linux/arch/powerpc/kernel/eeh_pe.c
<<
>>
Prefs
   1/*
   2 * The file intends to implement PE based on the information from
   3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
   4 * All the PEs should be organized as hierarchy tree. The first level
   5 * of the tree will be associated to existing PHBs since the particular
   6 * PE is only meaningful in one PHB domain.
   7 *
   8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  23 */
  24
  25#include <linux/delay.h>
  26#include <linux/export.h>
  27#include <linux/gfp.h>
  28#include <linux/kernel.h>
  29#include <linux/pci.h>
  30#include <linux/string.h>
  31
  32#include <asm/pci-bridge.h>
  33#include <asm/ppc-pci.h>
  34
  35static int eeh_pe_aux_size = 0;
  36static LIST_HEAD(eeh_phb_pe);
  37
  38/**
  39 * eeh_set_pe_aux_size - Set PE auxillary data size
  40 * @size: PE auxillary data size
  41 *
  42 * Set PE auxillary data size
  43 */
  44void eeh_set_pe_aux_size(int size)
  45{
  46        if (size < 0)
  47                return;
  48
  49        eeh_pe_aux_size = size;
  50}
  51
  52/**
  53 * eeh_pe_alloc - Allocate PE
  54 * @phb: PCI controller
  55 * @type: PE type
  56 *
  57 * Allocate PE instance dynamically.
  58 */
  59static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
  60{
  61        struct eeh_pe *pe;
  62        size_t alloc_size;
  63
  64        alloc_size = sizeof(struct eeh_pe);
  65        if (eeh_pe_aux_size) {
  66                alloc_size = ALIGN(alloc_size, cache_line_size());
  67                alloc_size += eeh_pe_aux_size;
  68        }
  69
  70        /* Allocate PHB PE */
  71        pe = kzalloc(alloc_size, GFP_KERNEL);
  72        if (!pe) return NULL;
  73
  74        /* Initialize PHB PE */
  75        pe->type = type;
  76        pe->phb = phb;
  77        INIT_LIST_HEAD(&pe->child_list);
  78        INIT_LIST_HEAD(&pe->child);
  79        INIT_LIST_HEAD(&pe->edevs);
  80
  81        pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
  82                                      cache_line_size());
  83        return pe;
  84}
  85
  86/**
  87 * eeh_phb_pe_create - Create PHB PE
  88 * @phb: PCI controller
  89 *
  90 * The function should be called while the PHB is detected during
  91 * system boot or PCI hotplug in order to create PHB PE.
  92 */
  93int eeh_phb_pe_create(struct pci_controller *phb)
  94{
  95        struct eeh_pe *pe;
  96
  97        /* Allocate PHB PE */
  98        pe = eeh_pe_alloc(phb, EEH_PE_PHB);
  99        if (!pe) {
 100                pr_err("%s: out of memory!\n", __func__);
 101                return -ENOMEM;
 102        }
 103
 104        /* Put it into the list */
 105        list_add_tail(&pe->child, &eeh_phb_pe);
 106
 107        pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
 108
 109        return 0;
 110}
 111
 112/**
 113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
 114 * @phb: PCI controller
 115 *
 116 * The overall PEs form hierarchy tree. The first layer of the
 117 * hierarchy tree is composed of PHB PEs. The function is used
 118 * to retrieve the corresponding PHB PE according to the given PHB.
 119 */
 120struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
 121{
 122        struct eeh_pe *pe;
 123
 124        list_for_each_entry(pe, &eeh_phb_pe, child) {
 125                /*
 126                 * Actually, we needn't check the type since
 127                 * the PE for PHB has been determined when that
 128                 * was created.
 129                 */
 130                if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
 131                        return pe;
 132        }
 133
 134        return NULL;
 135}
 136
 137/**
 138 * eeh_pe_next - Retrieve the next PE in the tree
 139 * @pe: current PE
 140 * @root: root PE
 141 *
 142 * The function is used to retrieve the next PE in the
 143 * hierarchy PE tree.
 144 */
 145static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
 146                                  struct eeh_pe *root)
 147{
 148        struct list_head *next = pe->child_list.next;
 149
 150        if (next == &pe->child_list) {
 151                while (1) {
 152                        if (pe == root)
 153                                return NULL;
 154                        next = pe->child.next;
 155                        if (next != &pe->parent->child_list)
 156                                break;
 157                        pe = pe->parent;
 158                }
 159        }
 160
 161        return list_entry(next, struct eeh_pe, child);
 162}
 163
 164/**
 165 * eeh_pe_traverse - Traverse PEs in the specified PHB
 166 * @root: root PE
 167 * @fn: callback
 168 * @flag: extra parameter to callback
 169 *
 170 * The function is used to traverse the specified PE and its
 171 * child PEs. The traversing is to be terminated once the
 172 * callback returns something other than NULL, or no more PEs
 173 * to be traversed.
 174 */
 175void *eeh_pe_traverse(struct eeh_pe *root,
 176                      eeh_traverse_func fn, void *flag)
 177{
 178        struct eeh_pe *pe;
 179        void *ret;
 180
 181        for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
 182                ret = fn(pe, flag);
 183                if (ret) return ret;
 184        }
 185
 186        return NULL;
 187}
 188
 189/**
 190 * eeh_pe_dev_traverse - Traverse the devices from the PE
 191 * @root: EEH PE
 192 * @fn: function callback
 193 * @flag: extra parameter to callback
 194 *
 195 * The function is used to traverse the devices of the specified
 196 * PE and its child PEs.
 197 */
 198void *eeh_pe_dev_traverse(struct eeh_pe *root,
 199                eeh_traverse_func fn, void *flag)
 200{
 201        struct eeh_pe *pe;
 202        struct eeh_dev *edev, *tmp;
 203        void *ret;
 204
 205        if (!root) {
 206                pr_warn("%s: Invalid PE %p\n",
 207                        __func__, root);
 208                return NULL;
 209        }
 210
 211        /* Traverse root PE */
 212        for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
 213                eeh_pe_for_each_dev(pe, edev, tmp) {
 214                        ret = fn(edev, flag);
 215                        if (ret)
 216                                return ret;
 217                }
 218        }
 219
 220        return NULL;
 221}
 222
 223/**
 224 * __eeh_pe_get - Check the PE address
 225 * @data: EEH PE
 226 * @flag: EEH device
 227 *
 228 * For one particular PE, it can be identified by PE address
 229 * or tranditional BDF address. BDF address is composed of
 230 * Bus/Device/Function number. The extra data referred by flag
 231 * indicates which type of address should be used.
 232 */
 233struct eeh_pe_get_flag {
 234        int pe_no;
 235        int config_addr;
 236};
 237
 238static void *__eeh_pe_get(void *data, void *flag)
 239{
 240        struct eeh_pe *pe = (struct eeh_pe *)data;
 241        struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
 242
 243        /* Unexpected PHB PE */
 244        if (pe->type & EEH_PE_PHB)
 245                return NULL;
 246
 247        /*
 248         * We prefer PE address. For most cases, we should
 249         * have non-zero PE address
 250         */
 251        if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
 252                if (tmp->pe_no == pe->addr)
 253                        return pe;
 254        } else {
 255                if (tmp->pe_no &&
 256                    (tmp->pe_no == pe->addr))
 257                        return pe;
 258        }
 259
 260        /* Try BDF address */
 261        if (tmp->config_addr &&
 262           (tmp->config_addr == pe->config_addr))
 263                return pe;
 264
 265        return NULL;
 266}
 267
 268/**
 269 * eeh_pe_get - Search PE based on the given address
 270 * @phb: PCI controller
 271 * @pe_no: PE number
 272 * @config_addr: Config address
 273 *
 274 * Search the corresponding PE based on the specified address which
 275 * is included in the eeh device. The function is used to check if
 276 * the associated PE has been created against the PE address. It's
 277 * notable that the PE address has 2 format: traditional PE address
 278 * which is composed of PCI bus/device/function number, or unified
 279 * PE address.
 280 */
 281struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
 282                int pe_no, int config_addr)
 283{
 284        struct eeh_pe *root = eeh_phb_pe_get(phb);
 285        struct eeh_pe_get_flag tmp = { pe_no, config_addr };
 286        struct eeh_pe *pe;
 287
 288        pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
 289
 290        return pe;
 291}
 292
 293/**
 294 * eeh_pe_get_parent - Retrieve the parent PE
 295 * @edev: EEH device
 296 *
 297 * The whole PEs existing in the system are organized as hierarchy
 298 * tree. The function is used to retrieve the parent PE according
 299 * to the parent EEH device.
 300 */
 301static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
 302{
 303        struct eeh_dev *parent;
 304        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 305
 306        /*
 307         * It might have the case for the indirect parent
 308         * EEH device already having associated PE, but
 309         * the direct parent EEH device doesn't have yet.
 310         */
 311        if (edev->physfn)
 312                pdn = pci_get_pdn(edev->physfn);
 313        else
 314                pdn = pdn ? pdn->parent : NULL;
 315        while (pdn) {
 316                /* We're poking out of PCI territory */
 317                parent = pdn_to_eeh_dev(pdn);
 318                if (!parent)
 319                        return NULL;
 320
 321                if (parent->pe)
 322                        return parent->pe;
 323
 324                pdn = pdn->parent;
 325        }
 326
 327        return NULL;
 328}
 329
 330/**
 331 * eeh_add_to_parent_pe - Add EEH device to parent PE
 332 * @edev: EEH device
 333 *
 334 * Add EEH device to the parent PE. If the parent PE already
 335 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
 336 * we have to create new PE to hold the EEH device and the new
 337 * PE will be linked to its parent PE as well.
 338 */
 339int eeh_add_to_parent_pe(struct eeh_dev *edev)
 340{
 341        struct eeh_pe *pe, *parent;
 342        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 343        int config_addr = (pdn->busno << 8) | (pdn->devfn);
 344
 345        /* Check if the PE number is valid */
 346        if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
 347                pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
 348                       __func__, config_addr, pdn->phb->global_number);
 349                return -EINVAL;
 350        }
 351
 352        /*
 353         * Search the PE has been existing or not according
 354         * to the PE address. If that has been existing, the
 355         * PE should be composed of PCI bus and its subordinate
 356         * components.
 357         */
 358        pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
 359        if (pe && !(pe->type & EEH_PE_INVALID)) {
 360                /* Mark the PE as type of PCI bus */
 361                pe->type = EEH_PE_BUS;
 362                edev->pe = pe;
 363
 364                /* Put the edev to PE */
 365                list_add_tail(&edev->list, &pe->edevs);
 366                pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
 367                         pdn->phb->global_number,
 368                         pdn->busno,
 369                         PCI_SLOT(pdn->devfn),
 370                         PCI_FUNC(pdn->devfn),
 371                         pe->addr);
 372                return 0;
 373        } else if (pe && (pe->type & EEH_PE_INVALID)) {
 374                list_add_tail(&edev->list, &pe->edevs);
 375                edev->pe = pe;
 376                /*
 377                 * We're running to here because of PCI hotplug caused by
 378                 * EEH recovery. We need clear EEH_PE_INVALID until the top.
 379                 */
 380                parent = pe;
 381                while (parent) {
 382                        if (!(parent->type & EEH_PE_INVALID))
 383                                break;
 384                        parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
 385                        parent = parent->parent;
 386                }
 387
 388                pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
 389                         "PE#%x, Parent PE#%x\n",
 390                         pdn->phb->global_number,
 391                         pdn->busno,
 392                         PCI_SLOT(pdn->devfn),
 393                         PCI_FUNC(pdn->devfn),
 394                         pe->addr, pe->parent->addr);
 395                return 0;
 396        }
 397
 398        /* Create a new EEH PE */
 399        if (edev->physfn)
 400                pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
 401        else
 402                pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
 403        if (!pe) {
 404                pr_err("%s: out of memory!\n", __func__);
 405                return -ENOMEM;
 406        }
 407        pe->addr        = edev->pe_config_addr;
 408        pe->config_addr = config_addr;
 409
 410        /*
 411         * Put the new EEH PE into hierarchy tree. If the parent
 412         * can't be found, the newly created PE will be attached
 413         * to PHB directly. Otherwise, we have to associate the
 414         * PE with its parent.
 415         */
 416        parent = eeh_pe_get_parent(edev);
 417        if (!parent) {
 418                parent = eeh_phb_pe_get(pdn->phb);
 419                if (!parent) {
 420                        pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
 421                                __func__, pdn->phb->global_number);
 422                        edev->pe = NULL;
 423                        kfree(pe);
 424                        return -EEXIST;
 425                }
 426        }
 427        pe->parent = parent;
 428
 429        /*
 430         * Put the newly created PE into the child list and
 431         * link the EEH device accordingly.
 432         */
 433        list_add_tail(&pe->child, &parent->child_list);
 434        list_add_tail(&edev->list, &pe->edevs);
 435        edev->pe = pe;
 436        pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
 437                 "Device PE#%x, Parent PE#%x\n",
 438                 pdn->phb->global_number,
 439                 pdn->busno,
 440                 PCI_SLOT(pdn->devfn),
 441                 PCI_FUNC(pdn->devfn),
 442                 pe->addr, pe->parent->addr);
 443
 444        return 0;
 445}
 446
 447/**
 448 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
 449 * @edev: EEH device
 450 *
 451 * The PE hierarchy tree might be changed when doing PCI hotplug.
 452 * Also, the PCI devices or buses could be removed from the system
 453 * during EEH recovery. So we have to call the function remove the
 454 * corresponding PE accordingly if necessary.
 455 */
 456int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
 457{
 458        struct eeh_pe *pe, *parent, *child;
 459        int cnt;
 460        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 461
 462        if (!edev->pe) {
 463                pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
 464                         __func__,  pdn->phb->global_number,
 465                         pdn->busno,
 466                         PCI_SLOT(pdn->devfn),
 467                         PCI_FUNC(pdn->devfn));
 468                return -EEXIST;
 469        }
 470
 471        /* Remove the EEH device */
 472        pe = eeh_dev_to_pe(edev);
 473        edev->pe = NULL;
 474        list_del(&edev->list);
 475
 476        /*
 477         * Check if the parent PE includes any EEH devices.
 478         * If not, we should delete that. Also, we should
 479         * delete the parent PE if it doesn't have associated
 480         * child PEs and EEH devices.
 481         */
 482        while (1) {
 483                parent = pe->parent;
 484                if (pe->type & EEH_PE_PHB)
 485                        break;
 486
 487                if (!(pe->state & EEH_PE_KEEP)) {
 488                        if (list_empty(&pe->edevs) &&
 489                            list_empty(&pe->child_list)) {
 490                                list_del(&pe->child);
 491                                kfree(pe);
 492                        } else {
 493                                break;
 494                        }
 495                } else {
 496                        if (list_empty(&pe->edevs)) {
 497                                cnt = 0;
 498                                list_for_each_entry(child, &pe->child_list, child) {
 499                                        if (!(child->type & EEH_PE_INVALID)) {
 500                                                cnt++;
 501                                                break;
 502                                        }
 503                                }
 504
 505                                if (!cnt)
 506                                        pe->type |= EEH_PE_INVALID;
 507                                else
 508                                        break;
 509                        }
 510                }
 511
 512                pe = parent;
 513        }
 514
 515        return 0;
 516}
 517
 518/**
 519 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
 520 * @pe: EEH PE
 521 *
 522 * We have time stamp for each PE to trace its time of getting
 523 * frozen in last hour. The function should be called to update
 524 * the time stamp on first error of the specific PE. On the other
 525 * handle, we needn't account for errors happened in last hour.
 526 */
 527void eeh_pe_update_time_stamp(struct eeh_pe *pe)
 528{
 529        time64_t tstamp;
 530
 531        if (!pe) return;
 532
 533        if (pe->freeze_count <= 0) {
 534                pe->freeze_count = 0;
 535                pe->tstamp = ktime_get_seconds();
 536        } else {
 537                tstamp = ktime_get_seconds();
 538                if (tstamp - pe->tstamp > 3600) {
 539                        pe->tstamp = tstamp;
 540                        pe->freeze_count = 0;
 541                }
 542        }
 543}
 544
 545/**
 546 * __eeh_pe_state_mark - Mark the state for the PE
 547 * @data: EEH PE
 548 * @flag: state
 549 *
 550 * The function is used to mark the indicated state for the given
 551 * PE. Also, the associated PCI devices will be put into IO frozen
 552 * state as well.
 553 */
 554static void *__eeh_pe_state_mark(void *data, void *flag)
 555{
 556        struct eeh_pe *pe = (struct eeh_pe *)data;
 557        int state = *((int *)flag);
 558        struct eeh_dev *edev, *tmp;
 559        struct pci_dev *pdev;
 560
 561        /* Keep the state of permanently removed PE intact */
 562        if (pe->state & EEH_PE_REMOVED)
 563                return NULL;
 564
 565        pe->state |= state;
 566
 567        /* Offline PCI devices if applicable */
 568        if (!(state & EEH_PE_ISOLATED))
 569                return NULL;
 570
 571        eeh_pe_for_each_dev(pe, edev, tmp) {
 572                pdev = eeh_dev_to_pci_dev(edev);
 573                if (pdev)
 574                        pdev->error_state = pci_channel_io_frozen;
 575        }
 576
 577        /* Block PCI config access if required */
 578        if (pe->state & EEH_PE_CFG_RESTRICTED)
 579                pe->state |= EEH_PE_CFG_BLOCKED;
 580
 581        return NULL;
 582}
 583
 584/**
 585 * eeh_pe_state_mark - Mark specified state for PE and its associated device
 586 * @pe: EEH PE
 587 *
 588 * EEH error affects the current PE and its child PEs. The function
 589 * is used to mark appropriate state for the affected PEs and the
 590 * associated devices.
 591 */
 592void eeh_pe_state_mark(struct eeh_pe *pe, int state)
 593{
 594        eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
 595}
 596EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
 597
 598static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
 599{
 600        struct eeh_dev *edev = data;
 601        int mode = *((int *)flag);
 602
 603        edev->mode |= mode;
 604
 605        return NULL;
 606}
 607
 608/**
 609 * eeh_pe_dev_state_mark - Mark state for all device under the PE
 610 * @pe: EEH PE
 611 *
 612 * Mark specific state for all child devices of the PE.
 613 */
 614void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
 615{
 616        eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
 617}
 618
 619/**
 620 * __eeh_pe_state_clear - Clear state for the PE
 621 * @data: EEH PE
 622 * @flag: state
 623 *
 624 * The function is used to clear the indicated state from the
 625 * given PE. Besides, we also clear the check count of the PE
 626 * as well.
 627 */
 628static void *__eeh_pe_state_clear(void *data, void *flag)
 629{
 630        struct eeh_pe *pe = (struct eeh_pe *)data;
 631        int state = *((int *)flag);
 632        struct eeh_dev *edev, *tmp;
 633        struct pci_dev *pdev;
 634
 635        /* Keep the state of permanently removed PE intact */
 636        if (pe->state & EEH_PE_REMOVED)
 637                return NULL;
 638
 639        pe->state &= ~state;
 640
 641        /*
 642         * Special treatment on clearing isolated state. Clear
 643         * check count since last isolation and put all affected
 644         * devices to normal state.
 645         */
 646        if (!(state & EEH_PE_ISOLATED))
 647                return NULL;
 648
 649        pe->check_count = 0;
 650        eeh_pe_for_each_dev(pe, edev, tmp) {
 651                pdev = eeh_dev_to_pci_dev(edev);
 652                if (!pdev)
 653                        continue;
 654
 655                pdev->error_state = pci_channel_io_normal;
 656        }
 657
 658        /* Unblock PCI config access if required */
 659        if (pe->state & EEH_PE_CFG_RESTRICTED)
 660                pe->state &= ~EEH_PE_CFG_BLOCKED;
 661
 662        return NULL;
 663}
 664
 665/**
 666 * eeh_pe_state_clear - Clear state for the PE and its children
 667 * @pe: PE
 668 * @state: state to be cleared
 669 *
 670 * When the PE and its children has been recovered from error,
 671 * we need clear the error state for that. The function is used
 672 * for the purpose.
 673 */
 674void eeh_pe_state_clear(struct eeh_pe *pe, int state)
 675{
 676        eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
 677}
 678
 679/**
 680 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
 681 * @pe: PE
 682 * @state: PE state to be set
 683 *
 684 * Set specified flag to PE and its child PEs. The PCI config space
 685 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
 686 * which isn't needed in some situations. The function allows to set
 687 * the specified flag to indicated PEs without blocking their PCI
 688 * config space.
 689 */
 690void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
 691{
 692        eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
 693        if (!(state & EEH_PE_ISOLATED))
 694                return;
 695
 696        /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
 697        state = EEH_PE_CFG_BLOCKED;
 698        eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
 699}
 700
 701/*
 702 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
 703 * buses assigned explicitly by firmware, and we probably have
 704 * lost that after reset. So we have to delay the check until
 705 * the PCI-CFG registers have been restored for the parent
 706 * bridge.
 707 *
 708 * Don't use normal PCI-CFG accessors, which probably has been
 709 * blocked on normal path during the stage. So we need utilize
 710 * eeh operations, which is always permitted.
 711 */
 712static void eeh_bridge_check_link(struct eeh_dev *edev)
 713{
 714        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 715        int cap;
 716        uint32_t val;
 717        int timeout = 0;
 718
 719        /*
 720         * We only check root port and downstream ports of
 721         * PCIe switches
 722         */
 723        if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
 724                return;
 725
 726        pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
 727                 __func__, pdn->phb->global_number,
 728                 pdn->busno,
 729                 PCI_SLOT(pdn->devfn),
 730                 PCI_FUNC(pdn->devfn));
 731
 732        /* Check slot status */
 733        cap = edev->pcie_cap;
 734        eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
 735        if (!(val & PCI_EXP_SLTSTA_PDS)) {
 736                pr_debug("  No card in the slot (0x%04x) !\n", val);
 737                return;
 738        }
 739
 740        /* Check power status if we have the capability */
 741        eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
 742        if (val & PCI_EXP_SLTCAP_PCP) {
 743                eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
 744                if (val & PCI_EXP_SLTCTL_PCC) {
 745                        pr_debug("  In power-off state, power it on ...\n");
 746                        val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
 747                        val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
 748                        eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
 749                        msleep(2 * 1000);
 750                }
 751        }
 752
 753        /* Enable link */
 754        eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
 755        val &= ~PCI_EXP_LNKCTL_LD;
 756        eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
 757
 758        /* Check link */
 759        eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
 760        if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
 761                pr_debug("  No link reporting capability (0x%08x) \n", val);
 762                msleep(1000);
 763                return;
 764        }
 765
 766        /* Wait the link is up until timeout (5s) */
 767        timeout = 0;
 768        while (timeout < 5000) {
 769                msleep(20);
 770                timeout += 20;
 771
 772                eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
 773                if (val & PCI_EXP_LNKSTA_DLLLA)
 774                        break;
 775        }
 776
 777        if (val & PCI_EXP_LNKSTA_DLLLA)
 778                pr_debug("  Link up (%s)\n",
 779                         (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
 780        else
 781                pr_debug("  Link not ready (0x%04x)\n", val);
 782}
 783
 784#define BYTE_SWAP(OFF)  (8*((OFF)/4)+3-(OFF))
 785#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
 786
 787static void eeh_restore_bridge_bars(struct eeh_dev *edev)
 788{
 789        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 790        int i;
 791
 792        /*
 793         * Device BARs: 0x10 - 0x18
 794         * Bus numbers and windows: 0x18 - 0x30
 795         */
 796        for (i = 4; i < 13; i++)
 797                eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 798        /* Rom: 0x38 */
 799        eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
 800
 801        /* Cache line & Latency timer: 0xC 0xD */
 802        eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 803                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 804        eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 805                SAVED_BYTE(PCI_LATENCY_TIMER));
 806        /* Max latency, min grant, interrupt ping and line: 0x3C */
 807        eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 808
 809        /* PCI Command: 0x4 */
 810        eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
 811                              PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
 812
 813        /* Check the PCIe link is ready */
 814        eeh_bridge_check_link(edev);
 815}
 816
 817static void eeh_restore_device_bars(struct eeh_dev *edev)
 818{
 819        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 820        int i;
 821        u32 cmd;
 822
 823        for (i = 4; i < 10; i++)
 824                eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 825        /* 12 == Expansion ROM Address */
 826        eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
 827
 828        eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 829                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 830        eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 831                SAVED_BYTE(PCI_LATENCY_TIMER));
 832
 833        /* max latency, min grant, interrupt pin and line */
 834        eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 835
 836        /*
 837         * Restore PERR & SERR bits, some devices require it,
 838         * don't touch the other command bits
 839         */
 840        eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
 841        if (edev->config_space[1] & PCI_COMMAND_PARITY)
 842                cmd |= PCI_COMMAND_PARITY;
 843        else
 844                cmd &= ~PCI_COMMAND_PARITY;
 845        if (edev->config_space[1] & PCI_COMMAND_SERR)
 846                cmd |= PCI_COMMAND_SERR;
 847        else
 848                cmd &= ~PCI_COMMAND_SERR;
 849        eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
 850}
 851
 852/**
 853 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
 854 * @data: EEH device
 855 * @flag: Unused
 856 *
 857 * Loads the PCI configuration space base address registers,
 858 * the expansion ROM base address, the latency timer, and etc.
 859 * from the saved values in the device node.
 860 */
 861static void *eeh_restore_one_device_bars(void *data, void *flag)
 862{
 863        struct eeh_dev *edev = (struct eeh_dev *)data;
 864        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 865
 866        /* Do special restore for bridges */
 867        if (edev->mode & EEH_DEV_BRIDGE)
 868                eeh_restore_bridge_bars(edev);
 869        else
 870                eeh_restore_device_bars(edev);
 871
 872        if (eeh_ops->restore_config && pdn)
 873                eeh_ops->restore_config(pdn);
 874
 875        return NULL;
 876}
 877
 878/**
 879 * eeh_pe_restore_bars - Restore the PCI config space info
 880 * @pe: EEH PE
 881 *
 882 * This routine performs a recursive walk to the children
 883 * of this device as well.
 884 */
 885void eeh_pe_restore_bars(struct eeh_pe *pe)
 886{
 887        /*
 888         * We needn't take the EEH lock since eeh_pe_dev_traverse()
 889         * will take that.
 890         */
 891        eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
 892}
 893
 894/**
 895 * eeh_pe_loc_get - Retrieve location code binding to the given PE
 896 * @pe: EEH PE
 897 *
 898 * Retrieve the location code of the given PE. If the primary PE bus
 899 * is root bus, we will grab location code from PHB device tree node
 900 * or root port. Otherwise, the upstream bridge's device tree node
 901 * of the primary PE bus will be checked for the location code.
 902 */
 903const char *eeh_pe_loc_get(struct eeh_pe *pe)
 904{
 905        struct pci_bus *bus = eeh_pe_bus_get(pe);
 906        struct device_node *dn;
 907        const char *loc = NULL;
 908
 909        while (bus) {
 910                dn = pci_bus_to_OF_node(bus);
 911                if (!dn) {
 912                        bus = bus->parent;
 913                        continue;
 914                }
 915
 916                if (pci_is_root_bus(bus))
 917                        loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
 918                else
 919                        loc = of_get_property(dn, "ibm,slot-location-code",
 920                                              NULL);
 921
 922                if (loc)
 923                        return loc;
 924
 925                bus = bus->parent;
 926        }
 927
 928        return "N/A";
 929}
 930
 931/**
 932 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
 933 * @pe: EEH PE
 934 *
 935 * Retrieve the PCI bus according to the given PE. Basically,
 936 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
 937 * primary PCI bus will be retrieved. The parent bus will be
 938 * returned for BUS PE. However, we don't have associated PCI
 939 * bus for DEVICE PE.
 940 */
 941struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
 942{
 943        struct eeh_dev *edev;
 944        struct pci_dev *pdev;
 945
 946        if (pe->type & EEH_PE_PHB)
 947                return pe->phb->bus;
 948
 949        /* The primary bus might be cached during probe time */
 950        if (pe->state & EEH_PE_PRI_BUS)
 951                return pe->bus;
 952
 953        /* Retrieve the parent PCI bus of first (top) PCI device */
 954        edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
 955        pdev = eeh_dev_to_pci_dev(edev);
 956        if (pdev)
 957                return pdev->bus;
 958
 959        return NULL;
 960}
 961