linux/arch/mips/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1995 Linus Torvalds
   7 * Copyright (C) 1995 Waldorf Electronics
   8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
   9 * Copyright (C) 1996 Stoned Elipot
  10 * Copyright (C) 1999 Silicon Graphics, Inc.
  11 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
  12 */
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/export.h>
  16#include <linux/screen_info.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/initrd.h>
  20#include <linux/root_dev.h>
  21#include <linux/highmem.h>
  22#include <linux/console.h>
  23#include <linux/pfn.h>
  24#include <linux/debugfs.h>
  25#include <linux/kexec.h>
  26#include <linux/sizes.h>
  27#include <linux/device.h>
  28#include <linux/dma-contiguous.h>
  29#include <linux/decompress/generic.h>
  30#include <linux/of_fdt.h>
  31
  32#include <asm/addrspace.h>
  33#include <asm/bootinfo.h>
  34#include <asm/bugs.h>
  35#include <asm/cache.h>
  36#include <asm/cdmm.h>
  37#include <asm/cpu.h>
  38#include <asm/debug.h>
  39#include <asm/sections.h>
  40#include <asm/setup.h>
  41#include <asm/smp-ops.h>
  42#include <asm/prom.h>
  43
  44#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
  45const char __section(.appended_dtb) __appended_dtb[0x100000];
  46#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
  47
  48struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  49
  50EXPORT_SYMBOL(cpu_data);
  51
  52#ifdef CONFIG_VT
  53struct screen_info screen_info;
  54#endif
  55
  56/*
  57 * Setup information
  58 *
  59 * These are initialized so they are in the .data section
  60 */
  61unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  62
  63EXPORT_SYMBOL(mips_machtype);
  64
  65struct boot_mem_map boot_mem_map;
  66
  67static char __initdata command_line[COMMAND_LINE_SIZE];
  68char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  69
  70#ifdef CONFIG_CMDLINE_BOOL
  71static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  72#endif
  73
  74/*
  75 * mips_io_port_base is the begin of the address space to which x86 style
  76 * I/O ports are mapped.
  77 */
  78const unsigned long mips_io_port_base = -1;
  79EXPORT_SYMBOL(mips_io_port_base);
  80
  81static struct resource code_resource = { .name = "Kernel code", };
  82static struct resource data_resource = { .name = "Kernel data", };
  83static struct resource bss_resource = { .name = "Kernel bss", };
  84
  85static void *detect_magic __initdata = detect_memory_region;
  86
  87void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
  88{
  89        int x = boot_mem_map.nr_map;
  90        int i;
  91
  92        /*
  93         * If the region reaches the top of the physical address space, adjust
  94         * the size slightly so that (start + size) doesn't overflow
  95         */
  96        if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
  97                --size;
  98
  99        /* Sanity check */
 100        if (start + size < start) {
 101                pr_warn("Trying to add an invalid memory region, skipped\n");
 102                return;
 103        }
 104
 105        /*
 106         * Try to merge with existing entry, if any.
 107         */
 108        for (i = 0; i < boot_mem_map.nr_map; i++) {
 109                struct boot_mem_map_entry *entry = boot_mem_map.map + i;
 110                unsigned long top;
 111
 112                if (entry->type != type)
 113                        continue;
 114
 115                if (start + size < entry->addr)
 116                        continue;                       /* no overlap */
 117
 118                if (entry->addr + entry->size < start)
 119                        continue;                       /* no overlap */
 120
 121                top = max(entry->addr + entry->size, start + size);
 122                entry->addr = min(entry->addr, start);
 123                entry->size = top - entry->addr;
 124
 125                return;
 126        }
 127
 128        if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
 129                pr_err("Ooops! Too many entries in the memory map!\n");
 130                return;
 131        }
 132
 133        boot_mem_map.map[x].addr = start;
 134        boot_mem_map.map[x].size = size;
 135        boot_mem_map.map[x].type = type;
 136        boot_mem_map.nr_map++;
 137}
 138
 139void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
 140{
 141        void *dm = &detect_magic;
 142        phys_addr_t size;
 143
 144        for (size = sz_min; size < sz_max; size <<= 1) {
 145                if (!memcmp(dm, dm + size, sizeof(detect_magic)))
 146                        break;
 147        }
 148
 149        pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
 150                ((unsigned long long) size) / SZ_1M,
 151                (unsigned long long) start,
 152                ((unsigned long long) sz_min) / SZ_1M,
 153                ((unsigned long long) sz_max) / SZ_1M);
 154
 155        add_memory_region(start, size, BOOT_MEM_RAM);
 156}
 157
 158static bool __init __maybe_unused memory_region_available(phys_addr_t start,
 159                                                          phys_addr_t size)
 160{
 161        int i;
 162        bool in_ram = false, free = true;
 163
 164        for (i = 0; i < boot_mem_map.nr_map; i++) {
 165                phys_addr_t start_, end_;
 166
 167                start_ = boot_mem_map.map[i].addr;
 168                end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
 169
 170                switch (boot_mem_map.map[i].type) {
 171                case BOOT_MEM_RAM:
 172                        if (start >= start_ && start + size <= end_)
 173                                in_ram = true;
 174                        break;
 175                case BOOT_MEM_RESERVED:
 176                        if ((start >= start_ && start < end_) ||
 177                            (start < start_ && start + size >= start_))
 178                                free = false;
 179                        break;
 180                default:
 181                        continue;
 182                }
 183        }
 184
 185        return in_ram && free;
 186}
 187
 188static void __init print_memory_map(void)
 189{
 190        int i;
 191        const int field = 2 * sizeof(unsigned long);
 192
 193        for (i = 0; i < boot_mem_map.nr_map; i++) {
 194                printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
 195                       field, (unsigned long long) boot_mem_map.map[i].size,
 196                       field, (unsigned long long) boot_mem_map.map[i].addr);
 197
 198                switch (boot_mem_map.map[i].type) {
 199                case BOOT_MEM_RAM:
 200                        printk(KERN_CONT "(usable)\n");
 201                        break;
 202                case BOOT_MEM_INIT_RAM:
 203                        printk(KERN_CONT "(usable after init)\n");
 204                        break;
 205                case BOOT_MEM_ROM_DATA:
 206                        printk(KERN_CONT "(ROM data)\n");
 207                        break;
 208                case BOOT_MEM_RESERVED:
 209                        printk(KERN_CONT "(reserved)\n");
 210                        break;
 211                default:
 212                        printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
 213                        break;
 214                }
 215        }
 216}
 217
 218/*
 219 * Manage initrd
 220 */
 221#ifdef CONFIG_BLK_DEV_INITRD
 222
 223static int __init rd_start_early(char *p)
 224{
 225        unsigned long start = memparse(p, &p);
 226
 227#ifdef CONFIG_64BIT
 228        /* Guess if the sign extension was forgotten by bootloader */
 229        if (start < XKPHYS)
 230                start = (int)start;
 231#endif
 232        initrd_start = start;
 233        initrd_end += start;
 234        return 0;
 235}
 236early_param("rd_start", rd_start_early);
 237
 238static int __init rd_size_early(char *p)
 239{
 240        initrd_end += memparse(p, &p);
 241        return 0;
 242}
 243early_param("rd_size", rd_size_early);
 244
 245/* it returns the next free pfn after initrd */
 246static unsigned long __init init_initrd(void)
 247{
 248        unsigned long end;
 249
 250        /*
 251         * Board specific code or command line parser should have
 252         * already set up initrd_start and initrd_end. In these cases
 253         * perfom sanity checks and use them if all looks good.
 254         */
 255        if (!initrd_start || initrd_end <= initrd_start)
 256                goto disable;
 257
 258        if (initrd_start & ~PAGE_MASK) {
 259                pr_err("initrd start must be page aligned\n");
 260                goto disable;
 261        }
 262        if (initrd_start < PAGE_OFFSET) {
 263                pr_err("initrd start < PAGE_OFFSET\n");
 264                goto disable;
 265        }
 266
 267        /*
 268         * Sanitize initrd addresses. For example firmware
 269         * can't guess if they need to pass them through
 270         * 64-bits values if the kernel has been built in pure
 271         * 32-bit. We need also to switch from KSEG0 to XKPHYS
 272         * addresses now, so the code can now safely use __pa().
 273         */
 274        end = __pa(initrd_end);
 275        initrd_end = (unsigned long)__va(end);
 276        initrd_start = (unsigned long)__va(__pa(initrd_start));
 277
 278        ROOT_DEV = Root_RAM0;
 279        return PFN_UP(end);
 280disable:
 281        initrd_start = 0;
 282        initrd_end = 0;
 283        return 0;
 284}
 285
 286/* In some conditions (e.g. big endian bootloader with a little endian
 287   kernel), the initrd might appear byte swapped.  Try to detect this and
 288   byte swap it if needed.  */
 289static void __init maybe_bswap_initrd(void)
 290{
 291#if defined(CONFIG_CPU_CAVIUM_OCTEON)
 292        u64 buf;
 293
 294        /* Check for CPIO signature */
 295        if (!memcmp((void *)initrd_start, "070701", 6))
 296                return;
 297
 298        /* Check for compressed initrd */
 299        if (decompress_method((unsigned char *)initrd_start, 8, NULL))
 300                return;
 301
 302        /* Try again with a byte swapped header */
 303        buf = swab64p((u64 *)initrd_start);
 304        if (!memcmp(&buf, "070701", 6) ||
 305            decompress_method((unsigned char *)(&buf), 8, NULL)) {
 306                unsigned long i;
 307
 308                pr_info("Byteswapped initrd detected\n");
 309                for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
 310                        swab64s((u64 *)i);
 311        }
 312#endif
 313}
 314
 315static void __init finalize_initrd(void)
 316{
 317        unsigned long size = initrd_end - initrd_start;
 318
 319        if (size == 0) {
 320                printk(KERN_INFO "Initrd not found or empty");
 321                goto disable;
 322        }
 323        if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
 324                printk(KERN_ERR "Initrd extends beyond end of memory");
 325                goto disable;
 326        }
 327
 328        maybe_bswap_initrd();
 329
 330        reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
 331        initrd_below_start_ok = 1;
 332
 333        pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
 334                initrd_start, size);
 335        return;
 336disable:
 337        printk(KERN_CONT " - disabling initrd\n");
 338        initrd_start = 0;
 339        initrd_end = 0;
 340}
 341
 342#else  /* !CONFIG_BLK_DEV_INITRD */
 343
 344static unsigned long __init init_initrd(void)
 345{
 346        return 0;
 347}
 348
 349#define finalize_initrd()       do {} while (0)
 350
 351#endif
 352
 353/*
 354 * Initialize the bootmem allocator. It also setup initrd related data
 355 * if needed.
 356 */
 357#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
 358
 359static void __init bootmem_init(void)
 360{
 361        init_initrd();
 362        finalize_initrd();
 363}
 364
 365#else  /* !CONFIG_SGI_IP27 */
 366
 367static unsigned long __init bootmap_bytes(unsigned long pages)
 368{
 369        unsigned long bytes = DIV_ROUND_UP(pages, 8);
 370
 371        return ALIGN(bytes, sizeof(long));
 372}
 373
 374static void __init bootmem_init(void)
 375{
 376        unsigned long reserved_end;
 377        unsigned long mapstart = ~0UL;
 378        unsigned long bootmap_size;
 379        phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX;
 380        bool bootmap_valid = false;
 381        int i;
 382
 383        /*
 384         * Sanity check any INITRD first. We don't take it into account
 385         * for bootmem setup initially, rely on the end-of-kernel-code
 386         * as our memory range starting point. Once bootmem is inited we
 387         * will reserve the area used for the initrd.
 388         */
 389        init_initrd();
 390        reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
 391
 392        /*
 393         * max_low_pfn is not a number of pages. The number of pages
 394         * of the system is given by 'max_low_pfn - min_low_pfn'.
 395         */
 396        min_low_pfn = ~0UL;
 397        max_low_pfn = 0;
 398
 399        /*
 400         * Find the highest page frame number we have available
 401         * and the lowest used RAM address
 402         */
 403        for (i = 0; i < boot_mem_map.nr_map; i++) {
 404                unsigned long start, end;
 405
 406                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 407                        continue;
 408
 409                start = PFN_UP(boot_mem_map.map[i].addr);
 410                end = PFN_DOWN(boot_mem_map.map[i].addr
 411                                + boot_mem_map.map[i].size);
 412
 413                ramstart = min(ramstart, boot_mem_map.map[i].addr);
 414
 415#ifndef CONFIG_HIGHMEM
 416                /*
 417                 * Skip highmem here so we get an accurate max_low_pfn if low
 418                 * memory stops short of high memory.
 419                 * If the region overlaps HIGHMEM_START, end is clipped so
 420                 * max_pfn excludes the highmem portion.
 421                 */
 422                if (start >= PFN_DOWN(HIGHMEM_START))
 423                        continue;
 424                if (end > PFN_DOWN(HIGHMEM_START))
 425                        end = PFN_DOWN(HIGHMEM_START);
 426#endif
 427
 428                if (end > max_low_pfn)
 429                        max_low_pfn = end;
 430                if (start < min_low_pfn)
 431                        min_low_pfn = start;
 432                if (end <= reserved_end)
 433                        continue;
 434#ifdef CONFIG_BLK_DEV_INITRD
 435                /* Skip zones before initrd and initrd itself */
 436                if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
 437                        continue;
 438#endif
 439                if (start >= mapstart)
 440                        continue;
 441                mapstart = max(reserved_end, start);
 442        }
 443
 444        /*
 445         * Reserve any memory between the start of RAM and PHYS_OFFSET
 446         */
 447        if (ramstart > PHYS_OFFSET)
 448                add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
 449                                  BOOT_MEM_RESERVED);
 450
 451        if (min_low_pfn >= max_low_pfn)
 452                panic("Incorrect memory mapping !!!");
 453        if (min_low_pfn > ARCH_PFN_OFFSET) {
 454                pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
 455                        (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
 456                        min_low_pfn - ARCH_PFN_OFFSET);
 457        } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
 458                pr_info("%lu free pages won't be used\n",
 459                        ARCH_PFN_OFFSET - min_low_pfn);
 460        }
 461        min_low_pfn = ARCH_PFN_OFFSET;
 462
 463        /*
 464         * Determine low and high memory ranges
 465         */
 466        max_pfn = max_low_pfn;
 467        if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
 468#ifdef CONFIG_HIGHMEM
 469                highstart_pfn = PFN_DOWN(HIGHMEM_START);
 470                highend_pfn = max_low_pfn;
 471#endif
 472                max_low_pfn = PFN_DOWN(HIGHMEM_START);
 473        }
 474
 475#ifdef CONFIG_BLK_DEV_INITRD
 476        /*
 477         * mapstart should be after initrd_end
 478         */
 479        if (initrd_end)
 480                mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
 481#endif
 482
 483        /*
 484         * check that mapstart doesn't overlap with any of
 485         * memory regions that have been reserved through eg. DTB
 486         */
 487        bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
 488
 489        bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
 490                                                bootmap_size);
 491        for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
 492                unsigned long mapstart_addr;
 493
 494                switch (boot_mem_map.map[i].type) {
 495                case BOOT_MEM_RESERVED:
 496                        mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
 497                                                boot_mem_map.map[i].size);
 498                        if (PHYS_PFN(mapstart_addr) < mapstart)
 499                                break;
 500
 501                        bootmap_valid = memory_region_available(mapstart_addr,
 502                                                                bootmap_size);
 503                        if (bootmap_valid)
 504                                mapstart = PHYS_PFN(mapstart_addr);
 505                        break;
 506                default:
 507                        break;
 508                }
 509        }
 510
 511        if (!bootmap_valid)
 512                panic("No memory area to place a bootmap bitmap");
 513
 514        /*
 515         * Initialize the boot-time allocator with low memory only.
 516         */
 517        if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
 518                                         min_low_pfn, max_low_pfn))
 519                panic("Unexpected memory size required for bootmap");
 520
 521        for (i = 0; i < boot_mem_map.nr_map; i++) {
 522                unsigned long start, end;
 523
 524                start = PFN_UP(boot_mem_map.map[i].addr);
 525                end = PFN_DOWN(boot_mem_map.map[i].addr
 526                                + boot_mem_map.map[i].size);
 527
 528                if (start <= min_low_pfn)
 529                        start = min_low_pfn;
 530                if (start >= end)
 531                        continue;
 532
 533#ifndef CONFIG_HIGHMEM
 534                if (end > max_low_pfn)
 535                        end = max_low_pfn;
 536
 537                /*
 538                 * ... finally, is the area going away?
 539                 */
 540                if (end <= start)
 541                        continue;
 542#endif
 543
 544                memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
 545        }
 546
 547        /*
 548         * Register fully available low RAM pages with the bootmem allocator.
 549         */
 550        for (i = 0; i < boot_mem_map.nr_map; i++) {
 551                unsigned long start, end, size;
 552
 553                start = PFN_UP(boot_mem_map.map[i].addr);
 554                end   = PFN_DOWN(boot_mem_map.map[i].addr
 555                                    + boot_mem_map.map[i].size);
 556
 557                /*
 558                 * Reserve usable memory.
 559                 */
 560                switch (boot_mem_map.map[i].type) {
 561                case BOOT_MEM_RAM:
 562                        break;
 563                case BOOT_MEM_INIT_RAM:
 564                        memory_present(0, start, end);
 565                        continue;
 566                default:
 567                        /* Not usable memory */
 568                        if (start > min_low_pfn && end < max_low_pfn)
 569                                reserve_bootmem(boot_mem_map.map[i].addr,
 570                                                boot_mem_map.map[i].size,
 571                                                BOOTMEM_DEFAULT);
 572                        continue;
 573                }
 574
 575                /*
 576                 * We are rounding up the start address of usable memory
 577                 * and at the end of the usable range downwards.
 578                 */
 579                if (start >= max_low_pfn)
 580                        continue;
 581                if (start < reserved_end)
 582                        start = reserved_end;
 583                if (end > max_low_pfn)
 584                        end = max_low_pfn;
 585
 586                /*
 587                 * ... finally, is the area going away?
 588                 */
 589                if (end <= start)
 590                        continue;
 591                size = end - start;
 592
 593                /* Register lowmem ranges */
 594                free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
 595                memory_present(0, start, end);
 596        }
 597
 598        /*
 599         * Reserve the bootmap memory.
 600         */
 601        reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
 602
 603#ifdef CONFIG_RELOCATABLE
 604        /*
 605         * The kernel reserves all memory below its _end symbol as bootmem,
 606         * but the kernel may now be at a much higher address. The memory
 607         * between the original and new locations may be returned to the system.
 608         */
 609        if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
 610                unsigned long offset;
 611                extern void show_kernel_relocation(const char *level);
 612
 613                offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
 614                free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
 615
 616#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
 617                /*
 618                 * This information is necessary when debugging the kernel
 619                 * But is a security vulnerability otherwise!
 620                 */
 621                show_kernel_relocation(KERN_INFO);
 622#endif
 623        }
 624#endif
 625
 626        /*
 627         * Reserve initrd memory if needed.
 628         */
 629        finalize_initrd();
 630}
 631
 632#endif  /* CONFIG_SGI_IP27 */
 633
 634/*
 635 * arch_mem_init - initialize memory management subsystem
 636 *
 637 *  o plat_mem_setup() detects the memory configuration and will record detected
 638 *    memory areas using add_memory_region.
 639 *
 640 * At this stage the memory configuration of the system is known to the
 641 * kernel but generic memory management system is still entirely uninitialized.
 642 *
 643 *  o bootmem_init()
 644 *  o sparse_init()
 645 *  o paging_init()
 646 *  o dma_contiguous_reserve()
 647 *
 648 * At this stage the bootmem allocator is ready to use.
 649 *
 650 * NOTE: historically plat_mem_setup did the entire platform initialization.
 651 *       This was rather impractical because it meant plat_mem_setup had to
 652 * get away without any kind of memory allocator.  To keep old code from
 653 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
 654 * initialization hook for anything else was introduced.
 655 */
 656
 657static int usermem __initdata;
 658
 659static int __init early_parse_mem(char *p)
 660{
 661        phys_addr_t start, size;
 662
 663        /*
 664         * If a user specifies memory size, we
 665         * blow away any automatically generated
 666         * size.
 667         */
 668        if (usermem == 0) {
 669                boot_mem_map.nr_map = 0;
 670                usermem = 1;
 671        }
 672        start = 0;
 673        size = memparse(p, &p);
 674        if (*p == '@')
 675                start = memparse(p + 1, &p);
 676
 677        add_memory_region(start, size, BOOT_MEM_RAM);
 678
 679        return 0;
 680}
 681early_param("mem", early_parse_mem);
 682
 683static int __init early_parse_memmap(char *p)
 684{
 685        char *oldp;
 686        u64 start_at, mem_size;
 687
 688        if (!p)
 689                return -EINVAL;
 690
 691        if (!strncmp(p, "exactmap", 8)) {
 692                pr_err("\"memmap=exactmap\" invalid on MIPS\n");
 693                return 0;
 694        }
 695
 696        oldp = p;
 697        mem_size = memparse(p, &p);
 698        if (p == oldp)
 699                return -EINVAL;
 700
 701        if (*p == '@') {
 702                start_at = memparse(p+1, &p);
 703                add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
 704        } else if (*p == '#') {
 705                pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
 706                return -EINVAL;
 707        } else if (*p == '$') {
 708                start_at = memparse(p+1, &p);
 709                add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
 710        } else {
 711                pr_err("\"memmap\" invalid format!\n");
 712                return -EINVAL;
 713        }
 714
 715        if (*p == '\0') {
 716                usermem = 1;
 717                return 0;
 718        } else
 719                return -EINVAL;
 720}
 721early_param("memmap", early_parse_memmap);
 722
 723#ifdef CONFIG_PROC_VMCORE
 724unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
 725static int __init early_parse_elfcorehdr(char *p)
 726{
 727        int i;
 728
 729        setup_elfcorehdr = memparse(p, &p);
 730
 731        for (i = 0; i < boot_mem_map.nr_map; i++) {
 732                unsigned long start = boot_mem_map.map[i].addr;
 733                unsigned long end = (boot_mem_map.map[i].addr +
 734                                     boot_mem_map.map[i].size);
 735                if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
 736                        /*
 737                         * Reserve from the elf core header to the end of
 738                         * the memory segment, that should all be kdump
 739                         * reserved memory.
 740                         */
 741                        setup_elfcorehdr_size = end - setup_elfcorehdr;
 742                        break;
 743                }
 744        }
 745        /*
 746         * If we don't find it in the memory map, then we shouldn't
 747         * have to worry about it, as the new kernel won't use it.
 748         */
 749        return 0;
 750}
 751early_param("elfcorehdr", early_parse_elfcorehdr);
 752#endif
 753
 754static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
 755{
 756        phys_addr_t size;
 757        int i;
 758
 759        size = end - mem;
 760        if (!size)
 761                return;
 762
 763        /* Make sure it is in the boot_mem_map */
 764        for (i = 0; i < boot_mem_map.nr_map; i++) {
 765                if (mem >= boot_mem_map.map[i].addr &&
 766                    mem < (boot_mem_map.map[i].addr +
 767                           boot_mem_map.map[i].size))
 768                        return;
 769        }
 770        add_memory_region(mem, size, type);
 771}
 772
 773#ifdef CONFIG_KEXEC
 774static inline unsigned long long get_total_mem(void)
 775{
 776        unsigned long long total;
 777
 778        total = max_pfn - min_low_pfn;
 779        return total << PAGE_SHIFT;
 780}
 781
 782static void __init mips_parse_crashkernel(void)
 783{
 784        unsigned long long total_mem;
 785        unsigned long long crash_size, crash_base;
 786        int ret;
 787
 788        total_mem = get_total_mem();
 789        ret = parse_crashkernel(boot_command_line, total_mem,
 790                                &crash_size, &crash_base);
 791        if (ret != 0 || crash_size <= 0)
 792                return;
 793
 794        if (!memory_region_available(crash_base, crash_size)) {
 795                pr_warn("Invalid memory region reserved for crash kernel\n");
 796                return;
 797        }
 798
 799        crashk_res.start = crash_base;
 800        crashk_res.end   = crash_base + crash_size - 1;
 801}
 802
 803static void __init request_crashkernel(struct resource *res)
 804{
 805        int ret;
 806
 807        if (crashk_res.start == crashk_res.end)
 808                return;
 809
 810        ret = request_resource(res, &crashk_res);
 811        if (!ret)
 812                pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
 813                        (unsigned long)((crashk_res.end -
 814                                         crashk_res.start + 1) >> 20),
 815                        (unsigned long)(crashk_res.start  >> 20));
 816}
 817#else /* !defined(CONFIG_KEXEC)         */
 818static void __init mips_parse_crashkernel(void)
 819{
 820}
 821
 822static void __init request_crashkernel(struct resource *res)
 823{
 824}
 825#endif /* !defined(CONFIG_KEXEC)  */
 826
 827#define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
 828#define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
 829#define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
 830#define BUILTIN_EXTEND_WITH_PROM        \
 831        IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
 832
 833static void __init arch_mem_init(char **cmdline_p)
 834{
 835        struct memblock_region *reg;
 836        extern void plat_mem_setup(void);
 837
 838#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
 839        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 840#else
 841        if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
 842            (USE_DTB_CMDLINE && !boot_command_line[0]))
 843                strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 844
 845        if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
 846                if (boot_command_line[0])
 847                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 848                strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 849        }
 850
 851#if defined(CONFIG_CMDLINE_BOOL)
 852        if (builtin_cmdline[0]) {
 853                if (boot_command_line[0])
 854                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 855                strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 856        }
 857
 858        if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
 859                if (boot_command_line[0])
 860                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 861                strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 862        }
 863#endif
 864#endif
 865
 866        /* call board setup routine */
 867        plat_mem_setup();
 868
 869        /*
 870         * Make sure all kernel memory is in the maps.  The "UP" and
 871         * "DOWN" are opposite for initdata since if it crosses over
 872         * into another memory section you don't want that to be
 873         * freed when the initdata is freed.
 874         */
 875        arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
 876                         PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
 877                         BOOT_MEM_RAM);
 878        arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
 879                         PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
 880                         BOOT_MEM_INIT_RAM);
 881
 882        pr_info("Determined physical RAM map:\n");
 883        print_memory_map();
 884
 885        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 886
 887        *cmdline_p = command_line;
 888
 889        parse_early_param();
 890
 891        if (usermem) {
 892                pr_info("User-defined physical RAM map:\n");
 893                print_memory_map();
 894        }
 895
 896        early_init_fdt_reserve_self();
 897        early_init_fdt_scan_reserved_mem();
 898
 899        bootmem_init();
 900#ifdef CONFIG_PROC_VMCORE
 901        if (setup_elfcorehdr && setup_elfcorehdr_size) {
 902                printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
 903                       setup_elfcorehdr, setup_elfcorehdr_size);
 904                reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
 905                                BOOTMEM_DEFAULT);
 906        }
 907#endif
 908
 909        mips_parse_crashkernel();
 910#ifdef CONFIG_KEXEC
 911        if (crashk_res.start != crashk_res.end)
 912                reserve_bootmem(crashk_res.start,
 913                                crashk_res.end - crashk_res.start + 1,
 914                                BOOTMEM_DEFAULT);
 915#endif
 916        device_tree_init();
 917        sparse_init();
 918        plat_swiotlb_setup();
 919
 920        dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
 921        /* Tell bootmem about cma reserved memblock section */
 922        for_each_memblock(reserved, reg)
 923                if (reg->size != 0)
 924                        reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
 925
 926        reserve_bootmem_region(__pa_symbol(&__nosave_begin),
 927                        __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
 928}
 929
 930static void __init resource_init(void)
 931{
 932        int i;
 933
 934        if (UNCAC_BASE != IO_BASE)
 935                return;
 936
 937        code_resource.start = __pa_symbol(&_text);
 938        code_resource.end = __pa_symbol(&_etext) - 1;
 939        data_resource.start = __pa_symbol(&_etext);
 940        data_resource.end = __pa_symbol(&_edata) - 1;
 941        bss_resource.start = __pa_symbol(&__bss_start);
 942        bss_resource.end = __pa_symbol(&__bss_stop) - 1;
 943
 944        for (i = 0; i < boot_mem_map.nr_map; i++) {
 945                struct resource *res;
 946                unsigned long start, end;
 947
 948                start = boot_mem_map.map[i].addr;
 949                end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
 950                if (start >= HIGHMEM_START)
 951                        continue;
 952                if (end >= HIGHMEM_START)
 953                        end = HIGHMEM_START - 1;
 954
 955                res = alloc_bootmem(sizeof(struct resource));
 956
 957                res->start = start;
 958                res->end = end;
 959                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 960
 961                switch (boot_mem_map.map[i].type) {
 962                case BOOT_MEM_RAM:
 963                case BOOT_MEM_INIT_RAM:
 964                case BOOT_MEM_ROM_DATA:
 965                        res->name = "System RAM";
 966                        res->flags |= IORESOURCE_SYSRAM;
 967                        break;
 968                case BOOT_MEM_RESERVED:
 969                default:
 970                        res->name = "reserved";
 971                }
 972
 973                request_resource(&iomem_resource, res);
 974
 975                /*
 976                 *  We don't know which RAM region contains kernel data,
 977                 *  so we try it repeatedly and let the resource manager
 978                 *  test it.
 979                 */
 980                request_resource(res, &code_resource);
 981                request_resource(res, &data_resource);
 982                request_resource(res, &bss_resource);
 983                request_crashkernel(res);
 984        }
 985}
 986
 987#ifdef CONFIG_SMP
 988static void __init prefill_possible_map(void)
 989{
 990        int i, possible = num_possible_cpus();
 991
 992        if (possible > nr_cpu_ids)
 993                possible = nr_cpu_ids;
 994
 995        for (i = 0; i < possible; i++)
 996                set_cpu_possible(i, true);
 997        for (; i < NR_CPUS; i++)
 998                set_cpu_possible(i, false);
 999
1000        nr_cpu_ids = possible;
1001}
1002#else
1003static inline void prefill_possible_map(void) {}
1004#endif
1005
1006void __init setup_arch(char **cmdline_p)
1007{
1008        cpu_probe();
1009        mips_cm_probe();
1010        prom_init();
1011
1012        setup_early_fdc_console();
1013#ifdef CONFIG_EARLY_PRINTK
1014        setup_early_printk();
1015#endif
1016        cpu_report();
1017        check_bugs_early();
1018
1019#if defined(CONFIG_VT)
1020#if defined(CONFIG_VGA_CONSOLE)
1021        conswitchp = &vga_con;
1022#elif defined(CONFIG_DUMMY_CONSOLE)
1023        conswitchp = &dummy_con;
1024#endif
1025#endif
1026
1027        arch_mem_init(cmdline_p);
1028
1029        resource_init();
1030        plat_smp_setup();
1031        prefill_possible_map();
1032
1033        cpu_cache_init();
1034        paging_init();
1035}
1036
1037unsigned long kernelsp[NR_CPUS];
1038unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1039
1040#ifdef CONFIG_USE_OF
1041unsigned long fw_passed_dtb;
1042#endif
1043
1044#ifdef CONFIG_DEBUG_FS
1045struct dentry *mips_debugfs_dir;
1046static int __init debugfs_mips(void)
1047{
1048        struct dentry *d;
1049
1050        d = debugfs_create_dir("mips", NULL);
1051        if (!d)
1052                return -ENOMEM;
1053        mips_debugfs_dir = d;
1054        return 0;
1055}
1056arch_initcall(debugfs_mips);
1057#endif
1058