linux/arch/mips/kvm/mips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/bootmem.h>
  22
  23#include <asm/fpu.h>
  24#include <asm/page.h>
  25#include <asm/cacheflush.h>
  26#include <asm/mmu_context.h>
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include "trace.h"
  37
  38#ifndef VECTORSPACING
  39#define VECTORSPACING 0x100     /* for EI/VI mode */
  40#endif
  41
  42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  43struct kvm_stats_debugfs_item debugfs_entries[] = {
  44        { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
  45        { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
  46        { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
  47        { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
  48        { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  49        { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
  50        { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
  51        { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
  52        { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
  53        { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
  54        { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
  55        { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
  56        { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
  57        { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
  58        { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
  59        { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
  60        { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  61        { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  62#ifdef CONFIG_KVM_MIPS_VZ
  63        { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
  64        { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
  65        { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
  66        { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
  67        { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
  68        { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
  69        { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
  70        { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
  71#endif
  72        { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  73        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  74        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  75        { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
  76        {NULL}
  77};
  78
  79bool kvm_trace_guest_mode_change;
  80
  81int kvm_guest_mode_change_trace_reg(void)
  82{
  83        kvm_trace_guest_mode_change = 1;
  84        return 0;
  85}
  86
  87void kvm_guest_mode_change_trace_unreg(void)
  88{
  89        kvm_trace_guest_mode_change = 0;
  90}
  91
  92/*
  93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  94 * Config7, so we are "runnable" if interrupts are pending
  95 */
  96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  97{
  98        return !!(vcpu->arch.pending_exceptions);
  99}
 100
 101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 102{
 103        return false;
 104}
 105
 106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 107{
 108        return 1;
 109}
 110
 111int kvm_arch_hardware_enable(void)
 112{
 113        return kvm_mips_callbacks->hardware_enable();
 114}
 115
 116void kvm_arch_hardware_disable(void)
 117{
 118        kvm_mips_callbacks->hardware_disable();
 119}
 120
 121int kvm_arch_hardware_setup(void)
 122{
 123        return 0;
 124}
 125
 126void kvm_arch_check_processor_compat(void *rtn)
 127{
 128        *(int *)rtn = 0;
 129}
 130
 131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 132{
 133        switch (type) {
 134#ifdef CONFIG_KVM_MIPS_VZ
 135        case KVM_VM_MIPS_VZ:
 136#else
 137        case KVM_VM_MIPS_TE:
 138#endif
 139                break;
 140        default:
 141                /* Unsupported KVM type */
 142                return -EINVAL;
 143        };
 144
 145        /* Allocate page table to map GPA -> RPA */
 146        kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 147        if (!kvm->arch.gpa_mm.pgd)
 148                return -ENOMEM;
 149
 150        return 0;
 151}
 152
 153bool kvm_arch_has_vcpu_debugfs(void)
 154{
 155        return false;
 156}
 157
 158int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 159{
 160        return 0;
 161}
 162
 163void kvm_mips_free_vcpus(struct kvm *kvm)
 164{
 165        unsigned int i;
 166        struct kvm_vcpu *vcpu;
 167
 168        kvm_for_each_vcpu(i, vcpu, kvm) {
 169                kvm_arch_vcpu_free(vcpu);
 170        }
 171
 172        mutex_lock(&kvm->lock);
 173
 174        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 175                kvm->vcpus[i] = NULL;
 176
 177        atomic_set(&kvm->online_vcpus, 0);
 178
 179        mutex_unlock(&kvm->lock);
 180}
 181
 182static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 183{
 184        /* It should always be safe to remove after flushing the whole range */
 185        WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 186        pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 187}
 188
 189void kvm_arch_destroy_vm(struct kvm *kvm)
 190{
 191        kvm_mips_free_vcpus(kvm);
 192        kvm_mips_free_gpa_pt(kvm);
 193}
 194
 195long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 196                        unsigned long arg)
 197{
 198        return -ENOIOCTLCMD;
 199}
 200
 201int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 202                            unsigned long npages)
 203{
 204        return 0;
 205}
 206
 207void kvm_arch_flush_shadow_all(struct kvm *kvm)
 208{
 209        /* Flush whole GPA */
 210        kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 211
 212        /* Let implementation do the rest */
 213        kvm_mips_callbacks->flush_shadow_all(kvm);
 214}
 215
 216void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 217                                   struct kvm_memory_slot *slot)
 218{
 219        /*
 220         * The slot has been made invalid (ready for moving or deletion), so we
 221         * need to ensure that it can no longer be accessed by any guest VCPUs.
 222         */
 223
 224        spin_lock(&kvm->mmu_lock);
 225        /* Flush slot from GPA */
 226        kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 227                              slot->base_gfn + slot->npages - 1);
 228        /* Let implementation do the rest */
 229        kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
 230        spin_unlock(&kvm->mmu_lock);
 231}
 232
 233int kvm_arch_prepare_memory_region(struct kvm *kvm,
 234                                   struct kvm_memory_slot *memslot,
 235                                   const struct kvm_userspace_memory_region *mem,
 236                                   enum kvm_mr_change change)
 237{
 238        return 0;
 239}
 240
 241void kvm_arch_commit_memory_region(struct kvm *kvm,
 242                                   const struct kvm_userspace_memory_region *mem,
 243                                   const struct kvm_memory_slot *old,
 244                                   const struct kvm_memory_slot *new,
 245                                   enum kvm_mr_change change)
 246{
 247        int needs_flush;
 248
 249        kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 250                  __func__, kvm, mem->slot, mem->guest_phys_addr,
 251                  mem->memory_size, mem->userspace_addr);
 252
 253        /*
 254         * If dirty page logging is enabled, write protect all pages in the slot
 255         * ready for dirty logging.
 256         *
 257         * There is no need to do this in any of the following cases:
 258         * CREATE:      No dirty mappings will already exist.
 259         * MOVE/DELETE: The old mappings will already have been cleaned up by
 260         *              kvm_arch_flush_shadow_memslot()
 261         */
 262        if (change == KVM_MR_FLAGS_ONLY &&
 263            (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 264             new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 265                spin_lock(&kvm->mmu_lock);
 266                /* Write protect GPA page table entries */
 267                needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 268                                        new->base_gfn + new->npages - 1);
 269                /* Let implementation do the rest */
 270                if (needs_flush)
 271                        kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
 272                spin_unlock(&kvm->mmu_lock);
 273        }
 274}
 275
 276static inline void dump_handler(const char *symbol, void *start, void *end)
 277{
 278        u32 *p;
 279
 280        pr_debug("LEAF(%s)\n", symbol);
 281
 282        pr_debug("\t.set push\n");
 283        pr_debug("\t.set noreorder\n");
 284
 285        for (p = start; p < (u32 *)end; ++p)
 286                pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 287
 288        pr_debug("\t.set\tpop\n");
 289
 290        pr_debug("\tEND(%s)\n", symbol);
 291}
 292
 293struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 294{
 295        int err, size;
 296        void *gebase, *p, *handler, *refill_start, *refill_end;
 297        int i;
 298
 299        struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 300
 301        if (!vcpu) {
 302                err = -ENOMEM;
 303                goto out;
 304        }
 305
 306        err = kvm_vcpu_init(vcpu, kvm, id);
 307
 308        if (err)
 309                goto out_free_cpu;
 310
 311        kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 312
 313        /*
 314         * Allocate space for host mode exception handlers that handle
 315         * guest mode exits
 316         */
 317        if (cpu_has_veic || cpu_has_vint)
 318                size = 0x200 + VECTORSPACING * 64;
 319        else
 320                size = 0x4000;
 321
 322        gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 323
 324        if (!gebase) {
 325                err = -ENOMEM;
 326                goto out_uninit_cpu;
 327        }
 328        kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 329                  ALIGN(size, PAGE_SIZE), gebase);
 330
 331        /*
 332         * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 333         * limits us to the low 512MB of physical address space. If the memory
 334         * we allocate is out of range, just give up now.
 335         */
 336        if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 337                kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 338                        gebase);
 339                err = -ENOMEM;
 340                goto out_free_gebase;
 341        }
 342
 343        /* Save new ebase */
 344        vcpu->arch.guest_ebase = gebase;
 345
 346        /* Build guest exception vectors dynamically in unmapped memory */
 347        handler = gebase + 0x2000;
 348
 349        /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 350        refill_start = gebase;
 351        if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
 352                refill_start += 0x080;
 353        refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 354
 355        /* General Exception Entry point */
 356        kvm_mips_build_exception(gebase + 0x180, handler);
 357
 358        /* For vectored interrupts poke the exception code @ all offsets 0-7 */
 359        for (i = 0; i < 8; i++) {
 360                kvm_debug("L1 Vectored handler @ %p\n",
 361                          gebase + 0x200 + (i * VECTORSPACING));
 362                kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 363                                         handler);
 364        }
 365
 366        /* General exit handler */
 367        p = handler;
 368        p = kvm_mips_build_exit(p);
 369
 370        /* Guest entry routine */
 371        vcpu->arch.vcpu_run = p;
 372        p = kvm_mips_build_vcpu_run(p);
 373
 374        /* Dump the generated code */
 375        pr_debug("#include <asm/asm.h>\n");
 376        pr_debug("#include <asm/regdef.h>\n");
 377        pr_debug("\n");
 378        dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 379        dump_handler("kvm_tlb_refill", refill_start, refill_end);
 380        dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 381        dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 382
 383        /* Invalidate the icache for these ranges */
 384        flush_icache_range((unsigned long)gebase,
 385                           (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 386
 387        /*
 388         * Allocate comm page for guest kernel, a TLB will be reserved for
 389         * mapping GVA @ 0xFFFF8000 to this page
 390         */
 391        vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 392
 393        if (!vcpu->arch.kseg0_commpage) {
 394                err = -ENOMEM;
 395                goto out_free_gebase;
 396        }
 397
 398        kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 399        kvm_mips_commpage_init(vcpu);
 400
 401        /* Init */
 402        vcpu->arch.last_sched_cpu = -1;
 403        vcpu->arch.last_exec_cpu = -1;
 404
 405        return vcpu;
 406
 407out_free_gebase:
 408        kfree(gebase);
 409
 410out_uninit_cpu:
 411        kvm_vcpu_uninit(vcpu);
 412
 413out_free_cpu:
 414        kfree(vcpu);
 415
 416out:
 417        return ERR_PTR(err);
 418}
 419
 420void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 421{
 422        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 423
 424        kvm_vcpu_uninit(vcpu);
 425
 426        kvm_mips_dump_stats(vcpu);
 427
 428        kvm_mmu_free_memory_caches(vcpu);
 429        kfree(vcpu->arch.guest_ebase);
 430        kfree(vcpu->arch.kseg0_commpage);
 431        kfree(vcpu);
 432}
 433
 434void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 435{
 436        kvm_arch_vcpu_free(vcpu);
 437}
 438
 439int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 440                                        struct kvm_guest_debug *dbg)
 441{
 442        return -ENOIOCTLCMD;
 443}
 444
 445int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 446{
 447        int r = -EINTR;
 448
 449        vcpu_load(vcpu);
 450
 451        kvm_sigset_activate(vcpu);
 452
 453        if (vcpu->mmio_needed) {
 454                if (!vcpu->mmio_is_write)
 455                        kvm_mips_complete_mmio_load(vcpu, run);
 456                vcpu->mmio_needed = 0;
 457        }
 458
 459        if (run->immediate_exit)
 460                goto out;
 461
 462        lose_fpu(1);
 463
 464        local_irq_disable();
 465        guest_enter_irqoff();
 466        trace_kvm_enter(vcpu);
 467
 468        /*
 469         * Make sure the read of VCPU requests in vcpu_run() callback is not
 470         * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 471         * flush request while the requester sees the VCPU as outside of guest
 472         * mode and not needing an IPI.
 473         */
 474        smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 475
 476        r = kvm_mips_callbacks->vcpu_run(run, vcpu);
 477
 478        trace_kvm_out(vcpu);
 479        guest_exit_irqoff();
 480        local_irq_enable();
 481
 482out:
 483        kvm_sigset_deactivate(vcpu);
 484
 485        vcpu_put(vcpu);
 486        return r;
 487}
 488
 489int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 490                             struct kvm_mips_interrupt *irq)
 491{
 492        int intr = (int)irq->irq;
 493        struct kvm_vcpu *dvcpu = NULL;
 494
 495        if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 496                kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 497                          (int)intr);
 498
 499        if (irq->cpu == -1)
 500                dvcpu = vcpu;
 501        else
 502                dvcpu = vcpu->kvm->vcpus[irq->cpu];
 503
 504        if (intr == 2 || intr == 3 || intr == 4) {
 505                kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 506
 507        } else if (intr == -2 || intr == -3 || intr == -4) {
 508                kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 509        } else {
 510                kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 511                        irq->cpu, irq->irq);
 512                return -EINVAL;
 513        }
 514
 515        dvcpu->arch.wait = 0;
 516
 517        if (swq_has_sleeper(&dvcpu->wq))
 518                swake_up(&dvcpu->wq);
 519
 520        return 0;
 521}
 522
 523int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 524                                    struct kvm_mp_state *mp_state)
 525{
 526        return -ENOIOCTLCMD;
 527}
 528
 529int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 530                                    struct kvm_mp_state *mp_state)
 531{
 532        return -ENOIOCTLCMD;
 533}
 534
 535static u64 kvm_mips_get_one_regs[] = {
 536        KVM_REG_MIPS_R0,
 537        KVM_REG_MIPS_R1,
 538        KVM_REG_MIPS_R2,
 539        KVM_REG_MIPS_R3,
 540        KVM_REG_MIPS_R4,
 541        KVM_REG_MIPS_R5,
 542        KVM_REG_MIPS_R6,
 543        KVM_REG_MIPS_R7,
 544        KVM_REG_MIPS_R8,
 545        KVM_REG_MIPS_R9,
 546        KVM_REG_MIPS_R10,
 547        KVM_REG_MIPS_R11,
 548        KVM_REG_MIPS_R12,
 549        KVM_REG_MIPS_R13,
 550        KVM_REG_MIPS_R14,
 551        KVM_REG_MIPS_R15,
 552        KVM_REG_MIPS_R16,
 553        KVM_REG_MIPS_R17,
 554        KVM_REG_MIPS_R18,
 555        KVM_REG_MIPS_R19,
 556        KVM_REG_MIPS_R20,
 557        KVM_REG_MIPS_R21,
 558        KVM_REG_MIPS_R22,
 559        KVM_REG_MIPS_R23,
 560        KVM_REG_MIPS_R24,
 561        KVM_REG_MIPS_R25,
 562        KVM_REG_MIPS_R26,
 563        KVM_REG_MIPS_R27,
 564        KVM_REG_MIPS_R28,
 565        KVM_REG_MIPS_R29,
 566        KVM_REG_MIPS_R30,
 567        KVM_REG_MIPS_R31,
 568
 569#ifndef CONFIG_CPU_MIPSR6
 570        KVM_REG_MIPS_HI,
 571        KVM_REG_MIPS_LO,
 572#endif
 573        KVM_REG_MIPS_PC,
 574};
 575
 576static u64 kvm_mips_get_one_regs_fpu[] = {
 577        KVM_REG_MIPS_FCR_IR,
 578        KVM_REG_MIPS_FCR_CSR,
 579};
 580
 581static u64 kvm_mips_get_one_regs_msa[] = {
 582        KVM_REG_MIPS_MSA_IR,
 583        KVM_REG_MIPS_MSA_CSR,
 584};
 585
 586static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 587{
 588        unsigned long ret;
 589
 590        ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 591        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 592                ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 593                /* odd doubles */
 594                if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 595                        ret += 16;
 596        }
 597        if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 598                ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 599        ret += kvm_mips_callbacks->num_regs(vcpu);
 600
 601        return ret;
 602}
 603
 604static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 605{
 606        u64 index;
 607        unsigned int i;
 608
 609        if (copy_to_user(indices, kvm_mips_get_one_regs,
 610                         sizeof(kvm_mips_get_one_regs)))
 611                return -EFAULT;
 612        indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 613
 614        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 615                if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 616                                 sizeof(kvm_mips_get_one_regs_fpu)))
 617                        return -EFAULT;
 618                indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 619
 620                for (i = 0; i < 32; ++i) {
 621                        index = KVM_REG_MIPS_FPR_32(i);
 622                        if (copy_to_user(indices, &index, sizeof(index)))
 623                                return -EFAULT;
 624                        ++indices;
 625
 626                        /* skip odd doubles if no F64 */
 627                        if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 628                                continue;
 629
 630                        index = KVM_REG_MIPS_FPR_64(i);
 631                        if (copy_to_user(indices, &index, sizeof(index)))
 632                                return -EFAULT;
 633                        ++indices;
 634                }
 635        }
 636
 637        if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 638                if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 639                                 sizeof(kvm_mips_get_one_regs_msa)))
 640                        return -EFAULT;
 641                indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 642
 643                for (i = 0; i < 32; ++i) {
 644                        index = KVM_REG_MIPS_VEC_128(i);
 645                        if (copy_to_user(indices, &index, sizeof(index)))
 646                                return -EFAULT;
 647                        ++indices;
 648                }
 649        }
 650
 651        return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 652}
 653
 654static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 655                            const struct kvm_one_reg *reg)
 656{
 657        struct mips_coproc *cop0 = vcpu->arch.cop0;
 658        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 659        int ret;
 660        s64 v;
 661        s64 vs[2];
 662        unsigned int idx;
 663
 664        switch (reg->id) {
 665        /* General purpose registers */
 666        case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 667                v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 668                break;
 669#ifndef CONFIG_CPU_MIPSR6
 670        case KVM_REG_MIPS_HI:
 671                v = (long)vcpu->arch.hi;
 672                break;
 673        case KVM_REG_MIPS_LO:
 674                v = (long)vcpu->arch.lo;
 675                break;
 676#endif
 677        case KVM_REG_MIPS_PC:
 678                v = (long)vcpu->arch.pc;
 679                break;
 680
 681        /* Floating point registers */
 682        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 683                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 684                        return -EINVAL;
 685                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 686                /* Odd singles in top of even double when FR=0 */
 687                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 688                        v = get_fpr32(&fpu->fpr[idx], 0);
 689                else
 690                        v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 691                break;
 692        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 693                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 694                        return -EINVAL;
 695                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 696                /* Can't access odd doubles in FR=0 mode */
 697                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 698                        return -EINVAL;
 699                v = get_fpr64(&fpu->fpr[idx], 0);
 700                break;
 701        case KVM_REG_MIPS_FCR_IR:
 702                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 703                        return -EINVAL;
 704                v = boot_cpu_data.fpu_id;
 705                break;
 706        case KVM_REG_MIPS_FCR_CSR:
 707                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 708                        return -EINVAL;
 709                v = fpu->fcr31;
 710                break;
 711
 712        /* MIPS SIMD Architecture (MSA) registers */
 713        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 714                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 715                        return -EINVAL;
 716                /* Can't access MSA registers in FR=0 mode */
 717                if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 718                        return -EINVAL;
 719                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 720#ifdef CONFIG_CPU_LITTLE_ENDIAN
 721                /* least significant byte first */
 722                vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 723                vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 724#else
 725                /* most significant byte first */
 726                vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 727                vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 728#endif
 729                break;
 730        case KVM_REG_MIPS_MSA_IR:
 731                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 732                        return -EINVAL;
 733                v = boot_cpu_data.msa_id;
 734                break;
 735        case KVM_REG_MIPS_MSA_CSR:
 736                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 737                        return -EINVAL;
 738                v = fpu->msacsr;
 739                break;
 740
 741        /* registers to be handled specially */
 742        default:
 743                ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 744                if (ret)
 745                        return ret;
 746                break;
 747        }
 748        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 749                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 750
 751                return put_user(v, uaddr64);
 752        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 753                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 754                u32 v32 = (u32)v;
 755
 756                return put_user(v32, uaddr32);
 757        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 758                void __user *uaddr = (void __user *)(long)reg->addr;
 759
 760                return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 761        } else {
 762                return -EINVAL;
 763        }
 764}
 765
 766static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 767                            const struct kvm_one_reg *reg)
 768{
 769        struct mips_coproc *cop0 = vcpu->arch.cop0;
 770        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 771        s64 v;
 772        s64 vs[2];
 773        unsigned int idx;
 774
 775        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 776                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 777
 778                if (get_user(v, uaddr64) != 0)
 779                        return -EFAULT;
 780        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 781                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 782                s32 v32;
 783
 784                if (get_user(v32, uaddr32) != 0)
 785                        return -EFAULT;
 786                v = (s64)v32;
 787        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 788                void __user *uaddr = (void __user *)(long)reg->addr;
 789
 790                return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 791        } else {
 792                return -EINVAL;
 793        }
 794
 795        switch (reg->id) {
 796        /* General purpose registers */
 797        case KVM_REG_MIPS_R0:
 798                /* Silently ignore requests to set $0 */
 799                break;
 800        case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 801                vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 802                break;
 803#ifndef CONFIG_CPU_MIPSR6
 804        case KVM_REG_MIPS_HI:
 805                vcpu->arch.hi = v;
 806                break;
 807        case KVM_REG_MIPS_LO:
 808                vcpu->arch.lo = v;
 809                break;
 810#endif
 811        case KVM_REG_MIPS_PC:
 812                vcpu->arch.pc = v;
 813                break;
 814
 815        /* Floating point registers */
 816        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 817                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 818                        return -EINVAL;
 819                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 820                /* Odd singles in top of even double when FR=0 */
 821                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 822                        set_fpr32(&fpu->fpr[idx], 0, v);
 823                else
 824                        set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 825                break;
 826        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 827                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 828                        return -EINVAL;
 829                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 830                /* Can't access odd doubles in FR=0 mode */
 831                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 832                        return -EINVAL;
 833                set_fpr64(&fpu->fpr[idx], 0, v);
 834                break;
 835        case KVM_REG_MIPS_FCR_IR:
 836                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 837                        return -EINVAL;
 838                /* Read-only */
 839                break;
 840        case KVM_REG_MIPS_FCR_CSR:
 841                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 842                        return -EINVAL;
 843                fpu->fcr31 = v;
 844                break;
 845
 846        /* MIPS SIMD Architecture (MSA) registers */
 847        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 848                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 849                        return -EINVAL;
 850                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 851#ifdef CONFIG_CPU_LITTLE_ENDIAN
 852                /* least significant byte first */
 853                set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 854                set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 855#else
 856                /* most significant byte first */
 857                set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 858                set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 859#endif
 860                break;
 861        case KVM_REG_MIPS_MSA_IR:
 862                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 863                        return -EINVAL;
 864                /* Read-only */
 865                break;
 866        case KVM_REG_MIPS_MSA_CSR:
 867                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 868                        return -EINVAL;
 869                fpu->msacsr = v;
 870                break;
 871
 872        /* registers to be handled specially */
 873        default:
 874                return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 875        }
 876        return 0;
 877}
 878
 879static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 880                                     struct kvm_enable_cap *cap)
 881{
 882        int r = 0;
 883
 884        if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 885                return -EINVAL;
 886        if (cap->flags)
 887                return -EINVAL;
 888        if (cap->args[0])
 889                return -EINVAL;
 890
 891        switch (cap->cap) {
 892        case KVM_CAP_MIPS_FPU:
 893                vcpu->arch.fpu_enabled = true;
 894                break;
 895        case KVM_CAP_MIPS_MSA:
 896                vcpu->arch.msa_enabled = true;
 897                break;
 898        default:
 899                r = -EINVAL;
 900                break;
 901        }
 902
 903        return r;
 904}
 905
 906long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 907                               unsigned long arg)
 908{
 909        struct kvm_vcpu *vcpu = filp->private_data;
 910        void __user *argp = (void __user *)arg;
 911
 912        if (ioctl == KVM_INTERRUPT) {
 913                struct kvm_mips_interrupt irq;
 914
 915                if (copy_from_user(&irq, argp, sizeof(irq)))
 916                        return -EFAULT;
 917                kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 918                          irq.irq);
 919
 920                return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 921        }
 922
 923        return -ENOIOCTLCMD;
 924}
 925
 926long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 927                         unsigned long arg)
 928{
 929        struct kvm_vcpu *vcpu = filp->private_data;
 930        void __user *argp = (void __user *)arg;
 931        long r;
 932
 933        vcpu_load(vcpu);
 934
 935        switch (ioctl) {
 936        case KVM_SET_ONE_REG:
 937        case KVM_GET_ONE_REG: {
 938                struct kvm_one_reg reg;
 939
 940                r = -EFAULT;
 941                if (copy_from_user(&reg, argp, sizeof(reg)))
 942                        break;
 943                if (ioctl == KVM_SET_ONE_REG)
 944                        r = kvm_mips_set_reg(vcpu, &reg);
 945                else
 946                        r = kvm_mips_get_reg(vcpu, &reg);
 947                break;
 948        }
 949        case KVM_GET_REG_LIST: {
 950                struct kvm_reg_list __user *user_list = argp;
 951                struct kvm_reg_list reg_list;
 952                unsigned n;
 953
 954                r = -EFAULT;
 955                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 956                        break;
 957                n = reg_list.n;
 958                reg_list.n = kvm_mips_num_regs(vcpu);
 959                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 960                        break;
 961                r = -E2BIG;
 962                if (n < reg_list.n)
 963                        break;
 964                r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 965                break;
 966        }
 967        case KVM_ENABLE_CAP: {
 968                struct kvm_enable_cap cap;
 969
 970                r = -EFAULT;
 971                if (copy_from_user(&cap, argp, sizeof(cap)))
 972                        break;
 973                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 974                break;
 975        }
 976        default:
 977                r = -ENOIOCTLCMD;
 978        }
 979
 980        vcpu_put(vcpu);
 981        return r;
 982}
 983
 984/**
 985 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 986 * @kvm: kvm instance
 987 * @log: slot id and address to which we copy the log
 988 *
 989 * Steps 1-4 below provide general overview of dirty page logging. See
 990 * kvm_get_dirty_log_protect() function description for additional details.
 991 *
 992 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 993 * always flush the TLB (step 4) even if previous step failed  and the dirty
 994 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 995 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 996 * writes will be marked dirty for next log read.
 997 *
 998 *   1. Take a snapshot of the bit and clear it if needed.
 999 *   2. Write protect the corresponding page.
1000 *   3. Copy the snapshot to the userspace.
1001 *   4. Flush TLB's if needed.
1002 */
1003int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1004{
1005        struct kvm_memslots *slots;
1006        struct kvm_memory_slot *memslot;
1007        bool is_dirty = false;
1008        int r;
1009
1010        mutex_lock(&kvm->slots_lock);
1011
1012        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1013
1014        if (is_dirty) {
1015                slots = kvm_memslots(kvm);
1016                memslot = id_to_memslot(slots, log->slot);
1017
1018                /* Let implementation handle TLB/GVA invalidation */
1019                kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1020        }
1021
1022        mutex_unlock(&kvm->slots_lock);
1023        return r;
1024}
1025
1026long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1027{
1028        long r;
1029
1030        switch (ioctl) {
1031        default:
1032                r = -ENOIOCTLCMD;
1033        }
1034
1035        return r;
1036}
1037
1038int kvm_arch_init(void *opaque)
1039{
1040        if (kvm_mips_callbacks) {
1041                kvm_err("kvm: module already exists\n");
1042                return -EEXIST;
1043        }
1044
1045        return kvm_mips_emulation_init(&kvm_mips_callbacks);
1046}
1047
1048void kvm_arch_exit(void)
1049{
1050        kvm_mips_callbacks = NULL;
1051}
1052
1053int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1054                                  struct kvm_sregs *sregs)
1055{
1056        return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1060                                  struct kvm_sregs *sregs)
1061{
1062        return -ENOIOCTLCMD;
1063}
1064
1065void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1066{
1067}
1068
1069int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1070{
1071        return -ENOIOCTLCMD;
1072}
1073
1074int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1075{
1076        return -ENOIOCTLCMD;
1077}
1078
1079int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1080{
1081        return VM_FAULT_SIGBUS;
1082}
1083
1084int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1085{
1086        int r;
1087
1088        switch (ext) {
1089        case KVM_CAP_ONE_REG:
1090        case KVM_CAP_ENABLE_CAP:
1091        case KVM_CAP_READONLY_MEM:
1092        case KVM_CAP_SYNC_MMU:
1093        case KVM_CAP_IMMEDIATE_EXIT:
1094                r = 1;
1095                break;
1096        case KVM_CAP_NR_VCPUS:
1097                r = num_online_cpus();
1098                break;
1099        case KVM_CAP_MAX_VCPUS:
1100                r = KVM_MAX_VCPUS;
1101                break;
1102        case KVM_CAP_MIPS_FPU:
1103                /* We don't handle systems with inconsistent cpu_has_fpu */
1104                r = !!raw_cpu_has_fpu;
1105                break;
1106        case KVM_CAP_MIPS_MSA:
1107                /*
1108                 * We don't support MSA vector partitioning yet:
1109                 * 1) It would require explicit support which can't be tested
1110                 *    yet due to lack of support in current hardware.
1111                 * 2) It extends the state that would need to be saved/restored
1112                 *    by e.g. QEMU for migration.
1113                 *
1114                 * When vector partitioning hardware becomes available, support
1115                 * could be added by requiring a flag when enabling
1116                 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1117                 * to save/restore the appropriate extra state.
1118                 */
1119                r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1120                break;
1121        default:
1122                r = kvm_mips_callbacks->check_extension(kvm, ext);
1123                break;
1124        }
1125        return r;
1126}
1127
1128int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1129{
1130        return kvm_mips_pending_timer(vcpu) ||
1131                kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1132}
1133
1134int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1135{
1136        int i;
1137        struct mips_coproc *cop0;
1138
1139        if (!vcpu)
1140                return -1;
1141
1142        kvm_debug("VCPU Register Dump:\n");
1143        kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1144        kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1145
1146        for (i = 0; i < 32; i += 4) {
1147                kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1148                       vcpu->arch.gprs[i],
1149                       vcpu->arch.gprs[i + 1],
1150                       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1151        }
1152        kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1153        kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1154
1155        cop0 = vcpu->arch.cop0;
1156        kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1157                  kvm_read_c0_guest_status(cop0),
1158                  kvm_read_c0_guest_cause(cop0));
1159
1160        kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1161
1162        return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167        int i;
1168
1169        vcpu_load(vcpu);
1170
1171        for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172                vcpu->arch.gprs[i] = regs->gpr[i];
1173        vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1174        vcpu->arch.hi = regs->hi;
1175        vcpu->arch.lo = regs->lo;
1176        vcpu->arch.pc = regs->pc;
1177
1178        vcpu_put(vcpu);
1179        return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1183{
1184        int i;
1185
1186        vcpu_load(vcpu);
1187
1188        for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1189                regs->gpr[i] = vcpu->arch.gprs[i];
1190
1191        regs->hi = vcpu->arch.hi;
1192        regs->lo = vcpu->arch.lo;
1193        regs->pc = vcpu->arch.pc;
1194
1195        vcpu_put(vcpu);
1196        return 0;
1197}
1198
1199static void kvm_mips_comparecount_func(unsigned long data)
1200{
1201        struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1202
1203        kvm_mips_callbacks->queue_timer_int(vcpu);
1204
1205        vcpu->arch.wait = 0;
1206        if (swq_has_sleeper(&vcpu->wq))
1207                swake_up(&vcpu->wq);
1208}
1209
1210/* low level hrtimer wake routine */
1211static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1212{
1213        struct kvm_vcpu *vcpu;
1214
1215        vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1216        kvm_mips_comparecount_func((unsigned long) vcpu);
1217        return kvm_mips_count_timeout(vcpu);
1218}
1219
1220int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1221{
1222        int err;
1223
1224        err = kvm_mips_callbacks->vcpu_init(vcpu);
1225        if (err)
1226                return err;
1227
1228        hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1229                     HRTIMER_MODE_REL);
1230        vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1231        return 0;
1232}
1233
1234void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1235{
1236        kvm_mips_callbacks->vcpu_uninit(vcpu);
1237}
1238
1239int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1240                                  struct kvm_translation *tr)
1241{
1242        return 0;
1243}
1244
1245/* Initial guest state */
1246int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1247{
1248        return kvm_mips_callbacks->vcpu_setup(vcpu);
1249}
1250
1251static void kvm_mips_set_c0_status(void)
1252{
1253        u32 status = read_c0_status();
1254
1255        if (cpu_has_dsp)
1256                status |= (ST0_MX);
1257
1258        write_c0_status(status);
1259        ehb();
1260}
1261
1262/*
1263 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1264 */
1265int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1266{
1267        u32 cause = vcpu->arch.host_cp0_cause;
1268        u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1269        u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1270        unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1271        enum emulation_result er = EMULATE_DONE;
1272        u32 inst;
1273        int ret = RESUME_GUEST;
1274
1275        vcpu->mode = OUTSIDE_GUEST_MODE;
1276
1277        /* re-enable HTW before enabling interrupts */
1278        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1279                htw_start();
1280
1281        /* Set a default exit reason */
1282        run->exit_reason = KVM_EXIT_UNKNOWN;
1283        run->ready_for_interrupt_injection = 1;
1284
1285        /*
1286         * Set the appropriate status bits based on host CPU features,
1287         * before we hit the scheduler
1288         */
1289        kvm_mips_set_c0_status();
1290
1291        local_irq_enable();
1292
1293        kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1294                        cause, opc, run, vcpu);
1295        trace_kvm_exit(vcpu, exccode);
1296
1297        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1298                /*
1299                 * Do a privilege check, if in UM most of these exit conditions
1300                 * end up causing an exception to be delivered to the Guest
1301                 * Kernel
1302                 */
1303                er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1304                if (er == EMULATE_PRIV_FAIL) {
1305                        goto skip_emul;
1306                } else if (er == EMULATE_FAIL) {
1307                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1308                        ret = RESUME_HOST;
1309                        goto skip_emul;
1310                }
1311        }
1312
1313        switch (exccode) {
1314        case EXCCODE_INT:
1315                kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1316
1317                ++vcpu->stat.int_exits;
1318
1319                if (need_resched())
1320                        cond_resched();
1321
1322                ret = RESUME_GUEST;
1323                break;
1324
1325        case EXCCODE_CPU:
1326                kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1327
1328                ++vcpu->stat.cop_unusable_exits;
1329                ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1330                /* XXXKYMA: Might need to return to user space */
1331                if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1332                        ret = RESUME_HOST;
1333                break;
1334
1335        case EXCCODE_MOD:
1336                ++vcpu->stat.tlbmod_exits;
1337                ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1338                break;
1339
1340        case EXCCODE_TLBS:
1341                kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1342                          cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1343                          badvaddr);
1344
1345                ++vcpu->stat.tlbmiss_st_exits;
1346                ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1347                break;
1348
1349        case EXCCODE_TLBL:
1350                kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1351                          cause, opc, badvaddr);
1352
1353                ++vcpu->stat.tlbmiss_ld_exits;
1354                ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1355                break;
1356
1357        case EXCCODE_ADES:
1358                ++vcpu->stat.addrerr_st_exits;
1359                ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1360                break;
1361
1362        case EXCCODE_ADEL:
1363                ++vcpu->stat.addrerr_ld_exits;
1364                ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1365                break;
1366
1367        case EXCCODE_SYS:
1368                ++vcpu->stat.syscall_exits;
1369                ret = kvm_mips_callbacks->handle_syscall(vcpu);
1370                break;
1371
1372        case EXCCODE_RI:
1373                ++vcpu->stat.resvd_inst_exits;
1374                ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1375                break;
1376
1377        case EXCCODE_BP:
1378                ++vcpu->stat.break_inst_exits;
1379                ret = kvm_mips_callbacks->handle_break(vcpu);
1380                break;
1381
1382        case EXCCODE_TR:
1383                ++vcpu->stat.trap_inst_exits;
1384                ret = kvm_mips_callbacks->handle_trap(vcpu);
1385                break;
1386
1387        case EXCCODE_MSAFPE:
1388                ++vcpu->stat.msa_fpe_exits;
1389                ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1390                break;
1391
1392        case EXCCODE_FPE:
1393                ++vcpu->stat.fpe_exits;
1394                ret = kvm_mips_callbacks->handle_fpe(vcpu);
1395                break;
1396
1397        case EXCCODE_MSADIS:
1398                ++vcpu->stat.msa_disabled_exits;
1399                ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1400                break;
1401
1402        case EXCCODE_GE:
1403                /* defer exit accounting to handler */
1404                ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1405                break;
1406
1407        default:
1408                if (cause & CAUSEF_BD)
1409                        opc += 1;
1410                inst = 0;
1411                kvm_get_badinstr(opc, vcpu, &inst);
1412                kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1413                        exccode, opc, inst, badvaddr,
1414                        kvm_read_c0_guest_status(vcpu->arch.cop0));
1415                kvm_arch_vcpu_dump_regs(vcpu);
1416                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1417                ret = RESUME_HOST;
1418                break;
1419
1420        }
1421
1422skip_emul:
1423        local_irq_disable();
1424
1425        if (ret == RESUME_GUEST)
1426                kvm_vz_acquire_htimer(vcpu);
1427
1428        if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1429                kvm_mips_deliver_interrupts(vcpu, cause);
1430
1431        if (!(ret & RESUME_HOST)) {
1432                /* Only check for signals if not already exiting to userspace */
1433                if (signal_pending(current)) {
1434                        run->exit_reason = KVM_EXIT_INTR;
1435                        ret = (-EINTR << 2) | RESUME_HOST;
1436                        ++vcpu->stat.signal_exits;
1437                        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1438                }
1439        }
1440
1441        if (ret == RESUME_GUEST) {
1442                trace_kvm_reenter(vcpu);
1443
1444                /*
1445                 * Make sure the read of VCPU requests in vcpu_reenter()
1446                 * callback is not reordered ahead of the write to vcpu->mode,
1447                 * or we could miss a TLB flush request while the requester sees
1448                 * the VCPU as outside of guest mode and not needing an IPI.
1449                 */
1450                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1451
1452                kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1453
1454                /*
1455                 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1456                 * is live), restore FCR31 / MSACSR.
1457                 *
1458                 * This should be before returning to the guest exception
1459                 * vector, as it may well cause an [MSA] FP exception if there
1460                 * are pending exception bits unmasked. (see
1461                 * kvm_mips_csr_die_notifier() for how that is handled).
1462                 */
1463                if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1464                    read_c0_status() & ST0_CU1)
1465                        __kvm_restore_fcsr(&vcpu->arch);
1466
1467                if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1468                    read_c0_config5() & MIPS_CONF5_MSAEN)
1469                        __kvm_restore_msacsr(&vcpu->arch);
1470        }
1471
1472        /* Disable HTW before returning to guest or host */
1473        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1474                htw_stop();
1475
1476        return ret;
1477}
1478
1479/* Enable FPU for guest and restore context */
1480void kvm_own_fpu(struct kvm_vcpu *vcpu)
1481{
1482        struct mips_coproc *cop0 = vcpu->arch.cop0;
1483        unsigned int sr, cfg5;
1484
1485        preempt_disable();
1486
1487        sr = kvm_read_c0_guest_status(cop0);
1488
1489        /*
1490         * If MSA state is already live, it is undefined how it interacts with
1491         * FR=0 FPU state, and we don't want to hit reserved instruction
1492         * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1493         * play it safe and save it first.
1494         *
1495         * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1496         * get called when guest CU1 is set, however we can't trust the guest
1497         * not to clobber the status register directly via the commpage.
1498         */
1499        if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1500            vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1501                kvm_lose_fpu(vcpu);
1502
1503        /*
1504         * Enable FPU for guest
1505         * We set FR and FRE according to guest context
1506         */
1507        change_c0_status(ST0_CU1 | ST0_FR, sr);
1508        if (cpu_has_fre) {
1509                cfg5 = kvm_read_c0_guest_config5(cop0);
1510                change_c0_config5(MIPS_CONF5_FRE, cfg5);
1511        }
1512        enable_fpu_hazard();
1513
1514        /* If guest FPU state not active, restore it now */
1515        if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1516                __kvm_restore_fpu(&vcpu->arch);
1517                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1518                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1519        } else {
1520                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1521        }
1522
1523        preempt_enable();
1524}
1525
1526#ifdef CONFIG_CPU_HAS_MSA
1527/* Enable MSA for guest and restore context */
1528void kvm_own_msa(struct kvm_vcpu *vcpu)
1529{
1530        struct mips_coproc *cop0 = vcpu->arch.cop0;
1531        unsigned int sr, cfg5;
1532
1533        preempt_disable();
1534
1535        /*
1536         * Enable FPU if enabled in guest, since we're restoring FPU context
1537         * anyway. We set FR and FRE according to guest context.
1538         */
1539        if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1540                sr = kvm_read_c0_guest_status(cop0);
1541
1542                /*
1543                 * If FR=0 FPU state is already live, it is undefined how it
1544                 * interacts with MSA state, so play it safe and save it first.
1545                 */
1546                if (!(sr & ST0_FR) &&
1547                    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1548                                KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1549                        kvm_lose_fpu(vcpu);
1550
1551                change_c0_status(ST0_CU1 | ST0_FR, sr);
1552                if (sr & ST0_CU1 && cpu_has_fre) {
1553                        cfg5 = kvm_read_c0_guest_config5(cop0);
1554                        change_c0_config5(MIPS_CONF5_FRE, cfg5);
1555                }
1556        }
1557
1558        /* Enable MSA for guest */
1559        set_c0_config5(MIPS_CONF5_MSAEN);
1560        enable_fpu_hazard();
1561
1562        switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1563        case KVM_MIPS_AUX_FPU:
1564                /*
1565                 * Guest FPU state already loaded, only restore upper MSA state
1566                 */
1567                __kvm_restore_msa_upper(&vcpu->arch);
1568                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1569                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1570                break;
1571        case 0:
1572                /* Neither FPU or MSA already active, restore full MSA state */
1573                __kvm_restore_msa(&vcpu->arch);
1574                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1575                if (kvm_mips_guest_has_fpu(&vcpu->arch))
1576                        vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1577                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1578                              KVM_TRACE_AUX_FPU_MSA);
1579                break;
1580        default:
1581                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1582                break;
1583        }
1584
1585        preempt_enable();
1586}
1587#endif
1588
1589/* Drop FPU & MSA without saving it */
1590void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1591{
1592        preempt_disable();
1593        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1594                disable_msa();
1595                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1596                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1597        }
1598        if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1599                clear_c0_status(ST0_CU1 | ST0_FR);
1600                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1601                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1602        }
1603        preempt_enable();
1604}
1605
1606/* Save and disable FPU & MSA */
1607void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1608{
1609        /*
1610         * With T&E, FPU & MSA get disabled in root context (hardware) when it
1611         * is disabled in guest context (software), but the register state in
1612         * the hardware may still be in use.
1613         * This is why we explicitly re-enable the hardware before saving.
1614         */
1615
1616        preempt_disable();
1617        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1618                if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1619                        set_c0_config5(MIPS_CONF5_MSAEN);
1620                        enable_fpu_hazard();
1621                }
1622
1623                __kvm_save_msa(&vcpu->arch);
1624                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1625
1626                /* Disable MSA & FPU */
1627                disable_msa();
1628                if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1629                        clear_c0_status(ST0_CU1 | ST0_FR);
1630                        disable_fpu_hazard();
1631                }
1632                vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1633        } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1634                if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635                        set_c0_status(ST0_CU1);
1636                        enable_fpu_hazard();
1637                }
1638
1639                __kvm_save_fpu(&vcpu->arch);
1640                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1641                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1642
1643                /* Disable FPU */
1644                clear_c0_status(ST0_CU1 | ST0_FR);
1645                disable_fpu_hazard();
1646        }
1647        preempt_enable();
1648}
1649
1650/*
1651 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1652 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1653 * exception if cause bits are set in the value being written.
1654 */
1655static int kvm_mips_csr_die_notify(struct notifier_block *self,
1656                                   unsigned long cmd, void *ptr)
1657{
1658        struct die_args *args = (struct die_args *)ptr;
1659        struct pt_regs *regs = args->regs;
1660        unsigned long pc;
1661
1662        /* Only interested in FPE and MSAFPE */
1663        if (cmd != DIE_FP && cmd != DIE_MSAFP)
1664                return NOTIFY_DONE;
1665
1666        /* Return immediately if guest context isn't active */
1667        if (!(current->flags & PF_VCPU))
1668                return NOTIFY_DONE;
1669
1670        /* Should never get here from user mode */
1671        BUG_ON(user_mode(regs));
1672
1673        pc = instruction_pointer(regs);
1674        switch (cmd) {
1675        case DIE_FP:
1676                /* match 2nd instruction in __kvm_restore_fcsr */
1677                if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1678                        return NOTIFY_DONE;
1679                break;
1680        case DIE_MSAFP:
1681                /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1682                if (!cpu_has_msa ||
1683                    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1684                    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1685                        return NOTIFY_DONE;
1686                break;
1687        }
1688
1689        /* Move PC forward a little and continue executing */
1690        instruction_pointer(regs) += 4;
1691
1692        return NOTIFY_STOP;
1693}
1694
1695static struct notifier_block kvm_mips_csr_die_notifier = {
1696        .notifier_call = kvm_mips_csr_die_notify,
1697};
1698
1699static int __init kvm_mips_init(void)
1700{
1701        int ret;
1702
1703        ret = kvm_mips_entry_setup();
1704        if (ret)
1705                return ret;
1706
1707        ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1708
1709        if (ret)
1710                return ret;
1711
1712        register_die_notifier(&kvm_mips_csr_die_notifier);
1713
1714        return 0;
1715}
1716
1717static void __exit kvm_mips_exit(void)
1718{
1719        kvm_exit();
1720
1721        unregister_die_notifier(&kvm_mips_csr_die_notifier);
1722}
1723
1724module_init(kvm_mips_init);
1725module_exit(kvm_mips_exit);
1726
1727EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1728