linux/arch/parisc/kernel/module.c
<<
>>
Prefs
   1/*    Kernel dynamically loadable module help for PARISC.
   2 *
   3 *    The best reference for this stuff is probably the Processor-
   4 *    Specific ELF Supplement for PA-RISC:
   5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
   6 *
   7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
   8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
   9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
  10 *
  11 *
  12 *    This program is free software; you can redistribute it and/or modify
  13 *    it under the terms of the GNU General Public License as published by
  14 *    the Free Software Foundation; either version 2 of the License, or
  15 *    (at your option) any later version.
  16 *
  17 *    This program is distributed in the hope that it will be useful,
  18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *    GNU General Public License for more details.
  21 *
  22 *    You should have received a copy of the GNU General Public License
  23 *    along with this program; if not, write to the Free Software
  24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 *
  27 *    Notes:
  28 *    - PLT stub handling
  29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
  30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
  31 *      fail to reach their PLT stub if we only create one big stub array for
  32 *      all sections at the beginning of the core or init section.
  33 *      Instead we now insert individual PLT stub entries directly in front of
  34 *      of the code sections where the stubs are actually called.
  35 *      This reduces the distance between the PCREL location and the stub entry
  36 *      so that the relocations can be fulfilled.
  37 *      While calculating the final layout of the kernel module in memory, the
  38 *      kernel module loader calls arch_mod_section_prepend() to request the
  39 *      to be reserved amount of memory in front of each individual section.
  40 *
  41 *    - SEGREL32 handling
  42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
  43 *      should do a value offset, like this:
  44 *                      if (in_init(me, (void *)val))
  45 *                              val -= (uint32_t)me->init_layout.base;
  46 *                      else
  47 *                              val -= (uint32_t)me->core_layout.base;
  48 *      However, SEGREL32 is used only for PARISC unwind entries, and we want
  49 *      those entries to have an absolute address, and not just an offset.
  50 *
  51 *      The unwind table mechanism has the ability to specify an offset for 
  52 *      the unwind table; however, because we split off the init functions into
  53 *      a different piece of memory, it is not possible to do this using a 
  54 *      single offset. Instead, we use the above hack for now.
  55 */
  56
  57#include <linux/moduleloader.h>
  58#include <linux/elf.h>
  59#include <linux/vmalloc.h>
  60#include <linux/fs.h>
  61#include <linux/string.h>
  62#include <linux/kernel.h>
  63#include <linux/bug.h>
  64#include <linux/mm.h>
  65#include <linux/slab.h>
  66
  67#include <asm/pgtable.h>
  68#include <asm/unwind.h>
  69#include <asm/sections.h>
  70
  71#if 0
  72#define DEBUGP printk
  73#else
  74#define DEBUGP(fmt...)
  75#endif
  76
  77#define RELOC_REACHABLE(val, bits) \
  78        (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||   \
  79             ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
  80        0 : 1)
  81
  82#define CHECK_RELOC(val, bits) \
  83        if (!RELOC_REACHABLE(val, bits)) { \
  84                printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
  85                me->name, strtab + sym->st_name, (unsigned long)val, bits); \
  86                return -ENOEXEC;                        \
  87        }
  88
  89/* Maximum number of GOT entries. We use a long displacement ldd from
  90 * the bottom of the table, which has a maximum signed displacement of
  91 * 0x3fff; however, since we're only going forward, this becomes
  92 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
  93 * at most 1023 entries.
  94 * To overcome this 14bit displacement with some kernel modules, we'll
  95 * use instead the unusal 16bit displacement method (see reassemble_16a)
  96 * which gives us a maximum positive displacement of 0x7fff, and as such
  97 * allows us to allocate up to 4095 GOT entries. */
  98#define MAX_GOTS        4095
  99
 100/* three functions to determine where in the module core
 101 * or init pieces the location is */
 102static inline int in_init(struct module *me, void *loc)
 103{
 104        return (loc >= me->init_layout.base &&
 105                loc <= (me->init_layout.base + me->init_layout.size));
 106}
 107
 108static inline int in_core(struct module *me, void *loc)
 109{
 110        return (loc >= me->core_layout.base &&
 111                loc <= (me->core_layout.base + me->core_layout.size));
 112}
 113
 114static inline int in_local(struct module *me, void *loc)
 115{
 116        return in_init(me, loc) || in_core(me, loc);
 117}
 118
 119#ifndef CONFIG_64BIT
 120struct got_entry {
 121        Elf32_Addr addr;
 122};
 123
 124struct stub_entry {
 125        Elf32_Word insns[2]; /* each stub entry has two insns */
 126};
 127#else
 128struct got_entry {
 129        Elf64_Addr addr;
 130};
 131
 132struct stub_entry {
 133        Elf64_Word insns[4]; /* each stub entry has four insns */
 134};
 135#endif
 136
 137/* Field selection types defined by hppa */
 138#define rnd(x)                  (((x)+0x1000)&~0x1fff)
 139/* fsel: full 32 bits */
 140#define fsel(v,a)               ((v)+(a))
 141/* lsel: select left 21 bits */
 142#define lsel(v,a)               (((v)+(a))>>11)
 143/* rsel: select right 11 bits */
 144#define rsel(v,a)               (((v)+(a))&0x7ff)
 145/* lrsel with rounding of addend to nearest 8k */
 146#define lrsel(v,a)              (((v)+rnd(a))>>11)
 147/* rrsel with rounding of addend to nearest 8k */
 148#define rrsel(v,a)              ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
 149
 150#define mask(x,sz)              ((x) & ~((1<<(sz))-1))
 151
 152
 153/* The reassemble_* functions prepare an immediate value for
 154   insertion into an opcode. pa-risc uses all sorts of weird bitfields
 155   in the instruction to hold the value.  */
 156static inline int sign_unext(int x, int len)
 157{
 158        int len_ones;
 159
 160        len_ones = (1 << len) - 1;
 161        return x & len_ones;
 162}
 163
 164static inline int low_sign_unext(int x, int len)
 165{
 166        int sign, temp;
 167
 168        sign = (x >> (len-1)) & 1;
 169        temp = sign_unext(x, len-1);
 170        return (temp << 1) | sign;
 171}
 172
 173static inline int reassemble_14(int as14)
 174{
 175        return (((as14 & 0x1fff) << 1) |
 176                ((as14 & 0x2000) >> 13));
 177}
 178
 179static inline int reassemble_16a(int as16)
 180{
 181        int s, t;
 182
 183        /* Unusual 16-bit encoding, for wide mode only.  */
 184        t = (as16 << 1) & 0xffff;
 185        s = (as16 & 0x8000);
 186        return (t ^ s ^ (s >> 1)) | (s >> 15);
 187}
 188
 189
 190static inline int reassemble_17(int as17)
 191{
 192        return (((as17 & 0x10000) >> 16) |
 193                ((as17 & 0x0f800) << 5) |
 194                ((as17 & 0x00400) >> 8) |
 195                ((as17 & 0x003ff) << 3));
 196}
 197
 198static inline int reassemble_21(int as21)
 199{
 200        return (((as21 & 0x100000) >> 20) |
 201                ((as21 & 0x0ffe00) >> 8) |
 202                ((as21 & 0x000180) << 7) |
 203                ((as21 & 0x00007c) << 14) |
 204                ((as21 & 0x000003) << 12));
 205}
 206
 207static inline int reassemble_22(int as22)
 208{
 209        return (((as22 & 0x200000) >> 21) |
 210                ((as22 & 0x1f0000) << 5) |
 211                ((as22 & 0x00f800) << 5) |
 212                ((as22 & 0x000400) >> 8) |
 213                ((as22 & 0x0003ff) << 3));
 214}
 215
 216void *module_alloc(unsigned long size)
 217{
 218        /* using RWX means less protection for modules, but it's
 219         * easier than trying to map the text, data, init_text and
 220         * init_data correctly */
 221        return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
 222                                    GFP_KERNEL,
 223                                    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
 224                                    __builtin_return_address(0));
 225}
 226
 227#ifndef CONFIG_64BIT
 228static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
 229{
 230        return 0;
 231}
 232
 233static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
 234{
 235        return 0;
 236}
 237
 238static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
 239{
 240        unsigned long cnt = 0;
 241
 242        for (; n > 0; n--, rela++)
 243        {
 244                switch (ELF32_R_TYPE(rela->r_info)) {
 245                        case R_PARISC_PCREL17F:
 246                        case R_PARISC_PCREL22F:
 247                                cnt++;
 248                }
 249        }
 250
 251        return cnt;
 252}
 253#else
 254static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
 255{
 256        unsigned long cnt = 0;
 257
 258        for (; n > 0; n--, rela++)
 259        {
 260                switch (ELF64_R_TYPE(rela->r_info)) {
 261                        case R_PARISC_LTOFF21L:
 262                        case R_PARISC_LTOFF14R:
 263                        case R_PARISC_PCREL22F:
 264                                cnt++;
 265                }
 266        }
 267
 268        return cnt;
 269}
 270
 271static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
 272{
 273        unsigned long cnt = 0;
 274
 275        for (; n > 0; n--, rela++)
 276        {
 277                switch (ELF64_R_TYPE(rela->r_info)) {
 278                        case R_PARISC_FPTR64:
 279                                cnt++;
 280                }
 281        }
 282
 283        return cnt;
 284}
 285
 286static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
 287{
 288        unsigned long cnt = 0;
 289
 290        for (; n > 0; n--, rela++)
 291        {
 292                switch (ELF64_R_TYPE(rela->r_info)) {
 293                        case R_PARISC_PCREL22F:
 294                                cnt++;
 295                }
 296        }
 297
 298        return cnt;
 299}
 300#endif
 301
 302void module_arch_freeing_init(struct module *mod)
 303{
 304        kfree(mod->arch.section);
 305        mod->arch.section = NULL;
 306}
 307
 308/* Additional bytes needed in front of individual sections */
 309unsigned int arch_mod_section_prepend(struct module *mod,
 310                                      unsigned int section)
 311{
 312        /* size needed for all stubs of this section (including
 313         * one additional for correct alignment of the stubs) */
 314        return (mod->arch.section[section].stub_entries + 1)
 315                * sizeof(struct stub_entry);
 316}
 317
 318#define CONST 
 319int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
 320                              CONST Elf_Shdr *sechdrs,
 321                              CONST char *secstrings,
 322                              struct module *me)
 323{
 324        unsigned long gots = 0, fdescs = 0, len;
 325        unsigned int i;
 326
 327        len = hdr->e_shnum * sizeof(me->arch.section[0]);
 328        me->arch.section = kzalloc(len, GFP_KERNEL);
 329        if (!me->arch.section)
 330                return -ENOMEM;
 331
 332        for (i = 1; i < hdr->e_shnum; i++) {
 333                const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
 334                unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
 335                unsigned int count, s;
 336
 337                if (strncmp(secstrings + sechdrs[i].sh_name,
 338                            ".PARISC.unwind", 14) == 0)
 339                        me->arch.unwind_section = i;
 340
 341                if (sechdrs[i].sh_type != SHT_RELA)
 342                        continue;
 343
 344                /* some of these are not relevant for 32-bit/64-bit
 345                 * we leave them here to make the code common. the
 346                 * compiler will do its thing and optimize out the
 347                 * stuff we don't need
 348                 */
 349                gots += count_gots(rels, nrels);
 350                fdescs += count_fdescs(rels, nrels);
 351
 352                /* XXX: By sorting the relocs and finding duplicate entries
 353                 *  we could reduce the number of necessary stubs and save
 354                 *  some memory. */
 355                count = count_stubs(rels, nrels);
 356                if (!count)
 357                        continue;
 358
 359                /* so we need relocation stubs. reserve necessary memory. */
 360                /* sh_info gives the section for which we need to add stubs. */
 361                s = sechdrs[i].sh_info;
 362
 363                /* each code section should only have one relocation section */
 364                WARN_ON(me->arch.section[s].stub_entries);
 365
 366                /* store number of stubs we need for this section */
 367                me->arch.section[s].stub_entries += count;
 368        }
 369
 370        /* align things a bit */
 371        me->core_layout.size = ALIGN(me->core_layout.size, 16);
 372        me->arch.got_offset = me->core_layout.size;
 373        me->core_layout.size += gots * sizeof(struct got_entry);
 374
 375        me->core_layout.size = ALIGN(me->core_layout.size, 16);
 376        me->arch.fdesc_offset = me->core_layout.size;
 377        me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
 378
 379        me->arch.got_max = gots;
 380        me->arch.fdesc_max = fdescs;
 381
 382        return 0;
 383}
 384
 385#ifdef CONFIG_64BIT
 386static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
 387{
 388        unsigned int i;
 389        struct got_entry *got;
 390
 391        value += addend;
 392
 393        BUG_ON(value == 0);
 394
 395        got = me->core_layout.base + me->arch.got_offset;
 396        for (i = 0; got[i].addr; i++)
 397                if (got[i].addr == value)
 398                        goto out;
 399
 400        BUG_ON(++me->arch.got_count > me->arch.got_max);
 401
 402        got[i].addr = value;
 403 out:
 404        DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
 405               value);
 406        return i * sizeof(struct got_entry);
 407}
 408#endif /* CONFIG_64BIT */
 409
 410#ifdef CONFIG_64BIT
 411static Elf_Addr get_fdesc(struct module *me, unsigned long value)
 412{
 413        Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
 414
 415        if (!value) {
 416                printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
 417                return 0;
 418        }
 419
 420        /* Look for existing fdesc entry. */
 421        while (fdesc->addr) {
 422                if (fdesc->addr == value)
 423                        return (Elf_Addr)fdesc;
 424                fdesc++;
 425        }
 426
 427        BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
 428
 429        /* Create new one */
 430        fdesc->addr = value;
 431        fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
 432        return (Elf_Addr)fdesc;
 433}
 434#endif /* CONFIG_64BIT */
 435
 436enum elf_stub_type {
 437        ELF_STUB_GOT,
 438        ELF_STUB_MILLI,
 439        ELF_STUB_DIRECT,
 440};
 441
 442static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
 443        enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
 444{
 445        struct stub_entry *stub;
 446        int __maybe_unused d;
 447
 448        /* initialize stub_offset to point in front of the section */
 449        if (!me->arch.section[targetsec].stub_offset) {
 450                loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
 451                                sizeof(struct stub_entry);
 452                /* get correct alignment for the stubs */
 453                loc0 = ALIGN(loc0, sizeof(struct stub_entry));
 454                me->arch.section[targetsec].stub_offset = loc0;
 455        }
 456
 457        /* get address of stub entry */
 458        stub = (void *) me->arch.section[targetsec].stub_offset;
 459        me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
 460
 461        /* do not write outside available stub area */
 462        BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
 463
 464
 465#ifndef CONFIG_64BIT
 466/* for 32-bit the stub looks like this:
 467 *      ldil L'XXX,%r1
 468 *      be,n R'XXX(%sr4,%r1)
 469 */
 470        //value = *(unsigned long *)((value + addend) & ~3); /* why? */
 471
 472        stub->insns[0] = 0x20200000;    /* ldil L'XXX,%r1       */
 473        stub->insns[1] = 0xe0202002;    /* be,n R'XXX(%sr4,%r1) */
 474
 475        stub->insns[0] |= reassemble_21(lrsel(value, addend));
 476        stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
 477
 478#else
 479/* for 64-bit we have three kinds of stubs:
 480 * for normal function calls:
 481 *      ldd 0(%dp),%dp
 482 *      ldd 10(%dp), %r1
 483 *      bve (%r1)
 484 *      ldd 18(%dp), %dp
 485 *
 486 * for millicode:
 487 *      ldil 0, %r1
 488 *      ldo 0(%r1), %r1
 489 *      ldd 10(%r1), %r1
 490 *      bve,n (%r1)
 491 *
 492 * for direct branches (jumps between different section of the
 493 * same module):
 494 *      ldil 0, %r1
 495 *      ldo 0(%r1), %r1
 496 *      bve,n (%r1)
 497 */
 498        switch (stub_type) {
 499        case ELF_STUB_GOT:
 500                d = get_got(me, value, addend);
 501                if (d <= 15) {
 502                        /* Format 5 */
 503                        stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp  */
 504                        stub->insns[0] |= low_sign_unext(d, 5) << 16;
 505                } else {
 506                        /* Format 3 */
 507                        stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp  */
 508                        stub->insns[0] |= reassemble_16a(d);
 509                }
 510                stub->insns[1] = 0x53610020;    /* ldd 10(%dp),%r1      */
 511                stub->insns[2] = 0xe820d000;    /* bve (%r1)            */
 512                stub->insns[3] = 0x537b0030;    /* ldd 18(%dp),%dp      */
 513                break;
 514        case ELF_STUB_MILLI:
 515                stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
 516                stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
 517                stub->insns[2] = 0x50210020;    /* ldd 10(%r1),%r1      */
 518                stub->insns[3] = 0xe820d002;    /* bve,n (%r1)          */
 519
 520                stub->insns[0] |= reassemble_21(lrsel(value, addend));
 521                stub->insns[1] |= reassemble_14(rrsel(value, addend));
 522                break;
 523        case ELF_STUB_DIRECT:
 524                stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
 525                stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
 526                stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
 527
 528                stub->insns[0] |= reassemble_21(lrsel(value, addend));
 529                stub->insns[1] |= reassemble_14(rrsel(value, addend));
 530                break;
 531        }
 532
 533#endif
 534
 535        return (Elf_Addr)stub;
 536}
 537
 538#ifndef CONFIG_64BIT
 539int apply_relocate_add(Elf_Shdr *sechdrs,
 540                       const char *strtab,
 541                       unsigned int symindex,
 542                       unsigned int relsec,
 543                       struct module *me)
 544{
 545        int i;
 546        Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
 547        Elf32_Sym *sym;
 548        Elf32_Word *loc;
 549        Elf32_Addr val;
 550        Elf32_Sword addend;
 551        Elf32_Addr dot;
 552        Elf_Addr loc0;
 553        unsigned int targetsec = sechdrs[relsec].sh_info;
 554        //unsigned long dp = (unsigned long)$global$;
 555        register unsigned long dp asm ("r27");
 556
 557        DEBUGP("Applying relocate section %u to %u\n", relsec,
 558               targetsec);
 559        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 560                /* This is where to make the change */
 561                loc = (void *)sechdrs[targetsec].sh_addr
 562                      + rel[i].r_offset;
 563                /* This is the start of the target section */
 564                loc0 = sechdrs[targetsec].sh_addr;
 565                /* This is the symbol it is referring to */
 566                sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
 567                        + ELF32_R_SYM(rel[i].r_info);
 568                if (!sym->st_value) {
 569                        printk(KERN_WARNING "%s: Unknown symbol %s\n",
 570                               me->name, strtab + sym->st_name);
 571                        return -ENOENT;
 572                }
 573                //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
 574                dot =  (Elf32_Addr)loc & ~0x03;
 575
 576                val = sym->st_value;
 577                addend = rel[i].r_addend;
 578
 579#if 0
 580#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
 581                DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
 582                        strtab + sym->st_name,
 583                        (uint32_t)loc, val, addend,
 584                        r(R_PARISC_PLABEL32)
 585                        r(R_PARISC_DIR32)
 586                        r(R_PARISC_DIR21L)
 587                        r(R_PARISC_DIR14R)
 588                        r(R_PARISC_SEGREL32)
 589                        r(R_PARISC_DPREL21L)
 590                        r(R_PARISC_DPREL14R)
 591                        r(R_PARISC_PCREL17F)
 592                        r(R_PARISC_PCREL22F)
 593                        "UNKNOWN");
 594#undef r
 595#endif
 596
 597                switch (ELF32_R_TYPE(rel[i].r_info)) {
 598                case R_PARISC_PLABEL32:
 599                        /* 32-bit function address */
 600                        /* no function descriptors... */
 601                        *loc = fsel(val, addend);
 602                        break;
 603                case R_PARISC_DIR32:
 604                        /* direct 32-bit ref */
 605                        *loc = fsel(val, addend);
 606                        break;
 607                case R_PARISC_DIR21L:
 608                        /* left 21 bits of effective address */
 609                        val = lrsel(val, addend);
 610                        *loc = mask(*loc, 21) | reassemble_21(val);
 611                        break;
 612                case R_PARISC_DIR14R:
 613                        /* right 14 bits of effective address */
 614                        val = rrsel(val, addend);
 615                        *loc = mask(*loc, 14) | reassemble_14(val);
 616                        break;
 617                case R_PARISC_SEGREL32:
 618                        /* 32-bit segment relative address */
 619                        /* See note about special handling of SEGREL32 at
 620                         * the beginning of this file.
 621                         */
 622                        *loc = fsel(val, addend); 
 623                        break;
 624                case R_PARISC_SECREL32:
 625                        /* 32-bit section relative address. */
 626                        *loc = fsel(val, addend);
 627                        break;
 628                case R_PARISC_DPREL21L:
 629                        /* left 21 bit of relative address */
 630                        val = lrsel(val - dp, addend);
 631                        *loc = mask(*loc, 21) | reassemble_21(val);
 632                        break;
 633                case R_PARISC_DPREL14R:
 634                        /* right 14 bit of relative address */
 635                        val = rrsel(val - dp, addend);
 636                        *loc = mask(*loc, 14) | reassemble_14(val);
 637                        break;
 638                case R_PARISC_PCREL17F:
 639                        /* 17-bit PC relative address */
 640                        /* calculate direct call offset */
 641                        val += addend;
 642                        val = (val - dot - 8)/4;
 643                        if (!RELOC_REACHABLE(val, 17)) {
 644                                /* direct distance too far, create
 645                                 * stub entry instead */
 646                                val = get_stub(me, sym->st_value, addend,
 647                                        ELF_STUB_DIRECT, loc0, targetsec);
 648                                val = (val - dot - 8)/4;
 649                                CHECK_RELOC(val, 17);
 650                        }
 651                        *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
 652                        break;
 653                case R_PARISC_PCREL22F:
 654                        /* 22-bit PC relative address; only defined for pa20 */
 655                        /* calculate direct call offset */
 656                        val += addend;
 657                        val = (val - dot - 8)/4;
 658                        if (!RELOC_REACHABLE(val, 22)) {
 659                                /* direct distance too far, create
 660                                 * stub entry instead */
 661                                val = get_stub(me, sym->st_value, addend,
 662                                        ELF_STUB_DIRECT, loc0, targetsec);
 663                                val = (val - dot - 8)/4;
 664                                CHECK_RELOC(val, 22);
 665                        }
 666                        *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
 667                        break;
 668                case R_PARISC_PCREL32:
 669                        /* 32-bit PC relative address */
 670                        *loc = val - dot - 8 + addend;
 671                        break;
 672
 673                default:
 674                        printk(KERN_ERR "module %s: Unknown relocation: %u\n",
 675                               me->name, ELF32_R_TYPE(rel[i].r_info));
 676                        return -ENOEXEC;
 677                }
 678        }
 679
 680        return 0;
 681}
 682
 683#else
 684int apply_relocate_add(Elf_Shdr *sechdrs,
 685                       const char *strtab,
 686                       unsigned int symindex,
 687                       unsigned int relsec,
 688                       struct module *me)
 689{
 690        int i;
 691        Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
 692        Elf64_Sym *sym;
 693        Elf64_Word *loc;
 694        Elf64_Xword *loc64;
 695        Elf64_Addr val;
 696        Elf64_Sxword addend;
 697        Elf64_Addr dot;
 698        Elf_Addr loc0;
 699        unsigned int targetsec = sechdrs[relsec].sh_info;
 700
 701        DEBUGP("Applying relocate section %u to %u\n", relsec,
 702               targetsec);
 703        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 704                /* This is where to make the change */
 705                loc = (void *)sechdrs[targetsec].sh_addr
 706                      + rel[i].r_offset;
 707                /* This is the start of the target section */
 708                loc0 = sechdrs[targetsec].sh_addr;
 709                /* This is the symbol it is referring to */
 710                sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
 711                        + ELF64_R_SYM(rel[i].r_info);
 712                if (!sym->st_value) {
 713                        printk(KERN_WARNING "%s: Unknown symbol %s\n",
 714                               me->name, strtab + sym->st_name);
 715                        return -ENOENT;
 716                }
 717                //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
 718                dot = (Elf64_Addr)loc & ~0x03;
 719                loc64 = (Elf64_Xword *)loc;
 720
 721                val = sym->st_value;
 722                addend = rel[i].r_addend;
 723
 724#if 0
 725#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
 726                printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
 727                        strtab + sym->st_name,
 728                        loc, val, addend,
 729                        r(R_PARISC_LTOFF14R)
 730                        r(R_PARISC_LTOFF21L)
 731                        r(R_PARISC_PCREL22F)
 732                        r(R_PARISC_DIR64)
 733                        r(R_PARISC_SEGREL32)
 734                        r(R_PARISC_FPTR64)
 735                        "UNKNOWN");
 736#undef r
 737#endif
 738
 739                switch (ELF64_R_TYPE(rel[i].r_info)) {
 740                case R_PARISC_LTOFF21L:
 741                        /* LT-relative; left 21 bits */
 742                        val = get_got(me, val, addend);
 743                        DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
 744                               strtab + sym->st_name,
 745                               loc, val);
 746                        val = lrsel(val, 0);
 747                        *loc = mask(*loc, 21) | reassemble_21(val);
 748                        break;
 749                case R_PARISC_LTOFF14R:
 750                        /* L(ltoff(val+addend)) */
 751                        /* LT-relative; right 14 bits */
 752                        val = get_got(me, val, addend);
 753                        val = rrsel(val, 0);
 754                        DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
 755                               strtab + sym->st_name,
 756                               loc, val);
 757                        *loc = mask(*loc, 14) | reassemble_14(val);
 758                        break;
 759                case R_PARISC_PCREL22F:
 760                        /* PC-relative; 22 bits */
 761                        DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
 762                               strtab + sym->st_name,
 763                               loc, val);
 764                        val += addend;
 765                        /* can we reach it locally? */
 766                        if (in_local(me, (void *)val)) {
 767                                /* this is the case where the symbol is local
 768                                 * to the module, but in a different section,
 769                                 * so stub the jump in case it's more than 22
 770                                 * bits away */
 771                                val = (val - dot - 8)/4;
 772                                if (!RELOC_REACHABLE(val, 22)) {
 773                                        /* direct distance too far, create
 774                                         * stub entry instead */
 775                                        val = get_stub(me, sym->st_value,
 776                                                addend, ELF_STUB_DIRECT,
 777                                                loc0, targetsec);
 778                                } else {
 779                                        /* Ok, we can reach it directly. */
 780                                        val = sym->st_value;
 781                                        val += addend;
 782                                }
 783                        } else {
 784                                val = sym->st_value;
 785                                if (strncmp(strtab + sym->st_name, "$$", 2)
 786                                    == 0)
 787                                        val = get_stub(me, val, addend, ELF_STUB_MILLI,
 788                                                       loc0, targetsec);
 789                                else
 790                                        val = get_stub(me, val, addend, ELF_STUB_GOT,
 791                                                       loc0, targetsec);
 792                        }
 793                        DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
 794                               strtab + sym->st_name, loc, sym->st_value,
 795                               addend, val);
 796                        val = (val - dot - 8)/4;
 797                        CHECK_RELOC(val, 22);
 798                        *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
 799                        break;
 800                case R_PARISC_PCREL32:
 801                        /* 32-bit PC relative address */
 802                        *loc = val - dot - 8 + addend;
 803                        break;
 804                case R_PARISC_DIR64:
 805                        /* 64-bit effective address */
 806                        *loc64 = val + addend;
 807                        break;
 808                case R_PARISC_SEGREL32:
 809                        /* 32-bit segment relative address */
 810                        /* See note about special handling of SEGREL32 at
 811                         * the beginning of this file.
 812                         */
 813                        *loc = fsel(val, addend); 
 814                        break;
 815                case R_PARISC_SECREL32:
 816                        /* 32-bit section relative address. */
 817                        *loc = fsel(val, addend);
 818                        break;
 819                case R_PARISC_FPTR64:
 820                        /* 64-bit function address */
 821                        if(in_local(me, (void *)(val + addend))) {
 822                                *loc64 = get_fdesc(me, val+addend);
 823                                DEBUGP("FDESC for %s at %p points to %lx\n",
 824                                       strtab + sym->st_name, *loc64,
 825                                       ((Elf_Fdesc *)*loc64)->addr);
 826                        } else {
 827                                /* if the symbol is not local to this
 828                                 * module then val+addend is a pointer
 829                                 * to the function descriptor */
 830                                DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
 831                                       strtab + sym->st_name,
 832                                       loc, val);
 833                                *loc64 = val + addend;
 834                        }
 835                        break;
 836
 837                default:
 838                        printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
 839                               me->name, ELF64_R_TYPE(rel[i].r_info));
 840                        return -ENOEXEC;
 841                }
 842        }
 843        return 0;
 844}
 845#endif
 846
 847static void
 848register_unwind_table(struct module *me,
 849                      const Elf_Shdr *sechdrs)
 850{
 851        unsigned char *table, *end;
 852        unsigned long gp;
 853
 854        if (!me->arch.unwind_section)
 855                return;
 856
 857        table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
 858        end = table + sechdrs[me->arch.unwind_section].sh_size;
 859        gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
 860
 861        DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
 862               me->arch.unwind_section, table, end, gp);
 863        me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
 864}
 865
 866static void
 867deregister_unwind_table(struct module *me)
 868{
 869        if (me->arch.unwind)
 870                unwind_table_remove(me->arch.unwind);
 871}
 872
 873int module_finalize(const Elf_Ehdr *hdr,
 874                    const Elf_Shdr *sechdrs,
 875                    struct module *me)
 876{
 877        int i;
 878        unsigned long nsyms;
 879        const char *strtab = NULL;
 880        Elf_Sym *newptr, *oldptr;
 881        Elf_Shdr *symhdr = NULL;
 882#ifdef DEBUG
 883        Elf_Fdesc *entry;
 884        u32 *addr;
 885
 886        entry = (Elf_Fdesc *)me->init;
 887        printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
 888               entry->gp, entry->addr);
 889        addr = (u32 *)entry->addr;
 890        printk("INSNS: %x %x %x %x\n",
 891               addr[0], addr[1], addr[2], addr[3]);
 892        printk("got entries used %ld, gots max %ld\n"
 893               "fdescs used %ld, fdescs max %ld\n",
 894               me->arch.got_count, me->arch.got_max,
 895               me->arch.fdesc_count, me->arch.fdesc_max);
 896#endif
 897
 898        register_unwind_table(me, sechdrs);
 899
 900        /* haven't filled in me->symtab yet, so have to find it
 901         * ourselves */
 902        for (i = 1; i < hdr->e_shnum; i++) {
 903                if(sechdrs[i].sh_type == SHT_SYMTAB
 904                   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
 905                        int strindex = sechdrs[i].sh_link;
 906                        /* FIXME: AWFUL HACK
 907                         * The cast is to drop the const from
 908                         * the sechdrs pointer */
 909                        symhdr = (Elf_Shdr *)&sechdrs[i];
 910                        strtab = (char *)sechdrs[strindex].sh_addr;
 911                        break;
 912                }
 913        }
 914
 915        DEBUGP("module %s: strtab %p, symhdr %p\n",
 916               me->name, strtab, symhdr);
 917
 918        if(me->arch.got_count > MAX_GOTS) {
 919                printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
 920                                me->name, me->arch.got_count, MAX_GOTS);
 921                return -EINVAL;
 922        }
 923
 924        kfree(me->arch.section);
 925        me->arch.section = NULL;
 926
 927        /* no symbol table */
 928        if(symhdr == NULL)
 929                return 0;
 930
 931        oldptr = (void *)symhdr->sh_addr;
 932        newptr = oldptr + 1;    /* we start counting at 1 */
 933        nsyms = symhdr->sh_size / sizeof(Elf_Sym);
 934        DEBUGP("OLD num_symtab %lu\n", nsyms);
 935
 936        for (i = 1; i < nsyms; i++) {
 937                oldptr++;       /* note, count starts at 1 so preincrement */
 938                if(strncmp(strtab + oldptr->st_name,
 939                              ".L", 2) == 0)
 940                        continue;
 941
 942                if(newptr != oldptr)
 943                        *newptr++ = *oldptr;
 944                else
 945                        newptr++;
 946
 947        }
 948        nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
 949        DEBUGP("NEW num_symtab %lu\n", nsyms);
 950        symhdr->sh_size = nsyms * sizeof(Elf_Sym);
 951        return 0;
 952}
 953
 954void module_arch_cleanup(struct module *mod)
 955{
 956        deregister_unwind_table(mod);
 957}
 958
 959#ifdef CONFIG_64BIT
 960void *dereference_module_function_descriptor(struct module *mod, void *ptr)
 961{
 962        unsigned long start_opd = (Elf64_Addr)mod->core_layout.base +
 963                                   mod->arch.fdesc_offset;
 964        unsigned long end_opd = start_opd +
 965                                mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
 966
 967        if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
 968                return ptr;
 969
 970        return dereference_function_descriptor(ptr);
 971}
 972#endif
 973