linux/arch/powerpc/kvm/book3s_xive.c
<<
>>
Prefs
   1/*
   2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License, version 2, as
   6 * published by the Free Software Foundation.
   7 */
   8
   9#define pr_fmt(fmt) "xive-kvm: " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kvm_host.h>
  13#include <linux/err.h>
  14#include <linux/gfp.h>
  15#include <linux/spinlock.h>
  16#include <linux/delay.h>
  17#include <linux/percpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/uaccess.h>
  20#include <asm/kvm_book3s.h>
  21#include <asm/kvm_ppc.h>
  22#include <asm/hvcall.h>
  23#include <asm/xics.h>
  24#include <asm/xive.h>
  25#include <asm/xive-regs.h>
  26#include <asm/debug.h>
  27#include <asm/debugfs.h>
  28#include <asm/time.h>
  29#include <asm/opal.h>
  30
  31#include <linux/debugfs.h>
  32#include <linux/seq_file.h>
  33
  34#include "book3s_xive.h"
  35
  36
  37/*
  38 * Virtual mode variants of the hcalls for use on radix/radix
  39 * with AIL. They require the VCPU's VP to be "pushed"
  40 *
  41 * We still instanciate them here because we use some of the
  42 * generated utility functions as well in this file.
  43 */
  44#define XIVE_RUNTIME_CHECKS
  45#define X_PFX xive_vm_
  46#define X_STATIC static
  47#define X_STAT_PFX stat_vm_
  48#define __x_tima                xive_tima
  49#define __x_eoi_page(xd)        ((void __iomem *)((xd)->eoi_mmio))
  50#define __x_trig_page(xd)       ((void __iomem *)((xd)->trig_mmio))
  51#define __x_writeb      __raw_writeb
  52#define __x_readw       __raw_readw
  53#define __x_readq       __raw_readq
  54#define __x_writeq      __raw_writeq
  55
  56#include "book3s_xive_template.c"
  57
  58/*
  59 * We leave a gap of a couple of interrupts in the queue to
  60 * account for the IPI and additional safety guard.
  61 */
  62#define XIVE_Q_GAP      2
  63
  64/*
  65 * This is a simple trigger for a generic XIVE IRQ. This must
  66 * only be called for interrupts that support a trigger page
  67 */
  68static bool xive_irq_trigger(struct xive_irq_data *xd)
  69{
  70        /* This should be only for MSIs */
  71        if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
  72                return false;
  73
  74        /* Those interrupts should always have a trigger page */
  75        if (WARN_ON(!xd->trig_mmio))
  76                return false;
  77
  78        out_be64(xd->trig_mmio, 0);
  79
  80        return true;
  81}
  82
  83static irqreturn_t xive_esc_irq(int irq, void *data)
  84{
  85        struct kvm_vcpu *vcpu = data;
  86
  87        vcpu->arch.irq_pending = 1;
  88        smp_mb();
  89        if (vcpu->arch.ceded)
  90                kvmppc_fast_vcpu_kick(vcpu);
  91
  92        /* Since we have the no-EOI flag, the interrupt is effectively
  93         * disabled now. Clearing xive_esc_on means we won't bother
  94         * doing so on the next entry.
  95         *
  96         * This also allows the entry code to know that if a PQ combination
  97         * of 10 is observed while xive_esc_on is true, it means the queue
  98         * contains an unprocessed escalation interrupt. We don't make use of
  99         * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
 100         */
 101        vcpu->arch.xive_esc_on = false;
 102
 103        return IRQ_HANDLED;
 104}
 105
 106static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
 107{
 108        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 109        struct xive_q *q = &xc->queues[prio];
 110        char *name = NULL;
 111        int rc;
 112
 113        /* Already there ? */
 114        if (xc->esc_virq[prio])
 115                return 0;
 116
 117        /* Hook up the escalation interrupt */
 118        xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
 119        if (!xc->esc_virq[prio]) {
 120                pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
 121                       prio, xc->server_num);
 122                return -EIO;
 123        }
 124
 125        if (xc->xive->single_escalation)
 126                name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
 127                                 vcpu->kvm->arch.lpid, xc->server_num);
 128        else
 129                name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
 130                                 vcpu->kvm->arch.lpid, xc->server_num, prio);
 131        if (!name) {
 132                pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
 133                       prio, xc->server_num);
 134                rc = -ENOMEM;
 135                goto error;
 136        }
 137
 138        pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
 139
 140        rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
 141                         IRQF_NO_THREAD, name, vcpu);
 142        if (rc) {
 143                pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
 144                       prio, xc->server_num);
 145                goto error;
 146        }
 147        xc->esc_virq_names[prio] = name;
 148
 149        /* In single escalation mode, we grab the ESB MMIO of the
 150         * interrupt and mask it. Also populate the VCPU v/raddr
 151         * of the ESB page for use by asm entry/exit code. Finally
 152         * set the XIVE_IRQ_NO_EOI flag which will prevent the
 153         * core code from performing an EOI on the escalation
 154         * interrupt, thus leaving it effectively masked after
 155         * it fires once.
 156         */
 157        if (xc->xive->single_escalation) {
 158                struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
 159                struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 160
 161                xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
 162                vcpu->arch.xive_esc_raddr = xd->eoi_page;
 163                vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
 164                xd->flags |= XIVE_IRQ_NO_EOI;
 165        }
 166
 167        return 0;
 168error:
 169        irq_dispose_mapping(xc->esc_virq[prio]);
 170        xc->esc_virq[prio] = 0;
 171        kfree(name);
 172        return rc;
 173}
 174
 175static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
 176{
 177        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 178        struct kvmppc_xive *xive = xc->xive;
 179        struct xive_q *q =  &xc->queues[prio];
 180        void *qpage;
 181        int rc;
 182
 183        if (WARN_ON(q->qpage))
 184                return 0;
 185
 186        /* Allocate the queue and retrieve infos on current node for now */
 187        qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
 188        if (!qpage) {
 189                pr_err("Failed to allocate queue %d for VCPU %d\n",
 190                       prio, xc->server_num);
 191                return -ENOMEM;
 192        }
 193        memset(qpage, 0, 1 << xive->q_order);
 194
 195        /*
 196         * Reconfigure the queue. This will set q->qpage only once the
 197         * queue is fully configured. This is a requirement for prio 0
 198         * as we will stop doing EOIs for every IPI as soon as we observe
 199         * qpage being non-NULL, and instead will only EOI when we receive
 200         * corresponding queue 0 entries
 201         */
 202        rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
 203                                         xive->q_order, true);
 204        if (rc)
 205                pr_err("Failed to configure queue %d for VCPU %d\n",
 206                       prio, xc->server_num);
 207        return rc;
 208}
 209
 210/* Called with kvm_lock held */
 211static int xive_check_provisioning(struct kvm *kvm, u8 prio)
 212{
 213        struct kvmppc_xive *xive = kvm->arch.xive;
 214        struct kvm_vcpu *vcpu;
 215        int i, rc;
 216
 217        lockdep_assert_held(&kvm->lock);
 218
 219        /* Already provisioned ? */
 220        if (xive->qmap & (1 << prio))
 221                return 0;
 222
 223        pr_devel("Provisioning prio... %d\n", prio);
 224
 225        /* Provision each VCPU and enable escalations if needed */
 226        kvm_for_each_vcpu(i, vcpu, kvm) {
 227                if (!vcpu->arch.xive_vcpu)
 228                        continue;
 229                rc = xive_provision_queue(vcpu, prio);
 230                if (rc == 0 && !xive->single_escalation)
 231                        xive_attach_escalation(vcpu, prio);
 232                if (rc)
 233                        return rc;
 234        }
 235
 236        /* Order previous stores and mark it as provisioned */
 237        mb();
 238        xive->qmap |= (1 << prio);
 239        return 0;
 240}
 241
 242static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
 243{
 244        struct kvm_vcpu *vcpu;
 245        struct kvmppc_xive_vcpu *xc;
 246        struct xive_q *q;
 247
 248        /* Locate target server */
 249        vcpu = kvmppc_xive_find_server(kvm, server);
 250        if (!vcpu) {
 251                pr_warn("%s: Can't find server %d\n", __func__, server);
 252                return;
 253        }
 254        xc = vcpu->arch.xive_vcpu;
 255        if (WARN_ON(!xc))
 256                return;
 257
 258        q = &xc->queues[prio];
 259        atomic_inc(&q->pending_count);
 260}
 261
 262static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
 263{
 264        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 265        struct xive_q *q;
 266        u32 max;
 267
 268        if (WARN_ON(!xc))
 269                return -ENXIO;
 270        if (!xc->valid)
 271                return -ENXIO;
 272
 273        q = &xc->queues[prio];
 274        if (WARN_ON(!q->qpage))
 275                return -ENXIO;
 276
 277        /* Calculate max number of interrupts in that queue. */
 278        max = (q->msk + 1) - XIVE_Q_GAP;
 279        return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
 280}
 281
 282static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
 283{
 284        struct kvm_vcpu *vcpu;
 285        int i, rc;
 286
 287        /* Locate target server */
 288        vcpu = kvmppc_xive_find_server(kvm, *server);
 289        if (!vcpu) {
 290                pr_devel("Can't find server %d\n", *server);
 291                return -EINVAL;
 292        }
 293
 294        pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
 295
 296        /* Try pick it */
 297        rc = xive_try_pick_queue(vcpu, prio);
 298        if (rc == 0)
 299                return rc;
 300
 301        pr_devel(" .. failed, looking up candidate...\n");
 302
 303        /* Failed, pick another VCPU */
 304        kvm_for_each_vcpu(i, vcpu, kvm) {
 305                if (!vcpu->arch.xive_vcpu)
 306                        continue;
 307                rc = xive_try_pick_queue(vcpu, prio);
 308                if (rc == 0) {
 309                        *server = vcpu->arch.xive_vcpu->server_num;
 310                        pr_devel("  found on 0x%x/%d\n", *server, prio);
 311                        return rc;
 312                }
 313        }
 314        pr_devel("  no available target !\n");
 315
 316        /* No available target ! */
 317        return -EBUSY;
 318}
 319
 320static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
 321                             struct kvmppc_xive_src_block *sb,
 322                             struct kvmppc_xive_irq_state *state)
 323{
 324        struct xive_irq_data *xd;
 325        u32 hw_num;
 326        u8 old_prio;
 327        u64 val;
 328
 329        /*
 330         * Take the lock, set masked, try again if racing
 331         * with H_EOI
 332         */
 333        for (;;) {
 334                arch_spin_lock(&sb->lock);
 335                old_prio = state->guest_priority;
 336                state->guest_priority = MASKED;
 337                mb();
 338                if (!state->in_eoi)
 339                        break;
 340                state->guest_priority = old_prio;
 341                arch_spin_unlock(&sb->lock);
 342        }
 343
 344        /* No change ? Bail */
 345        if (old_prio == MASKED)
 346                return old_prio;
 347
 348        /* Get the right irq */
 349        kvmppc_xive_select_irq(state, &hw_num, &xd);
 350
 351        /*
 352         * If the interrupt is marked as needing masking via
 353         * firmware, we do it here. Firmware masking however
 354         * is "lossy", it won't return the old p and q bits
 355         * and won't set the interrupt to a state where it will
 356         * record queued ones. If this is an issue we should do
 357         * lazy masking instead.
 358         *
 359         * For now, we work around this in unmask by forcing
 360         * an interrupt whenever we unmask a non-LSI via FW
 361         * (if ever).
 362         */
 363        if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
 364                xive_native_configure_irq(hw_num,
 365                                          xive->vp_base + state->act_server,
 366                                          MASKED, state->number);
 367                /* set old_p so we can track if an H_EOI was done */
 368                state->old_p = true;
 369                state->old_q = false;
 370        } else {
 371                /* Set PQ to 10, return old P and old Q and remember them */
 372                val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
 373                state->old_p = !!(val & 2);
 374                state->old_q = !!(val & 1);
 375
 376                /*
 377                 * Synchronize hardware to sensure the queues are updated
 378                 * when masking
 379                 */
 380                xive_native_sync_source(hw_num);
 381        }
 382
 383        return old_prio;
 384}
 385
 386static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
 387                                 struct kvmppc_xive_irq_state *state)
 388{
 389        /*
 390         * Take the lock try again if racing with H_EOI
 391         */
 392        for (;;) {
 393                arch_spin_lock(&sb->lock);
 394                if (!state->in_eoi)
 395                        break;
 396                arch_spin_unlock(&sb->lock);
 397        }
 398}
 399
 400static void xive_finish_unmask(struct kvmppc_xive *xive,
 401                               struct kvmppc_xive_src_block *sb,
 402                               struct kvmppc_xive_irq_state *state,
 403                               u8 prio)
 404{
 405        struct xive_irq_data *xd;
 406        u32 hw_num;
 407
 408        /* If we aren't changing a thing, move on */
 409        if (state->guest_priority != MASKED)
 410                goto bail;
 411
 412        /* Get the right irq */
 413        kvmppc_xive_select_irq(state, &hw_num, &xd);
 414
 415        /*
 416         * See command in xive_lock_and_mask() concerning masking
 417         * via firmware.
 418         */
 419        if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
 420                xive_native_configure_irq(hw_num,
 421                                          xive->vp_base + state->act_server,
 422                                          state->act_priority, state->number);
 423                /* If an EOI is needed, do it here */
 424                if (!state->old_p)
 425                        xive_vm_source_eoi(hw_num, xd);
 426                /* If this is not an LSI, force a trigger */
 427                if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
 428                        xive_irq_trigger(xd);
 429                goto bail;
 430        }
 431
 432        /* Old Q set, set PQ to 11 */
 433        if (state->old_q)
 434                xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
 435
 436        /*
 437         * If not old P, then perform an "effective" EOI,
 438         * on the source. This will handle the cases where
 439         * FW EOI is needed.
 440         */
 441        if (!state->old_p)
 442                xive_vm_source_eoi(hw_num, xd);
 443
 444        /* Synchronize ordering and mark unmasked */
 445        mb();
 446bail:
 447        state->guest_priority = prio;
 448}
 449
 450/*
 451 * Target an interrupt to a given server/prio, this will fallback
 452 * to another server if necessary and perform the HW targetting
 453 * updates as needed
 454 *
 455 * NOTE: Must be called with the state lock held
 456 */
 457static int xive_target_interrupt(struct kvm *kvm,
 458                                 struct kvmppc_xive_irq_state *state,
 459                                 u32 server, u8 prio)
 460{
 461        struct kvmppc_xive *xive = kvm->arch.xive;
 462        u32 hw_num;
 463        int rc;
 464
 465        /*
 466         * This will return a tentative server and actual
 467         * priority. The count for that new target will have
 468         * already been incremented.
 469         */
 470        rc = xive_select_target(kvm, &server, prio);
 471
 472        /*
 473         * We failed to find a target ? Not much we can do
 474         * at least until we support the GIQ.
 475         */
 476        if (rc)
 477                return rc;
 478
 479        /*
 480         * Increment the old queue pending count if there
 481         * was one so that the old queue count gets adjusted later
 482         * when observed to be empty.
 483         */
 484        if (state->act_priority != MASKED)
 485                xive_inc_q_pending(kvm,
 486                                   state->act_server,
 487                                   state->act_priority);
 488        /*
 489         * Update state and HW
 490         */
 491        state->act_priority = prio;
 492        state->act_server = server;
 493
 494        /* Get the right irq */
 495        kvmppc_xive_select_irq(state, &hw_num, NULL);
 496
 497        return xive_native_configure_irq(hw_num,
 498                                         xive->vp_base + server,
 499                                         prio, state->number);
 500}
 501
 502/*
 503 * Targetting rules: In order to avoid losing track of
 504 * pending interrupts accross mask and unmask, which would
 505 * allow queue overflows, we implement the following rules:
 506 *
 507 *  - Unless it was never enabled (or we run out of capacity)
 508 *    an interrupt is always targetted at a valid server/queue
 509 *    pair even when "masked" by the guest. This pair tends to
 510 *    be the last one used but it can be changed under some
 511 *    circumstances. That allows us to separate targetting
 512 *    from masking, we only handle accounting during (re)targetting,
 513 *    this also allows us to let an interrupt drain into its target
 514 *    queue after masking, avoiding complex schemes to remove
 515 *    interrupts out of remote processor queues.
 516 *
 517 *  - When masking, we set PQ to 10 and save the previous value
 518 *    of P and Q.
 519 *
 520 *  - When unmasking, if saved Q was set, we set PQ to 11
 521 *    otherwise we leave PQ to the HW state which will be either
 522 *    10 if nothing happened or 11 if the interrupt fired while
 523 *    masked. Effectively we are OR'ing the previous Q into the
 524 *    HW Q.
 525 *
 526 *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
 527 *    which will unmask the interrupt and shoot a new one if Q was
 528 *    set.
 529 *
 530 *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
 531 *    effectively meaning an H_EOI from the guest is still expected
 532 *    for that interrupt).
 533 *
 534 *  - If H_EOI occurs while masked, we clear the saved P.
 535 *
 536 *  - When changing target, we account on the new target and
 537 *    increment a separate "pending" counter on the old one.
 538 *    This pending counter will be used to decrement the old
 539 *    target's count when its queue has been observed empty.
 540 */
 541
 542int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
 543                         u32 priority)
 544{
 545        struct kvmppc_xive *xive = kvm->arch.xive;
 546        struct kvmppc_xive_src_block *sb;
 547        struct kvmppc_xive_irq_state *state;
 548        u8 new_act_prio;
 549        int rc = 0;
 550        u16 idx;
 551
 552        if (!xive)
 553                return -ENODEV;
 554
 555        pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
 556                 irq, server, priority);
 557
 558        /* First, check provisioning of queues */
 559        if (priority != MASKED)
 560                rc = xive_check_provisioning(xive->kvm,
 561                              xive_prio_from_guest(priority));
 562        if (rc) {
 563                pr_devel("  provisioning failure %d !\n", rc);
 564                return rc;
 565        }
 566
 567        sb = kvmppc_xive_find_source(xive, irq, &idx);
 568        if (!sb)
 569                return -EINVAL;
 570        state = &sb->irq_state[idx];
 571
 572        /*
 573         * We first handle masking/unmasking since the locking
 574         * might need to be retried due to EOIs, we'll handle
 575         * targetting changes later. These functions will return
 576         * with the SB lock held.
 577         *
 578         * xive_lock_and_mask() will also set state->guest_priority
 579         * but won't otherwise change other fields of the state.
 580         *
 581         * xive_lock_for_unmask will not actually unmask, this will
 582         * be done later by xive_finish_unmask() once the targetting
 583         * has been done, so we don't try to unmask an interrupt
 584         * that hasn't yet been targetted.
 585         */
 586        if (priority == MASKED)
 587                xive_lock_and_mask(xive, sb, state);
 588        else
 589                xive_lock_for_unmask(sb, state);
 590
 591
 592        /*
 593         * Then we handle targetting.
 594         *
 595         * First calculate a new "actual priority"
 596         */
 597        new_act_prio = state->act_priority;
 598        if (priority != MASKED)
 599                new_act_prio = xive_prio_from_guest(priority);
 600
 601        pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
 602                 new_act_prio, state->act_server, state->act_priority);
 603
 604        /*
 605         * Then check if we actually need to change anything,
 606         *
 607         * The condition for re-targetting the interrupt is that
 608         * we have a valid new priority (new_act_prio is not 0xff)
 609         * and either the server or the priority changed.
 610         *
 611         * Note: If act_priority was ff and the new priority is
 612         *       also ff, we don't do anything and leave the interrupt
 613         *       untargetted. An attempt of doing an int_on on an
 614         *       untargetted interrupt will fail. If that is a problem
 615         *       we could initialize interrupts with valid default
 616         */
 617
 618        if (new_act_prio != MASKED &&
 619            (state->act_server != server ||
 620             state->act_priority != new_act_prio))
 621                rc = xive_target_interrupt(kvm, state, server, new_act_prio);
 622
 623        /*
 624         * Perform the final unmasking of the interrupt source
 625         * if necessary
 626         */
 627        if (priority != MASKED)
 628                xive_finish_unmask(xive, sb, state, priority);
 629
 630        /*
 631         * Finally Update saved_priority to match. Only int_on/off
 632         * set this field to a different value.
 633         */
 634        state->saved_priority = priority;
 635
 636        arch_spin_unlock(&sb->lock);
 637        return rc;
 638}
 639
 640int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
 641                         u32 *priority)
 642{
 643        struct kvmppc_xive *xive = kvm->arch.xive;
 644        struct kvmppc_xive_src_block *sb;
 645        struct kvmppc_xive_irq_state *state;
 646        u16 idx;
 647
 648        if (!xive)
 649                return -ENODEV;
 650
 651        sb = kvmppc_xive_find_source(xive, irq, &idx);
 652        if (!sb)
 653                return -EINVAL;
 654        state = &sb->irq_state[idx];
 655        arch_spin_lock(&sb->lock);
 656        *server = state->act_server;
 657        *priority = state->guest_priority;
 658        arch_spin_unlock(&sb->lock);
 659
 660        return 0;
 661}
 662
 663int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
 664{
 665        struct kvmppc_xive *xive = kvm->arch.xive;
 666        struct kvmppc_xive_src_block *sb;
 667        struct kvmppc_xive_irq_state *state;
 668        u16 idx;
 669
 670        if (!xive)
 671                return -ENODEV;
 672
 673        sb = kvmppc_xive_find_source(xive, irq, &idx);
 674        if (!sb)
 675                return -EINVAL;
 676        state = &sb->irq_state[idx];
 677
 678        pr_devel("int_on(irq=0x%x)\n", irq);
 679
 680        /*
 681         * Check if interrupt was not targetted
 682         */
 683        if (state->act_priority == MASKED) {
 684                pr_devel("int_on on untargetted interrupt\n");
 685                return -EINVAL;
 686        }
 687
 688        /* If saved_priority is 0xff, do nothing */
 689        if (state->saved_priority == MASKED)
 690                return 0;
 691
 692        /*
 693         * Lock and unmask it.
 694         */
 695        xive_lock_for_unmask(sb, state);
 696        xive_finish_unmask(xive, sb, state, state->saved_priority);
 697        arch_spin_unlock(&sb->lock);
 698
 699        return 0;
 700}
 701
 702int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
 703{
 704        struct kvmppc_xive *xive = kvm->arch.xive;
 705        struct kvmppc_xive_src_block *sb;
 706        struct kvmppc_xive_irq_state *state;
 707        u16 idx;
 708
 709        if (!xive)
 710                return -ENODEV;
 711
 712        sb = kvmppc_xive_find_source(xive, irq, &idx);
 713        if (!sb)
 714                return -EINVAL;
 715        state = &sb->irq_state[idx];
 716
 717        pr_devel("int_off(irq=0x%x)\n", irq);
 718
 719        /*
 720         * Lock and mask
 721         */
 722        state->saved_priority = xive_lock_and_mask(xive, sb, state);
 723        arch_spin_unlock(&sb->lock);
 724
 725        return 0;
 726}
 727
 728static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
 729{
 730        struct kvmppc_xive_src_block *sb;
 731        struct kvmppc_xive_irq_state *state;
 732        u16 idx;
 733
 734        sb = kvmppc_xive_find_source(xive, irq, &idx);
 735        if (!sb)
 736                return false;
 737        state = &sb->irq_state[idx];
 738        if (!state->valid)
 739                return false;
 740
 741        /*
 742         * Trigger the IPI. This assumes we never restore a pass-through
 743         * interrupt which should be safe enough
 744         */
 745        xive_irq_trigger(&state->ipi_data);
 746
 747        return true;
 748}
 749
 750u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
 751{
 752        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 753
 754        if (!xc)
 755                return 0;
 756
 757        /* Return the per-cpu state for state saving/migration */
 758        return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
 759               (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
 760               (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
 761}
 762
 763int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
 764{
 765        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 766        struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
 767        u8 cppr, mfrr;
 768        u32 xisr;
 769
 770        if (!xc || !xive)
 771                return -ENOENT;
 772
 773        /* Grab individual state fields. We don't use pending_pri */
 774        cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
 775        xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
 776                KVM_REG_PPC_ICP_XISR_MASK;
 777        mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
 778
 779        pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
 780                 xc->server_num, cppr, mfrr, xisr);
 781
 782        /*
 783         * We can't update the state of a "pushed" VCPU, but that
 784         * shouldn't happen.
 785         */
 786        if (WARN_ON(vcpu->arch.xive_pushed))
 787                return -EIO;
 788
 789        /* Update VCPU HW saved state */
 790        vcpu->arch.xive_saved_state.cppr = cppr;
 791        xc->hw_cppr = xc->cppr = cppr;
 792
 793        /*
 794         * Update MFRR state. If it's not 0xff, we mark the VCPU as
 795         * having a pending MFRR change, which will re-evaluate the
 796         * target. The VCPU will thus potentially get a spurious
 797         * interrupt but that's not a big deal.
 798         */
 799        xc->mfrr = mfrr;
 800        if (mfrr < cppr)
 801                xive_irq_trigger(&xc->vp_ipi_data);
 802
 803        /*
 804         * Now saved XIRR is "interesting". It means there's something in
 805         * the legacy "1 element" queue... for an IPI we simply ignore it,
 806         * as the MFRR restore will handle that. For anything else we need
 807         * to force a resend of the source.
 808         * However the source may not have been setup yet. If that's the
 809         * case, we keep that info and increment a counter in the xive to
 810         * tell subsequent xive_set_source() to go look.
 811         */
 812        if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
 813                xc->delayed_irq = xisr;
 814                xive->delayed_irqs++;
 815                pr_devel("  xisr restore delayed\n");
 816        }
 817
 818        return 0;
 819}
 820
 821int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
 822                           struct irq_desc *host_desc)
 823{
 824        struct kvmppc_xive *xive = kvm->arch.xive;
 825        struct kvmppc_xive_src_block *sb;
 826        struct kvmppc_xive_irq_state *state;
 827        struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
 828        unsigned int host_irq = irq_desc_get_irq(host_desc);
 829        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
 830        u16 idx;
 831        u8 prio;
 832        int rc;
 833
 834        if (!xive)
 835                return -ENODEV;
 836
 837        pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
 838
 839        sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
 840        if (!sb)
 841                return -EINVAL;
 842        state = &sb->irq_state[idx];
 843
 844        /*
 845         * Mark the passed-through interrupt as going to a VCPU,
 846         * this will prevent further EOIs and similar operations
 847         * from the XIVE code. It will also mask the interrupt
 848         * to either PQ=10 or 11 state, the latter if the interrupt
 849         * is pending. This will allow us to unmask or retrigger it
 850         * after routing it to the guest with a simple EOI.
 851         *
 852         * The "state" argument is a "token", all it needs is to be
 853         * non-NULL to switch to passed-through or NULL for the
 854         * other way around. We may not yet have an actual VCPU
 855         * target here and we don't really care.
 856         */
 857        rc = irq_set_vcpu_affinity(host_irq, state);
 858        if (rc) {
 859                pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
 860                return rc;
 861        }
 862
 863        /*
 864         * Mask and read state of IPI. We need to know if its P bit
 865         * is set as that means it's potentially already using a
 866         * queue entry in the target
 867         */
 868        prio = xive_lock_and_mask(xive, sb, state);
 869        pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
 870                 state->old_p, state->old_q);
 871
 872        /* Turn the IPI hard off */
 873        xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
 874
 875        /* Grab info about irq */
 876        state->pt_number = hw_irq;
 877        state->pt_data = irq_data_get_irq_handler_data(host_data);
 878
 879        /*
 880         * Configure the IRQ to match the existing configuration of
 881         * the IPI if it was already targetted. Otherwise this will
 882         * mask the interrupt in a lossy way (act_priority is 0xff)
 883         * which is fine for a never started interrupt.
 884         */
 885        xive_native_configure_irq(hw_irq,
 886                                  xive->vp_base + state->act_server,
 887                                  state->act_priority, state->number);
 888
 889        /*
 890         * We do an EOI to enable the interrupt (and retrigger if needed)
 891         * if the guest has the interrupt unmasked and the P bit was *not*
 892         * set in the IPI. If it was set, we know a slot may still be in
 893         * use in the target queue thus we have to wait for a guest
 894         * originated EOI
 895         */
 896        if (prio != MASKED && !state->old_p)
 897                xive_vm_source_eoi(hw_irq, state->pt_data);
 898
 899        /* Clear old_p/old_q as they are no longer relevant */
 900        state->old_p = state->old_q = false;
 901
 902        /* Restore guest prio (unlocks EOI) */
 903        mb();
 904        state->guest_priority = prio;
 905        arch_spin_unlock(&sb->lock);
 906
 907        return 0;
 908}
 909EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
 910
 911int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
 912                           struct irq_desc *host_desc)
 913{
 914        struct kvmppc_xive *xive = kvm->arch.xive;
 915        struct kvmppc_xive_src_block *sb;
 916        struct kvmppc_xive_irq_state *state;
 917        unsigned int host_irq = irq_desc_get_irq(host_desc);
 918        u16 idx;
 919        u8 prio;
 920        int rc;
 921
 922        if (!xive)
 923                return -ENODEV;
 924
 925        pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
 926
 927        sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
 928        if (!sb)
 929                return -EINVAL;
 930        state = &sb->irq_state[idx];
 931
 932        /*
 933         * Mask and read state of IRQ. We need to know if its P bit
 934         * is set as that means it's potentially already using a
 935         * queue entry in the target
 936         */
 937        prio = xive_lock_and_mask(xive, sb, state);
 938        pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
 939                 state->old_p, state->old_q);
 940
 941        /*
 942         * If old_p is set, the interrupt is pending, we switch it to
 943         * PQ=11. This will force a resend in the host so the interrupt
 944         * isn't lost to whatver host driver may pick it up
 945         */
 946        if (state->old_p)
 947                xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
 948
 949        /* Release the passed-through interrupt to the host */
 950        rc = irq_set_vcpu_affinity(host_irq, NULL);
 951        if (rc) {
 952                pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
 953                return rc;
 954        }
 955
 956        /* Forget about the IRQ */
 957        state->pt_number = 0;
 958        state->pt_data = NULL;
 959
 960        /* Reconfigure the IPI */
 961        xive_native_configure_irq(state->ipi_number,
 962                                  xive->vp_base + state->act_server,
 963                                  state->act_priority, state->number);
 964
 965        /*
 966         * If old_p is set (we have a queue entry potentially
 967         * occupied) or the interrupt is masked, we set the IPI
 968         * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
 969         */
 970        if (prio == MASKED || state->old_p)
 971                xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
 972        else
 973                xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
 974
 975        /* Restore guest prio (unlocks EOI) */
 976        mb();
 977        state->guest_priority = prio;
 978        arch_spin_unlock(&sb->lock);
 979
 980        return 0;
 981}
 982EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
 983
 984static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
 985{
 986        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 987        struct kvm *kvm = vcpu->kvm;
 988        struct kvmppc_xive *xive = kvm->arch.xive;
 989        int i, j;
 990
 991        for (i = 0; i <= xive->max_sbid; i++) {
 992                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
 993
 994                if (!sb)
 995                        continue;
 996                for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
 997                        struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
 998
 999                        if (!state->valid)
1000                                continue;
1001                        if (state->act_priority == MASKED)
1002                                continue;
1003                        if (state->act_server != xc->server_num)
1004                                continue;
1005
1006                        /* Clean it up */
1007                        arch_spin_lock(&sb->lock);
1008                        state->act_priority = MASKED;
1009                        xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1010                        xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1011                        if (state->pt_number) {
1012                                xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1013                                xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1014                        }
1015                        arch_spin_unlock(&sb->lock);
1016                }
1017        }
1018}
1019
1020void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1021{
1022        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1023        struct kvmppc_xive *xive = xc->xive;
1024        int i;
1025
1026        pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1027
1028        /* Ensure no interrupt is still routed to that VP */
1029        xc->valid = false;
1030        kvmppc_xive_disable_vcpu_interrupts(vcpu);
1031
1032        /* Mask the VP IPI */
1033        xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1034
1035        /* Disable the VP */
1036        xive_native_disable_vp(xc->vp_id);
1037
1038        /* Free the queues & associated interrupts */
1039        for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1040                struct xive_q *q = &xc->queues[i];
1041
1042                /* Free the escalation irq */
1043                if (xc->esc_virq[i]) {
1044                        free_irq(xc->esc_virq[i], vcpu);
1045                        irq_dispose_mapping(xc->esc_virq[i]);
1046                        kfree(xc->esc_virq_names[i]);
1047                }
1048                /* Free the queue */
1049                xive_native_disable_queue(xc->vp_id, q, i);
1050                if (q->qpage) {
1051                        free_pages((unsigned long)q->qpage,
1052                                   xive->q_page_order);
1053                        q->qpage = NULL;
1054                }
1055        }
1056
1057        /* Free the IPI */
1058        if (xc->vp_ipi) {
1059                xive_cleanup_irq_data(&xc->vp_ipi_data);
1060                xive_native_free_irq(xc->vp_ipi);
1061        }
1062        /* Free the VP */
1063        kfree(xc);
1064}
1065
1066int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1067                             struct kvm_vcpu *vcpu, u32 cpu)
1068{
1069        struct kvmppc_xive *xive = dev->private;
1070        struct kvmppc_xive_vcpu *xc;
1071        int i, r = -EBUSY;
1072
1073        pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1074
1075        if (dev->ops != &kvm_xive_ops) {
1076                pr_devel("Wrong ops !\n");
1077                return -EPERM;
1078        }
1079        if (xive->kvm != vcpu->kvm)
1080                return -EPERM;
1081        if (vcpu->arch.irq_type)
1082                return -EBUSY;
1083        if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1084                pr_devel("Duplicate !\n");
1085                return -EEXIST;
1086        }
1087        if (cpu >= KVM_MAX_VCPUS) {
1088                pr_devel("Out of bounds !\n");
1089                return -EINVAL;
1090        }
1091        xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1092        if (!xc)
1093                return -ENOMEM;
1094
1095        /* We need to synchronize with queue provisioning */
1096        mutex_lock(&vcpu->kvm->lock);
1097        vcpu->arch.xive_vcpu = xc;
1098        xc->xive = xive;
1099        xc->vcpu = vcpu;
1100        xc->server_num = cpu;
1101        xc->vp_id = xive->vp_base + cpu;
1102        xc->mfrr = 0xff;
1103        xc->valid = true;
1104
1105        r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1106        if (r)
1107                goto bail;
1108
1109        /* Configure VCPU fields for use by assembly push/pull */
1110        vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1111        vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1112
1113        /* Allocate IPI */
1114        xc->vp_ipi = xive_native_alloc_irq();
1115        if (!xc->vp_ipi) {
1116                pr_err("Failed to allocate xive irq for VCPU IPI\n");
1117                r = -EIO;
1118                goto bail;
1119        }
1120        pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1121
1122        r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1123        if (r)
1124                goto bail;
1125
1126        /*
1127         * Enable the VP first as the single escalation mode will
1128         * affect escalation interrupts numbering
1129         */
1130        r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1131        if (r) {
1132                pr_err("Failed to enable VP in OPAL, err %d\n", r);
1133                goto bail;
1134        }
1135
1136        /*
1137         * Initialize queues. Initially we set them all for no queueing
1138         * and we enable escalation for queue 0 only which we'll use for
1139         * our mfrr change notifications. If the VCPU is hot-plugged, we
1140         * do handle provisioning however based on the existing "map"
1141         * of enabled queues.
1142         */
1143        for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1144                struct xive_q *q = &xc->queues[i];
1145
1146                /* Single escalation, no queue 7 */
1147                if (i == 7 && xive->single_escalation)
1148                        break;
1149
1150                /* Is queue already enabled ? Provision it */
1151                if (xive->qmap & (1 << i)) {
1152                        r = xive_provision_queue(vcpu, i);
1153                        if (r == 0 && !xive->single_escalation)
1154                                xive_attach_escalation(vcpu, i);
1155                        if (r)
1156                                goto bail;
1157                } else {
1158                        r = xive_native_configure_queue(xc->vp_id,
1159                                                        q, i, NULL, 0, true);
1160                        if (r) {
1161                                pr_err("Failed to configure queue %d for VCPU %d\n",
1162                                       i, cpu);
1163                                goto bail;
1164                        }
1165                }
1166        }
1167
1168        /* If not done above, attach priority 0 escalation */
1169        r = xive_attach_escalation(vcpu, 0);
1170        if (r)
1171                goto bail;
1172
1173        /* Route the IPI */
1174        r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1175        if (!r)
1176                xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1177
1178bail:
1179        mutex_unlock(&vcpu->kvm->lock);
1180        if (r) {
1181                kvmppc_xive_cleanup_vcpu(vcpu);
1182                return r;
1183        }
1184
1185        vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1186        return 0;
1187}
1188
1189/*
1190 * Scanning of queues before/after migration save
1191 */
1192static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1193{
1194        struct kvmppc_xive_src_block *sb;
1195        struct kvmppc_xive_irq_state *state;
1196        u16 idx;
1197
1198        sb = kvmppc_xive_find_source(xive, irq, &idx);
1199        if (!sb)
1200                return;
1201
1202        state = &sb->irq_state[idx];
1203
1204        /* Some sanity checking */
1205        if (!state->valid) {
1206                pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1207                return;
1208        }
1209
1210        /*
1211         * If the interrupt is in a queue it should have P set.
1212         * We warn so that gets reported. A backtrace isn't useful
1213         * so no need to use a WARN_ON.
1214         */
1215        if (!state->saved_p)
1216                pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1217
1218        /* Set flag */
1219        state->in_queue = true;
1220}
1221
1222static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1223                                   struct kvmppc_xive_src_block *sb,
1224                                   u32 irq)
1225{
1226        struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1227
1228        if (!state->valid)
1229                return;
1230
1231        /* Mask and save state, this will also sync HW queues */
1232        state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1233
1234        /* Transfer P and Q */
1235        state->saved_p = state->old_p;
1236        state->saved_q = state->old_q;
1237
1238        /* Unlock */
1239        arch_spin_unlock(&sb->lock);
1240}
1241
1242static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1243                                     struct kvmppc_xive_src_block *sb,
1244                                     u32 irq)
1245{
1246        struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1247
1248        if (!state->valid)
1249                return;
1250
1251        /*
1252         * Lock / exclude EOI (not technically necessary if the
1253         * guest isn't running concurrently. If this becomes a
1254         * performance issue we can probably remove the lock.
1255         */
1256        xive_lock_for_unmask(sb, state);
1257
1258        /* Restore mask/prio if it wasn't masked */
1259        if (state->saved_scan_prio != MASKED)
1260                xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1261
1262        /* Unlock */
1263        arch_spin_unlock(&sb->lock);
1264}
1265
1266static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1267{
1268        u32 idx = q->idx;
1269        u32 toggle = q->toggle;
1270        u32 irq;
1271
1272        do {
1273                irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1274                if (irq > XICS_IPI)
1275                        xive_pre_save_set_queued(xive, irq);
1276        } while(irq);
1277}
1278
1279static void xive_pre_save_scan(struct kvmppc_xive *xive)
1280{
1281        struct kvm_vcpu *vcpu = NULL;
1282        int i, j;
1283
1284        /*
1285         * See comment in xive_get_source() about how this
1286         * work. Collect a stable state for all interrupts
1287         */
1288        for (i = 0; i <= xive->max_sbid; i++) {
1289                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1290                if (!sb)
1291                        continue;
1292                for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1293                        xive_pre_save_mask_irq(xive, sb, j);
1294        }
1295
1296        /* Then scan the queues and update the "in_queue" flag */
1297        kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1298                struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1299                if (!xc)
1300                        continue;
1301                for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1302                        if (xc->queues[j].qpage)
1303                                xive_pre_save_queue(xive, &xc->queues[j]);
1304                }
1305        }
1306
1307        /* Finally restore interrupt states */
1308        for (i = 0; i <= xive->max_sbid; i++) {
1309                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1310                if (!sb)
1311                        continue;
1312                for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1313                        xive_pre_save_unmask_irq(xive, sb, j);
1314        }
1315}
1316
1317static void xive_post_save_scan(struct kvmppc_xive *xive)
1318{
1319        u32 i, j;
1320
1321        /* Clear all the in_queue flags */
1322        for (i = 0; i <= xive->max_sbid; i++) {
1323                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1324                if (!sb)
1325                        continue;
1326                for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1327                        sb->irq_state[j].in_queue = false;
1328        }
1329
1330        /* Next get_source() will do a new scan */
1331        xive->saved_src_count = 0;
1332}
1333
1334/*
1335 * This returns the source configuration and state to user space.
1336 */
1337static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1338{
1339        struct kvmppc_xive_src_block *sb;
1340        struct kvmppc_xive_irq_state *state;
1341        u64 __user *ubufp = (u64 __user *) addr;
1342        u64 val, prio;
1343        u16 idx;
1344
1345        sb = kvmppc_xive_find_source(xive, irq, &idx);
1346        if (!sb)
1347                return -ENOENT;
1348
1349        state = &sb->irq_state[idx];
1350
1351        if (!state->valid)
1352                return -ENOENT;
1353
1354        pr_devel("get_source(%ld)...\n", irq);
1355
1356        /*
1357         * So to properly save the state into something that looks like a
1358         * XICS migration stream we cannot treat interrupts individually.
1359         *
1360         * We need, instead, mask them all (& save their previous PQ state)
1361         * to get a stable state in the HW, then sync them to ensure that
1362         * any interrupt that had already fired hits its queue, and finally
1363         * scan all the queues to collect which interrupts are still present
1364         * in the queues, so we can set the "pending" flag on them and
1365         * they can be resent on restore.
1366         *
1367         * So we do it all when the "first" interrupt gets saved, all the
1368         * state is collected at that point, the rest of xive_get_source()
1369         * will merely collect and convert that state to the expected
1370         * userspace bit mask.
1371         */
1372        if (xive->saved_src_count == 0)
1373                xive_pre_save_scan(xive);
1374        xive->saved_src_count++;
1375
1376        /* Convert saved state into something compatible with xics */
1377        val = state->act_server;
1378        prio = state->saved_scan_prio;
1379
1380        if (prio == MASKED) {
1381                val |= KVM_XICS_MASKED;
1382                prio = state->saved_priority;
1383        }
1384        val |= prio << KVM_XICS_PRIORITY_SHIFT;
1385        if (state->lsi) {
1386                val |= KVM_XICS_LEVEL_SENSITIVE;
1387                if (state->saved_p)
1388                        val |= KVM_XICS_PENDING;
1389        } else {
1390                if (state->saved_p)
1391                        val |= KVM_XICS_PRESENTED;
1392
1393                if (state->saved_q)
1394                        val |= KVM_XICS_QUEUED;
1395
1396                /*
1397                 * We mark it pending (which will attempt a re-delivery)
1398                 * if we are in a queue *or* we were masked and had
1399                 * Q set which is equivalent to the XICS "masked pending"
1400                 * state
1401                 */
1402                if (state->in_queue || (prio == MASKED && state->saved_q))
1403                        val |= KVM_XICS_PENDING;
1404        }
1405
1406        /*
1407         * If that was the last interrupt saved, reset the
1408         * in_queue flags
1409         */
1410        if (xive->saved_src_count == xive->src_count)
1411                xive_post_save_scan(xive);
1412
1413        /* Copy the result to userspace */
1414        if (put_user(val, ubufp))
1415                return -EFAULT;
1416
1417        return 0;
1418}
1419
1420static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1421                                                           int irq)
1422{
1423        struct kvm *kvm = xive->kvm;
1424        struct kvmppc_xive_src_block *sb;
1425        int i, bid;
1426
1427        bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1428
1429        mutex_lock(&kvm->lock);
1430
1431        /* block already exists - somebody else got here first */
1432        if (xive->src_blocks[bid])
1433                goto out;
1434
1435        /* Create the ICS */
1436        sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1437        if (!sb)
1438                goto out;
1439
1440        sb->id = bid;
1441
1442        for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1443                sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1444                sb->irq_state[i].guest_priority = MASKED;
1445                sb->irq_state[i].saved_priority = MASKED;
1446                sb->irq_state[i].act_priority = MASKED;
1447        }
1448        smp_wmb();
1449        xive->src_blocks[bid] = sb;
1450
1451        if (bid > xive->max_sbid)
1452                xive->max_sbid = bid;
1453
1454out:
1455        mutex_unlock(&kvm->lock);
1456        return xive->src_blocks[bid];
1457}
1458
1459static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1460{
1461        struct kvm *kvm = xive->kvm;
1462        struct kvm_vcpu *vcpu = NULL;
1463        int i;
1464
1465        kvm_for_each_vcpu(i, vcpu, kvm) {
1466                struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1467
1468                if (!xc)
1469                        continue;
1470
1471                if (xc->delayed_irq == irq) {
1472                        xc->delayed_irq = 0;
1473                        xive->delayed_irqs--;
1474                        return true;
1475                }
1476        }
1477        return false;
1478}
1479
1480static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1481{
1482        struct kvmppc_xive_src_block *sb;
1483        struct kvmppc_xive_irq_state *state;
1484        u64 __user *ubufp = (u64 __user *) addr;
1485        u16 idx;
1486        u64 val;
1487        u8 act_prio, guest_prio;
1488        u32 server;
1489        int rc = 0;
1490
1491        if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1492                return -ENOENT;
1493
1494        pr_devel("set_source(irq=0x%lx)\n", irq);
1495
1496        /* Find the source */
1497        sb = kvmppc_xive_find_source(xive, irq, &idx);
1498        if (!sb) {
1499                pr_devel("No source, creating source block...\n");
1500                sb = xive_create_src_block(xive, irq);
1501                if (!sb) {
1502                        pr_devel("Failed to create block...\n");
1503                        return -ENOMEM;
1504                }
1505        }
1506        state = &sb->irq_state[idx];
1507
1508        /* Read user passed data */
1509        if (get_user(val, ubufp)) {
1510                pr_devel("fault getting user info !\n");
1511                return -EFAULT;
1512        }
1513
1514        server = val & KVM_XICS_DESTINATION_MASK;
1515        guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1516
1517        pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1518                 val, server, guest_prio);
1519
1520        /*
1521         * If the source doesn't already have an IPI, allocate
1522         * one and get the corresponding data
1523         */
1524        if (!state->ipi_number) {
1525                state->ipi_number = xive_native_alloc_irq();
1526                if (state->ipi_number == 0) {
1527                        pr_devel("Failed to allocate IPI !\n");
1528                        return -ENOMEM;
1529                }
1530                xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1531                pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1532        }
1533
1534        /*
1535         * We use lock_and_mask() to set us in the right masked
1536         * state. We will override that state from the saved state
1537         * further down, but this will handle the cases of interrupts
1538         * that need FW masking. We set the initial guest_priority to
1539         * 0 before calling it to ensure it actually performs the masking.
1540         */
1541        state->guest_priority = 0;
1542        xive_lock_and_mask(xive, sb, state);
1543
1544        /*
1545         * Now, we select a target if we have one. If we don't we
1546         * leave the interrupt untargetted. It means that an interrupt
1547         * can become "untargetted" accross migration if it was masked
1548         * by set_xive() but there is little we can do about it.
1549         */
1550
1551        /* First convert prio and mark interrupt as untargetted */
1552        act_prio = xive_prio_from_guest(guest_prio);
1553        state->act_priority = MASKED;
1554
1555        /*
1556         * We need to drop the lock due to the mutex below. Hopefully
1557         * nothing is touching that interrupt yet since it hasn't been
1558         * advertized to a running guest yet
1559         */
1560        arch_spin_unlock(&sb->lock);
1561
1562        /* If we have a priority target the interrupt */
1563        if (act_prio != MASKED) {
1564                /* First, check provisioning of queues */
1565                mutex_lock(&xive->kvm->lock);
1566                rc = xive_check_provisioning(xive->kvm, act_prio);
1567                mutex_unlock(&xive->kvm->lock);
1568
1569                /* Target interrupt */
1570                if (rc == 0)
1571                        rc = xive_target_interrupt(xive->kvm, state,
1572                                                   server, act_prio);
1573                /*
1574                 * If provisioning or targetting failed, leave it
1575                 * alone and masked. It will remain disabled until
1576                 * the guest re-targets it.
1577                 */
1578        }
1579
1580        /*
1581         * Find out if this was a delayed irq stashed in an ICP,
1582         * in which case, treat it as pending
1583         */
1584        if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1585                val |= KVM_XICS_PENDING;
1586                pr_devel("  Found delayed ! forcing PENDING !\n");
1587        }
1588
1589        /* Cleanup the SW state */
1590        state->old_p = false;
1591        state->old_q = false;
1592        state->lsi = false;
1593        state->asserted = false;
1594
1595        /* Restore LSI state */
1596        if (val & KVM_XICS_LEVEL_SENSITIVE) {
1597                state->lsi = true;
1598                if (val & KVM_XICS_PENDING)
1599                        state->asserted = true;
1600                pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1601        }
1602
1603        /*
1604         * Restore P and Q. If the interrupt was pending, we
1605         * force Q and !P, which will trigger a resend.
1606         *
1607         * That means that a guest that had both an interrupt
1608         * pending (queued) and Q set will restore with only
1609         * one instance of that interrupt instead of 2, but that
1610         * is perfectly fine as coalescing interrupts that haven't
1611         * been presented yet is always allowed.
1612         */
1613        if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1614                state->old_p = true;
1615        if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1616                state->old_q = true;
1617
1618        pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1619
1620        /*
1621         * If the interrupt was unmasked, update guest priority and
1622         * perform the appropriate state transition and do a
1623         * re-trigger if necessary.
1624         */
1625        if (val & KVM_XICS_MASKED) {
1626                pr_devel("  masked, saving prio\n");
1627                state->guest_priority = MASKED;
1628                state->saved_priority = guest_prio;
1629        } else {
1630                pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1631                xive_finish_unmask(xive, sb, state, guest_prio);
1632                state->saved_priority = guest_prio;
1633        }
1634
1635        /* Increment the number of valid sources and mark this one valid */
1636        if (!state->valid)
1637                xive->src_count++;
1638        state->valid = true;
1639
1640        return 0;
1641}
1642
1643int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1644                        bool line_status)
1645{
1646        struct kvmppc_xive *xive = kvm->arch.xive;
1647        struct kvmppc_xive_src_block *sb;
1648        struct kvmppc_xive_irq_state *state;
1649        u16 idx;
1650
1651        if (!xive)
1652                return -ENODEV;
1653
1654        sb = kvmppc_xive_find_source(xive, irq, &idx);
1655        if (!sb)
1656                return -EINVAL;
1657
1658        /* Perform locklessly .... (we need to do some RCUisms here...) */
1659        state = &sb->irq_state[idx];
1660        if (!state->valid)
1661                return -EINVAL;
1662
1663        /* We don't allow a trigger on a passed-through interrupt */
1664        if (state->pt_number)
1665                return -EINVAL;
1666
1667        if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1668                state->asserted = 1;
1669        else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1670                state->asserted = 0;
1671                return 0;
1672        }
1673
1674        /* Trigger the IPI */
1675        xive_irq_trigger(&state->ipi_data);
1676
1677        return 0;
1678}
1679
1680static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1681{
1682        struct kvmppc_xive *xive = dev->private;
1683
1684        /* We honor the existing XICS ioctl */
1685        switch (attr->group) {
1686        case KVM_DEV_XICS_GRP_SOURCES:
1687                return xive_set_source(xive, attr->attr, attr->addr);
1688        }
1689        return -ENXIO;
1690}
1691
1692static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1693{
1694        struct kvmppc_xive *xive = dev->private;
1695
1696        /* We honor the existing XICS ioctl */
1697        switch (attr->group) {
1698        case KVM_DEV_XICS_GRP_SOURCES:
1699                return xive_get_source(xive, attr->attr, attr->addr);
1700        }
1701        return -ENXIO;
1702}
1703
1704static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1705{
1706        /* We honor the same limits as XICS, at least for now */
1707        switch (attr->group) {
1708        case KVM_DEV_XICS_GRP_SOURCES:
1709                if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1710                    attr->attr < KVMPPC_XICS_NR_IRQS)
1711                        return 0;
1712                break;
1713        }
1714        return -ENXIO;
1715}
1716
1717static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1718{
1719        xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1720        xive_native_configure_irq(hw_num, 0, MASKED, 0);
1721        xive_cleanup_irq_data(xd);
1722}
1723
1724static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1725{
1726        int i;
1727
1728        for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1729                struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1730
1731                if (!state->valid)
1732                        continue;
1733
1734                kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1735                xive_native_free_irq(state->ipi_number);
1736
1737                /* Pass-through, cleanup too */
1738                if (state->pt_number)
1739                        kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1740
1741                state->valid = false;
1742        }
1743}
1744
1745static void kvmppc_xive_free(struct kvm_device *dev)
1746{
1747        struct kvmppc_xive *xive = dev->private;
1748        struct kvm *kvm = xive->kvm;
1749        int i;
1750
1751        debugfs_remove(xive->dentry);
1752
1753        if (kvm)
1754                kvm->arch.xive = NULL;
1755
1756        /* Mask and free interrupts */
1757        for (i = 0; i <= xive->max_sbid; i++) {
1758                if (xive->src_blocks[i])
1759                        kvmppc_xive_free_sources(xive->src_blocks[i]);
1760                kfree(xive->src_blocks[i]);
1761                xive->src_blocks[i] = NULL;
1762        }
1763
1764        if (xive->vp_base != XIVE_INVALID_VP)
1765                xive_native_free_vp_block(xive->vp_base);
1766
1767
1768        kfree(xive);
1769        kfree(dev);
1770}
1771
1772static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1773{
1774        struct kvmppc_xive *xive;
1775        struct kvm *kvm = dev->kvm;
1776        int ret = 0;
1777
1778        pr_devel("Creating xive for partition\n");
1779
1780        xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1781        if (!xive)
1782                return -ENOMEM;
1783
1784        dev->private = xive;
1785        xive->dev = dev;
1786        xive->kvm = kvm;
1787
1788        /* Already there ? */
1789        if (kvm->arch.xive)
1790                ret = -EEXIST;
1791        else
1792                kvm->arch.xive = xive;
1793
1794        /* We use the default queue size set by the host */
1795        xive->q_order = xive_native_default_eq_shift();
1796        if (xive->q_order < PAGE_SHIFT)
1797                xive->q_page_order = 0;
1798        else
1799                xive->q_page_order = xive->q_order - PAGE_SHIFT;
1800
1801        /* Allocate a bunch of VPs */
1802        xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1803        pr_devel("VP_Base=%x\n", xive->vp_base);
1804
1805        if (xive->vp_base == XIVE_INVALID_VP)
1806                ret = -ENOMEM;
1807
1808        xive->single_escalation = xive_native_has_single_escalation();
1809
1810        if (ret) {
1811                kfree(xive);
1812                return ret;
1813        }
1814
1815        return 0;
1816}
1817
1818
1819static int xive_debug_show(struct seq_file *m, void *private)
1820{
1821        struct kvmppc_xive *xive = m->private;
1822        struct kvm *kvm = xive->kvm;
1823        struct kvm_vcpu *vcpu;
1824        u64 t_rm_h_xirr = 0;
1825        u64 t_rm_h_ipoll = 0;
1826        u64 t_rm_h_cppr = 0;
1827        u64 t_rm_h_eoi = 0;
1828        u64 t_rm_h_ipi = 0;
1829        u64 t_vm_h_xirr = 0;
1830        u64 t_vm_h_ipoll = 0;
1831        u64 t_vm_h_cppr = 0;
1832        u64 t_vm_h_eoi = 0;
1833        u64 t_vm_h_ipi = 0;
1834        unsigned int i;
1835
1836        if (!kvm)
1837                return 0;
1838
1839        seq_printf(m, "=========\nVCPU state\n=========\n");
1840
1841        kvm_for_each_vcpu(i, vcpu, kvm) {
1842                struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1843                unsigned int i;
1844
1845                if (!xc)
1846                        continue;
1847
1848                seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1849                           " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1850                           xc->server_num, xc->cppr, xc->hw_cppr,
1851                           xc->mfrr, xc->pending,
1852                           xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1853                for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1854                        struct xive_q *q = &xc->queues[i];
1855                        u32 i0, i1, idx;
1856
1857                        if (!q->qpage && !xc->esc_virq[i])
1858                                continue;
1859
1860                        seq_printf(m, " [q%d]: ", i);
1861
1862                        if (q->qpage) {
1863                                idx = q->idx;
1864                                i0 = be32_to_cpup(q->qpage + idx);
1865                                idx = (idx + 1) & q->msk;
1866                                i1 = be32_to_cpup(q->qpage + idx);
1867                                seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1);
1868                        }
1869                        if (xc->esc_virq[i]) {
1870                                struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
1871                                struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1872                                u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
1873                                seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
1874                                           (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
1875                                           (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
1876                                           xc->esc_virq[i], pq, xd->eoi_page);
1877                                seq_printf(m, "\n");
1878                        }
1879                }
1880
1881                t_rm_h_xirr += xc->stat_rm_h_xirr;
1882                t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1883                t_rm_h_cppr += xc->stat_rm_h_cppr;
1884                t_rm_h_eoi += xc->stat_rm_h_eoi;
1885                t_rm_h_ipi += xc->stat_rm_h_ipi;
1886                t_vm_h_xirr += xc->stat_vm_h_xirr;
1887                t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1888                t_vm_h_cppr += xc->stat_vm_h_cppr;
1889                t_vm_h_eoi += xc->stat_vm_h_eoi;
1890                t_vm_h_ipi += xc->stat_vm_h_ipi;
1891        }
1892
1893        seq_printf(m, "Hcalls totals\n");
1894        seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1895        seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1896        seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1897        seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1898        seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1899
1900        return 0;
1901}
1902
1903static int xive_debug_open(struct inode *inode, struct file *file)
1904{
1905        return single_open(file, xive_debug_show, inode->i_private);
1906}
1907
1908static const struct file_operations xive_debug_fops = {
1909        .open = xive_debug_open,
1910        .read = seq_read,
1911        .llseek = seq_lseek,
1912        .release = single_release,
1913};
1914
1915static void xive_debugfs_init(struct kvmppc_xive *xive)
1916{
1917        char *name;
1918
1919        name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1920        if (!name) {
1921                pr_err("%s: no memory for name\n", __func__);
1922                return;
1923        }
1924
1925        xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1926                                           xive, &xive_debug_fops);
1927
1928        pr_debug("%s: created %s\n", __func__, name);
1929        kfree(name);
1930}
1931
1932static void kvmppc_xive_init(struct kvm_device *dev)
1933{
1934        struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1935
1936        /* Register some debug interfaces */
1937        xive_debugfs_init(xive);
1938}
1939
1940struct kvm_device_ops kvm_xive_ops = {
1941        .name = "kvm-xive",
1942        .create = kvmppc_xive_create,
1943        .init = kvmppc_xive_init,
1944        .destroy = kvmppc_xive_free,
1945        .set_attr = xive_set_attr,
1946        .get_attr = xive_get_attr,
1947        .has_attr = xive_has_attr,
1948};
1949
1950void kvmppc_xive_init_module(void)
1951{
1952        __xive_vm_h_xirr = xive_vm_h_xirr;
1953        __xive_vm_h_ipoll = xive_vm_h_ipoll;
1954        __xive_vm_h_ipi = xive_vm_h_ipi;
1955        __xive_vm_h_cppr = xive_vm_h_cppr;
1956        __xive_vm_h_eoi = xive_vm_h_eoi;
1957}
1958
1959void kvmppc_xive_exit_module(void)
1960{
1961        __xive_vm_h_xirr = NULL;
1962        __xive_vm_h_ipoll = NULL;
1963        __xive_vm_h_ipi = NULL;
1964        __xive_vm_h_cppr = NULL;
1965        __xive_vm_h_eoi = NULL;
1966}
1967