linux/arch/powerpc/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  PowerPC version
   3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   4 *
   5 *  Derived from "arch/i386/mm/fault.c"
   6 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  Modified by Cort Dougan and Paul Mackerras.
   9 *
  10 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11 *
  12 *  This program is free software; you can redistribute it and/or
  13 *  modify it under the terms of the GNU General Public License
  14 *  as published by the Free Software Foundation; either version
  15 *  2 of the License, or (at your option) any later version.
  16 */
  17
  18#include <linux/signal.h>
  19#include <linux/sched.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/kernel.h>
  22#include <linux/errno.h>
  23#include <linux/string.h>
  24#include <linux/types.h>
  25#include <linux/ptrace.h>
  26#include <linux/mman.h>
  27#include <linux/mm.h>
  28#include <linux/interrupt.h>
  29#include <linux/highmem.h>
  30#include <linux/extable.h>
  31#include <linux/kprobes.h>
  32#include <linux/kdebug.h>
  33#include <linux/perf_event.h>
  34#include <linux/ratelimit.h>
  35#include <linux/context_tracking.h>
  36#include <linux/hugetlb.h>
  37#include <linux/uaccess.h>
  38
  39#include <asm/firmware.h>
  40#include <asm/page.h>
  41#include <asm/pgtable.h>
  42#include <asm/mmu.h>
  43#include <asm/mmu_context.h>
  44#include <asm/tlbflush.h>
  45#include <asm/siginfo.h>
  46#include <asm/debug.h>
  47
  48static inline bool notify_page_fault(struct pt_regs *regs)
  49{
  50        bool ret = false;
  51
  52#ifdef CONFIG_KPROBES
  53        /* kprobe_running() needs smp_processor_id() */
  54        if (!user_mode(regs)) {
  55                preempt_disable();
  56                if (kprobe_running() && kprobe_fault_handler(regs, 11))
  57                        ret = true;
  58                preempt_enable();
  59        }
  60#endif /* CONFIG_KPROBES */
  61
  62        if (unlikely(debugger_fault_handler(regs)))
  63                ret = true;
  64
  65        return ret;
  66}
  67
  68/*
  69 * Check whether the instruction at regs->nip is a store using
  70 * an update addressing form which will update r1.
  71 */
  72static bool store_updates_sp(struct pt_regs *regs)
  73{
  74        unsigned int inst;
  75
  76        if (get_user(inst, (unsigned int __user *)regs->nip))
  77                return false;
  78        /* check for 1 in the rA field */
  79        if (((inst >> 16) & 0x1f) != 1)
  80                return false;
  81        /* check major opcode */
  82        switch (inst >> 26) {
  83        case 37:        /* stwu */
  84        case 39:        /* stbu */
  85        case 45:        /* sthu */
  86        case 53:        /* stfsu */
  87        case 55:        /* stfdu */
  88                return true;
  89        case 62:        /* std or stdu */
  90                return (inst & 3) == 1;
  91        case 31:
  92                /* check minor opcode */
  93                switch ((inst >> 1) & 0x3ff) {
  94                case 181:       /* stdux */
  95                case 183:       /* stwux */
  96                case 247:       /* stbux */
  97                case 439:       /* sthux */
  98                case 695:       /* stfsux */
  99                case 759:       /* stfdux */
 100                        return true;
 101                }
 102        }
 103        return false;
 104}
 105/*
 106 * do_page_fault error handling helpers
 107 */
 108
 109static int
 110__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
 111                int pkey)
 112{
 113        /*
 114         * If we are in kernel mode, bail out with a SEGV, this will
 115         * be caught by the assembly which will restore the non-volatile
 116         * registers before calling bad_page_fault()
 117         */
 118        if (!user_mode(regs))
 119                return SIGSEGV;
 120
 121        _exception_pkey(SIGSEGV, regs, si_code, address, pkey);
 122
 123        return 0;
 124}
 125
 126static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
 127{
 128        return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
 129}
 130
 131static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
 132                        int pkey)
 133{
 134        struct mm_struct *mm = current->mm;
 135
 136        /*
 137         * Something tried to access memory that isn't in our memory map..
 138         * Fix it, but check if it's kernel or user first..
 139         */
 140        up_read(&mm->mmap_sem);
 141
 142        return __bad_area_nosemaphore(regs, address, si_code, pkey);
 143}
 144
 145static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 146{
 147        return __bad_area(regs, address, SEGV_MAPERR, 0);
 148}
 149
 150static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
 151                                    int pkey)
 152{
 153        return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
 154}
 155
 156static noinline int bad_access(struct pt_regs *regs, unsigned long address)
 157{
 158        return __bad_area(regs, address, SEGV_ACCERR, 0);
 159}
 160
 161static int do_sigbus(struct pt_regs *regs, unsigned long address,
 162                     unsigned int fault)
 163{
 164        siginfo_t info;
 165        unsigned int lsb = 0;
 166
 167        if (!user_mode(regs))
 168                return SIGBUS;
 169
 170        current->thread.trap_nr = BUS_ADRERR;
 171        info.si_signo = SIGBUS;
 172        info.si_errno = 0;
 173        info.si_code = BUS_ADRERR;
 174        info.si_addr = (void __user *)address;
 175#ifdef CONFIG_MEMORY_FAILURE
 176        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 177                pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 178                        current->comm, current->pid, address);
 179                info.si_code = BUS_MCEERR_AR;
 180        }
 181
 182        if (fault & VM_FAULT_HWPOISON_LARGE)
 183                lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 184        if (fault & VM_FAULT_HWPOISON)
 185                lsb = PAGE_SHIFT;
 186#endif
 187        info.si_addr_lsb = lsb;
 188        force_sig_info(SIGBUS, &info, current);
 189        return 0;
 190}
 191
 192static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
 193{
 194        /*
 195         * Kernel page fault interrupted by SIGKILL. We have no reason to
 196         * continue processing.
 197         */
 198        if (fatal_signal_pending(current) && !user_mode(regs))
 199                return SIGKILL;
 200
 201        /* Out of memory */
 202        if (fault & VM_FAULT_OOM) {
 203                /*
 204                 * We ran out of memory, or some other thing happened to us that
 205                 * made us unable to handle the page fault gracefully.
 206                 */
 207                if (!user_mode(regs))
 208                        return SIGSEGV;
 209                pagefault_out_of_memory();
 210        } else {
 211                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 212                             VM_FAULT_HWPOISON_LARGE))
 213                        return do_sigbus(regs, addr, fault);
 214                else if (fault & VM_FAULT_SIGSEGV)
 215                        return bad_area_nosemaphore(regs, addr);
 216                else
 217                        BUG();
 218        }
 219        return 0;
 220}
 221
 222/* Is this a bad kernel fault ? */
 223static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
 224                             unsigned long address)
 225{
 226        if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
 227                printk_ratelimited(KERN_CRIT "kernel tried to execute"
 228                                   " exec-protected page (%lx) -"
 229                                   "exploit attempt? (uid: %d)\n",
 230                                   address, from_kuid(&init_user_ns,
 231                                                      current_uid()));
 232        }
 233        return is_exec || (address >= TASK_SIZE);
 234}
 235
 236static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
 237                                struct vm_area_struct *vma,
 238                                bool store_update_sp)
 239{
 240        /*
 241         * N.B. The POWER/Open ABI allows programs to access up to
 242         * 288 bytes below the stack pointer.
 243         * The kernel signal delivery code writes up to about 1.5kB
 244         * below the stack pointer (r1) before decrementing it.
 245         * The exec code can write slightly over 640kB to the stack
 246         * before setting the user r1.  Thus we allow the stack to
 247         * expand to 1MB without further checks.
 248         */
 249        if (address + 0x100000 < vma->vm_end) {
 250                /* get user regs even if this fault is in kernel mode */
 251                struct pt_regs *uregs = current->thread.regs;
 252                if (uregs == NULL)
 253                        return true;
 254
 255                /*
 256                 * A user-mode access to an address a long way below
 257                 * the stack pointer is only valid if the instruction
 258                 * is one which would update the stack pointer to the
 259                 * address accessed if the instruction completed,
 260                 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
 261                 * (or the byte, halfword, float or double forms).
 262                 *
 263                 * If we don't check this then any write to the area
 264                 * between the last mapped region and the stack will
 265                 * expand the stack rather than segfaulting.
 266                 */
 267                if (address + 2048 < uregs->gpr[1] && !store_update_sp)
 268                        return true;
 269        }
 270        return false;
 271}
 272
 273static bool access_error(bool is_write, bool is_exec,
 274                         struct vm_area_struct *vma)
 275{
 276        /*
 277         * Allow execution from readable areas if the MMU does not
 278         * provide separate controls over reading and executing.
 279         *
 280         * Note: That code used to not be enabled for 4xx/BookE.
 281         * It is now as I/D cache coherency for these is done at
 282         * set_pte_at() time and I see no reason why the test
 283         * below wouldn't be valid on those processors. This -may-
 284         * break programs compiled with a really old ABI though.
 285         */
 286        if (is_exec) {
 287                return !(vma->vm_flags & VM_EXEC) &&
 288                        (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
 289                         !(vma->vm_flags & (VM_READ | VM_WRITE)));
 290        }
 291
 292        if (is_write) {
 293                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 294                        return true;
 295                return false;
 296        }
 297
 298        if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 299                return true;
 300        /*
 301         * We should ideally do the vma pkey access check here. But in the
 302         * fault path, handle_mm_fault() also does the same check. To avoid
 303         * these multiple checks, we skip it here and handle access error due
 304         * to pkeys later.
 305         */
 306        return false;
 307}
 308
 309#ifdef CONFIG_PPC_SMLPAR
 310static inline void cmo_account_page_fault(void)
 311{
 312        if (firmware_has_feature(FW_FEATURE_CMO)) {
 313                u32 page_ins;
 314
 315                preempt_disable();
 316                page_ins = be32_to_cpu(get_lppaca()->page_ins);
 317                page_ins += 1 << PAGE_FACTOR;
 318                get_lppaca()->page_ins = cpu_to_be32(page_ins);
 319                preempt_enable();
 320        }
 321}
 322#else
 323static inline void cmo_account_page_fault(void) { }
 324#endif /* CONFIG_PPC_SMLPAR */
 325
 326#ifdef CONFIG_PPC_STD_MMU
 327static void sanity_check_fault(bool is_write, unsigned long error_code)
 328{
 329        /*
 330         * For hash translation mode, we should never get a
 331         * PROTFAULT. Any update to pte to reduce access will result in us
 332         * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
 333         * fault instead of DSISR_PROTFAULT.
 334         *
 335         * A pte update to relax the access will not result in a hash page table
 336         * entry invalidate and hence can result in DSISR_PROTFAULT.
 337         * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
 338         * the special !is_write in the below conditional.
 339         *
 340         * For platforms that doesn't supports coherent icache and do support
 341         * per page noexec bit, we do setup things such that we do the
 342         * sync between D/I cache via fault. But that is handled via low level
 343         * hash fault code (hash_page_do_lazy_icache()) and we should not reach
 344         * here in such case.
 345         *
 346         * For wrong access that can result in PROTFAULT, the above vma->vm_flags
 347         * check should handle those and hence we should fall to the bad_area
 348         * handling correctly.
 349         *
 350         * For embedded with per page exec support that doesn't support coherent
 351         * icache we do get PROTFAULT and we handle that D/I cache sync in
 352         * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
 353         * is conditional for server MMU.
 354         *
 355         * For radix, we can get prot fault for autonuma case, because radix
 356         * page table will have them marked noaccess for user.
 357         */
 358        if (!radix_enabled() && !is_write)
 359                WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
 360}
 361#else
 362static void sanity_check_fault(bool is_write, unsigned long error_code) { }
 363#endif /* CONFIG_PPC_STD_MMU */
 364
 365/*
 366 * Define the correct "is_write" bit in error_code based
 367 * on the processor family
 368 */
 369#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
 370#define page_fault_is_write(__err)      ((__err) & ESR_DST)
 371#define page_fault_is_bad(__err)        (0)
 372#else
 373#define page_fault_is_write(__err)      ((__err) & DSISR_ISSTORE)
 374#if defined(CONFIG_PPC_8xx)
 375#define page_fault_is_bad(__err)        ((__err) & DSISR_NOEXEC_OR_G)
 376#elif defined(CONFIG_PPC64)
 377#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_64S)
 378#else
 379#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_32S)
 380#endif
 381#endif
 382
 383/*
 384 * For 600- and 800-family processors, the error_code parameter is DSISR
 385 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 386 * the error_code parameter is ESR for a data fault, 0 for an instruction
 387 * fault.
 388 * For 64-bit processors, the error_code parameter is
 389 *  - DSISR for a non-SLB data access fault,
 390 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 391 *  - 0 any SLB fault.
 392 *
 393 * The return value is 0 if the fault was handled, or the signal
 394 * number if this is a kernel fault that can't be handled here.
 395 */
 396static int __do_page_fault(struct pt_regs *regs, unsigned long address,
 397                           unsigned long error_code)
 398{
 399        struct vm_area_struct * vma;
 400        struct mm_struct *mm = current->mm;
 401        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 402        int is_exec = TRAP(regs) == 0x400;
 403        int is_user = user_mode(regs);
 404        int is_write = page_fault_is_write(error_code);
 405        int fault, major = 0;
 406        bool store_update_sp = false;
 407
 408        if (notify_page_fault(regs))
 409                return 0;
 410
 411        if (unlikely(page_fault_is_bad(error_code))) {
 412                if (is_user) {
 413                        _exception(SIGBUS, regs, BUS_OBJERR, address);
 414                        return 0;
 415                }
 416                return SIGBUS;
 417        }
 418
 419        /* Additional sanity check(s) */
 420        sanity_check_fault(is_write, error_code);
 421
 422        /*
 423         * The kernel should never take an execute fault nor should it
 424         * take a page fault to a kernel address.
 425         */
 426        if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
 427                return SIGSEGV;
 428
 429        /*
 430         * If we're in an interrupt, have no user context or are running
 431         * in a region with pagefaults disabled then we must not take the fault
 432         */
 433        if (unlikely(faulthandler_disabled() || !mm)) {
 434                if (is_user)
 435                        printk_ratelimited(KERN_ERR "Page fault in user mode"
 436                                           " with faulthandler_disabled()=%d"
 437                                           " mm=%p\n",
 438                                           faulthandler_disabled(), mm);
 439                return bad_area_nosemaphore(regs, address);
 440        }
 441
 442        /* We restore the interrupt state now */
 443        if (!arch_irq_disabled_regs(regs))
 444                local_irq_enable();
 445
 446        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 447
 448        if (error_code & DSISR_KEYFAULT)
 449                return bad_key_fault_exception(regs, address,
 450                                               get_mm_addr_key(mm, address));
 451
 452        /*
 453         * We want to do this outside mmap_sem, because reading code around nip
 454         * can result in fault, which will cause a deadlock when called with
 455         * mmap_sem held
 456         */
 457        if (is_write && is_user)
 458                store_update_sp = store_updates_sp(regs);
 459
 460        if (is_user)
 461                flags |= FAULT_FLAG_USER;
 462        if (is_write)
 463                flags |= FAULT_FLAG_WRITE;
 464        if (is_exec)
 465                flags |= FAULT_FLAG_INSTRUCTION;
 466
 467        /* When running in the kernel we expect faults to occur only to
 468         * addresses in user space.  All other faults represent errors in the
 469         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 470         * erroneous fault occurring in a code path which already holds mmap_sem
 471         * we will deadlock attempting to validate the fault against the
 472         * address space.  Luckily the kernel only validly references user
 473         * space from well defined areas of code, which are listed in the
 474         * exceptions table.
 475         *
 476         * As the vast majority of faults will be valid we will only perform
 477         * the source reference check when there is a possibility of a deadlock.
 478         * Attempt to lock the address space, if we cannot we then validate the
 479         * source.  If this is invalid we can skip the address space check,
 480         * thus avoiding the deadlock.
 481         */
 482        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 483                if (!is_user && !search_exception_tables(regs->nip))
 484                        return bad_area_nosemaphore(regs, address);
 485
 486retry:
 487                down_read(&mm->mmap_sem);
 488        } else {
 489                /*
 490                 * The above down_read_trylock() might have succeeded in
 491                 * which case we'll have missed the might_sleep() from
 492                 * down_read():
 493                 */
 494                might_sleep();
 495        }
 496
 497        vma = find_vma(mm, address);
 498        if (unlikely(!vma))
 499                return bad_area(regs, address);
 500        if (likely(vma->vm_start <= address))
 501                goto good_area;
 502        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
 503                return bad_area(regs, address);
 504
 505        /* The stack is being expanded, check if it's valid */
 506        if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
 507                return bad_area(regs, address);
 508
 509        /* Try to expand it */
 510        if (unlikely(expand_stack(vma, address)))
 511                return bad_area(regs, address);
 512
 513good_area:
 514        if (unlikely(access_error(is_write, is_exec, vma)))
 515                return bad_access(regs, address);
 516
 517        /*
 518         * If for any reason at all we couldn't handle the fault,
 519         * make sure we exit gracefully rather than endlessly redo
 520         * the fault.
 521         */
 522        fault = handle_mm_fault(vma, address, flags);
 523
 524#ifdef CONFIG_PPC_MEM_KEYS
 525        /*
 526         * we skipped checking for access error due to key earlier.
 527         * Check that using handle_mm_fault error return.
 528         */
 529        if (unlikely(fault & VM_FAULT_SIGSEGV) &&
 530                !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
 531
 532                int pkey = vma_pkey(vma);
 533
 534                up_read(&mm->mmap_sem);
 535                return bad_key_fault_exception(regs, address, pkey);
 536        }
 537#endif /* CONFIG_PPC_MEM_KEYS */
 538
 539        major |= fault & VM_FAULT_MAJOR;
 540
 541        /*
 542         * Handle the retry right now, the mmap_sem has been released in that
 543         * case.
 544         */
 545        if (unlikely(fault & VM_FAULT_RETRY)) {
 546                /* We retry only once */
 547                if (flags & FAULT_FLAG_ALLOW_RETRY) {
 548                        /*
 549                         * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 550                         * of starvation.
 551                         */
 552                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 553                        flags |= FAULT_FLAG_TRIED;
 554                        if (!fatal_signal_pending(current))
 555                                goto retry;
 556                }
 557
 558                /*
 559                 * User mode? Just return to handle the fatal exception otherwise
 560                 * return to bad_page_fault
 561                 */
 562                return is_user ? 0 : SIGBUS;
 563        }
 564
 565        up_read(&current->mm->mmap_sem);
 566
 567        if (unlikely(fault & VM_FAULT_ERROR))
 568                return mm_fault_error(regs, address, fault);
 569
 570        /*
 571         * Major/minor page fault accounting.
 572         */
 573        if (major) {
 574                current->maj_flt++;
 575                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
 576                cmo_account_page_fault();
 577        } else {
 578                current->min_flt++;
 579                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
 580        }
 581        return 0;
 582}
 583NOKPROBE_SYMBOL(__do_page_fault);
 584
 585int do_page_fault(struct pt_regs *regs, unsigned long address,
 586                  unsigned long error_code)
 587{
 588        enum ctx_state prev_state = exception_enter();
 589        int rc = __do_page_fault(regs, address, error_code);
 590        exception_exit(prev_state);
 591        return rc;
 592}
 593NOKPROBE_SYMBOL(do_page_fault);
 594
 595/*
 596 * bad_page_fault is called when we have a bad access from the kernel.
 597 * It is called from the DSI and ISI handlers in head.S and from some
 598 * of the procedures in traps.c.
 599 */
 600void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
 601{
 602        const struct exception_table_entry *entry;
 603
 604        /* Are we prepared to handle this fault?  */
 605        if ((entry = search_exception_tables(regs->nip)) != NULL) {
 606                regs->nip = extable_fixup(entry);
 607                return;
 608        }
 609
 610        /* kernel has accessed a bad area */
 611
 612        switch (TRAP(regs)) {
 613        case 0x300:
 614        case 0x380:
 615                printk(KERN_ALERT "Unable to handle kernel paging request for "
 616                        "data at address 0x%08lx\n", regs->dar);
 617                break;
 618        case 0x400:
 619        case 0x480:
 620                printk(KERN_ALERT "Unable to handle kernel paging request for "
 621                        "instruction fetch\n");
 622                break;
 623        case 0x600:
 624                printk(KERN_ALERT "Unable to handle kernel paging request for "
 625                        "unaligned access at address 0x%08lx\n", regs->dar);
 626                break;
 627        default:
 628                printk(KERN_ALERT "Unable to handle kernel paging request for "
 629                        "unknown fault\n");
 630                break;
 631        }
 632        printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
 633                regs->nip);
 634
 635        if (task_stack_end_corrupted(current))
 636                printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 637
 638        die("Kernel access of bad area", regs, sig);
 639}
 640