linux/arch/powerpc/kernel/watchdog.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Watchdog support on powerpc systems.
   4 *
   5 * Copyright 2017, IBM Corporation.
   6 *
   7 * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
   8 */
   9
  10#define pr_fmt(fmt) "watchdog: " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/param.h>
  14#include <linux/init.h>
  15#include <linux/percpu.h>
  16#include <linux/cpu.h>
  17#include <linux/nmi.h>
  18#include <linux/module.h>
  19#include <linux/export.h>
  20#include <linux/kprobes.h>
  21#include <linux/hardirq.h>
  22#include <linux/reboot.h>
  23#include <linux/slab.h>
  24#include <linux/kdebug.h>
  25#include <linux/sched/debug.h>
  26#include <linux/delay.h>
  27#include <linux/smp.h>
  28
  29#include <asm/paca.h>
  30
  31/*
  32 * The powerpc watchdog ensures that each CPU is able to service timers.
  33 * The watchdog sets up a simple timer on each CPU to run once per timer
  34 * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
  35 * the heartbeat.
  36 *
  37 * Then there are two systems to check that the heartbeat is still running.
  38 * The local soft-NMI, and the SMP checker.
  39 *
  40 * The soft-NMI checker can detect lockups on the local CPU. When interrupts
  41 * are disabled with local_irq_disable(), platforms that use soft-masking
  42 * can leave hardware interrupts enabled and handle them with a masked
  43 * interrupt handler. The masked handler can send the timer interrupt to the
  44 * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
  45 * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
  46 *
  47 * The soft-NMI checker will compare the heartbeat timestamp for this CPU
  48 * with the current time, and take action if the difference exceeds the
  49 * watchdog threshold.
  50 *
  51 * The limitation of the soft-NMI watchdog is that it does not work when
  52 * interrupts are hard disabled or otherwise not being serviced. This is
  53 * solved by also having a SMP watchdog where all CPUs check all other
  54 * CPUs heartbeat.
  55 *
  56 * The SMP checker can detect lockups on other CPUs. A gobal "pending"
  57 * cpumask is kept, containing all CPUs which enable the watchdog. Each
  58 * CPU clears their pending bit in their heartbeat timer. When the bitmask
  59 * becomes empty, the last CPU to clear its pending bit updates a global
  60 * timestamp and refills the pending bitmask.
  61 *
  62 * In the heartbeat timer, if any CPU notices that the global timestamp has
  63 * not been updated for a period exceeding the watchdog threshold, then it
  64 * means the CPU(s) with their bit still set in the pending mask have had
  65 * their heartbeat stop, and action is taken.
  66 *
  67 * Some platforms implement true NMI IPIs, which can by used by the SMP
  68 * watchdog to detect an unresponsive CPU and pull it out of its stuck
  69 * state with the NMI IPI, to get crash/debug data from it. This way the
  70 * SMP watchdog can detect hardware interrupts off lockups.
  71 */
  72
  73static cpumask_t wd_cpus_enabled __read_mostly;
  74
  75static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
  76static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
  77
  78static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
  79
  80static DEFINE_PER_CPU(struct timer_list, wd_timer);
  81static DEFINE_PER_CPU(u64, wd_timer_tb);
  82
  83/* SMP checker bits */
  84static unsigned long __wd_smp_lock;
  85static cpumask_t wd_smp_cpus_pending;
  86static cpumask_t wd_smp_cpus_stuck;
  87static u64 wd_smp_last_reset_tb;
  88
  89static inline void wd_smp_lock(unsigned long *flags)
  90{
  91        /*
  92         * Avoid locking layers if possible.
  93         * This may be called from low level interrupt handlers at some
  94         * point in future.
  95         */
  96        raw_local_irq_save(*flags);
  97        hard_irq_disable(); /* Make it soft-NMI safe */
  98        while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
  99                raw_local_irq_restore(*flags);
 100                spin_until_cond(!test_bit(0, &__wd_smp_lock));
 101                raw_local_irq_save(*flags);
 102                hard_irq_disable();
 103        }
 104}
 105
 106static inline void wd_smp_unlock(unsigned long *flags)
 107{
 108        clear_bit_unlock(0, &__wd_smp_lock);
 109        raw_local_irq_restore(*flags);
 110}
 111
 112static void wd_lockup_ipi(struct pt_regs *regs)
 113{
 114        pr_emerg("CPU %d Hard LOCKUP\n", raw_smp_processor_id());
 115        print_modules();
 116        print_irqtrace_events(current);
 117        if (regs)
 118                show_regs(regs);
 119        else
 120                dump_stack();
 121
 122        /* Do not panic from here because that can recurse into NMI IPI layer */
 123}
 124
 125static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
 126{
 127        cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
 128        cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
 129        if (cpumask_empty(&wd_smp_cpus_pending)) {
 130                wd_smp_last_reset_tb = tb;
 131                cpumask_andnot(&wd_smp_cpus_pending,
 132                                &wd_cpus_enabled,
 133                                &wd_smp_cpus_stuck);
 134        }
 135}
 136static void set_cpu_stuck(int cpu, u64 tb)
 137{
 138        set_cpumask_stuck(cpumask_of(cpu), tb);
 139}
 140
 141static void watchdog_smp_panic(int cpu, u64 tb)
 142{
 143        unsigned long flags;
 144        int c;
 145
 146        wd_smp_lock(&flags);
 147        /* Double check some things under lock */
 148        if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
 149                goto out;
 150        if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
 151                goto out;
 152        if (cpumask_weight(&wd_smp_cpus_pending) == 0)
 153                goto out;
 154
 155        pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
 156                 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
 157
 158        if (!sysctl_hardlockup_all_cpu_backtrace) {
 159                /*
 160                 * Try to trigger the stuck CPUs, unless we are going to
 161                 * get a backtrace on all of them anyway.
 162                 */
 163                for_each_cpu(c, &wd_smp_cpus_pending) {
 164                        if (c == cpu)
 165                                continue;
 166                        smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
 167                }
 168                smp_flush_nmi_ipi(1000000);
 169        }
 170
 171        /* Take the stuck CPUs out of the watch group */
 172        set_cpumask_stuck(&wd_smp_cpus_pending, tb);
 173
 174        wd_smp_unlock(&flags);
 175
 176        printk_safe_flush();
 177        /*
 178         * printk_safe_flush() seems to require another print
 179         * before anything actually goes out to console.
 180         */
 181        if (sysctl_hardlockup_all_cpu_backtrace)
 182                trigger_allbutself_cpu_backtrace();
 183
 184        if (hardlockup_panic)
 185                nmi_panic(NULL, "Hard LOCKUP");
 186
 187        return;
 188
 189out:
 190        wd_smp_unlock(&flags);
 191}
 192
 193static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
 194{
 195        if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
 196                if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
 197                        unsigned long flags;
 198
 199                        pr_emerg("CPU %d became unstuck\n", cpu);
 200                        wd_smp_lock(&flags);
 201                        cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
 202                        wd_smp_unlock(&flags);
 203                }
 204                return;
 205        }
 206        cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
 207        if (cpumask_empty(&wd_smp_cpus_pending)) {
 208                unsigned long flags;
 209
 210                wd_smp_lock(&flags);
 211                if (cpumask_empty(&wd_smp_cpus_pending)) {
 212                        wd_smp_last_reset_tb = tb;
 213                        cpumask_andnot(&wd_smp_cpus_pending,
 214                                        &wd_cpus_enabled,
 215                                        &wd_smp_cpus_stuck);
 216                }
 217                wd_smp_unlock(&flags);
 218        }
 219}
 220
 221static void watchdog_timer_interrupt(int cpu)
 222{
 223        u64 tb = get_tb();
 224
 225        per_cpu(wd_timer_tb, cpu) = tb;
 226
 227        wd_smp_clear_cpu_pending(cpu, tb);
 228
 229        if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
 230                watchdog_smp_panic(cpu, tb);
 231}
 232
 233void soft_nmi_interrupt(struct pt_regs *regs)
 234{
 235        unsigned long flags;
 236        int cpu = raw_smp_processor_id();
 237        u64 tb;
 238
 239        if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
 240                return;
 241
 242        nmi_enter();
 243
 244        __this_cpu_inc(irq_stat.soft_nmi_irqs);
 245
 246        tb = get_tb();
 247        if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
 248                per_cpu(wd_timer_tb, cpu) = tb;
 249
 250                wd_smp_lock(&flags);
 251                if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
 252                        wd_smp_unlock(&flags);
 253                        goto out;
 254                }
 255                set_cpu_stuck(cpu, tb);
 256
 257                pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n", cpu, (void *)regs->nip);
 258                print_modules();
 259                print_irqtrace_events(current);
 260                show_regs(regs);
 261
 262                wd_smp_unlock(&flags);
 263
 264                if (sysctl_hardlockup_all_cpu_backtrace)
 265                        trigger_allbutself_cpu_backtrace();
 266
 267                if (hardlockup_panic)
 268                        nmi_panic(regs, "Hard LOCKUP");
 269        }
 270        if (wd_panic_timeout_tb < 0x7fffffff)
 271                mtspr(SPRN_DEC, wd_panic_timeout_tb);
 272
 273out:
 274        nmi_exit();
 275}
 276
 277static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
 278{
 279        t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
 280        if (wd_timer_period_ms > 1000)
 281                t->expires = __round_jiffies_up(t->expires, cpu);
 282        add_timer_on(t, cpu);
 283}
 284
 285static void wd_timer_fn(struct timer_list *t)
 286{
 287        int cpu = smp_processor_id();
 288
 289        watchdog_timer_interrupt(cpu);
 290
 291        wd_timer_reset(cpu, t);
 292}
 293
 294void arch_touch_nmi_watchdog(void)
 295{
 296        unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
 297        int cpu = smp_processor_id();
 298        u64 tb = get_tb();
 299
 300        if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
 301                per_cpu(wd_timer_tb, cpu) = tb;
 302                wd_smp_clear_cpu_pending(cpu, tb);
 303        }
 304}
 305EXPORT_SYMBOL(arch_touch_nmi_watchdog);
 306
 307static void start_watchdog_timer_on(unsigned int cpu)
 308{
 309        struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
 310
 311        per_cpu(wd_timer_tb, cpu) = get_tb();
 312
 313        timer_setup(t, wd_timer_fn, TIMER_PINNED);
 314        wd_timer_reset(cpu, t);
 315}
 316
 317static void stop_watchdog_timer_on(unsigned int cpu)
 318{
 319        struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
 320
 321        del_timer_sync(t);
 322}
 323
 324static int start_wd_on_cpu(unsigned int cpu)
 325{
 326        unsigned long flags;
 327
 328        if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
 329                WARN_ON(1);
 330                return 0;
 331        }
 332
 333        if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
 334                return 0;
 335
 336        if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
 337                return 0;
 338
 339        wd_smp_lock(&flags);
 340        cpumask_set_cpu(cpu, &wd_cpus_enabled);
 341        if (cpumask_weight(&wd_cpus_enabled) == 1) {
 342                cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
 343                wd_smp_last_reset_tb = get_tb();
 344        }
 345        wd_smp_unlock(&flags);
 346
 347        start_watchdog_timer_on(cpu);
 348
 349        return 0;
 350}
 351
 352static int stop_wd_on_cpu(unsigned int cpu)
 353{
 354        unsigned long flags;
 355
 356        if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
 357                return 0; /* Can happen in CPU unplug case */
 358
 359        stop_watchdog_timer_on(cpu);
 360
 361        wd_smp_lock(&flags);
 362        cpumask_clear_cpu(cpu, &wd_cpus_enabled);
 363        wd_smp_unlock(&flags);
 364
 365        wd_smp_clear_cpu_pending(cpu, get_tb());
 366
 367        return 0;
 368}
 369
 370static void watchdog_calc_timeouts(void)
 371{
 372        wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
 373
 374        /* Have the SMP detector trigger a bit later */
 375        wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
 376
 377        /* 2/5 is the factor that the perf based detector uses */
 378        wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
 379}
 380
 381void watchdog_nmi_stop(void)
 382{
 383        int cpu;
 384
 385        for_each_cpu(cpu, &wd_cpus_enabled)
 386                stop_wd_on_cpu(cpu);
 387}
 388
 389void watchdog_nmi_start(void)
 390{
 391        int cpu;
 392
 393        watchdog_calc_timeouts();
 394        for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
 395                start_wd_on_cpu(cpu);
 396}
 397
 398/*
 399 * Invoked from core watchdog init.
 400 */
 401int __init watchdog_nmi_probe(void)
 402{
 403        int err;
 404
 405        err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 406                                        "powerpc/watchdog:online",
 407                                        start_wd_on_cpu, stop_wd_on_cpu);
 408        if (err < 0) {
 409                pr_warn("could not be initialized");
 410                return err;
 411        }
 412        return 0;
 413}
 414