linux/arch/powerpc/kernel/smp.c
<<
>>
Prefs
   1/*
   2 * SMP support for ppc.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
   5 * deal of code from the sparc and intel versions.
   6 *
   7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
   8 *
   9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  11 *
  12 *      This program is free software; you can redistribute it and/or
  13 *      modify it under the terms of the GNU General Public License
  14 *      as published by the Free Software Foundation; either version
  15 *      2 of the License, or (at your option) any later version.
  16 */
  17
  18#undef DEBUG
  19
  20#include <linux/kernel.h>
  21#include <linux/export.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/topology.h>
  24#include <linux/smp.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/spinlock.h>
  29#include <linux/cache.h>
  30#include <linux/err.h>
  31#include <linux/device.h>
  32#include <linux/cpu.h>
  33#include <linux/notifier.h>
  34#include <linux/topology.h>
  35#include <linux/profile.h>
  36#include <linux/processor.h>
  37
  38#include <asm/ptrace.h>
  39#include <linux/atomic.h>
  40#include <asm/irq.h>
  41#include <asm/hw_irq.h>
  42#include <asm/kvm_ppc.h>
  43#include <asm/dbell.h>
  44#include <asm/page.h>
  45#include <asm/pgtable.h>
  46#include <asm/prom.h>
  47#include <asm/smp.h>
  48#include <asm/time.h>
  49#include <asm/machdep.h>
  50#include <asm/cputhreads.h>
  51#include <asm/cputable.h>
  52#include <asm/mpic.h>
  53#include <asm/vdso_datapage.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/paca.h>
  56#endif
  57#include <asm/vdso.h>
  58#include <asm/debug.h>
  59#include <asm/kexec.h>
  60#include <asm/asm-prototypes.h>
  61#include <asm/cpu_has_feature.h>
  62
  63#ifdef DEBUG
  64#include <asm/udbg.h>
  65#define DBG(fmt...) udbg_printf(fmt)
  66#else
  67#define DBG(fmt...)
  68#endif
  69
  70#ifdef CONFIG_HOTPLUG_CPU
  71/* State of each CPU during hotplug phases */
  72static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  73#endif
  74
  75struct thread_info *secondary_ti;
  76
  77DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  78DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
  79DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  80
  81EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  82EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
  83EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  84
  85/* SMP operations for this machine */
  86struct smp_ops_t *smp_ops;
  87
  88/* Can't be static due to PowerMac hackery */
  89volatile unsigned int cpu_callin_map[NR_CPUS];
  90
  91int smt_enabled_at_boot = 1;
  92
  93/*
  94 * Returns 1 if the specified cpu should be brought up during boot.
  95 * Used to inhibit booting threads if they've been disabled or
  96 * limited on the command line
  97 */
  98int smp_generic_cpu_bootable(unsigned int nr)
  99{
 100        /* Special case - we inhibit secondary thread startup
 101         * during boot if the user requests it.
 102         */
 103        if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
 104                if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 105                        return 0;
 106                if (smt_enabled_at_boot
 107                    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
 108                        return 0;
 109        }
 110
 111        return 1;
 112}
 113
 114
 115#ifdef CONFIG_PPC64
 116int smp_generic_kick_cpu(int nr)
 117{
 118        if (nr < 0 || nr >= nr_cpu_ids)
 119                return -EINVAL;
 120
 121        /*
 122         * The processor is currently spinning, waiting for the
 123         * cpu_start field to become non-zero After we set cpu_start,
 124         * the processor will continue on to secondary_start
 125         */
 126        if (!paca_ptrs[nr]->cpu_start) {
 127                paca_ptrs[nr]->cpu_start = 1;
 128                smp_mb();
 129                return 0;
 130        }
 131
 132#ifdef CONFIG_HOTPLUG_CPU
 133        /*
 134         * Ok it's not there, so it might be soft-unplugged, let's
 135         * try to bring it back
 136         */
 137        generic_set_cpu_up(nr);
 138        smp_wmb();
 139        smp_send_reschedule(nr);
 140#endif /* CONFIG_HOTPLUG_CPU */
 141
 142        return 0;
 143}
 144#endif /* CONFIG_PPC64 */
 145
 146static irqreturn_t call_function_action(int irq, void *data)
 147{
 148        generic_smp_call_function_interrupt();
 149        return IRQ_HANDLED;
 150}
 151
 152static irqreturn_t reschedule_action(int irq, void *data)
 153{
 154        scheduler_ipi();
 155        return IRQ_HANDLED;
 156}
 157
 158static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
 159{
 160        tick_broadcast_ipi_handler();
 161        return IRQ_HANDLED;
 162}
 163
 164#ifdef CONFIG_NMI_IPI
 165static irqreturn_t nmi_ipi_action(int irq, void *data)
 166{
 167        smp_handle_nmi_ipi(get_irq_regs());
 168        return IRQ_HANDLED;
 169}
 170#endif
 171
 172static irq_handler_t smp_ipi_action[] = {
 173        [PPC_MSG_CALL_FUNCTION] =  call_function_action,
 174        [PPC_MSG_RESCHEDULE] = reschedule_action,
 175        [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
 176#ifdef CONFIG_NMI_IPI
 177        [PPC_MSG_NMI_IPI] = nmi_ipi_action,
 178#endif
 179};
 180
 181/*
 182 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 183 * than going through the call function infrastructure, and strongly
 184 * serialized, so it is more appropriate for debugging.
 185 */
 186const char *smp_ipi_name[] = {
 187        [PPC_MSG_CALL_FUNCTION] =  "ipi call function",
 188        [PPC_MSG_RESCHEDULE] = "ipi reschedule",
 189        [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
 190        [PPC_MSG_NMI_IPI] = "nmi ipi",
 191};
 192
 193/* optional function to request ipi, for controllers with >= 4 ipis */
 194int smp_request_message_ipi(int virq, int msg)
 195{
 196        int err;
 197
 198        if (msg < 0 || msg > PPC_MSG_NMI_IPI)
 199                return -EINVAL;
 200#ifndef CONFIG_NMI_IPI
 201        if (msg == PPC_MSG_NMI_IPI)
 202                return 1;
 203#endif
 204
 205        err = request_irq(virq, smp_ipi_action[msg],
 206                          IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
 207                          smp_ipi_name[msg], NULL);
 208        WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 209                virq, smp_ipi_name[msg], err);
 210
 211        return err;
 212}
 213
 214#ifdef CONFIG_PPC_SMP_MUXED_IPI
 215struct cpu_messages {
 216        long messages;                  /* current messages */
 217};
 218static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
 219
 220void smp_muxed_ipi_set_message(int cpu, int msg)
 221{
 222        struct cpu_messages *info = &per_cpu(ipi_message, cpu);
 223        char *message = (char *)&info->messages;
 224
 225        /*
 226         * Order previous accesses before accesses in the IPI handler.
 227         */
 228        smp_mb();
 229        message[msg] = 1;
 230}
 231
 232void smp_muxed_ipi_message_pass(int cpu, int msg)
 233{
 234        smp_muxed_ipi_set_message(cpu, msg);
 235
 236        /*
 237         * cause_ipi functions are required to include a full barrier
 238         * before doing whatever causes the IPI.
 239         */
 240        smp_ops->cause_ipi(cpu);
 241}
 242
 243#ifdef __BIG_ENDIAN__
 244#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
 245#else
 246#define IPI_MESSAGE(A) (1uL << (8 * (A)))
 247#endif
 248
 249irqreturn_t smp_ipi_demux(void)
 250{
 251        mb();   /* order any irq clear */
 252
 253        return smp_ipi_demux_relaxed();
 254}
 255
 256/* sync-free variant. Callers should ensure synchronization */
 257irqreturn_t smp_ipi_demux_relaxed(void)
 258{
 259        struct cpu_messages *info;
 260        unsigned long all;
 261
 262        info = this_cpu_ptr(&ipi_message);
 263        do {
 264                all = xchg(&info->messages, 0);
 265#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 266                /*
 267                 * Must check for PPC_MSG_RM_HOST_ACTION messages
 268                 * before PPC_MSG_CALL_FUNCTION messages because when
 269                 * a VM is destroyed, we call kick_all_cpus_sync()
 270                 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
 271                 * messages have completed before we free any VCPUs.
 272                 */
 273                if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
 274                        kvmppc_xics_ipi_action();
 275#endif
 276                if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
 277                        generic_smp_call_function_interrupt();
 278                if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
 279                        scheduler_ipi();
 280                if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
 281                        tick_broadcast_ipi_handler();
 282#ifdef CONFIG_NMI_IPI
 283                if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
 284                        nmi_ipi_action(0, NULL);
 285#endif
 286        } while (info->messages);
 287
 288        return IRQ_HANDLED;
 289}
 290#endif /* CONFIG_PPC_SMP_MUXED_IPI */
 291
 292static inline void do_message_pass(int cpu, int msg)
 293{
 294        if (smp_ops->message_pass)
 295                smp_ops->message_pass(cpu, msg);
 296#ifdef CONFIG_PPC_SMP_MUXED_IPI
 297        else
 298                smp_muxed_ipi_message_pass(cpu, msg);
 299#endif
 300}
 301
 302void smp_send_reschedule(int cpu)
 303{
 304        if (likely(smp_ops))
 305                do_message_pass(cpu, PPC_MSG_RESCHEDULE);
 306}
 307EXPORT_SYMBOL_GPL(smp_send_reschedule);
 308
 309void arch_send_call_function_single_ipi(int cpu)
 310{
 311        do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 312}
 313
 314void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 315{
 316        unsigned int cpu;
 317
 318        for_each_cpu(cpu, mask)
 319                do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 320}
 321
 322#ifdef CONFIG_NMI_IPI
 323
 324/*
 325 * "NMI IPI" system.
 326 *
 327 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 328 * a running system. They can be used for crash, debug, halt/reboot, etc.
 329 *
 330 * NMI IPIs are globally single threaded. No more than one in progress at
 331 * any time.
 332 *
 333 * The IPI call waits with interrupts disabled until all targets enter the
 334 * NMI handler, then the call returns.
 335 *
 336 * No new NMI can be initiated until targets exit the handler.
 337 *
 338 * The IPI call may time out without all targets entering the NMI handler.
 339 * In that case, there is some logic to recover (and ignore subsequent
 340 * NMI interrupts that may eventually be raised), but the platform interrupt
 341 * handler may not be able to distinguish this from other exception causes,
 342 * which may cause a crash.
 343 */
 344
 345static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
 346static struct cpumask nmi_ipi_pending_mask;
 347static int nmi_ipi_busy_count = 0;
 348static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
 349
 350static void nmi_ipi_lock_start(unsigned long *flags)
 351{
 352        raw_local_irq_save(*flags);
 353        hard_irq_disable();
 354        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
 355                raw_local_irq_restore(*flags);
 356                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 357                raw_local_irq_save(*flags);
 358                hard_irq_disable();
 359        }
 360}
 361
 362static void nmi_ipi_lock(void)
 363{
 364        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
 365                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 366}
 367
 368static void nmi_ipi_unlock(void)
 369{
 370        smp_mb();
 371        WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
 372        atomic_set(&__nmi_ipi_lock, 0);
 373}
 374
 375static void nmi_ipi_unlock_end(unsigned long *flags)
 376{
 377        nmi_ipi_unlock();
 378        raw_local_irq_restore(*flags);
 379}
 380
 381/*
 382 * Platform NMI handler calls this to ack
 383 */
 384int smp_handle_nmi_ipi(struct pt_regs *regs)
 385{
 386        void (*fn)(struct pt_regs *);
 387        unsigned long flags;
 388        int me = raw_smp_processor_id();
 389        int ret = 0;
 390
 391        /*
 392         * Unexpected NMIs are possible here because the interrupt may not
 393         * be able to distinguish NMI IPIs from other types of NMIs, or
 394         * because the caller may have timed out.
 395         */
 396        nmi_ipi_lock_start(&flags);
 397        if (!nmi_ipi_busy_count)
 398                goto out;
 399        if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
 400                goto out;
 401
 402        fn = nmi_ipi_function;
 403        if (!fn)
 404                goto out;
 405
 406        cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 407        nmi_ipi_busy_count++;
 408        nmi_ipi_unlock();
 409
 410        ret = 1;
 411
 412        fn(regs);
 413
 414        nmi_ipi_lock();
 415        nmi_ipi_busy_count--;
 416out:
 417        nmi_ipi_unlock_end(&flags);
 418
 419        return ret;
 420}
 421
 422static void do_smp_send_nmi_ipi(int cpu)
 423{
 424        if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
 425                return;
 426
 427        if (cpu >= 0) {
 428                do_message_pass(cpu, PPC_MSG_NMI_IPI);
 429        } else {
 430                int c;
 431
 432                for_each_online_cpu(c) {
 433                        if (c == raw_smp_processor_id())
 434                                continue;
 435                        do_message_pass(c, PPC_MSG_NMI_IPI);
 436                }
 437        }
 438}
 439
 440void smp_flush_nmi_ipi(u64 delay_us)
 441{
 442        unsigned long flags;
 443
 444        nmi_ipi_lock_start(&flags);
 445        while (nmi_ipi_busy_count) {
 446                nmi_ipi_unlock_end(&flags);
 447                udelay(1);
 448                if (delay_us) {
 449                        delay_us--;
 450                        if (!delay_us)
 451                                return;
 452                }
 453                nmi_ipi_lock_start(&flags);
 454        }
 455        nmi_ipi_unlock_end(&flags);
 456}
 457
 458/*
 459 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 460 * - fn is the target callback function.
 461 * - delay_us > 0 is the delay before giving up waiting for targets to
 462 *   enter the handler, == 0 specifies indefinite delay.
 463 */
 464int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 465{
 466        unsigned long flags;
 467        int me = raw_smp_processor_id();
 468        int ret = 1;
 469
 470        BUG_ON(cpu == me);
 471        BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
 472
 473        if (unlikely(!smp_ops))
 474                return 0;
 475
 476        /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
 477        nmi_ipi_lock_start(&flags);
 478        while (nmi_ipi_busy_count) {
 479                nmi_ipi_unlock_end(&flags);
 480                spin_until_cond(nmi_ipi_busy_count == 0);
 481                nmi_ipi_lock_start(&flags);
 482        }
 483
 484        nmi_ipi_function = fn;
 485
 486        if (cpu < 0) {
 487                /* ALL_OTHERS */
 488                cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
 489                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 490        } else {
 491                /* cpumask starts clear */
 492                cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
 493        }
 494        nmi_ipi_busy_count++;
 495        nmi_ipi_unlock();
 496
 497        do_smp_send_nmi_ipi(cpu);
 498
 499        while (!cpumask_empty(&nmi_ipi_pending_mask)) {
 500                udelay(1);
 501                if (delay_us) {
 502                        delay_us--;
 503                        if (!delay_us)
 504                                break;
 505                }
 506        }
 507
 508        nmi_ipi_lock();
 509        if (!cpumask_empty(&nmi_ipi_pending_mask)) {
 510                /* Could not gather all CPUs */
 511                ret = 0;
 512                cpumask_clear(&nmi_ipi_pending_mask);
 513        }
 514        nmi_ipi_busy_count--;
 515        nmi_ipi_unlock_end(&flags);
 516
 517        return ret;
 518}
 519#endif /* CONFIG_NMI_IPI */
 520
 521#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 522void tick_broadcast(const struct cpumask *mask)
 523{
 524        unsigned int cpu;
 525
 526        for_each_cpu(cpu, mask)
 527                do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
 528}
 529#endif
 530
 531#ifdef CONFIG_DEBUGGER
 532void debugger_ipi_callback(struct pt_regs *regs)
 533{
 534        debugger_ipi(regs);
 535}
 536
 537void smp_send_debugger_break(void)
 538{
 539        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
 540}
 541#endif
 542
 543#ifdef CONFIG_KEXEC_CORE
 544void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
 545{
 546        int cpu;
 547
 548        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
 549        if (kdump_in_progress() && crash_wake_offline) {
 550                for_each_present_cpu(cpu) {
 551                        if (cpu_online(cpu))
 552                                continue;
 553                        /*
 554                         * crash_ipi_callback will wait for
 555                         * all cpus, including offline CPUs.
 556                         * We don't care about nmi_ipi_function.
 557                         * Offline cpus will jump straight into
 558                         * crash_ipi_callback, we can skip the
 559                         * entire NMI dance and waiting for
 560                         * cpus to clear pending mask, etc.
 561                         */
 562                        do_smp_send_nmi_ipi(cpu);
 563                }
 564        }
 565}
 566#endif
 567
 568#ifdef CONFIG_NMI_IPI
 569static void nmi_stop_this_cpu(struct pt_regs *regs)
 570{
 571        /*
 572         * This is a special case because it never returns, so the NMI IPI
 573         * handling would never mark it as done, which makes any later
 574         * smp_send_nmi_ipi() call spin forever. Mark it done now.
 575         *
 576         * IRQs are already hard disabled by the smp_handle_nmi_ipi.
 577         */
 578        nmi_ipi_lock();
 579        nmi_ipi_busy_count--;
 580        nmi_ipi_unlock();
 581
 582        /* Remove this CPU */
 583        set_cpu_online(smp_processor_id(), false);
 584
 585        spin_begin();
 586        while (1)
 587                spin_cpu_relax();
 588}
 589
 590void smp_send_stop(void)
 591{
 592        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
 593}
 594
 595#else /* CONFIG_NMI_IPI */
 596
 597static void stop_this_cpu(void *dummy)
 598{
 599        /* Remove this CPU */
 600        set_cpu_online(smp_processor_id(), false);
 601
 602        hard_irq_disable();
 603        spin_begin();
 604        while (1)
 605                spin_cpu_relax();
 606}
 607
 608void smp_send_stop(void)
 609{
 610        static bool stopped = false;
 611
 612        /*
 613         * Prevent waiting on csd lock from a previous smp_send_stop.
 614         * This is racy, but in general callers try to do the right
 615         * thing and only fire off one smp_send_stop (e.g., see
 616         * kernel/panic.c)
 617         */
 618        if (stopped)
 619                return;
 620
 621        stopped = true;
 622
 623        smp_call_function(stop_this_cpu, NULL, 0);
 624}
 625#endif /* CONFIG_NMI_IPI */
 626
 627struct thread_info *current_set[NR_CPUS];
 628
 629static void smp_store_cpu_info(int id)
 630{
 631        per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
 632#ifdef CONFIG_PPC_FSL_BOOK3E
 633        per_cpu(next_tlbcam_idx, id)
 634                = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
 635#endif
 636}
 637
 638/*
 639 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 640 * rather than just passing around the cpumask we pass around a function that
 641 * returns the that cpumask for the given CPU.
 642 */
 643static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
 644{
 645        cpumask_set_cpu(i, get_cpumask(j));
 646        cpumask_set_cpu(j, get_cpumask(i));
 647}
 648
 649#ifdef CONFIG_HOTPLUG_CPU
 650static void set_cpus_unrelated(int i, int j,
 651                struct cpumask *(*get_cpumask)(int))
 652{
 653        cpumask_clear_cpu(i, get_cpumask(j));
 654        cpumask_clear_cpu(j, get_cpumask(i));
 655}
 656#endif
 657
 658void __init smp_prepare_cpus(unsigned int max_cpus)
 659{
 660        unsigned int cpu;
 661
 662        DBG("smp_prepare_cpus\n");
 663
 664        /* 
 665         * setup_cpu may need to be called on the boot cpu. We havent
 666         * spun any cpus up but lets be paranoid.
 667         */
 668        BUG_ON(boot_cpuid != smp_processor_id());
 669
 670        /* Fixup boot cpu */
 671        smp_store_cpu_info(boot_cpuid);
 672        cpu_callin_map[boot_cpuid] = 1;
 673
 674        for_each_possible_cpu(cpu) {
 675                zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
 676                                        GFP_KERNEL, cpu_to_node(cpu));
 677                zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
 678                                        GFP_KERNEL, cpu_to_node(cpu));
 679                zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
 680                                        GFP_KERNEL, cpu_to_node(cpu));
 681                /*
 682                 * numa_node_id() works after this.
 683                 */
 684                if (cpu_present(cpu)) {
 685                        set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
 686                        set_cpu_numa_mem(cpu,
 687                                local_memory_node(numa_cpu_lookup_table[cpu]));
 688                }
 689        }
 690
 691        /* Init the cpumasks so the boot CPU is related to itself */
 692        cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
 693        cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
 694        cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
 695
 696        if (smp_ops && smp_ops->probe)
 697                smp_ops->probe();
 698}
 699
 700void smp_prepare_boot_cpu(void)
 701{
 702        BUG_ON(smp_processor_id() != boot_cpuid);
 703#ifdef CONFIG_PPC64
 704        paca_ptrs[boot_cpuid]->__current = current;
 705#endif
 706        set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
 707        current_set[boot_cpuid] = task_thread_info(current);
 708}
 709
 710#ifdef CONFIG_HOTPLUG_CPU
 711
 712int generic_cpu_disable(void)
 713{
 714        unsigned int cpu = smp_processor_id();
 715
 716        if (cpu == boot_cpuid)
 717                return -EBUSY;
 718
 719        set_cpu_online(cpu, false);
 720#ifdef CONFIG_PPC64
 721        vdso_data->processorCount--;
 722#endif
 723        /* Update affinity of all IRQs previously aimed at this CPU */
 724        irq_migrate_all_off_this_cpu();
 725
 726        /*
 727         * Depending on the details of the interrupt controller, it's possible
 728         * that one of the interrupts we just migrated away from this CPU is
 729         * actually already pending on this CPU. If we leave it in that state
 730         * the interrupt will never be EOI'ed, and will never fire again. So
 731         * temporarily enable interrupts here, to allow any pending interrupt to
 732         * be received (and EOI'ed), before we take this CPU offline.
 733         */
 734        local_irq_enable();
 735        mdelay(1);
 736        local_irq_disable();
 737
 738        return 0;
 739}
 740
 741void generic_cpu_die(unsigned int cpu)
 742{
 743        int i;
 744
 745        for (i = 0; i < 100; i++) {
 746                smp_rmb();
 747                if (is_cpu_dead(cpu))
 748                        return;
 749                msleep(100);
 750        }
 751        printk(KERN_ERR "CPU%d didn't die...\n", cpu);
 752}
 753
 754void generic_set_cpu_dead(unsigned int cpu)
 755{
 756        per_cpu(cpu_state, cpu) = CPU_DEAD;
 757}
 758
 759/*
 760 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
 761 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
 762 * which makes the delay in generic_cpu_die() not happen.
 763 */
 764void generic_set_cpu_up(unsigned int cpu)
 765{
 766        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 767}
 768
 769int generic_check_cpu_restart(unsigned int cpu)
 770{
 771        return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
 772}
 773
 774int is_cpu_dead(unsigned int cpu)
 775{
 776        return per_cpu(cpu_state, cpu) == CPU_DEAD;
 777}
 778
 779static bool secondaries_inhibited(void)
 780{
 781        return kvm_hv_mode_active();
 782}
 783
 784#else /* HOTPLUG_CPU */
 785
 786#define secondaries_inhibited()         0
 787
 788#endif
 789
 790static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
 791{
 792        struct thread_info *ti = task_thread_info(idle);
 793
 794#ifdef CONFIG_PPC64
 795        paca_ptrs[cpu]->__current = idle;
 796        paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
 797#endif
 798        ti->cpu = cpu;
 799        secondary_ti = current_set[cpu] = ti;
 800}
 801
 802int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 803{
 804        int rc, c;
 805
 806        /*
 807         * Don't allow secondary threads to come online if inhibited
 808         */
 809        if (threads_per_core > 1 && secondaries_inhibited() &&
 810            cpu_thread_in_subcore(cpu))
 811                return -EBUSY;
 812
 813        if (smp_ops == NULL ||
 814            (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
 815                return -EINVAL;
 816
 817        cpu_idle_thread_init(cpu, tidle);
 818
 819        /*
 820         * The platform might need to allocate resources prior to bringing
 821         * up the CPU
 822         */
 823        if (smp_ops->prepare_cpu) {
 824                rc = smp_ops->prepare_cpu(cpu);
 825                if (rc)
 826                        return rc;
 827        }
 828
 829        /* Make sure callin-map entry is 0 (can be leftover a CPU
 830         * hotplug
 831         */
 832        cpu_callin_map[cpu] = 0;
 833
 834        /* The information for processor bringup must
 835         * be written out to main store before we release
 836         * the processor.
 837         */
 838        smp_mb();
 839
 840        /* wake up cpus */
 841        DBG("smp: kicking cpu %d\n", cpu);
 842        rc = smp_ops->kick_cpu(cpu);
 843        if (rc) {
 844                pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
 845                return rc;
 846        }
 847
 848        /*
 849         * wait to see if the cpu made a callin (is actually up).
 850         * use this value that I found through experimentation.
 851         * -- Cort
 852         */
 853        if (system_state < SYSTEM_RUNNING)
 854                for (c = 50000; c && !cpu_callin_map[cpu]; c--)
 855                        udelay(100);
 856#ifdef CONFIG_HOTPLUG_CPU
 857        else
 858                /*
 859                 * CPUs can take much longer to come up in the
 860                 * hotplug case.  Wait five seconds.
 861                 */
 862                for (c = 5000; c && !cpu_callin_map[cpu]; c--)
 863                        msleep(1);
 864#endif
 865
 866        if (!cpu_callin_map[cpu]) {
 867                printk(KERN_ERR "Processor %u is stuck.\n", cpu);
 868                return -ENOENT;
 869        }
 870
 871        DBG("Processor %u found.\n", cpu);
 872
 873        if (smp_ops->give_timebase)
 874                smp_ops->give_timebase();
 875
 876        /* Wait until cpu puts itself in the online & active maps */
 877        spin_until_cond(cpu_online(cpu));
 878
 879        return 0;
 880}
 881
 882/* Return the value of the reg property corresponding to the given
 883 * logical cpu.
 884 */
 885int cpu_to_core_id(int cpu)
 886{
 887        struct device_node *np;
 888        const __be32 *reg;
 889        int id = -1;
 890
 891        np = of_get_cpu_node(cpu, NULL);
 892        if (!np)
 893                goto out;
 894
 895        reg = of_get_property(np, "reg", NULL);
 896        if (!reg)
 897                goto out;
 898
 899        id = be32_to_cpup(reg);
 900out:
 901        of_node_put(np);
 902        return id;
 903}
 904EXPORT_SYMBOL_GPL(cpu_to_core_id);
 905
 906/* Helper routines for cpu to core mapping */
 907int cpu_core_index_of_thread(int cpu)
 908{
 909        return cpu >> threads_shift;
 910}
 911EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
 912
 913int cpu_first_thread_of_core(int core)
 914{
 915        return core << threads_shift;
 916}
 917EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
 918
 919/* Must be called when no change can occur to cpu_present_mask,
 920 * i.e. during cpu online or offline.
 921 */
 922static struct device_node *cpu_to_l2cache(int cpu)
 923{
 924        struct device_node *np;
 925        struct device_node *cache;
 926
 927        if (!cpu_present(cpu))
 928                return NULL;
 929
 930        np = of_get_cpu_node(cpu, NULL);
 931        if (np == NULL)
 932                return NULL;
 933
 934        cache = of_find_next_cache_node(np);
 935
 936        of_node_put(np);
 937
 938        return cache;
 939}
 940
 941static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
 942{
 943        struct device_node *l2_cache, *np;
 944        int i;
 945
 946        l2_cache = cpu_to_l2cache(cpu);
 947        if (!l2_cache)
 948                return false;
 949
 950        for_each_cpu(i, cpu_online_mask) {
 951                /*
 952                 * when updating the marks the current CPU has not been marked
 953                 * online, but we need to update the cache masks
 954                 */
 955                np = cpu_to_l2cache(i);
 956                if (!np)
 957                        continue;
 958
 959                if (np == l2_cache)
 960                        set_cpus_related(cpu, i, mask_fn);
 961
 962                of_node_put(np);
 963        }
 964        of_node_put(l2_cache);
 965
 966        return true;
 967}
 968
 969#ifdef CONFIG_HOTPLUG_CPU
 970static void remove_cpu_from_masks(int cpu)
 971{
 972        int i;
 973
 974        /* NB: cpu_core_mask is a superset of the others */
 975        for_each_cpu(i, cpu_core_mask(cpu)) {
 976                set_cpus_unrelated(cpu, i, cpu_core_mask);
 977                set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
 978                set_cpus_unrelated(cpu, i, cpu_sibling_mask);
 979        }
 980}
 981#endif
 982
 983static void add_cpu_to_masks(int cpu)
 984{
 985        int first_thread = cpu_first_thread_sibling(cpu);
 986        int chipid = cpu_to_chip_id(cpu);
 987        int i;
 988
 989        /*
 990         * This CPU will not be in the online mask yet so we need to manually
 991         * add it to it's own thread sibling mask.
 992         */
 993        cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
 994
 995        for (i = first_thread; i < first_thread + threads_per_core; i++)
 996                if (cpu_online(i))
 997                        set_cpus_related(i, cpu, cpu_sibling_mask);
 998
 999        /*
1000         * Copy the thread sibling mask into the cache sibling mask
1001         * and mark any CPUs that share an L2 with this CPU.
1002         */
1003        for_each_cpu(i, cpu_sibling_mask(cpu))
1004                set_cpus_related(cpu, i, cpu_l2_cache_mask);
1005        update_mask_by_l2(cpu, cpu_l2_cache_mask);
1006
1007        /*
1008         * Copy the cache sibling mask into core sibling mask and mark
1009         * any CPUs on the same chip as this CPU.
1010         */
1011        for_each_cpu(i, cpu_l2_cache_mask(cpu))
1012                set_cpus_related(cpu, i, cpu_core_mask);
1013
1014        if (chipid == -1)
1015                return;
1016
1017        for_each_cpu(i, cpu_online_mask)
1018                if (cpu_to_chip_id(i) == chipid)
1019                        set_cpus_related(cpu, i, cpu_core_mask);
1020}
1021
1022static bool shared_caches;
1023
1024/* Activate a secondary processor. */
1025void start_secondary(void *unused)
1026{
1027        unsigned int cpu = smp_processor_id();
1028
1029        mmgrab(&init_mm);
1030        current->active_mm = &init_mm;
1031
1032        smp_store_cpu_info(cpu);
1033        set_dec(tb_ticks_per_jiffy);
1034        preempt_disable();
1035        cpu_callin_map[cpu] = 1;
1036
1037        if (smp_ops->setup_cpu)
1038                smp_ops->setup_cpu(cpu);
1039        if (smp_ops->take_timebase)
1040                smp_ops->take_timebase();
1041
1042        secondary_cpu_time_init();
1043
1044#ifdef CONFIG_PPC64
1045        if (system_state == SYSTEM_RUNNING)
1046                vdso_data->processorCount++;
1047
1048        vdso_getcpu_init();
1049#endif
1050        /* Update topology CPU masks */
1051        add_cpu_to_masks(cpu);
1052
1053        /*
1054         * Check for any shared caches. Note that this must be done on a
1055         * per-core basis because one core in the pair might be disabled.
1056         */
1057        if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1058                shared_caches = true;
1059
1060        set_numa_node(numa_cpu_lookup_table[cpu]);
1061        set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1062
1063        smp_wmb();
1064        notify_cpu_starting(cpu);
1065        set_cpu_online(cpu, true);
1066
1067        local_irq_enable();
1068
1069        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1070
1071        BUG();
1072}
1073
1074int setup_profiling_timer(unsigned int multiplier)
1075{
1076        return 0;
1077}
1078
1079#ifdef CONFIG_SCHED_SMT
1080/* cpumask of CPUs with asymetric SMT dependancy */
1081static int powerpc_smt_flags(void)
1082{
1083        int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1084
1085        if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1086                printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1087                flags |= SD_ASYM_PACKING;
1088        }
1089        return flags;
1090}
1091#endif
1092
1093static struct sched_domain_topology_level powerpc_topology[] = {
1094#ifdef CONFIG_SCHED_SMT
1095        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1096#endif
1097        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1098        { NULL, },
1099};
1100
1101/*
1102 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1103 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1104 * since the migrated task remains cache hot. We want to take advantage of this
1105 * at the scheduler level so an extra topology level is required.
1106 */
1107static int powerpc_shared_cache_flags(void)
1108{
1109        return SD_SHARE_PKG_RESOURCES;
1110}
1111
1112/*
1113 * We can't just pass cpu_l2_cache_mask() directly because
1114 * returns a non-const pointer and the compiler barfs on that.
1115 */
1116static const struct cpumask *shared_cache_mask(int cpu)
1117{
1118        return cpu_l2_cache_mask(cpu);
1119}
1120
1121static struct sched_domain_topology_level power9_topology[] = {
1122#ifdef CONFIG_SCHED_SMT
1123        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1124#endif
1125        { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1126        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1127        { NULL, },
1128};
1129
1130void __init smp_cpus_done(unsigned int max_cpus)
1131{
1132        /*
1133         * We are running pinned to the boot CPU, see rest_init().
1134         */
1135        if (smp_ops && smp_ops->setup_cpu)
1136                smp_ops->setup_cpu(boot_cpuid);
1137
1138        if (smp_ops && smp_ops->bringup_done)
1139                smp_ops->bringup_done();
1140
1141        dump_numa_cpu_topology();
1142
1143        /*
1144         * If any CPU detects that it's sharing a cache with another CPU then
1145         * use the deeper topology that is aware of this sharing.
1146         */
1147        if (shared_caches) {
1148                pr_info("Using shared cache scheduler topology\n");
1149                set_sched_topology(power9_topology);
1150        } else {
1151                pr_info("Using standard scheduler topology\n");
1152                set_sched_topology(powerpc_topology);
1153        }
1154}
1155
1156#ifdef CONFIG_HOTPLUG_CPU
1157int __cpu_disable(void)
1158{
1159        int cpu = smp_processor_id();
1160        int err;
1161
1162        if (!smp_ops->cpu_disable)
1163                return -ENOSYS;
1164
1165        err = smp_ops->cpu_disable();
1166        if (err)
1167                return err;
1168
1169        /* Update sibling maps */
1170        remove_cpu_from_masks(cpu);
1171
1172        return 0;
1173}
1174
1175void __cpu_die(unsigned int cpu)
1176{
1177        if (smp_ops->cpu_die)
1178                smp_ops->cpu_die(cpu);
1179}
1180
1181void cpu_die(void)
1182{
1183        if (ppc_md.cpu_die)
1184                ppc_md.cpu_die();
1185
1186        /* If we return, we re-enter start_secondary */
1187        start_secondary_resume();
1188}
1189
1190#endif
1191