}
1377
1378static void pause_local_counters(void)
1379{
1380        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1381        int ctr = mipspmu.num_counters;
1382        unsigned long flags;
1383
1384        local_irq_save(flags);
1385        do {
1386                ctr--;
1387                cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1388                mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1389                                         ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1390        } while (ctr > 0);
1391        local_irq_restore(flags);
1392}
1393
1394static void resume_local_counters(void)
1395{
1396        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1397        int ctr = mipspmu.num_counters;
1398
1399        do {
1400                ctr--;
1401                mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1402        } while (ctr > 0);
1403}
1404
1405static int mipsxx_pmu_handle_shared_irq(void)
1406{
1407        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1408        struct perf_sample_data data;
1409        unsigned int counters = mipspmu.num_counters;
1410        u64 counter;
1411        int handled = IRQ_NONE;
1412        struct pt_regs *regs;
1413
1414        if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1415                return handled;
1416        /*
1417         * First we pause the local counters, so that when we are locked
1418         * here, the counters are all paused. When it gets locked due to
1419         * perf_disable(), the timer interrupt handler will be delayed.
1420         *
1421         * See also mipsxx_pmu_start().
1422         */
1423        pause_local_counters();
1424#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1425        read_lock(&pmuint_rwlock);
1426#endif
1427
1428        regs = get_irq_regs();
1429
1430        perf_sample_data_init(&data, 0, 0);
1431
1432        switch (counters) {
1433#define HANDLE_COUNTER(n)                                               \
1434        case n + 1:                                                     \
1435                if (test_bit(n, cpuc->used_mask)) {                     \
1436                        counter = mipspmu.read_counter(n);              \
1437                        if (counter & mipspmu.overflow) {               \
1438                                handle_associated_event(cpuc, n, &data, regs); \
1439                                handled = IRQ_HANDLED;                  \
1440                        }                                               \
1441                }
1442        HANDLE_COUNTER(3)
1443        HANDLE_COUNTER(2)
1444        HANDLE_COUNTER(1)
1445        HANDLE_COUNTER(0)
1446        }
1447
1448#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1449        read_unlock(&pmuint_rwlock);
1450#endif
1451        resume_local_counters();
1452
1453        /*
1454         * Do all the work for the pending perf events. We can do this
1455         * in here because the performance counter interrupt is a regular
1456         * interrupt, not NMI.
1457         */
1458        if (handled == IRQ_HANDLED)
1459                irq_work_run();
1460
1461        return handled;
1462}
1463
1464static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1465{
1466        return mipsxx_pmu_handle_shared_irq();
1467}
1468
1469/* 24K */
1470#define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1471        ((b) == 0 || (b) == 1 || (b) == 11)
1472
1473/* 34K */
1474#define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1475        ((b) == 0 || (b) == 1 || (b) == 11)
1476#ifdef CONFIG_MIPS_MT_SMP
1477#define IS_RANGE_P_34K_EVENT(r, b)                                      \
1478        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1479         (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1480         (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1481         ((b) >= 64 && (b) <= 67))
1482#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1483#endif
1484
1485/* 74K */
1486#define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1487        ((b) == 0 || (b) == 1)
1488
1489/* proAptiv */
1490#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1491        ((b) == 0 || (b) == 1)
1492/* P5600 */
1493#define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1494        ((b) == 0 || (b) == 1)
1495
1496/* 1004K */
1497#define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1498        ((b) == 0 || (b) == 1 || (b) == 11)
1499#ifdef CONFIG_MIPS_MT_SMP
1500#define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1501        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1502         (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1503         (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1504         (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1505         ((b) >= 64 && (b) <= 67))
1506#define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1507#endif
1508
1509/* interAptiv */
1510#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1511        ((b) == 0 || (b) == 1 || (b) == 11)
1512#ifdef CONFIG_MIPS_MT_SMP
1513/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1514#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1515        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1516         (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1517         (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1518         (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1519         ((b) >= 64 && (b) <= 67))
1520#define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1521#endif
1522
1523/* BMIPS5000 */
1524#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1525        ((b) == 0 || (b) == 1)
1526
1527
1528/*
1529 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1530 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1531 * indicate the even/odd bank selector. So, for example, when user wants to take
1532 * the Event Num of 15 for odd counters (by referring to the user manual), then
1533 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1534 * to be used.
1535 *
1536 * Some newer cores have even more events, in which case the user can use raw
1537 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1538 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1539 */
1540static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1541{
1542        /* currently most cores have 7-bit event numbers */
1543        unsigned int raw_id = config & 0xff;
1544        unsigned int base_id = raw_id & 0x7f;
1545
1546        switch (current_cpu_type()) {
1547        case CPU_24K:
1548                if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1549                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1550                else
1551                        raw_event.cntr_mask =
1552                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1553#ifdef CONFIG_MIPS_MT_SMP
1554                /*
1555                 * This is actually doing nothing. Non-multithreading
1556                 * CPUs will not check and calculate the range.
1557                 */
1558                raw_event.range = P;
1559#endif
1560                break;
1561        case CPU_34K:
1562                if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1563                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1564                else
1565                        raw_event.cntr_mask =
1566                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1567#ifdef CONFIG_MIPS_MT_SMP
1568                if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1569                        raw_event.range = P;
1570                else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1571                        raw_event.range = V;
1572                else
1573                        raw_event.range = T;
1574#endif
1575                break;
1576        case CPU_74K:
1577        case CPU_1074K:
1578                if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1579                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1580                else
1581                        raw_event.cntr_mask =
1582                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1583#ifdef CONFIG_MIPS_MT_SMP
1584                raw_event.range = P;
1585#endif
1586                break;
1587        case CPU_PROAPTIV:
1588                if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1589                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1590                else
1591                        raw_event.cntr_mask =
1592                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1593#ifdef CONFIG_MIPS_MT_SMP
1594                raw_event.range = P;
1595#endif
1596                break;
1597        case CPU_P5600:
1598        case CPU_P6600:
1599                /* 8-bit event numbers */
1600                raw_id = config & 0x1ff;
1601                base_id = raw_id & 0xff;
1602                if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1603                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1604                else
1605                        raw_event.cntr_mask =
1606                                raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1607#ifdef CONFIG_MIPS_MT_SMP
1608                raw_event.range = P;
1609#endif
1610                break;
1611        case CPU_I6400:
1612        case CPU_I6500:
1613                /* 8-bit event numbers */
1614                base_id = config & 0xff;
1615                raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1616                break;
1617        case CPU_1004K:
1618                if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1619                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1620                else
1621                        raw_event.cntr_mask =
1622                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1623#ifdef CONFIG_MIPS_MT_SMP
1624                if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1625                        raw_event.range = P;
1626                else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1627                        raw_event.range = V;
1628                else
1629                        raw_event.range = T;
1630#endif
1631                break;
1632        case CPU_INTERAPTIV:
1633                if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1634                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1635                else
1636                        raw_event.cntr_mask =
1637                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1638#ifdef CONFIG_MIPS_MT_SMP
1639                if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1640                        raw_event.range = P;
1641                else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1642                        raw_event.range = V;
1643                else
1644                        raw_event.range = T;
1645#endif
1646                break;
1647        case CPU_BMIPS5000:
1648                if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1649                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1650                else
1651                        raw_event.cntr_mask =
1652                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1653                break;
1654        case CPU_LOONGSON3:
1655                raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1656        break;
1657        }
1658
1659        raw_event.event_id = base_id;
1660
1661        return &raw_event;
1662}
1663
1664static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1665{
1666        unsigned int raw_id = config & 0xff;
1667        unsigned int base_id = raw_id & 0x7f;
1668
1669
1670        raw_event.cntr_mask = CNTR_ALL;
1671        raw_event.event_id = base_id;
1672
1673        if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1674                if (base_id > 0x42)
1675                        return ERR_PTR(-EOPNOTSUPP);
1676        } else {
1677                if (base_id > 0x3a)
1678                        return ERR_PTR(-EOPNOTSUPP);
1679        }
1680
1681        switch (base_id) {
1682        case 0x00:
1683        case 0x0f:
1684        case 0x1e:
1685        case 0x1f:
1686        case 0x2f:
1687        case 0x34:
1688        case 0x3b ... 0x3f:
1689                return ERR_PTR(-EOPNOTSUPP);
1690        default:
1691                break;
1692        }
1693
1694        return &raw_event;
1695}
1696
1697static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1698{
1699        unsigned int raw_id = config & 0xff;
1700
1701        /* Only 1-63 are defined */
1702        if ((raw_id < 0x01) || (raw_id > 0x3f))
1703                return ERR_PTR(-EOPNOTSUPP);
1704
1705        raw_event.cntr_mask = CNTR_ALL;
1706        raw_event.event_id = raw_id;
1707
1708        return &raw_event;
1709}
1710
1711static int __init
1712init_hw_perf_events(void)
1713{
1714        int counters, irq;
1715        int counter_bits;
1716
1717        pr_info("Performance counters: ");
1718
1719        counters = n_counters();
1720        if (counters == 0) {
1721                pr_cont("No available PMU.\n");
1722                return -ENODEV;
1723        }
1724
1725#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1726        cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1727        if (!cpu_has_mipsmt_pertccounters)
1728                counters = counters_total_to_per_cpu(counters);
1729#endif
1730
1731        if (get_c0_perfcount_int)
1732                irq = get_c0_perfcount_int();
1733        else if (cp0_perfcount_irq >= 0)
1734                irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1735        else
1736                irq = -1;
1737
1738        mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1739
1740        switch (current_cpu_type()) {
1741        case CPU_24K:
1742                mipspmu.name = "mips/24K";
1743                mipspmu.general_event_map = &mipsxxcore_event_map;
1744                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1745                break;
1746        case CPU_34K:
1747                mipspmu.name = "mips/34K";
1748                mipspmu.general_event_map = &mipsxxcore_event_map;
1749                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1750                break;
1751        case CPU_74K:
1752                mipspmu.name = "mips/74K";
1753                mipspmu.general_event_map = &mipsxxcore_event_map2;
1754                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1755                break;
1756        case CPU_PROAPTIV:
1757                mipspmu.name = "mips/proAptiv";
1758                mipspmu.general_event_map = &mipsxxcore_event_map2;
1759                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1760                break;
1761        case CPU_P5600:
1762                mipspmu.name = "mips/P5600";
1763                mipspmu.general_event_map = &mipsxxcore_event_map2;
1764                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1765                break;
1766        case CPU_P6600:
1767                mipspmu.name = "mips/P6600";
1768                mipspmu.general_event_map = &mipsxxcore_event_map2;
1769                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1770                break;
1771        case CPU_I6400:
1772                mipspmu.name = "mips/I6400";
1773                mipspmu.general_event_map = &i6x00_event_map;
1774                mipspmu.cache_event_map = &i6x00_cache_map;
1775                break;
1776        case CPU_I6500:
1777                mipspmu.name = "mips/I6500";
1778                mipspmu.general_event_map = &i6x00_event_map;
1779                mipspmu.cache_event_map = &i6x00_cache_map;
1780                break;
1781        case CPU_1004K:
1782                mipspmu.name = "mips/1004K";
1783                mipspmu.general_event_map = &mipsxxcore_event_map;
1784                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1785                break;
1786        case CPU_1074K:
1787                mipspmu.name = "mips/1074K";
1788                mipspmu.general_event_map = &mipsxxcore_event_map;
1789                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1790                break;
1791        case CPU_INTERAPTIV:
1792                mipspmu.name = "mips/interAptiv";
1793                mipspmu.general_event_map = &mipsxxcore_event_map;
1794                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1795                break;
1796        case CPU_LOONGSON1:
1797                mipspmu.name = "mips/loongson1";
1798                mipspmu.general_event_map = &mipsxxcore_event_map;
1799                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1800                break;
1801        case CPU_LOONGSON3:
1802                mipspmu.name = "mips/loongson3";
1803                mipspmu.general_event_map = &loongson3_event_map;
1804                mipspmu.cache_event_map = &loongson3_cache_map;
1805                break;
1806        case CPU_CAVIUM_OCTEON:
1807        case CPU_CAVIUM_OCTEON_PLUS:
1808        case CPU_CAVIUM_OCTEON2:
1809                mipspmu.name = "octeon";
1810                mipspmu.general_event_map = &octeon_event_map;
1811                mipspmu.cache_event_map = &octeon_cache_map;
1812                mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1813                break;
1814        case CPU_BMIPS5000:
1815                mipspmu.name = "BMIPS5000";
1816                mipspmu.general_event_map = &bmips5000_event_map;
1817                mipspmu.cache_event_map = &bmips5000_cache_map;
1818                break;
1819        case CPU_XLP:
1820                mipspmu.name = "xlp";
1821                mipspmu.general_event_map = &xlp_event_map;
1822                mipspmu.cache_event_map = &xlp_cache_map;
1823                mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1824                break;
1825        default:
1826                pr_cont("Either hardware does not support performance "
1827                        "counters, or not yet implemented.\n");
1828                return -ENODEV;
1829        }
1830
1831        mipspmu.num_counters = counters;
1832        mipspmu.irq = irq;
1833
1834        if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1835                mipspmu.max_period = (1ULL << 63) - 1;
1836                mipspmu.valid_count = (1ULL << 63) - 1;
1837                mipspmu.overflow = 1ULL << 63;
1838                mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1839                mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1840                counter_bits = 64;
1841        } else {
1842                mipspmu.max_period = (1ULL << 31) - 1;
1843                mipspmu.valid_count = (1ULL << 31) - 1;
1844                mipspmu.overflow = 1ULL << 31;
1845                mipspmu.read_counter = mipsxx_pmu_read_counter;
1846                mipspmu.write_counter = mipsxx_pmu_write_counter;
1847                counter_bits = 32;
1848        }
1849
1850        on_each_cpu(reset_counters, (void *)(long)counters, 1);
1851
1852        pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1853                "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1854                irq < 0 ? " (share with timer interrupt)" : "");
1855
1856        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1857
1858        return 0;
1859}
1860early_initcall(init_hw_perf_events);
1861