linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/sched/clock.h>
  38#include <linux/kernel.h>
  39#include <linux/param.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/interrupt.h>
  43#include <linux/timex.h>
  44#include <linux/kernel_stat.h>
  45#include <linux/time.h>
  46#include <linux/clockchips.h>
  47#include <linux/init.h>
  48#include <linux/profile.h>
  49#include <linux/cpu.h>
  50#include <linux/security.h>
  51#include <linux/percpu.h>
  52#include <linux/rtc.h>
  53#include <linux/jiffies.h>
  54#include <linux/posix-timers.h>
  55#include <linux/irq.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58#include <linux/clk-provider.h>
  59#include <linux/suspend.h>
  60#include <linux/rtc.h>
  61#include <linux/sched/cputime.h>
  62#include <linux/processor.h>
  63#include <asm/trace.h>
  64
  65#include <asm/io.h>
  66#include <asm/nvram.h>
  67#include <asm/cache.h>
  68#include <asm/machdep.h>
  69#include <linux/uaccess.h>
  70#include <asm/time.h>
  71#include <asm/prom.h>
  72#include <asm/irq.h>
  73#include <asm/div64.h>
  74#include <asm/smp.h>
  75#include <asm/vdso_datapage.h>
  76#include <asm/firmware.h>
  77#include <asm/asm-prototypes.h>
  78
  79/* powerpc clocksource/clockevent code */
  80
  81#include <linux/clockchips.h>
  82#include <linux/timekeeper_internal.h>
  83
  84static u64 rtc_read(struct clocksource *);
  85static struct clocksource clocksource_rtc = {
  86        .name         = "rtc",
  87        .rating       = 400,
  88        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  89        .mask         = CLOCKSOURCE_MASK(64),
  90        .read         = rtc_read,
  91};
  92
  93static u64 timebase_read(struct clocksource *);
  94static struct clocksource clocksource_timebase = {
  95        .name         = "timebase",
  96        .rating       = 400,
  97        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  98        .mask         = CLOCKSOURCE_MASK(64),
  99        .read         = timebase_read,
 100};
 101
 102#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
 103u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
 104
 105static int decrementer_set_next_event(unsigned long evt,
 106                                      struct clock_event_device *dev);
 107static int decrementer_shutdown(struct clock_event_device *evt);
 108
 109struct clock_event_device decrementer_clockevent = {
 110        .name                   = "decrementer",
 111        .rating                 = 200,
 112        .irq                    = 0,
 113        .set_next_event         = decrementer_set_next_event,
 114        .set_state_shutdown     = decrementer_shutdown,
 115        .tick_resume            = decrementer_shutdown,
 116        .features               = CLOCK_EVT_FEAT_ONESHOT |
 117                                  CLOCK_EVT_FEAT_C3STOP,
 118};
 119EXPORT_SYMBOL(decrementer_clockevent);
 120
 121DEFINE_PER_CPU(u64, decrementers_next_tb);
 122static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 123
 124#define XSEC_PER_SEC (1024*1024)
 125
 126#ifdef CONFIG_PPC64
 127#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 128#else
 129/* compute ((xsec << 12) * max) >> 32 */
 130#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 131#endif
 132
 133unsigned long tb_ticks_per_jiffy;
 134unsigned long tb_ticks_per_usec = 100; /* sane default */
 135EXPORT_SYMBOL(tb_ticks_per_usec);
 136unsigned long tb_ticks_per_sec;
 137EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 138
 139DEFINE_SPINLOCK(rtc_lock);
 140EXPORT_SYMBOL_GPL(rtc_lock);
 141
 142static u64 tb_to_ns_scale __read_mostly;
 143static unsigned tb_to_ns_shift __read_mostly;
 144static u64 boot_tb __read_mostly;
 145
 146extern struct timezone sys_tz;
 147static long timezone_offset;
 148
 149unsigned long ppc_proc_freq;
 150EXPORT_SYMBOL_GPL(ppc_proc_freq);
 151unsigned long ppc_tb_freq;
 152EXPORT_SYMBOL_GPL(ppc_tb_freq);
 153
 154#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 155/*
 156 * Factor for converting from cputime_t (timebase ticks) to
 157 * microseconds. This is stored as 0.64 fixed-point binary fraction.
 158 */
 159u64 __cputime_usec_factor;
 160EXPORT_SYMBOL(__cputime_usec_factor);
 161
 162#ifdef CONFIG_PPC_SPLPAR
 163void (*dtl_consumer)(struct dtl_entry *, u64);
 164#endif
 165
 166#ifdef CONFIG_PPC64
 167#define get_accounting(tsk)     (&get_paca()->accounting)
 168#else
 169#define get_accounting(tsk)     (&task_thread_info(tsk)->accounting)
 170#endif
 171
 172static void calc_cputime_factors(void)
 173{
 174        struct div_result res;
 175
 176        div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 177        __cputime_usec_factor = res.result_low;
 178}
 179
 180/*
 181 * Read the SPURR on systems that have it, otherwise the PURR,
 182 * or if that doesn't exist return the timebase value passed in.
 183 */
 184static unsigned long read_spurr(unsigned long tb)
 185{
 186        if (cpu_has_feature(CPU_FTR_SPURR))
 187                return mfspr(SPRN_SPURR);
 188        if (cpu_has_feature(CPU_FTR_PURR))
 189                return mfspr(SPRN_PURR);
 190        return tb;
 191}
 192
 193#ifdef CONFIG_PPC_SPLPAR
 194
 195/*
 196 * Scan the dispatch trace log and count up the stolen time.
 197 * Should be called with interrupts disabled.
 198 */
 199static u64 scan_dispatch_log(u64 stop_tb)
 200{
 201        u64 i = local_paca->dtl_ridx;
 202        struct dtl_entry *dtl = local_paca->dtl_curr;
 203        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 204        struct lppaca *vpa = local_paca->lppaca_ptr;
 205        u64 tb_delta;
 206        u64 stolen = 0;
 207        u64 dtb;
 208
 209        if (!dtl)
 210                return 0;
 211
 212        if (i == be64_to_cpu(vpa->dtl_idx))
 213                return 0;
 214        while (i < be64_to_cpu(vpa->dtl_idx)) {
 215                dtb = be64_to_cpu(dtl->timebase);
 216                tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 217                        be32_to_cpu(dtl->ready_to_enqueue_time);
 218                barrier();
 219                if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 220                        /* buffer has overflowed */
 221                        i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 222                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 223                        continue;
 224                }
 225                if (dtb > stop_tb)
 226                        break;
 227                if (dtl_consumer)
 228                        dtl_consumer(dtl, i);
 229                stolen += tb_delta;
 230                ++i;
 231                ++dtl;
 232                if (dtl == dtl_end)
 233                        dtl = local_paca->dispatch_log;
 234        }
 235        local_paca->dtl_ridx = i;
 236        local_paca->dtl_curr = dtl;
 237        return stolen;
 238}
 239
 240/*
 241 * Accumulate stolen time by scanning the dispatch trace log.
 242 * Called on entry from user mode.
 243 */
 244void accumulate_stolen_time(void)
 245{
 246        u64 sst, ust;
 247        unsigned long save_irq_soft_mask = irq_soft_mask_return();
 248        struct cpu_accounting_data *acct = &local_paca->accounting;
 249
 250        /* We are called early in the exception entry, before
 251         * soft/hard_enabled are sync'ed to the expected state
 252         * for the exception. We are hard disabled but the PACA
 253         * needs to reflect that so various debug stuff doesn't
 254         * complain
 255         */
 256        irq_soft_mask_set(IRQS_DISABLED);
 257
 258        sst = scan_dispatch_log(acct->starttime_user);
 259        ust = scan_dispatch_log(acct->starttime);
 260        acct->stime -= sst;
 261        acct->utime -= ust;
 262        acct->steal_time += ust + sst;
 263
 264        irq_soft_mask_set(save_irq_soft_mask);
 265}
 266
 267static inline u64 calculate_stolen_time(u64 stop_tb)
 268{
 269        if (!firmware_has_feature(FW_FEATURE_SPLPAR))
 270                return 0;
 271
 272        if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
 273                return scan_dispatch_log(stop_tb);
 274
 275        return 0;
 276}
 277
 278#else /* CONFIG_PPC_SPLPAR */
 279static inline u64 calculate_stolen_time(u64 stop_tb)
 280{
 281        return 0;
 282}
 283
 284#endif /* CONFIG_PPC_SPLPAR */
 285
 286/*
 287 * Account time for a transition between system, hard irq
 288 * or soft irq state.
 289 */
 290static unsigned long vtime_delta(struct task_struct *tsk,
 291                                 unsigned long *stime_scaled,
 292                                 unsigned long *steal_time)
 293{
 294        unsigned long now, nowscaled, deltascaled;
 295        unsigned long stime;
 296        unsigned long utime, utime_scaled;
 297        struct cpu_accounting_data *acct = get_accounting(tsk);
 298
 299        WARN_ON_ONCE(!irqs_disabled());
 300
 301        now = mftb();
 302        nowscaled = read_spurr(now);
 303        stime = now - acct->starttime;
 304        acct->starttime = now;
 305        deltascaled = nowscaled - acct->startspurr;
 306        acct->startspurr = nowscaled;
 307
 308        *steal_time = calculate_stolen_time(now);
 309
 310        utime = acct->utime - acct->utime_sspurr;
 311        acct->utime_sspurr = acct->utime;
 312
 313        /*
 314         * Because we don't read the SPURR on every kernel entry/exit,
 315         * deltascaled includes both user and system SPURR ticks.
 316         * Apportion these ticks to system SPURR ticks and user
 317         * SPURR ticks in the same ratio as the system time (delta)
 318         * and user time (udelta) values obtained from the timebase
 319         * over the same interval.  The system ticks get accounted here;
 320         * the user ticks get saved up in paca->user_time_scaled to be
 321         * used by account_process_tick.
 322         */
 323        *stime_scaled = stime;
 324        utime_scaled = utime;
 325        if (deltascaled != stime + utime) {
 326                if (utime) {
 327                        *stime_scaled = deltascaled * stime / (stime + utime);
 328                        utime_scaled = deltascaled - *stime_scaled;
 329                } else {
 330                        *stime_scaled = deltascaled;
 331                }
 332        }
 333        acct->utime_scaled += utime_scaled;
 334
 335        return stime;
 336}
 337
 338void vtime_account_system(struct task_struct *tsk)
 339{
 340        unsigned long stime, stime_scaled, steal_time;
 341        struct cpu_accounting_data *acct = get_accounting(tsk);
 342
 343        stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 344
 345        stime -= min(stime, steal_time);
 346        acct->steal_time += steal_time;
 347
 348        if ((tsk->flags & PF_VCPU) && !irq_count()) {
 349                acct->gtime += stime;
 350                acct->utime_scaled += stime_scaled;
 351        } else {
 352                if (hardirq_count())
 353                        acct->hardirq_time += stime;
 354                else if (in_serving_softirq())
 355                        acct->softirq_time += stime;
 356                else
 357                        acct->stime += stime;
 358
 359                acct->stime_scaled += stime_scaled;
 360        }
 361}
 362EXPORT_SYMBOL_GPL(vtime_account_system);
 363
 364void vtime_account_idle(struct task_struct *tsk)
 365{
 366        unsigned long stime, stime_scaled, steal_time;
 367        struct cpu_accounting_data *acct = get_accounting(tsk);
 368
 369        stime = vtime_delta(tsk, &stime_scaled, &steal_time);
 370        acct->idle_time += stime + steal_time;
 371}
 372
 373/*
 374 * Account the whole cputime accumulated in the paca
 375 * Must be called with interrupts disabled.
 376 * Assumes that vtime_account_system/idle() has been called
 377 * recently (i.e. since the last entry from usermode) so that
 378 * get_paca()->user_time_scaled is up to date.
 379 */
 380void vtime_flush(struct task_struct *tsk)
 381{
 382        struct cpu_accounting_data *acct = get_accounting(tsk);
 383
 384        if (acct->utime)
 385                account_user_time(tsk, cputime_to_nsecs(acct->utime));
 386
 387        if (acct->utime_scaled)
 388                tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
 389
 390        if (acct->gtime)
 391                account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
 392
 393        if (acct->steal_time)
 394                account_steal_time(cputime_to_nsecs(acct->steal_time));
 395
 396        if (acct->idle_time)
 397                account_idle_time(cputime_to_nsecs(acct->idle_time));
 398
 399        if (acct->stime)
 400                account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
 401                                          CPUTIME_SYSTEM);
 402        if (acct->stime_scaled)
 403                tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
 404
 405        if (acct->hardirq_time)
 406                account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
 407                                          CPUTIME_IRQ);
 408        if (acct->softirq_time)
 409                account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
 410                                          CPUTIME_SOFTIRQ);
 411
 412        acct->utime = 0;
 413        acct->utime_scaled = 0;
 414        acct->utime_sspurr = 0;
 415        acct->gtime = 0;
 416        acct->steal_time = 0;
 417        acct->idle_time = 0;
 418        acct->stime = 0;
 419        acct->stime_scaled = 0;
 420        acct->hardirq_time = 0;
 421        acct->softirq_time = 0;
 422}
 423
 424#ifdef CONFIG_PPC32
 425/*
 426 * Called from the context switch with interrupts disabled, to charge all
 427 * accumulated times to the current process, and to prepare accounting on
 428 * the next process.
 429 */
 430void arch_vtime_task_switch(struct task_struct *prev)
 431{
 432        struct cpu_accounting_data *acct = get_accounting(current);
 433
 434        acct->starttime = get_accounting(prev)->starttime;
 435        acct->startspurr = get_accounting(prev)->startspurr;
 436}
 437#endif /* CONFIG_PPC32 */
 438
 439#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 440#define calc_cputime_factors()
 441#endif
 442
 443void __delay(unsigned long loops)
 444{
 445        unsigned long start;
 446        int diff;
 447
 448        spin_begin();
 449        if (__USE_RTC()) {
 450                start = get_rtcl();
 451                do {
 452                        /* the RTCL register wraps at 1000000000 */
 453                        diff = get_rtcl() - start;
 454                        if (diff < 0)
 455                                diff += 1000000000;
 456                        spin_cpu_relax();
 457                } while (diff < loops);
 458        } else {
 459                start = get_tbl();
 460                while (get_tbl() - start < loops)
 461                        spin_cpu_relax();
 462        }
 463        spin_end();
 464}
 465EXPORT_SYMBOL(__delay);
 466
 467void udelay(unsigned long usecs)
 468{
 469        __delay(tb_ticks_per_usec * usecs);
 470}
 471EXPORT_SYMBOL(udelay);
 472
 473#ifdef CONFIG_SMP
 474unsigned long profile_pc(struct pt_regs *regs)
 475{
 476        unsigned long pc = instruction_pointer(regs);
 477
 478        if (in_lock_functions(pc))
 479                return regs->link;
 480
 481        return pc;
 482}
 483EXPORT_SYMBOL(profile_pc);
 484#endif
 485
 486#ifdef CONFIG_IRQ_WORK
 487
 488/*
 489 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 490 */
 491#ifdef CONFIG_PPC64
 492static inline unsigned long test_irq_work_pending(void)
 493{
 494        unsigned long x;
 495
 496        asm volatile("lbz %0,%1(13)"
 497                : "=r" (x)
 498                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 499        return x;
 500}
 501
 502static inline void set_irq_work_pending_flag(void)
 503{
 504        asm volatile("stb %0,%1(13)" : :
 505                "r" (1),
 506                "i" (offsetof(struct paca_struct, irq_work_pending)));
 507}
 508
 509static inline void clear_irq_work_pending(void)
 510{
 511        asm volatile("stb %0,%1(13)" : :
 512                "r" (0),
 513                "i" (offsetof(struct paca_struct, irq_work_pending)));
 514}
 515
 516#else /* 32-bit */
 517
 518DEFINE_PER_CPU(u8, irq_work_pending);
 519
 520#define set_irq_work_pending_flag()     __this_cpu_write(irq_work_pending, 1)
 521#define test_irq_work_pending()         __this_cpu_read(irq_work_pending)
 522#define clear_irq_work_pending()        __this_cpu_write(irq_work_pending, 0)
 523
 524#endif /* 32 vs 64 bit */
 525
 526void arch_irq_work_raise(void)
 527{
 528        preempt_disable();
 529        set_irq_work_pending_flag();
 530        set_dec(1);
 531        preempt_enable();
 532}
 533
 534#else  /* CONFIG_IRQ_WORK */
 535
 536#define test_irq_work_pending() 0
 537#define clear_irq_work_pending()
 538
 539#endif /* CONFIG_IRQ_WORK */
 540
 541static void __timer_interrupt(void)
 542{
 543        struct pt_regs *regs = get_irq_regs();
 544        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 545        struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 546        u64 now;
 547
 548        trace_timer_interrupt_entry(regs);
 549
 550        if (test_irq_work_pending()) {
 551                clear_irq_work_pending();
 552                irq_work_run();
 553        }
 554
 555        now = get_tb_or_rtc();
 556        if (now >= *next_tb) {
 557                *next_tb = ~(u64)0;
 558                if (evt->event_handler)
 559                        evt->event_handler(evt);
 560                __this_cpu_inc(irq_stat.timer_irqs_event);
 561        } else {
 562                now = *next_tb - now;
 563                if (now <= decrementer_max)
 564                        set_dec(now);
 565                /* We may have raced with new irq work */
 566                if (test_irq_work_pending())
 567                        set_dec(1);
 568                __this_cpu_inc(irq_stat.timer_irqs_others);
 569        }
 570
 571#ifdef CONFIG_PPC64
 572        /* collect purr register values often, for accurate calculations */
 573        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 574                struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 575                cu->current_tb = mfspr(SPRN_PURR);
 576        }
 577#endif
 578
 579        trace_timer_interrupt_exit(regs);
 580}
 581
 582/*
 583 * timer_interrupt - gets called when the decrementer overflows,
 584 * with interrupts disabled.
 585 */
 586void timer_interrupt(struct pt_regs * regs)
 587{
 588        struct pt_regs *old_regs;
 589        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 590
 591        /* Ensure a positive value is written to the decrementer, or else
 592         * some CPUs will continue to take decrementer exceptions.
 593         */
 594        set_dec(decrementer_max);
 595
 596        /* Some implementations of hotplug will get timer interrupts while
 597         * offline, just ignore these and we also need to set
 598         * decrementers_next_tb as MAX to make sure __check_irq_replay
 599         * don't replay timer interrupt when return, otherwise we'll trap
 600         * here infinitely :(
 601         */
 602        if (!cpu_online(smp_processor_id())) {
 603                *next_tb = ~(u64)0;
 604                return;
 605        }
 606
 607        /* Conditionally hard-enable interrupts now that the DEC has been
 608         * bumped to its maximum value
 609         */
 610        may_hard_irq_enable();
 611
 612
 613#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 614        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 615                do_IRQ(regs);
 616#endif
 617
 618        old_regs = set_irq_regs(regs);
 619        irq_enter();
 620
 621        __timer_interrupt();
 622        irq_exit();
 623        set_irq_regs(old_regs);
 624}
 625EXPORT_SYMBOL(timer_interrupt);
 626
 627/*
 628 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 629 * left pending on exit from a KVM guest.  We don't need to do anything
 630 * to clear them, as they are edge-triggered.
 631 */
 632void hdec_interrupt(struct pt_regs *regs)
 633{
 634}
 635
 636#ifdef CONFIG_SUSPEND
 637static void generic_suspend_disable_irqs(void)
 638{
 639        /* Disable the decrementer, so that it doesn't interfere
 640         * with suspending.
 641         */
 642
 643        set_dec(decrementer_max);
 644        local_irq_disable();
 645        set_dec(decrementer_max);
 646}
 647
 648static void generic_suspend_enable_irqs(void)
 649{
 650        local_irq_enable();
 651}
 652
 653/* Overrides the weak version in kernel/power/main.c */
 654void arch_suspend_disable_irqs(void)
 655{
 656        if (ppc_md.suspend_disable_irqs)
 657                ppc_md.suspend_disable_irqs();
 658        generic_suspend_disable_irqs();
 659}
 660
 661/* Overrides the weak version in kernel/power/main.c */
 662void arch_suspend_enable_irqs(void)
 663{
 664        generic_suspend_enable_irqs();
 665        if (ppc_md.suspend_enable_irqs)
 666                ppc_md.suspend_enable_irqs();
 667}
 668#endif
 669
 670unsigned long long tb_to_ns(unsigned long long ticks)
 671{
 672        return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 673}
 674EXPORT_SYMBOL_GPL(tb_to_ns);
 675
 676/*
 677 * Scheduler clock - returns current time in nanosec units.
 678 *
 679 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 680 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 681 * are 64-bit unsigned numbers.
 682 */
 683notrace unsigned long long sched_clock(void)
 684{
 685        if (__USE_RTC())
 686                return get_rtc();
 687        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 688}
 689
 690
 691#ifdef CONFIG_PPC_PSERIES
 692
 693/*
 694 * Running clock - attempts to give a view of time passing for a virtualised
 695 * kernels.
 696 * Uses the VTB register if available otherwise a next best guess.
 697 */
 698unsigned long long running_clock(void)
 699{
 700        /*
 701         * Don't read the VTB as a host since KVM does not switch in host
 702         * timebase into the VTB when it takes a guest off the CPU, reading the
 703         * VTB would result in reading 'last switched out' guest VTB.
 704         *
 705         * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 706         * would be unsafe to rely only on the #ifdef above.
 707         */
 708        if (firmware_has_feature(FW_FEATURE_LPAR) &&
 709            cpu_has_feature(CPU_FTR_ARCH_207S))
 710                return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 711
 712        /*
 713         * This is a next best approximation without a VTB.
 714         * On a host which is running bare metal there should never be any stolen
 715         * time and on a host which doesn't do any virtualisation TB *should* equal
 716         * VTB so it makes no difference anyway.
 717         */
 718        return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
 719}
 720#endif
 721
 722static int __init get_freq(char *name, int cells, unsigned long *val)
 723{
 724        struct device_node *cpu;
 725        const __be32 *fp;
 726        int found = 0;
 727
 728        /* The cpu node should have timebase and clock frequency properties */
 729        cpu = of_find_node_by_type(NULL, "cpu");
 730
 731        if (cpu) {
 732                fp = of_get_property(cpu, name, NULL);
 733                if (fp) {
 734                        found = 1;
 735                        *val = of_read_ulong(fp, cells);
 736                }
 737
 738                of_node_put(cpu);
 739        }
 740
 741        return found;
 742}
 743
 744static void start_cpu_decrementer(void)
 745{
 746#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 747        unsigned int tcr;
 748
 749        /* Clear any pending timer interrupts */
 750        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 751
 752        tcr = mfspr(SPRN_TCR);
 753        /*
 754         * The watchdog may have already been enabled by u-boot. So leave
 755         * TRC[WP] (Watchdog Period) alone.
 756         */
 757        tcr &= TCR_WP_MASK;     /* Clear all bits except for TCR[WP] */
 758        tcr |= TCR_DIE;         /* Enable decrementer */
 759        mtspr(SPRN_TCR, tcr);
 760#endif
 761}
 762
 763void __init generic_calibrate_decr(void)
 764{
 765        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 766
 767        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 768            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 769
 770                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 771                                "(not found)\n");
 772        }
 773
 774        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 775
 776        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 777            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 778
 779                printk(KERN_ERR "WARNING: Estimating processor frequency "
 780                                "(not found)\n");
 781        }
 782}
 783
 784int update_persistent_clock(struct timespec now)
 785{
 786        struct rtc_time tm;
 787
 788        if (!ppc_md.set_rtc_time)
 789                return -ENODEV;
 790
 791        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 792        tm.tm_year -= 1900;
 793        tm.tm_mon -= 1;
 794
 795        return ppc_md.set_rtc_time(&tm);
 796}
 797
 798static void __read_persistent_clock(struct timespec *ts)
 799{
 800        struct rtc_time tm;
 801        static int first = 1;
 802
 803        ts->tv_nsec = 0;
 804        /* XXX this is a litle fragile but will work okay in the short term */
 805        if (first) {
 806                first = 0;
 807                if (ppc_md.time_init)
 808                        timezone_offset = ppc_md.time_init();
 809
 810                /* get_boot_time() isn't guaranteed to be safe to call late */
 811                if (ppc_md.get_boot_time) {
 812                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 813                        return;
 814                }
 815        }
 816        if (!ppc_md.get_rtc_time) {
 817                ts->tv_sec = 0;
 818                return;
 819        }
 820        ppc_md.get_rtc_time(&tm);
 821
 822        ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 823                            tm.tm_hour, tm.tm_min, tm.tm_sec);
 824}
 825
 826void read_persistent_clock(struct timespec *ts)
 827{
 828        __read_persistent_clock(ts);
 829
 830        /* Sanitize it in case real time clock is set below EPOCH */
 831        if (ts->tv_sec < 0) {
 832                ts->tv_sec = 0;
 833                ts->tv_nsec = 0;
 834        }
 835                
 836}
 837
 838/* clocksource code */
 839static notrace u64 rtc_read(struct clocksource *cs)
 840{
 841        return (u64)get_rtc();
 842}
 843
 844static notrace u64 timebase_read(struct clocksource *cs)
 845{
 846        return (u64)get_tb();
 847}
 848
 849
 850void update_vsyscall(struct timekeeper *tk)
 851{
 852        struct timespec xt;
 853        struct clocksource *clock = tk->tkr_mono.clock;
 854        u32 mult = tk->tkr_mono.mult;
 855        u32 shift = tk->tkr_mono.shift;
 856        u64 cycle_last = tk->tkr_mono.cycle_last;
 857        u64 new_tb_to_xs, new_stamp_xsec;
 858        u64 frac_sec;
 859
 860        if (clock != &clocksource_timebase)
 861                return;
 862
 863        xt.tv_sec = tk->xtime_sec;
 864        xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 865
 866        /* Make userspace gettimeofday spin until we're done. */
 867        ++vdso_data->tb_update_count;
 868        smp_mb();
 869
 870        /*
 871         * This computes ((2^20 / 1e9) * mult) >> shift as a
 872         * 0.64 fixed-point fraction.
 873         * The computation in the else clause below won't overflow
 874         * (as long as the timebase frequency is >= 1.049 MHz)
 875         * but loses precision because we lose the low bits of the constant
 876         * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
 877         * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
 878         * over a second.  (Shift values are usually 22, 23 or 24.)
 879         * For high frequency clocks such as the 512MHz timebase clock
 880         * on POWER[6789], the mult value is small (e.g. 32768000)
 881         * and so we can shift the constant by 16 initially
 882         * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
 883         * remaining shifts after the multiplication, which gives a
 884         * more accurate result (e.g. with mult = 32768000, shift = 24,
 885         * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
 886         */
 887        if (mult <= 62500000 && clock->shift >= 16)
 888                new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
 889        else
 890                new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 891
 892        /*
 893         * Compute the fractional second in units of 2^-32 seconds.
 894         * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
 895         * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
 896         * it in units of 2^-32 seconds.
 897         * We assume shift <= 32 because clocks_calc_mult_shift()
 898         * generates shift values in the range 0 - 32.
 899         */
 900        frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
 901        do_div(frac_sec, NSEC_PER_SEC);
 902
 903        /*
 904         * Work out new stamp_xsec value for any legacy users of systemcfg.
 905         * stamp_xsec is in units of 2^-20 seconds.
 906         */
 907        new_stamp_xsec = frac_sec >> 12;
 908        new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
 909
 910        /*
 911         * tb_update_count is used to allow the userspace gettimeofday code
 912         * to assure itself that it sees a consistent view of the tb_to_xs and
 913         * stamp_xsec variables.  It reads the tb_update_count, then reads
 914         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 915         * the two values of tb_update_count match and are even then the
 916         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 917         * loops back and reads them again until this criteria is met.
 918         */
 919        vdso_data->tb_orig_stamp = cycle_last;
 920        vdso_data->stamp_xsec = new_stamp_xsec;
 921        vdso_data->tb_to_xs = new_tb_to_xs;
 922        vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
 923        vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
 924        vdso_data->stamp_xtime = xt;
 925        vdso_data->stamp_sec_fraction = frac_sec;
 926        smp_wmb();
 927        ++(vdso_data->tb_update_count);
 928}
 929
 930void update_vsyscall_tz(void)
 931{
 932        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 933        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 934}
 935
 936static void __init clocksource_init(void)
 937{
 938        struct clocksource *clock;
 939
 940        if (__USE_RTC())
 941                clock = &clocksource_rtc;
 942        else
 943                clock = &clocksource_timebase;
 944
 945        if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 946                printk(KERN_ERR "clocksource: %s is already registered\n",
 947                       clock->name);
 948                return;
 949        }
 950
 951        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 952               clock->name, clock->mult, clock->shift);
 953}
 954
 955static int decrementer_set_next_event(unsigned long evt,
 956                                      struct clock_event_device *dev)
 957{
 958        __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 959        set_dec(evt);
 960
 961        /* We may have raced with new irq work */
 962        if (test_irq_work_pending())
 963                set_dec(1);
 964
 965        return 0;
 966}
 967
 968static int decrementer_shutdown(struct clock_event_device *dev)
 969{
 970        decrementer_set_next_event(decrementer_max, dev);
 971        return 0;
 972}
 973
 974/* Interrupt handler for the timer broadcast IPI */
 975void tick_broadcast_ipi_handler(void)
 976{
 977        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 978
 979        *next_tb = get_tb_or_rtc();
 980        __timer_interrupt();
 981}
 982
 983static void register_decrementer_clockevent(int cpu)
 984{
 985        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 986
 987        *dec = decrementer_clockevent;
 988        dec->cpumask = cpumask_of(cpu);
 989
 990        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 991                    dec->name, dec->mult, dec->shift, cpu);
 992
 993        clockevents_register_device(dec);
 994}
 995
 996static void enable_large_decrementer(void)
 997{
 998        if (!cpu_has_feature(CPU_FTR_ARCH_300))
 999                return;
1000
1001        if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
1002                return;
1003
1004        /*
1005         * If we're running as the hypervisor we need to enable the LD manually
1006         * otherwise firmware should have done it for us.
1007         */
1008        if (cpu_has_feature(CPU_FTR_HVMODE))
1009                mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
1010}
1011
1012static void __init set_decrementer_max(void)
1013{
1014        struct device_node *cpu;
1015        u32 bits = 32;
1016
1017        /* Prior to ISAv3 the decrementer is always 32 bit */
1018        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1019                return;
1020
1021        cpu = of_find_node_by_type(NULL, "cpu");
1022
1023        if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1024                if (bits > 64 || bits < 32) {
1025                        pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1026                        bits = 32;
1027                }
1028
1029                /* calculate the signed maximum given this many bits */
1030                decrementer_max = (1ul << (bits - 1)) - 1;
1031        }
1032
1033        of_node_put(cpu);
1034
1035        pr_info("time_init: %u bit decrementer (max: %llx)\n",
1036                bits, decrementer_max);
1037}
1038
1039static void __init init_decrementer_clockevent(void)
1040{
1041        int cpu = smp_processor_id();
1042
1043        clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
1044
1045        decrementer_clockevent.max_delta_ns =
1046                clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1047        decrementer_clockevent.max_delta_ticks = decrementer_max;
1048        decrementer_clockevent.min_delta_ns =
1049                clockevent_delta2ns(2, &decrementer_clockevent);
1050        decrementer_clockevent.min_delta_ticks = 2;
1051
1052        register_decrementer_clockevent(cpu);
1053}
1054
1055void secondary_cpu_time_init(void)
1056{
1057        /* Enable and test the large decrementer for this cpu */
1058        enable_large_decrementer();
1059
1060        /* Start the decrementer on CPUs that have manual control
1061         * such as BookE
1062         */
1063        start_cpu_decrementer();
1064
1065        /* FIME: Should make unrelatred change to move snapshot_timebase
1066         * call here ! */
1067        register_decrementer_clockevent(smp_processor_id());
1068}
1069
1070/* This function is only called on the boot processor */
1071void __init time_init(void)
1072{
1073        struct div_result res;
1074        u64 scale;
1075        unsigned shift;
1076
1077        if (__USE_RTC()) {
1078                /* 601 processor: dec counts down by 128 every 128ns */
1079                ppc_tb_freq = 1000000000;
1080        } else {
1081                /* Normal PowerPC with timebase register */
1082                ppc_md.calibrate_decr();
1083                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1084                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1085                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1086                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1087        }
1088
1089        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1090        tb_ticks_per_sec = ppc_tb_freq;
1091        tb_ticks_per_usec = ppc_tb_freq / 1000000;
1092        calc_cputime_factors();
1093
1094        /*
1095         * Compute scale factor for sched_clock.
1096         * The calibrate_decr() function has set tb_ticks_per_sec,
1097         * which is the timebase frequency.
1098         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1099         * the 128-bit result as a 64.64 fixed-point number.
1100         * We then shift that number right until it is less than 1.0,
1101         * giving us the scale factor and shift count to use in
1102         * sched_clock().
1103         */
1104        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1105        scale = res.result_low;
1106        for (shift = 0; res.result_high != 0; ++shift) {
1107                scale = (scale >> 1) | (res.result_high << 63);
1108                res.result_high >>= 1;
1109        }
1110        tb_to_ns_scale = scale;
1111        tb_to_ns_shift = shift;
1112        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1113        boot_tb = get_tb_or_rtc();
1114
1115        /* If platform provided a timezone (pmac), we correct the time */
1116        if (timezone_offset) {
1117                sys_tz.tz_minuteswest = -timezone_offset / 60;
1118                sys_tz.tz_dsttime = 0;
1119        }
1120
1121        vdso_data->tb_update_count = 0;
1122        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1123
1124        /* initialise and enable the large decrementer (if we have one) */
1125        set_decrementer_max();
1126        enable_large_decrementer();
1127
1128        /* Start the decrementer on CPUs that have manual control
1129         * such as BookE
1130         */
1131        start_cpu_decrementer();
1132
1133        /* Register the clocksource */
1134        clocksource_init();
1135
1136        init_decrementer_clockevent();
1137        tick_setup_hrtimer_broadcast();
1138
1139#ifdef CONFIG_COMMON_CLK
1140        of_clk_init(NULL);
1141#endif
1142}
1143
1144
1145#define FEBRUARY        2
1146#define STARTOFTIME     1970
1147#define SECDAY          86400L
1148#define SECYR           (SECDAY * 365)
1149#define leapyear(year)          ((year) % 4 == 0 && \
1150                                 ((year) % 100 != 0 || (year) % 400 == 0))
1151#define days_in_year(a)         (leapyear(a) ? 366 : 365)
1152#define days_in_month(a)        (month_days[(a) - 1])
1153
1154static int month_days[12] = {
1155        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1156};
1157
1158void to_tm(int tim, struct rtc_time * tm)
1159{
1160        register int    i;
1161        register long   hms, day;
1162
1163        day = tim / SECDAY;
1164        hms = tim % SECDAY;
1165
1166        /* Hours, minutes, seconds are easy */
1167        tm->tm_hour = hms / 3600;
1168        tm->tm_min = (hms % 3600) / 60;
1169        tm->tm_sec = (hms % 3600) % 60;
1170
1171        /* Number of years in days */
1172        for (i = STARTOFTIME; day >= days_in_year(i); i++)
1173                day -= days_in_year(i);
1174        tm->tm_year = i;
1175
1176        /* Number of months in days left */
1177        if (leapyear(tm->tm_year))
1178                days_in_month(FEBRUARY) = 29;
1179        for (i = 1; day >= days_in_month(i); i++)
1180                day -= days_in_month(i);
1181        days_in_month(FEBRUARY) = 28;
1182        tm->tm_mon = i;
1183
1184        /* Days are what is left over (+1) from all that. */
1185        tm->tm_mday = day + 1;
1186
1187        /*
1188         * No-one uses the day of the week.
1189         */
1190        tm->tm_wday = -1;
1191}
1192EXPORT_SYMBOL(to_tm);
1193
1194/*
1195 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1196 * result.
1197 */
1198void div128_by_32(u64 dividend_high, u64 dividend_low,
1199                  unsigned divisor, struct div_result *dr)
1200{
1201        unsigned long a, b, c, d;
1202        unsigned long w, x, y, z;
1203        u64 ra, rb, rc;
1204
1205        a = dividend_high >> 32;
1206        b = dividend_high & 0xffffffff;
1207        c = dividend_low >> 32;
1208        d = dividend_low & 0xffffffff;
1209
1210        w = a / divisor;
1211        ra = ((u64)(a - (w * divisor)) << 32) + b;
1212
1213        rb = ((u64) do_div(ra, divisor) << 32) + c;
1214        x = ra;
1215
1216        rc = ((u64) do_div(rb, divisor) << 32) + d;
1217        y = rb;
1218
1219        do_div(rc, divisor);
1220        z = rc;
1221
1222        dr->result_high = ((u64)w << 32) + x;
1223        dr->result_low  = ((u64)y << 32) + z;
1224
1225}
1226
1227/* We don't need to calibrate delay, we use the CPU timebase for that */
1228void calibrate_delay(void)
1229{
1230        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1231         * as the number of __delay(1) in a jiffy, so make it so
1232         */
1233        loops_per_jiffy = tb_ticks_per_jiffy;
1234}
1235
1236#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1237static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1238{
1239        ppc_md.get_rtc_time(tm);
1240        return 0;
1241}
1242
1243static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1244{
1245        if (!ppc_md.set_rtc_time)
1246                return -EOPNOTSUPP;
1247
1248        if (ppc_md.set_rtc_time(tm) < 0)
1249                return -EOPNOTSUPP;
1250
1251        return 0;
1252}
1253
1254static const struct rtc_class_ops rtc_generic_ops = {
1255        .read_time = rtc_generic_get_time,
1256        .set_time = rtc_generic_set_time,
1257};
1258
1259static int __init rtc_init(void)
1260{
1261        struct platform_device *pdev;
1262
1263        if (!ppc_md.get_rtc_time)
1264                return -ENODEV;
1265
1266        pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1267                                             &rtc_generic_ops,
1268                                             sizeof(rtc_generic_ops));
1269
1270        return PTR_ERR_OR_ZERO(pdev);
1271}
1272
1273device_initcall(rtc_init);
1274#endif
1275