linux/arch/powerpc/kvm/e500.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
   3 *
   4 * Author: Yu Liu, <yu.liu@freescale.com>
   5 *
   6 * Description:
   7 * This file is derived from arch/powerpc/kvm/44x.c,
   8 * by Hollis Blanchard <hollisb@us.ibm.com>.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License, version 2, as
  12 * published by the Free Software Foundation.
  13 */
  14
  15#include <linux/kvm_host.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/export.h>
  19#include <linux/module.h>
  20#include <linux/miscdevice.h>
  21
  22#include <asm/reg.h>
  23#include <asm/cputable.h>
  24#include <asm/tlbflush.h>
  25#include <asm/kvm_ppc.h>
  26
  27#include "../mm/mmu_decl.h"
  28#include "booke.h"
  29#include "e500.h"
  30
  31struct id {
  32        unsigned long val;
  33        struct id **pentry;
  34};
  35
  36#define NUM_TIDS 256
  37
  38/*
  39 * This table provide mappings from:
  40 * (guestAS,guestTID,guestPR) --> ID of physical cpu
  41 * guestAS      [0..1]
  42 * guestTID     [0..255]
  43 * guestPR      [0..1]
  44 * ID           [1..255]
  45 * Each vcpu keeps one vcpu_id_table.
  46 */
  47struct vcpu_id_table {
  48        struct id id[2][NUM_TIDS][2];
  49};
  50
  51/*
  52 * This table provide reversed mappings of vcpu_id_table:
  53 * ID --> address of vcpu_id_table item.
  54 * Each physical core has one pcpu_id_table.
  55 */
  56struct pcpu_id_table {
  57        struct id *entry[NUM_TIDS];
  58};
  59
  60static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
  61
  62/* This variable keeps last used shadow ID on local core.
  63 * The valid range of shadow ID is [1..255] */
  64static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
  65
  66/*
  67 * Allocate a free shadow id and setup a valid sid mapping in given entry.
  68 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
  69 *
  70 * The caller must have preemption disabled, and keep it that way until
  71 * it has finished with the returned shadow id (either written into the
  72 * TLB or arch.shadow_pid, or discarded).
  73 */
  74static inline int local_sid_setup_one(struct id *entry)
  75{
  76        unsigned long sid;
  77        int ret = -1;
  78
  79        sid = __this_cpu_inc_return(pcpu_last_used_sid);
  80        if (sid < NUM_TIDS) {
  81                __this_cpu_write(pcpu_sids.entry[sid], entry);
  82                entry->val = sid;
  83                entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
  84                ret = sid;
  85        }
  86
  87        /*
  88         * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
  89         * the caller will invalidate everything and start over.
  90         *
  91         * sid > NUM_TIDS indicates a race, which we disable preemption to
  92         * avoid.
  93         */
  94        WARN_ON(sid > NUM_TIDS);
  95
  96        return ret;
  97}
  98
  99/*
 100 * Check if given entry contain a valid shadow id mapping.
 101 * An ID mapping is considered valid only if
 102 * both vcpu and pcpu know this mapping.
 103 *
 104 * The caller must have preemption disabled, and keep it that way until
 105 * it has finished with the returned shadow id (either written into the
 106 * TLB or arch.shadow_pid, or discarded).
 107 */
 108static inline int local_sid_lookup(struct id *entry)
 109{
 110        if (entry && entry->val != 0 &&
 111            __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
 112            entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
 113                return entry->val;
 114        return -1;
 115}
 116
 117/* Invalidate all id mappings on local core -- call with preempt disabled */
 118static inline void local_sid_destroy_all(void)
 119{
 120        __this_cpu_write(pcpu_last_used_sid, 0);
 121        memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
 122}
 123
 124static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
 125{
 126        vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
 127        return vcpu_e500->idt;
 128}
 129
 130static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
 131{
 132        kfree(vcpu_e500->idt);
 133        vcpu_e500->idt = NULL;
 134}
 135
 136/* Map guest pid to shadow.
 137 * We use PID to keep shadow of current guest non-zero PID,
 138 * and use PID1 to keep shadow of guest zero PID.
 139 * So that guest tlbe with TID=0 can be accessed at any time */
 140static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
 141{
 142        preempt_disable();
 143        vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
 144                        get_cur_as(&vcpu_e500->vcpu),
 145                        get_cur_pid(&vcpu_e500->vcpu),
 146                        get_cur_pr(&vcpu_e500->vcpu), 1);
 147        vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
 148                        get_cur_as(&vcpu_e500->vcpu), 0,
 149                        get_cur_pr(&vcpu_e500->vcpu), 1);
 150        preempt_enable();
 151}
 152
 153/* Invalidate all mappings on vcpu */
 154static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
 155{
 156        memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
 157
 158        /* Update shadow pid when mappings are changed */
 159        kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 160}
 161
 162/* Invalidate one ID mapping on vcpu */
 163static inline void kvmppc_e500_id_table_reset_one(
 164                               struct kvmppc_vcpu_e500 *vcpu_e500,
 165                               int as, int pid, int pr)
 166{
 167        struct vcpu_id_table *idt = vcpu_e500->idt;
 168
 169        BUG_ON(as >= 2);
 170        BUG_ON(pid >= NUM_TIDS);
 171        BUG_ON(pr >= 2);
 172
 173        idt->id[as][pid][pr].val = 0;
 174        idt->id[as][pid][pr].pentry = NULL;
 175
 176        /* Update shadow pid when mappings are changed */
 177        kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 178}
 179
 180/*
 181 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
 182 * This function first lookup if a valid mapping exists,
 183 * if not, then creates a new one.
 184 *
 185 * The caller must have preemption disabled, and keep it that way until
 186 * it has finished with the returned shadow id (either written into the
 187 * TLB or arch.shadow_pid, or discarded).
 188 */
 189unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
 190                                 unsigned int as, unsigned int gid,
 191                                 unsigned int pr, int avoid_recursion)
 192{
 193        struct vcpu_id_table *idt = vcpu_e500->idt;
 194        int sid;
 195
 196        BUG_ON(as >= 2);
 197        BUG_ON(gid >= NUM_TIDS);
 198        BUG_ON(pr >= 2);
 199
 200        sid = local_sid_lookup(&idt->id[as][gid][pr]);
 201
 202        while (sid <= 0) {
 203                /* No mapping yet */
 204                sid = local_sid_setup_one(&idt->id[as][gid][pr]);
 205                if (sid <= 0) {
 206                        _tlbil_all();
 207                        local_sid_destroy_all();
 208                }
 209
 210                /* Update shadow pid when mappings are changed */
 211                if (!avoid_recursion)
 212                        kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 213        }
 214
 215        return sid;
 216}
 217
 218unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
 219                                      struct kvm_book3e_206_tlb_entry *gtlbe)
 220{
 221        return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
 222                                   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
 223}
 224
 225void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
 226{
 227        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 228
 229        if (vcpu->arch.pid != pid) {
 230                vcpu_e500->pid[0] = vcpu->arch.pid = pid;
 231                kvmppc_e500_recalc_shadow_pid(vcpu_e500);
 232        }
 233}
 234
 235/* gtlbe must not be mapped by more than one host tlbe */
 236void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
 237                           struct kvm_book3e_206_tlb_entry *gtlbe)
 238{
 239        struct vcpu_id_table *idt = vcpu_e500->idt;
 240        unsigned int pr, tid, ts;
 241        int pid;
 242        u32 val, eaddr;
 243        unsigned long flags;
 244
 245        ts = get_tlb_ts(gtlbe);
 246        tid = get_tlb_tid(gtlbe);
 247
 248        preempt_disable();
 249
 250        /* One guest ID may be mapped to two shadow IDs */
 251        for (pr = 0; pr < 2; pr++) {
 252                /*
 253                 * The shadow PID can have a valid mapping on at most one
 254                 * host CPU.  In the common case, it will be valid on this
 255                 * CPU, in which case we do a local invalidation of the
 256                 * specific address.
 257                 *
 258                 * If the shadow PID is not valid on the current host CPU,
 259                 * we invalidate the entire shadow PID.
 260                 */
 261                pid = local_sid_lookup(&idt->id[ts][tid][pr]);
 262                if (pid <= 0) {
 263                        kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
 264                        continue;
 265                }
 266
 267                /*
 268                 * The guest is invalidating a 4K entry which is in a PID
 269                 * that has a valid shadow mapping on this host CPU.  We
 270                 * search host TLB to invalidate it's shadow TLB entry,
 271                 * similar to __tlbil_va except that we need to look in AS1.
 272                 */
 273                val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
 274                eaddr = get_tlb_eaddr(gtlbe);
 275
 276                local_irq_save(flags);
 277
 278                mtspr(SPRN_MAS6, val);
 279                asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
 280                val = mfspr(SPRN_MAS1);
 281                if (val & MAS1_VALID) {
 282                        mtspr(SPRN_MAS1, val & ~MAS1_VALID);
 283                        asm volatile("tlbwe");
 284                }
 285
 286                local_irq_restore(flags);
 287        }
 288
 289        preempt_enable();
 290}
 291
 292void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
 293{
 294        kvmppc_e500_id_table_reset_all(vcpu_e500);
 295}
 296
 297void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
 298{
 299        /* Recalc shadow pid since MSR changes */
 300        kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
 301}
 302
 303static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
 304{
 305        kvmppc_booke_vcpu_load(vcpu, cpu);
 306
 307        /* Shadow PID may be expired on local core */
 308        kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
 309}
 310
 311static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
 312{
 313#ifdef CONFIG_SPE
 314        if (vcpu->arch.shadow_msr & MSR_SPE)
 315                kvmppc_vcpu_disable_spe(vcpu);
 316#endif
 317
 318        kvmppc_booke_vcpu_put(vcpu);
 319}
 320
 321int kvmppc_core_check_processor_compat(void)
 322{
 323        int r;
 324
 325        if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
 326                r = 0;
 327        else
 328                r = -ENOTSUPP;
 329
 330        return r;
 331}
 332
 333static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
 334{
 335        struct kvm_book3e_206_tlb_entry *tlbe;
 336
 337        /* Insert large initial mapping for guest. */
 338        tlbe = get_entry(vcpu_e500, 1, 0);
 339        tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
 340        tlbe->mas2 = 0;
 341        tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
 342
 343        /* 4K map for serial output. Used by kernel wrapper. */
 344        tlbe = get_entry(vcpu_e500, 1, 1);
 345        tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
 346        tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
 347        tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
 348}
 349
 350int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
 351{
 352        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 353
 354        kvmppc_e500_tlb_setup(vcpu_e500);
 355
 356        /* Registers init */
 357        vcpu->arch.pvr = mfspr(SPRN_PVR);
 358        vcpu_e500->svr = mfspr(SPRN_SVR);
 359
 360        vcpu->arch.cpu_type = KVM_CPU_E500V2;
 361
 362        return 0;
 363}
 364
 365static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
 366                                      struct kvm_sregs *sregs)
 367{
 368        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 369
 370        sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
 371                               KVM_SREGS_E_PM;
 372        sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
 373
 374        sregs->u.e.impl.fsl.features = 0;
 375        sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
 376        sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
 377        sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
 378
 379        sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
 380        sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
 381        sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
 382        sregs->u.e.ivor_high[3] =
 383                vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
 384
 385        kvmppc_get_sregs_ivor(vcpu, sregs);
 386        kvmppc_get_sregs_e500_tlb(vcpu, sregs);
 387        return 0;
 388}
 389
 390static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
 391                                      struct kvm_sregs *sregs)
 392{
 393        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 394        int ret;
 395
 396        if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
 397                vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
 398                vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
 399                vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
 400        }
 401
 402        ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
 403        if (ret < 0)
 404                return ret;
 405
 406        if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
 407                return 0;
 408
 409        if (sregs->u.e.features & KVM_SREGS_E_SPE) {
 410                vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
 411                        sregs->u.e.ivor_high[0];
 412                vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
 413                        sregs->u.e.ivor_high[1];
 414                vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
 415                        sregs->u.e.ivor_high[2];
 416        }
 417
 418        if (sregs->u.e.features & KVM_SREGS_E_PM) {
 419                vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
 420                        sregs->u.e.ivor_high[3];
 421        }
 422
 423        return kvmppc_set_sregs_ivor(vcpu, sregs);
 424}
 425
 426static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
 427                                   union kvmppc_one_reg *val)
 428{
 429        int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
 430        return r;
 431}
 432
 433static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
 434                                   union kvmppc_one_reg *val)
 435{
 436        int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
 437        return r;
 438}
 439
 440static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
 441                                                     unsigned int id)
 442{
 443        struct kvmppc_vcpu_e500 *vcpu_e500;
 444        struct kvm_vcpu *vcpu;
 445        int err;
 446
 447        vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 448        if (!vcpu_e500) {
 449                err = -ENOMEM;
 450                goto out;
 451        }
 452
 453        vcpu = &vcpu_e500->vcpu;
 454        err = kvm_vcpu_init(vcpu, kvm, id);
 455        if (err)
 456                goto free_vcpu;
 457
 458        if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) {
 459                err = -ENOMEM;
 460                goto uninit_vcpu;
 461        }
 462
 463        err = kvmppc_e500_tlb_init(vcpu_e500);
 464        if (err)
 465                goto uninit_id;
 466
 467        vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
 468        if (!vcpu->arch.shared) {
 469                err = -ENOMEM;
 470                goto uninit_tlb;
 471        }
 472
 473        return vcpu;
 474
 475uninit_tlb:
 476        kvmppc_e500_tlb_uninit(vcpu_e500);
 477uninit_id:
 478        kvmppc_e500_id_table_free(vcpu_e500);
 479uninit_vcpu:
 480        kvm_vcpu_uninit(vcpu);
 481free_vcpu:
 482        kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
 483out:
 484        return ERR_PTR(err);
 485}
 486
 487static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
 488{
 489        struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 490
 491        free_page((unsigned long)vcpu->arch.shared);
 492        kvmppc_e500_tlb_uninit(vcpu_e500);
 493        kvmppc_e500_id_table_free(vcpu_e500);
 494        kvm_vcpu_uninit(vcpu);
 495        kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
 496}
 497
 498static int kvmppc_core_init_vm_e500(struct kvm *kvm)
 499{
 500        return 0;
 501}
 502
 503static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
 504{
 505}
 506
 507static struct kvmppc_ops kvm_ops_e500 = {
 508        .get_sregs = kvmppc_core_get_sregs_e500,
 509        .set_sregs = kvmppc_core_set_sregs_e500,
 510        .get_one_reg = kvmppc_get_one_reg_e500,
 511        .set_one_reg = kvmppc_set_one_reg_e500,
 512        .vcpu_load   = kvmppc_core_vcpu_load_e500,
 513        .vcpu_put    = kvmppc_core_vcpu_put_e500,
 514        .vcpu_create = kvmppc_core_vcpu_create_e500,
 515        .vcpu_free   = kvmppc_core_vcpu_free_e500,
 516        .mmu_destroy  = kvmppc_mmu_destroy_e500,
 517        .init_vm = kvmppc_core_init_vm_e500,
 518        .destroy_vm = kvmppc_core_destroy_vm_e500,
 519        .emulate_op = kvmppc_core_emulate_op_e500,
 520        .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
 521        .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
 522};
 523
 524static int __init kvmppc_e500_init(void)
 525{
 526        int r, i;
 527        unsigned long ivor[3];
 528        /* Process remaining handlers above the generic first 16 */
 529        unsigned long *handler = &kvmppc_booke_handler_addr[16];
 530        unsigned long handler_len;
 531        unsigned long max_ivor = 0;
 532
 533        r = kvmppc_core_check_processor_compat();
 534        if (r)
 535                goto err_out;
 536
 537        r = kvmppc_booke_init();
 538        if (r)
 539                goto err_out;
 540
 541        /* copy extra E500 exception handlers */
 542        ivor[0] = mfspr(SPRN_IVOR32);
 543        ivor[1] = mfspr(SPRN_IVOR33);
 544        ivor[2] = mfspr(SPRN_IVOR34);
 545        for (i = 0; i < 3; i++) {
 546                if (ivor[i] > ivor[max_ivor])
 547                        max_ivor = i;
 548
 549                handler_len = handler[i + 1] - handler[i];
 550                memcpy((void *)kvmppc_booke_handlers + ivor[i],
 551                       (void *)handler[i], handler_len);
 552        }
 553        handler_len = handler[max_ivor + 1] - handler[max_ivor];
 554        flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
 555                           ivor[max_ivor] + handler_len);
 556
 557        r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
 558        if (r)
 559                goto err_out;
 560        kvm_ops_e500.owner = THIS_MODULE;
 561        kvmppc_pr_ops = &kvm_ops_e500;
 562
 563err_out:
 564        return r;
 565}
 566
 567static void __exit kvmppc_e500_exit(void)
 568{
 569        kvmppc_pr_ops = NULL;
 570        kvmppc_booke_exit();
 571}
 572
 573module_init(kvmppc_e500_init);
 574module_exit(kvmppc_e500_exit);
 575MODULE_ALIAS_MISCDEV(KVM_MINOR);
 576MODULE_ALIAS("devname:kvm");
 577