linux/arch/powerpc/mm/hash_utils_64.c
<<
>>
Prefs
   1/*
   2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   3 *   {mikejc|engebret}@us.ibm.com
   4 *
   5 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   6 *
   7 * SMP scalability work:
   8 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
   9 * 
  10 *    Module name: htab.c
  11 *
  12 *    Description:
  13 *      PowerPC Hashed Page Table functions
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 */
  20
  21#undef DEBUG
  22#undef DEBUG_LOW
  23
  24#define pr_fmt(fmt) "hash-mmu: " fmt
  25#include <linux/spinlock.h>
  26#include <linux/errno.h>
  27#include <linux/sched/mm.h>
  28#include <linux/proc_fs.h>
  29#include <linux/stat.h>
  30#include <linux/sysctl.h>
  31#include <linux/export.h>
  32#include <linux/ctype.h>
  33#include <linux/cache.h>
  34#include <linux/init.h>
  35#include <linux/signal.h>
  36#include <linux/memblock.h>
  37#include <linux/context_tracking.h>
  38#include <linux/libfdt.h>
  39#include <linux/pkeys.h>
  40
  41#include <asm/debugfs.h>
  42#include <asm/processor.h>
  43#include <asm/pgtable.h>
  44#include <asm/mmu.h>
  45#include <asm/mmu_context.h>
  46#include <asm/page.h>
  47#include <asm/types.h>
  48#include <linux/uaccess.h>
  49#include <asm/machdep.h>
  50#include <asm/prom.h>
  51#include <asm/tlbflush.h>
  52#include <asm/io.h>
  53#include <asm/eeh.h>
  54#include <asm/tlb.h>
  55#include <asm/cacheflush.h>
  56#include <asm/cputable.h>
  57#include <asm/sections.h>
  58#include <asm/copro.h>
  59#include <asm/udbg.h>
  60#include <asm/code-patching.h>
  61#include <asm/fadump.h>
  62#include <asm/firmware.h>
  63#include <asm/tm.h>
  64#include <asm/trace.h>
  65#include <asm/ps3.h>
  66#include <asm/pte-walk.h>
  67
  68#ifdef DEBUG
  69#define DBG(fmt...) udbg_printf(fmt)
  70#else
  71#define DBG(fmt...)
  72#endif
  73
  74#ifdef DEBUG_LOW
  75#define DBG_LOW(fmt...) udbg_printf(fmt)
  76#else
  77#define DBG_LOW(fmt...)
  78#endif
  79
  80#define KB (1024)
  81#define MB (1024*KB)
  82#define GB (1024L*MB)
  83
  84/*
  85 * Note:  pte   --> Linux PTE
  86 *        HPTE  --> PowerPC Hashed Page Table Entry
  87 *
  88 * Execution context:
  89 *   htab_initialize is called with the MMU off (of course), but
  90 *   the kernel has been copied down to zero so it can directly
  91 *   reference global data.  At this point it is very difficult
  92 *   to print debug info.
  93 *
  94 */
  95
  96static unsigned long _SDR1;
  97struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  98EXPORT_SYMBOL_GPL(mmu_psize_defs);
  99
 100u8 hpte_page_sizes[1 << LP_BITS];
 101EXPORT_SYMBOL_GPL(hpte_page_sizes);
 102
 103struct hash_pte *htab_address;
 104unsigned long htab_size_bytes;
 105unsigned long htab_hash_mask;
 106EXPORT_SYMBOL_GPL(htab_hash_mask);
 107int mmu_linear_psize = MMU_PAGE_4K;
 108EXPORT_SYMBOL_GPL(mmu_linear_psize);
 109int mmu_virtual_psize = MMU_PAGE_4K;
 110int mmu_vmalloc_psize = MMU_PAGE_4K;
 111#ifdef CONFIG_SPARSEMEM_VMEMMAP
 112int mmu_vmemmap_psize = MMU_PAGE_4K;
 113#endif
 114int mmu_io_psize = MMU_PAGE_4K;
 115int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 116EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
 117int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 118u16 mmu_slb_size = 64;
 119EXPORT_SYMBOL_GPL(mmu_slb_size);
 120#ifdef CONFIG_PPC_64K_PAGES
 121int mmu_ci_restrictions;
 122#endif
 123#ifdef CONFIG_DEBUG_PAGEALLOC
 124static u8 *linear_map_hash_slots;
 125static unsigned long linear_map_hash_count;
 126static DEFINE_SPINLOCK(linear_map_hash_lock);
 127#endif /* CONFIG_DEBUG_PAGEALLOC */
 128struct mmu_hash_ops mmu_hash_ops;
 129EXPORT_SYMBOL(mmu_hash_ops);
 130
 131/* There are definitions of page sizes arrays to be used when none
 132 * is provided by the firmware.
 133 */
 134
 135/*
 136 * Fallback (4k pages only)
 137 */
 138static struct mmu_psize_def mmu_psize_defaults[] = {
 139        [MMU_PAGE_4K] = {
 140                .shift  = 12,
 141                .sllp   = 0,
 142                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 143                .avpnm  = 0,
 144                .tlbiel = 0,
 145        },
 146};
 147
 148/* POWER4, GPUL, POWER5
 149 *
 150 * Support for 16Mb large pages
 151 */
 152static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 153        [MMU_PAGE_4K] = {
 154                .shift  = 12,
 155                .sllp   = 0,
 156                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 157                .avpnm  = 0,
 158                .tlbiel = 1,
 159        },
 160        [MMU_PAGE_16M] = {
 161                .shift  = 24,
 162                .sllp   = SLB_VSID_L,
 163                .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 164                            [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 165                .avpnm  = 0x1UL,
 166                .tlbiel = 0,
 167        },
 168};
 169
 170/*
 171 * 'R' and 'C' update notes:
 172 *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
 173 *     create writeable HPTEs without C set, because the hcall H_PROTECT
 174 *     that we use in that case will not update C
 175 *  - The above is however not a problem, because we also don't do that
 176 *     fancy "no flush" variant of eviction and we use H_REMOVE which will
 177 *     do the right thing and thus we don't have the race I described earlier
 178 *
 179 *    - Under bare metal,  we do have the race, so we need R and C set
 180 *    - We make sure R is always set and never lost
 181 *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
 182 */
 183unsigned long htab_convert_pte_flags(unsigned long pteflags)
 184{
 185        unsigned long rflags = 0;
 186
 187        /* _PAGE_EXEC -> NOEXEC */
 188        if ((pteflags & _PAGE_EXEC) == 0)
 189                rflags |= HPTE_R_N;
 190        /*
 191         * PPP bits:
 192         * Linux uses slb key 0 for kernel and 1 for user.
 193         * kernel RW areas are mapped with PPP=0b000
 194         * User area is mapped with PPP=0b010 for read/write
 195         * or PPP=0b011 for read-only (including writeable but clean pages).
 196         */
 197        if (pteflags & _PAGE_PRIVILEGED) {
 198                /*
 199                 * Kernel read only mapped with ppp bits 0b110
 200                 */
 201                if (!(pteflags & _PAGE_WRITE)) {
 202                        if (mmu_has_feature(MMU_FTR_KERNEL_RO))
 203                                rflags |= (HPTE_R_PP0 | 0x2);
 204                        else
 205                                rflags |= 0x3;
 206                }
 207        } else {
 208                if (pteflags & _PAGE_RWX)
 209                        rflags |= 0x2;
 210                if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
 211                        rflags |= 0x1;
 212        }
 213        /*
 214         * We can't allow hardware to update hpte bits. Hence always
 215         * set 'R' bit and set 'C' if it is a write fault
 216         */
 217        rflags |=  HPTE_R_R;
 218
 219        if (pteflags & _PAGE_DIRTY)
 220                rflags |= HPTE_R_C;
 221        /*
 222         * Add in WIG bits
 223         */
 224
 225        if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
 226                rflags |= HPTE_R_I;
 227        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
 228                rflags |= (HPTE_R_I | HPTE_R_G);
 229        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
 230                rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
 231        else
 232                /*
 233                 * Add memory coherence if cache inhibited is not set
 234                 */
 235                rflags |= HPTE_R_M;
 236
 237        rflags |= pte_to_hpte_pkey_bits(pteflags);
 238        return rflags;
 239}
 240
 241int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 242                      unsigned long pstart, unsigned long prot,
 243                      int psize, int ssize)
 244{
 245        unsigned long vaddr, paddr;
 246        unsigned int step, shift;
 247        int ret = 0;
 248
 249        shift = mmu_psize_defs[psize].shift;
 250        step = 1 << shift;
 251
 252        prot = htab_convert_pte_flags(prot);
 253
 254        DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 255            vstart, vend, pstart, prot, psize, ssize);
 256
 257        for (vaddr = vstart, paddr = pstart; vaddr < vend;
 258             vaddr += step, paddr += step) {
 259                unsigned long hash, hpteg;
 260                unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 261                unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 262                unsigned long tprot = prot;
 263
 264                /*
 265                 * If we hit a bad address return error.
 266                 */
 267                if (!vsid)
 268                        return -1;
 269                /* Make kernel text executable */
 270                if (overlaps_kernel_text(vaddr, vaddr + step))
 271                        tprot &= ~HPTE_R_N;
 272
 273                /* Make kvm guest trampolines executable */
 274                if (overlaps_kvm_tmp(vaddr, vaddr + step))
 275                        tprot &= ~HPTE_R_N;
 276
 277                /*
 278                 * If relocatable, check if it overlaps interrupt vectors that
 279                 * are copied down to real 0. For relocatable kernel
 280                 * (e.g. kdump case) we copy interrupt vectors down to real
 281                 * address 0. Mark that region as executable. This is
 282                 * because on p8 system with relocation on exception feature
 283                 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
 284                 * in order to execute the interrupt handlers in virtual
 285                 * mode the vector region need to be marked as executable.
 286                 */
 287                if ((PHYSICAL_START > MEMORY_START) &&
 288                        overlaps_interrupt_vector_text(vaddr, vaddr + step))
 289                                tprot &= ~HPTE_R_N;
 290
 291                hash = hpt_hash(vpn, shift, ssize);
 292                hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 293
 294                BUG_ON(!mmu_hash_ops.hpte_insert);
 295                ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 296                                               HPTE_V_BOLTED, psize, psize,
 297                                               ssize);
 298
 299                if (ret < 0)
 300                        break;
 301
 302#ifdef CONFIG_DEBUG_PAGEALLOC
 303                if (debug_pagealloc_enabled() &&
 304                        (paddr >> PAGE_SHIFT) < linear_map_hash_count)
 305                        linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 306#endif /* CONFIG_DEBUG_PAGEALLOC */
 307        }
 308        return ret < 0 ? ret : 0;
 309}
 310
 311int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 312                      int psize, int ssize)
 313{
 314        unsigned long vaddr;
 315        unsigned int step, shift;
 316        int rc;
 317        int ret = 0;
 318
 319        shift = mmu_psize_defs[psize].shift;
 320        step = 1 << shift;
 321
 322        if (!mmu_hash_ops.hpte_removebolted)
 323                return -ENODEV;
 324
 325        for (vaddr = vstart; vaddr < vend; vaddr += step) {
 326                rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
 327                if (rc == -ENOENT) {
 328                        ret = -ENOENT;
 329                        continue;
 330                }
 331                if (rc < 0)
 332                        return rc;
 333        }
 334
 335        return ret;
 336}
 337
 338static bool disable_1tb_segments = false;
 339
 340static int __init parse_disable_1tb_segments(char *p)
 341{
 342        disable_1tb_segments = true;
 343        return 0;
 344}
 345early_param("disable_1tb_segments", parse_disable_1tb_segments);
 346
 347static int __init htab_dt_scan_seg_sizes(unsigned long node,
 348                                         const char *uname, int depth,
 349                                         void *data)
 350{
 351        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 352        const __be32 *prop;
 353        int size = 0;
 354
 355        /* We are scanning "cpu" nodes only */
 356        if (type == NULL || strcmp(type, "cpu") != 0)
 357                return 0;
 358
 359        prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
 360        if (prop == NULL)
 361                return 0;
 362        for (; size >= 4; size -= 4, ++prop) {
 363                if (be32_to_cpu(prop[0]) == 40) {
 364                        DBG("1T segment support detected\n");
 365
 366                        if (disable_1tb_segments) {
 367                                DBG("1T segments disabled by command line\n");
 368                                break;
 369                        }
 370
 371                        cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 372                        return 1;
 373                }
 374        }
 375        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 376        return 0;
 377}
 378
 379static int __init get_idx_from_shift(unsigned int shift)
 380{
 381        int idx = -1;
 382
 383        switch (shift) {
 384        case 0xc:
 385                idx = MMU_PAGE_4K;
 386                break;
 387        case 0x10:
 388                idx = MMU_PAGE_64K;
 389                break;
 390        case 0x14:
 391                idx = MMU_PAGE_1M;
 392                break;
 393        case 0x18:
 394                idx = MMU_PAGE_16M;
 395                break;
 396        case 0x22:
 397                idx = MMU_PAGE_16G;
 398                break;
 399        }
 400        return idx;
 401}
 402
 403static int __init htab_dt_scan_page_sizes(unsigned long node,
 404                                          const char *uname, int depth,
 405                                          void *data)
 406{
 407        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 408        const __be32 *prop;
 409        int size = 0;
 410
 411        /* We are scanning "cpu" nodes only */
 412        if (type == NULL || strcmp(type, "cpu") != 0)
 413                return 0;
 414
 415        prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
 416        if (!prop)
 417                return 0;
 418
 419        pr_info("Page sizes from device-tree:\n");
 420        size /= 4;
 421        cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 422        while(size > 0) {
 423                unsigned int base_shift = be32_to_cpu(prop[0]);
 424                unsigned int slbenc = be32_to_cpu(prop[1]);
 425                unsigned int lpnum = be32_to_cpu(prop[2]);
 426                struct mmu_psize_def *def;
 427                int idx, base_idx;
 428
 429                size -= 3; prop += 3;
 430                base_idx = get_idx_from_shift(base_shift);
 431                if (base_idx < 0) {
 432                        /* skip the pte encoding also */
 433                        prop += lpnum * 2; size -= lpnum * 2;
 434                        continue;
 435                }
 436                def = &mmu_psize_defs[base_idx];
 437                if (base_idx == MMU_PAGE_16M)
 438                        cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 439
 440                def->shift = base_shift;
 441                if (base_shift <= 23)
 442                        def->avpnm = 0;
 443                else
 444                        def->avpnm = (1 << (base_shift - 23)) - 1;
 445                def->sllp = slbenc;
 446                /*
 447                 * We don't know for sure what's up with tlbiel, so
 448                 * for now we only set it for 4K and 64K pages
 449                 */
 450                if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 451                        def->tlbiel = 1;
 452                else
 453                        def->tlbiel = 0;
 454
 455                while (size > 0 && lpnum) {
 456                        unsigned int shift = be32_to_cpu(prop[0]);
 457                        int penc  = be32_to_cpu(prop[1]);
 458
 459                        prop += 2; size -= 2;
 460                        lpnum--;
 461
 462                        idx = get_idx_from_shift(shift);
 463                        if (idx < 0)
 464                                continue;
 465
 466                        if (penc == -1)
 467                                pr_err("Invalid penc for base_shift=%d "
 468                                       "shift=%d\n", base_shift, shift);
 469
 470                        def->penc[idx] = penc;
 471                        pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 472                                " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 473                                base_shift, shift, def->sllp,
 474                                def->avpnm, def->tlbiel, def->penc[idx]);
 475                }
 476        }
 477
 478        return 1;
 479}
 480
 481#ifdef CONFIG_HUGETLB_PAGE
 482/* Scan for 16G memory blocks that have been set aside for huge pages
 483 * and reserve those blocks for 16G huge pages.
 484 */
 485static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 486                                        const char *uname, int depth,
 487                                        void *data) {
 488        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 489        const __be64 *addr_prop;
 490        const __be32 *page_count_prop;
 491        unsigned int expected_pages;
 492        long unsigned int phys_addr;
 493        long unsigned int block_size;
 494
 495        /* We are scanning "memory" nodes only */
 496        if (type == NULL || strcmp(type, "memory") != 0)
 497                return 0;
 498
 499        /* This property is the log base 2 of the number of virtual pages that
 500         * will represent this memory block. */
 501        page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 502        if (page_count_prop == NULL)
 503                return 0;
 504        expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
 505        addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 506        if (addr_prop == NULL)
 507                return 0;
 508        phys_addr = be64_to_cpu(addr_prop[0]);
 509        block_size = be64_to_cpu(addr_prop[1]);
 510        if (block_size != (16 * GB))
 511                return 0;
 512        printk(KERN_INFO "Huge page(16GB) memory: "
 513                        "addr = 0x%lX size = 0x%lX pages = %d\n",
 514                        phys_addr, block_size, expected_pages);
 515        if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
 516                memblock_reserve(phys_addr, block_size * expected_pages);
 517                pseries_add_gpage(phys_addr, block_size, expected_pages);
 518        }
 519        return 0;
 520}
 521#endif /* CONFIG_HUGETLB_PAGE */
 522
 523static void mmu_psize_set_default_penc(void)
 524{
 525        int bpsize, apsize;
 526        for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 527                for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 528                        mmu_psize_defs[bpsize].penc[apsize] = -1;
 529}
 530
 531#ifdef CONFIG_PPC_64K_PAGES
 532
 533static bool might_have_hea(void)
 534{
 535        /*
 536         * The HEA ethernet adapter requires awareness of the
 537         * GX bus. Without that awareness we can easily assume
 538         * we will never see an HEA ethernet device.
 539         */
 540#ifdef CONFIG_IBMEBUS
 541        return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
 542                firmware_has_feature(FW_FEATURE_SPLPAR);
 543#else
 544        return false;
 545#endif
 546}
 547
 548#endif /* #ifdef CONFIG_PPC_64K_PAGES */
 549
 550static void __init htab_scan_page_sizes(void)
 551{
 552        int rc;
 553
 554        /* se the invalid penc to -1 */
 555        mmu_psize_set_default_penc();
 556
 557        /* Default to 4K pages only */
 558        memcpy(mmu_psize_defs, mmu_psize_defaults,
 559               sizeof(mmu_psize_defaults));
 560
 561        /*
 562         * Try to find the available page sizes in the device-tree
 563         */
 564        rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 565        if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
 566                /*
 567                 * Nothing in the device-tree, but the CPU supports 16M pages,
 568                 * so let's fallback on a known size list for 16M capable CPUs.
 569                 */
 570                memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 571                       sizeof(mmu_psize_defaults_gp));
 572        }
 573
 574#ifdef CONFIG_HUGETLB_PAGE
 575        /* Reserve 16G huge page memory sections for huge pages */
 576        of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 577#endif /* CONFIG_HUGETLB_PAGE */
 578}
 579
 580/*
 581 * Fill in the hpte_page_sizes[] array.
 582 * We go through the mmu_psize_defs[] array looking for all the
 583 * supported base/actual page size combinations.  Each combination
 584 * has a unique pagesize encoding (penc) value in the low bits of
 585 * the LP field of the HPTE.  For actual page sizes less than 1MB,
 586 * some of the upper LP bits are used for RPN bits, meaning that
 587 * we need to fill in several entries in hpte_page_sizes[].
 588 *
 589 * In diagrammatic form, with r = RPN bits and z = page size bits:
 590 *        PTE LP     actual page size
 591 *    rrrr rrrz         >=8KB
 592 *    rrrr rrzz         >=16KB
 593 *    rrrr rzzz         >=32KB
 594 *    rrrr zzzz         >=64KB
 595 *    ...
 596 *
 597 * The zzzz bits are implementation-specific but are chosen so that
 598 * no encoding for a larger page size uses the same value in its
 599 * low-order N bits as the encoding for the 2^(12+N) byte page size
 600 * (if it exists).
 601 */
 602static void init_hpte_page_sizes(void)
 603{
 604        long int ap, bp;
 605        long int shift, penc;
 606
 607        for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
 608                if (!mmu_psize_defs[bp].shift)
 609                        continue;       /* not a supported page size */
 610                for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
 611                        penc = mmu_psize_defs[bp].penc[ap];
 612                        if (penc == -1 || !mmu_psize_defs[ap].shift)
 613                                continue;
 614                        shift = mmu_psize_defs[ap].shift - LP_SHIFT;
 615                        if (shift <= 0)
 616                                continue;       /* should never happen */
 617                        /*
 618                         * For page sizes less than 1MB, this loop
 619                         * replicates the entry for all possible values
 620                         * of the rrrr bits.
 621                         */
 622                        while (penc < (1 << LP_BITS)) {
 623                                hpte_page_sizes[penc] = (ap << 4) | bp;
 624                                penc += 1 << shift;
 625                        }
 626                }
 627        }
 628}
 629
 630static void __init htab_init_page_sizes(void)
 631{
 632        init_hpte_page_sizes();
 633
 634        if (!debug_pagealloc_enabled()) {
 635                /*
 636                 * Pick a size for the linear mapping. Currently, we only
 637                 * support 16M, 1M and 4K which is the default
 638                 */
 639                if (mmu_psize_defs[MMU_PAGE_16M].shift)
 640                        mmu_linear_psize = MMU_PAGE_16M;
 641                else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 642                        mmu_linear_psize = MMU_PAGE_1M;
 643        }
 644
 645#ifdef CONFIG_PPC_64K_PAGES
 646        /*
 647         * Pick a size for the ordinary pages. Default is 4K, we support
 648         * 64K for user mappings and vmalloc if supported by the processor.
 649         * We only use 64k for ioremap if the processor
 650         * (and firmware) support cache-inhibited large pages.
 651         * If not, we use 4k and set mmu_ci_restrictions so that
 652         * hash_page knows to switch processes that use cache-inhibited
 653         * mappings to 4k pages.
 654         */
 655        if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 656                mmu_virtual_psize = MMU_PAGE_64K;
 657                mmu_vmalloc_psize = MMU_PAGE_64K;
 658                if (mmu_linear_psize == MMU_PAGE_4K)
 659                        mmu_linear_psize = MMU_PAGE_64K;
 660                if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 661                        /*
 662                         * When running on pSeries using 64k pages for ioremap
 663                         * would stop us accessing the HEA ethernet. So if we
 664                         * have the chance of ever seeing one, stay at 4k.
 665                         */
 666                        if (!might_have_hea())
 667                                mmu_io_psize = MMU_PAGE_64K;
 668                } else
 669                        mmu_ci_restrictions = 1;
 670        }
 671#endif /* CONFIG_PPC_64K_PAGES */
 672
 673#ifdef CONFIG_SPARSEMEM_VMEMMAP
 674        /* We try to use 16M pages for vmemmap if that is supported
 675         * and we have at least 1G of RAM at boot
 676         */
 677        if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 678            memblock_phys_mem_size() >= 0x40000000)
 679                mmu_vmemmap_psize = MMU_PAGE_16M;
 680        else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 681                mmu_vmemmap_psize = MMU_PAGE_64K;
 682        else
 683                mmu_vmemmap_psize = MMU_PAGE_4K;
 684#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 685
 686        printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 687               "virtual = %d, io = %d"
 688#ifdef CONFIG_SPARSEMEM_VMEMMAP
 689               ", vmemmap = %d"
 690#endif
 691               "\n",
 692               mmu_psize_defs[mmu_linear_psize].shift,
 693               mmu_psize_defs[mmu_virtual_psize].shift,
 694               mmu_psize_defs[mmu_io_psize].shift
 695#ifdef CONFIG_SPARSEMEM_VMEMMAP
 696               ,mmu_psize_defs[mmu_vmemmap_psize].shift
 697#endif
 698               );
 699}
 700
 701static int __init htab_dt_scan_pftsize(unsigned long node,
 702                                       const char *uname, int depth,
 703                                       void *data)
 704{
 705        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 706        const __be32 *prop;
 707
 708        /* We are scanning "cpu" nodes only */
 709        if (type == NULL || strcmp(type, "cpu") != 0)
 710                return 0;
 711
 712        prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 713        if (prop != NULL) {
 714                /* pft_size[0] is the NUMA CEC cookie */
 715                ppc64_pft_size = be32_to_cpu(prop[1]);
 716                return 1;
 717        }
 718        return 0;
 719}
 720
 721unsigned htab_shift_for_mem_size(unsigned long mem_size)
 722{
 723        unsigned memshift = __ilog2(mem_size);
 724        unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
 725        unsigned pteg_shift;
 726
 727        /* round mem_size up to next power of 2 */
 728        if ((1UL << memshift) < mem_size)
 729                memshift += 1;
 730
 731        /* aim for 2 pages / pteg */
 732        pteg_shift = memshift - (pshift + 1);
 733
 734        /*
 735         * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
 736         * size permitted by the architecture.
 737         */
 738        return max(pteg_shift + 7, 18U);
 739}
 740
 741static unsigned long __init htab_get_table_size(void)
 742{
 743        /* If hash size isn't already provided by the platform, we try to
 744         * retrieve it from the device-tree. If it's not there neither, we
 745         * calculate it now based on the total RAM size
 746         */
 747        if (ppc64_pft_size == 0)
 748                of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 749        if (ppc64_pft_size)
 750                return 1UL << ppc64_pft_size;
 751
 752        return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
 753}
 754
 755#ifdef CONFIG_MEMORY_HOTPLUG
 756void resize_hpt_for_hotplug(unsigned long new_mem_size)
 757{
 758        unsigned target_hpt_shift;
 759
 760        if (!mmu_hash_ops.resize_hpt)
 761                return;
 762
 763        target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
 764
 765        /*
 766         * To avoid lots of HPT resizes if memory size is fluctuating
 767         * across a boundary, we deliberately have some hysterisis
 768         * here: we immediately increase the HPT size if the target
 769         * shift exceeds the current shift, but we won't attempt to
 770         * reduce unless the target shift is at least 2 below the
 771         * current shift
 772         */
 773        if ((target_hpt_shift > ppc64_pft_size)
 774            || (target_hpt_shift < (ppc64_pft_size - 1))) {
 775                int rc;
 776
 777                rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
 778                if (rc && (rc != -ENODEV))
 779                        printk(KERN_WARNING
 780                               "Unable to resize hash page table to target order %d: %d\n",
 781                               target_hpt_shift, rc);
 782        }
 783}
 784
 785int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
 786{
 787        int rc = htab_bolt_mapping(start, end, __pa(start),
 788                                   pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 789                                   mmu_kernel_ssize);
 790
 791        if (rc < 0) {
 792                int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
 793                                              mmu_kernel_ssize);
 794                BUG_ON(rc2 && (rc2 != -ENOENT));
 795        }
 796        return rc;
 797}
 798
 799int hash__remove_section_mapping(unsigned long start, unsigned long end)
 800{
 801        int rc = htab_remove_mapping(start, end, mmu_linear_psize,
 802                                     mmu_kernel_ssize);
 803        WARN_ON(rc < 0);
 804        return rc;
 805}
 806#endif /* CONFIG_MEMORY_HOTPLUG */
 807
 808static void update_hid_for_hash(void)
 809{
 810        unsigned long hid0;
 811        unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
 812
 813        asm volatile("ptesync": : :"memory");
 814        /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
 815        asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
 816                     : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
 817        asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
 818        trace_tlbie(0, 0, rb, 0, 2, 0, 0);
 819
 820        /*
 821         * now switch the HID
 822         */
 823        hid0  = mfspr(SPRN_HID0);
 824        hid0 &= ~HID0_POWER9_RADIX;
 825        mtspr(SPRN_HID0, hid0);
 826        asm volatile("isync": : :"memory");
 827
 828        /* Wait for it to happen */
 829        while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
 830                cpu_relax();
 831}
 832
 833static void __init hash_init_partition_table(phys_addr_t hash_table,
 834                                             unsigned long htab_size)
 835{
 836        mmu_partition_table_init();
 837
 838        /*
 839         * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
 840         * For now, UPRT is 0 and we have no segment table.
 841         */
 842        htab_size =  __ilog2(htab_size) - 18;
 843        mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
 844        pr_info("Partition table %p\n", partition_tb);
 845        if (cpu_has_feature(CPU_FTR_POWER9_DD1))
 846                update_hid_for_hash();
 847}
 848
 849static void __init htab_initialize(void)
 850{
 851        unsigned long table;
 852        unsigned long pteg_count;
 853        unsigned long prot;
 854        unsigned long base = 0, size = 0;
 855        struct memblock_region *reg;
 856
 857        DBG(" -> htab_initialize()\n");
 858
 859        if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 860                mmu_kernel_ssize = MMU_SEGSIZE_1T;
 861                mmu_highuser_ssize = MMU_SEGSIZE_1T;
 862                printk(KERN_INFO "Using 1TB segments\n");
 863        }
 864
 865        /*
 866         * Calculate the required size of the htab.  We want the number of
 867         * PTEGs to equal one half the number of real pages.
 868         */ 
 869        htab_size_bytes = htab_get_table_size();
 870        pteg_count = htab_size_bytes >> 7;
 871
 872        htab_hash_mask = pteg_count - 1;
 873
 874        if (firmware_has_feature(FW_FEATURE_LPAR) ||
 875            firmware_has_feature(FW_FEATURE_PS3_LV1)) {
 876                /* Using a hypervisor which owns the htab */
 877                htab_address = NULL;
 878                _SDR1 = 0; 
 879                /*
 880                 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
 881                 * to inform the hypervisor that we wish to use the HPT.
 882                 */
 883                if (cpu_has_feature(CPU_FTR_ARCH_300))
 884                        register_process_table(0, 0, 0);
 885#ifdef CONFIG_FA_DUMP
 886                /*
 887                 * If firmware assisted dump is active firmware preserves
 888                 * the contents of htab along with entire partition memory.
 889                 * Clear the htab if firmware assisted dump is active so
 890                 * that we dont end up using old mappings.
 891                 */
 892                if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
 893                        mmu_hash_ops.hpte_clear_all();
 894#endif
 895        } else {
 896                unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
 897
 898#ifdef CONFIG_PPC_CELL
 899                /*
 900                 * Cell may require the hash table down low when using the
 901                 * Axon IOMMU in order to fit the dynamic region over it, see
 902                 * comments in cell/iommu.c
 903                 */
 904                if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
 905                        limit = 0x80000000;
 906                        pr_info("Hash table forced below 2G for Axon IOMMU\n");
 907                }
 908#endif /* CONFIG_PPC_CELL */
 909
 910                table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
 911                                            limit);
 912
 913                DBG("Hash table allocated at %lx, size: %lx\n", table,
 914                    htab_size_bytes);
 915
 916                htab_address = __va(table);
 917
 918                /* htab absolute addr + encoded htabsize */
 919                _SDR1 = table + __ilog2(htab_size_bytes) - 18;
 920
 921                /* Initialize the HPT with no entries */
 922                memset((void *)table, 0, htab_size_bytes);
 923
 924                if (!cpu_has_feature(CPU_FTR_ARCH_300))
 925                        /* Set SDR1 */
 926                        mtspr(SPRN_SDR1, _SDR1);
 927                else
 928                        hash_init_partition_table(table, htab_size_bytes);
 929        }
 930
 931        prot = pgprot_val(PAGE_KERNEL);
 932
 933#ifdef CONFIG_DEBUG_PAGEALLOC
 934        if (debug_pagealloc_enabled()) {
 935                linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 936                linear_map_hash_slots = __va(memblock_alloc_base(
 937                                linear_map_hash_count, 1, ppc64_rma_size));
 938                memset(linear_map_hash_slots, 0, linear_map_hash_count);
 939        }
 940#endif /* CONFIG_DEBUG_PAGEALLOC */
 941
 942        /* create bolted the linear mapping in the hash table */
 943        for_each_memblock(memory, reg) {
 944                base = (unsigned long)__va(reg->base);
 945                size = reg->size;
 946
 947                DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 948                    base, size, prot);
 949
 950                BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 951                                prot, mmu_linear_psize, mmu_kernel_ssize));
 952        }
 953        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 954
 955        /*
 956         * If we have a memory_limit and we've allocated TCEs then we need to
 957         * explicitly map the TCE area at the top of RAM. We also cope with the
 958         * case that the TCEs start below memory_limit.
 959         * tce_alloc_start/end are 16MB aligned so the mapping should work
 960         * for either 4K or 16MB pages.
 961         */
 962        if (tce_alloc_start) {
 963                tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 964                tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 965
 966                if (base + size >= tce_alloc_start)
 967                        tce_alloc_start = base + size + 1;
 968
 969                BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 970                                         __pa(tce_alloc_start), prot,
 971                                         mmu_linear_psize, mmu_kernel_ssize));
 972        }
 973
 974
 975        DBG(" <- htab_initialize()\n");
 976}
 977#undef KB
 978#undef MB
 979
 980void __init hash__early_init_devtree(void)
 981{
 982        /* Initialize segment sizes */
 983        of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 984
 985        /* Initialize page sizes */
 986        htab_scan_page_sizes();
 987}
 988
 989void __init hash__early_init_mmu(void)
 990{
 991#ifndef CONFIG_PPC_64K_PAGES
 992        /*
 993         * We have code in __hash_page_4K() and elsewhere, which assumes it can
 994         * do the following:
 995         *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
 996         *
 997         * Where the slot number is between 0-15, and values of 8-15 indicate
 998         * the secondary bucket. For that code to work H_PAGE_F_SECOND and
 999         * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1000         * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1001         * with a BUILD_BUG_ON().
1002         */
1003        BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1004#endif /* CONFIG_PPC_64K_PAGES */
1005
1006        htab_init_page_sizes();
1007
1008        /*
1009         * initialize page table size
1010         */
1011        __pte_frag_nr = H_PTE_FRAG_NR;
1012        __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1013
1014        __pte_index_size = H_PTE_INDEX_SIZE;
1015        __pmd_index_size = H_PMD_INDEX_SIZE;
1016        __pud_index_size = H_PUD_INDEX_SIZE;
1017        __pgd_index_size = H_PGD_INDEX_SIZE;
1018        __pud_cache_index = H_PUD_CACHE_INDEX;
1019        __pmd_cache_index = H_PMD_CACHE_INDEX;
1020        __pte_table_size = H_PTE_TABLE_SIZE;
1021        __pmd_table_size = H_PMD_TABLE_SIZE;
1022        __pud_table_size = H_PUD_TABLE_SIZE;
1023        __pgd_table_size = H_PGD_TABLE_SIZE;
1024        /*
1025         * 4k use hugepd format, so for hash set then to
1026         * zero
1027         */
1028        __pmd_val_bits = 0;
1029        __pud_val_bits = 0;
1030        __pgd_val_bits = 0;
1031
1032        __kernel_virt_start = H_KERN_VIRT_START;
1033        __kernel_virt_size = H_KERN_VIRT_SIZE;
1034        __vmalloc_start = H_VMALLOC_START;
1035        __vmalloc_end = H_VMALLOC_END;
1036        __kernel_io_start = H_KERN_IO_START;
1037        vmemmap = (struct page *)H_VMEMMAP_BASE;
1038        ioremap_bot = IOREMAP_BASE;
1039
1040#ifdef CONFIG_PCI
1041        pci_io_base = ISA_IO_BASE;
1042#endif
1043
1044        /* Select appropriate backend */
1045        if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1046                ps3_early_mm_init();
1047        else if (firmware_has_feature(FW_FEATURE_LPAR))
1048                hpte_init_pseries();
1049        else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1050                hpte_init_native();
1051
1052        if (!mmu_hash_ops.hpte_insert)
1053                panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1054
1055        /* Initialize the MMU Hash table and create the linear mapping
1056         * of memory. Has to be done before SLB initialization as this is
1057         * currently where the page size encoding is obtained.
1058         */
1059        htab_initialize();
1060
1061        pr_info("Initializing hash mmu with SLB\n");
1062        /* Initialize SLB management */
1063        slb_initialize();
1064
1065        if (cpu_has_feature(CPU_FTR_ARCH_206)
1066                        && cpu_has_feature(CPU_FTR_HVMODE))
1067                tlbiel_all();
1068}
1069
1070#ifdef CONFIG_SMP
1071void hash__early_init_mmu_secondary(void)
1072{
1073        /* Initialize hash table for that CPU */
1074        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1075
1076                if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1077                        update_hid_for_hash();
1078
1079                if (!cpu_has_feature(CPU_FTR_ARCH_300))
1080                        mtspr(SPRN_SDR1, _SDR1);
1081                else
1082                        mtspr(SPRN_PTCR,
1083                              __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1084        }
1085        /* Initialize SLB */
1086        slb_initialize();
1087
1088        if (cpu_has_feature(CPU_FTR_ARCH_206)
1089                        && cpu_has_feature(CPU_FTR_HVMODE))
1090                tlbiel_all();
1091}
1092#endif /* CONFIG_SMP */
1093
1094/*
1095 * Called by asm hashtable.S for doing lazy icache flush
1096 */
1097unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1098{
1099        struct page *page;
1100
1101        if (!pfn_valid(pte_pfn(pte)))
1102                return pp;
1103
1104        page = pte_page(pte);
1105
1106        /* page is dirty */
1107        if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1108                if (trap == 0x400) {
1109                        flush_dcache_icache_page(page);
1110                        set_bit(PG_arch_1, &page->flags);
1111                } else
1112                        pp |= HPTE_R_N;
1113        }
1114        return pp;
1115}
1116
1117#ifdef CONFIG_PPC_MM_SLICES
1118static unsigned int get_paca_psize(unsigned long addr)
1119{
1120        unsigned char *psizes;
1121        unsigned long index, mask_index;
1122
1123        if (addr < SLICE_LOW_TOP) {
1124                psizes = get_paca()->mm_ctx_low_slices_psize;
1125                index = GET_LOW_SLICE_INDEX(addr);
1126        } else {
1127                psizes = get_paca()->mm_ctx_high_slices_psize;
1128                index = GET_HIGH_SLICE_INDEX(addr);
1129        }
1130        mask_index = index & 0x1;
1131        return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1132}
1133
1134#else
1135unsigned int get_paca_psize(unsigned long addr)
1136{
1137        return get_paca()->mm_ctx_user_psize;
1138}
1139#endif
1140
1141/*
1142 * Demote a segment to using 4k pages.
1143 * For now this makes the whole process use 4k pages.
1144 */
1145#ifdef CONFIG_PPC_64K_PAGES
1146void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1147{
1148        if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1149                return;
1150        slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1151        copro_flush_all_slbs(mm);
1152        if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1153
1154                copy_mm_to_paca(mm);
1155                slb_flush_and_rebolt();
1156        }
1157}
1158#endif /* CONFIG_PPC_64K_PAGES */
1159
1160#ifdef CONFIG_PPC_SUBPAGE_PROT
1161/*
1162 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1163 * Userspace sets the subpage permissions using the subpage_prot system call.
1164 *
1165 * Result is 0: full permissions, _PAGE_RW: read-only,
1166 * _PAGE_RWX: no access.
1167 */
1168static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1169{
1170        struct subpage_prot_table *spt = &mm->context.spt;
1171        u32 spp = 0;
1172        u32 **sbpm, *sbpp;
1173
1174        if (ea >= spt->maxaddr)
1175                return 0;
1176        if (ea < 0x100000000UL) {
1177                /* addresses below 4GB use spt->low_prot */
1178                sbpm = spt->low_prot;
1179        } else {
1180                sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1181                if (!sbpm)
1182                        return 0;
1183        }
1184        sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1185        if (!sbpp)
1186                return 0;
1187        spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1188
1189        /* extract 2-bit bitfield for this 4k subpage */
1190        spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1191
1192        /*
1193         * 0 -> full premission
1194         * 1 -> Read only
1195         * 2 -> no access.
1196         * We return the flag that need to be cleared.
1197         */
1198        spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1199        return spp;
1200}
1201
1202#else /* CONFIG_PPC_SUBPAGE_PROT */
1203static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1204{
1205        return 0;
1206}
1207#endif
1208
1209void hash_failure_debug(unsigned long ea, unsigned long access,
1210                        unsigned long vsid, unsigned long trap,
1211                        int ssize, int psize, int lpsize, unsigned long pte)
1212{
1213        if (!printk_ratelimit())
1214                return;
1215        pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1216                ea, access, current->comm);
1217        pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1218                trap, vsid, ssize, psize, lpsize, pte);
1219}
1220
1221static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1222                             int psize, bool user_region)
1223{
1224        if (user_region) {
1225                if (psize != get_paca_psize(ea)) {
1226                        copy_mm_to_paca(mm);
1227                        slb_flush_and_rebolt();
1228                }
1229        } else if (get_paca()->vmalloc_sllp !=
1230                   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1231                get_paca()->vmalloc_sllp =
1232                        mmu_psize_defs[mmu_vmalloc_psize].sllp;
1233                slb_vmalloc_update();
1234        }
1235}
1236
1237/* Result code is:
1238 *  0 - handled
1239 *  1 - normal page fault
1240 * -1 - critical hash insertion error
1241 * -2 - access not permitted by subpage protection mechanism
1242 */
1243int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1244                 unsigned long access, unsigned long trap,
1245                 unsigned long flags)
1246{
1247        bool is_thp;
1248        enum ctx_state prev_state = exception_enter();
1249        pgd_t *pgdir;
1250        unsigned long vsid;
1251        pte_t *ptep;
1252        unsigned hugeshift;
1253        int rc, user_region = 0;
1254        int psize, ssize;
1255
1256        DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1257                ea, access, trap);
1258        trace_hash_fault(ea, access, trap);
1259
1260        /* Get region & vsid */
1261        switch (REGION_ID(ea)) {
1262        case USER_REGION_ID:
1263                user_region = 1;
1264                if (! mm) {
1265                        DBG_LOW(" user region with no mm !\n");
1266                        rc = 1;
1267                        goto bail;
1268                }
1269                psize = get_slice_psize(mm, ea);
1270                ssize = user_segment_size(ea);
1271                vsid = get_user_vsid(&mm->context, ea, ssize);
1272                break;
1273        case VMALLOC_REGION_ID:
1274                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1275                if (ea < VMALLOC_END)
1276                        psize = mmu_vmalloc_psize;
1277                else
1278                        psize = mmu_io_psize;
1279                ssize = mmu_kernel_ssize;
1280                break;
1281        default:
1282                /* Not a valid range
1283                 * Send the problem up to do_page_fault 
1284                 */
1285                rc = 1;
1286                goto bail;
1287        }
1288        DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1289
1290        /* Bad address. */
1291        if (!vsid) {
1292                DBG_LOW("Bad address!\n");
1293                rc = 1;
1294                goto bail;
1295        }
1296        /* Get pgdir */
1297        pgdir = mm->pgd;
1298        if (pgdir == NULL) {
1299                rc = 1;
1300                goto bail;
1301        }
1302
1303        /* Check CPU locality */
1304        if (user_region && mm_is_thread_local(mm))
1305                flags |= HPTE_LOCAL_UPDATE;
1306
1307#ifndef CONFIG_PPC_64K_PAGES
1308        /* If we use 4K pages and our psize is not 4K, then we might
1309         * be hitting a special driver mapping, and need to align the
1310         * address before we fetch the PTE.
1311         *
1312         * It could also be a hugepage mapping, in which case this is
1313         * not necessary, but it's not harmful, either.
1314         */
1315        if (psize != MMU_PAGE_4K)
1316                ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1317#endif /* CONFIG_PPC_64K_PAGES */
1318
1319        /* Get PTE and page size from page tables */
1320        ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1321        if (ptep == NULL || !pte_present(*ptep)) {
1322                DBG_LOW(" no PTE !\n");
1323                rc = 1;
1324                goto bail;
1325        }
1326
1327        /* Add _PAGE_PRESENT to the required access perm */
1328        access |= _PAGE_PRESENT;
1329
1330        /* Pre-check access permissions (will be re-checked atomically
1331         * in __hash_page_XX but this pre-check is a fast path
1332         */
1333        if (!check_pte_access(access, pte_val(*ptep))) {
1334                DBG_LOW(" no access !\n");
1335                rc = 1;
1336                goto bail;
1337        }
1338
1339        if (hugeshift) {
1340                if (is_thp)
1341                        rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1342                                             trap, flags, ssize, psize);
1343#ifdef CONFIG_HUGETLB_PAGE
1344                else
1345                        rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1346                                              flags, ssize, hugeshift, psize);
1347#else
1348                else {
1349                        /*
1350                         * if we have hugeshift, and is not transhuge with
1351                         * hugetlb disabled, something is really wrong.
1352                         */
1353                        rc = 1;
1354                        WARN_ON(1);
1355                }
1356#endif
1357                if (current->mm == mm)
1358                        check_paca_psize(ea, mm, psize, user_region);
1359
1360                goto bail;
1361        }
1362
1363#ifndef CONFIG_PPC_64K_PAGES
1364        DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1365#else
1366        DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1367                pte_val(*(ptep + PTRS_PER_PTE)));
1368#endif
1369        /* Do actual hashing */
1370#ifdef CONFIG_PPC_64K_PAGES
1371        /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1372        if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1373                demote_segment_4k(mm, ea);
1374                psize = MMU_PAGE_4K;
1375        }
1376
1377        /* If this PTE is non-cacheable and we have restrictions on
1378         * using non cacheable large pages, then we switch to 4k
1379         */
1380        if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1381                if (user_region) {
1382                        demote_segment_4k(mm, ea);
1383                        psize = MMU_PAGE_4K;
1384                } else if (ea < VMALLOC_END) {
1385                        /*
1386                         * some driver did a non-cacheable mapping
1387                         * in vmalloc space, so switch vmalloc
1388                         * to 4k pages
1389                         */
1390                        printk(KERN_ALERT "Reducing vmalloc segment "
1391                               "to 4kB pages because of "
1392                               "non-cacheable mapping\n");
1393                        psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1394                        copro_flush_all_slbs(mm);
1395                }
1396        }
1397
1398#endif /* CONFIG_PPC_64K_PAGES */
1399
1400        if (current->mm == mm)
1401                check_paca_psize(ea, mm, psize, user_region);
1402
1403#ifdef CONFIG_PPC_64K_PAGES
1404        if (psize == MMU_PAGE_64K)
1405                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1406                                     flags, ssize);
1407        else
1408#endif /* CONFIG_PPC_64K_PAGES */
1409        {
1410                int spp = subpage_protection(mm, ea);
1411                if (access & spp)
1412                        rc = -2;
1413                else
1414                        rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1415                                            flags, ssize, spp);
1416        }
1417
1418        /* Dump some info in case of hash insertion failure, they should
1419         * never happen so it is really useful to know if/when they do
1420         */
1421        if (rc == -1)
1422                hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1423                                   psize, pte_val(*ptep));
1424#ifndef CONFIG_PPC_64K_PAGES
1425        DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1426#else
1427        DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1428                pte_val(*(ptep + PTRS_PER_PTE)));
1429#endif
1430        DBG_LOW(" -> rc=%d\n", rc);
1431
1432bail:
1433        exception_exit(prev_state);
1434        return rc;
1435}
1436EXPORT_SYMBOL_GPL(hash_page_mm);
1437
1438int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1439              unsigned long dsisr)
1440{
1441        unsigned long flags = 0;
1442        struct mm_struct *mm = current->mm;
1443
1444        if (REGION_ID(ea) == VMALLOC_REGION_ID)
1445                mm = &init_mm;
1446
1447        if (dsisr & DSISR_NOHPTE)
1448                flags |= HPTE_NOHPTE_UPDATE;
1449
1450        return hash_page_mm(mm, ea, access, trap, flags);
1451}
1452EXPORT_SYMBOL_GPL(hash_page);
1453
1454int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1455                unsigned long dsisr)
1456{
1457        unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1458        unsigned long flags = 0;
1459        struct mm_struct *mm = current->mm;
1460
1461        if (REGION_ID(ea) == VMALLOC_REGION_ID)
1462                mm = &init_mm;
1463
1464        if (dsisr & DSISR_NOHPTE)
1465                flags |= HPTE_NOHPTE_UPDATE;
1466
1467        if (dsisr & DSISR_ISSTORE)
1468                access |= _PAGE_WRITE;
1469        /*
1470         * We set _PAGE_PRIVILEGED only when
1471         * kernel mode access kernel space.
1472         *
1473         * _PAGE_PRIVILEGED is NOT set
1474         * 1) when kernel mode access user space
1475         * 2) user space access kernel space.
1476         */
1477        access |= _PAGE_PRIVILEGED;
1478        if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1479                access &= ~_PAGE_PRIVILEGED;
1480
1481        if (trap == 0x400)
1482                access |= _PAGE_EXEC;
1483
1484        return hash_page_mm(mm, ea, access, trap, flags);
1485}
1486
1487#ifdef CONFIG_PPC_MM_SLICES
1488static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1489{
1490        int psize = get_slice_psize(mm, ea);
1491
1492        /* We only prefault standard pages for now */
1493        if (unlikely(psize != mm->context.user_psize))
1494                return false;
1495
1496        /*
1497         * Don't prefault if subpage protection is enabled for the EA.
1498         */
1499        if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1500                return false;
1501
1502        return true;
1503}
1504#else
1505static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1506{
1507        return true;
1508}
1509#endif
1510
1511void hash_preload(struct mm_struct *mm, unsigned long ea,
1512                  unsigned long access, unsigned long trap)
1513{
1514        int hugepage_shift;
1515        unsigned long vsid;
1516        pgd_t *pgdir;
1517        pte_t *ptep;
1518        unsigned long flags;
1519        int rc, ssize, update_flags = 0;
1520
1521        BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1522
1523        if (!should_hash_preload(mm, ea))
1524                return;
1525
1526        DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1527                " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1528
1529        /* Get Linux PTE if available */
1530        pgdir = mm->pgd;
1531        if (pgdir == NULL)
1532                return;
1533
1534        /* Get VSID */
1535        ssize = user_segment_size(ea);
1536        vsid = get_user_vsid(&mm->context, ea, ssize);
1537        if (!vsid)
1538                return;
1539        /*
1540         * Hash doesn't like irqs. Walking linux page table with irq disabled
1541         * saves us from holding multiple locks.
1542         */
1543        local_irq_save(flags);
1544
1545        /*
1546         * THP pages use update_mmu_cache_pmd. We don't do
1547         * hash preload there. Hence can ignore THP here
1548         */
1549        ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1550        if (!ptep)
1551                goto out_exit;
1552
1553        WARN_ON(hugepage_shift);
1554#ifdef CONFIG_PPC_64K_PAGES
1555        /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1556         * a 64K kernel), then we don't preload, hash_page() will take
1557         * care of it once we actually try to access the page.
1558         * That way we don't have to duplicate all of the logic for segment
1559         * page size demotion here
1560         */
1561        if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1562                goto out_exit;
1563#endif /* CONFIG_PPC_64K_PAGES */
1564
1565        /* Is that local to this CPU ? */
1566        if (mm_is_thread_local(mm))
1567                update_flags |= HPTE_LOCAL_UPDATE;
1568
1569        /* Hash it in */
1570#ifdef CONFIG_PPC_64K_PAGES
1571        if (mm->context.user_psize == MMU_PAGE_64K)
1572                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1573                                     update_flags, ssize);
1574        else
1575#endif /* CONFIG_PPC_64K_PAGES */
1576                rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1577                                    ssize, subpage_protection(mm, ea));
1578
1579        /* Dump some info in case of hash insertion failure, they should
1580         * never happen so it is really useful to know if/when they do
1581         */
1582        if (rc == -1)
1583                hash_failure_debug(ea, access, vsid, trap, ssize,
1584                                   mm->context.user_psize,
1585                                   mm->context.user_psize,
1586                                   pte_val(*ptep));
1587out_exit:
1588        local_irq_restore(flags);
1589}
1590
1591#ifdef CONFIG_PPC_MEM_KEYS
1592/*
1593 * Return the protection key associated with the given address and the
1594 * mm_struct.
1595 */
1596u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1597{
1598        pte_t *ptep;
1599        u16 pkey = 0;
1600        unsigned long flags;
1601
1602        if (!mm || !mm->pgd)
1603                return 0;
1604
1605        local_irq_save(flags);
1606        ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1607        if (ptep)
1608                pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1609        local_irq_restore(flags);
1610
1611        return pkey;
1612}
1613#endif /* CONFIG_PPC_MEM_KEYS */
1614
1615#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1616static inline void tm_flush_hash_page(int local)
1617{
1618        /*
1619         * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1620         * page back to a block device w/PIO could pick up transactional data
1621         * (bad!) so we force an abort here. Before the sync the page will be
1622         * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1623         * kernel uses a page from userspace without unmapping it first, it may
1624         * see the speculated version.
1625         */
1626        if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1627            MSR_TM_ACTIVE(current->thread.regs->msr)) {
1628                tm_enable();
1629                tm_abort(TM_CAUSE_TLBI);
1630        }
1631}
1632#else
1633static inline void tm_flush_hash_page(int local)
1634{
1635}
1636#endif
1637
1638/*
1639 * Return the global hash slot, corresponding to the given PTE, which contains
1640 * the HPTE.
1641 */
1642unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1643                int ssize, real_pte_t rpte, unsigned int subpg_index)
1644{
1645        unsigned long hash, gslot, hidx;
1646
1647        hash = hpt_hash(vpn, shift, ssize);
1648        hidx = __rpte_to_hidx(rpte, subpg_index);
1649        if (hidx & _PTEIDX_SECONDARY)
1650                hash = ~hash;
1651        gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1652        gslot += hidx & _PTEIDX_GROUP_IX;
1653        return gslot;
1654}
1655
1656/* WARNING: This is called from hash_low_64.S, if you change this prototype,
1657 *          do not forget to update the assembly call site !
1658 */
1659void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1660                     unsigned long flags)
1661{
1662        unsigned long index, shift, gslot;
1663        int local = flags & HPTE_LOCAL_UPDATE;
1664
1665        DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1666        pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1667                gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1668                DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1669                /*
1670                 * We use same base page size and actual psize, because we don't
1671                 * use these functions for hugepage
1672                 */
1673                mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1674                                             ssize, local);
1675        } pte_iterate_hashed_end();
1676
1677        tm_flush_hash_page(local);
1678}
1679
1680#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1681void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1682                         pmd_t *pmdp, unsigned int psize, int ssize,
1683                         unsigned long flags)
1684{
1685        int i, max_hpte_count, valid;
1686        unsigned long s_addr;
1687        unsigned char *hpte_slot_array;
1688        unsigned long hidx, shift, vpn, hash, slot;
1689        int local = flags & HPTE_LOCAL_UPDATE;
1690
1691        s_addr = addr & HPAGE_PMD_MASK;
1692        hpte_slot_array = get_hpte_slot_array(pmdp);
1693        /*
1694         * IF we try to do a HUGE PTE update after a withdraw is done.
1695         * we will find the below NULL. This happens when we do
1696         * split_huge_page_pmd
1697         */
1698        if (!hpte_slot_array)
1699                return;
1700
1701        if (mmu_hash_ops.hugepage_invalidate) {
1702                mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1703                                                 psize, ssize, local);
1704                goto tm_abort;
1705        }
1706        /*
1707         * No bluk hpte removal support, invalidate each entry
1708         */
1709        shift = mmu_psize_defs[psize].shift;
1710        max_hpte_count = HPAGE_PMD_SIZE >> shift;
1711        for (i = 0; i < max_hpte_count; i++) {
1712                /*
1713                 * 8 bits per each hpte entries
1714                 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1715                 */
1716                valid = hpte_valid(hpte_slot_array, i);
1717                if (!valid)
1718                        continue;
1719                hidx =  hpte_hash_index(hpte_slot_array, i);
1720
1721                /* get the vpn */
1722                addr = s_addr + (i * (1ul << shift));
1723                vpn = hpt_vpn(addr, vsid, ssize);
1724                hash = hpt_hash(vpn, shift, ssize);
1725                if (hidx & _PTEIDX_SECONDARY)
1726                        hash = ~hash;
1727
1728                slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1729                slot += hidx & _PTEIDX_GROUP_IX;
1730                mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1731                                             MMU_PAGE_16M, ssize, local);
1732        }
1733tm_abort:
1734        tm_flush_hash_page(local);
1735}
1736#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1737
1738void flush_hash_range(unsigned long number, int local)
1739{
1740        if (mmu_hash_ops.flush_hash_range)
1741                mmu_hash_ops.flush_hash_range(number, local);
1742        else {
1743                int i;
1744                struct ppc64_tlb_batch *batch =
1745                        this_cpu_ptr(&ppc64_tlb_batch);
1746
1747                for (i = 0; i < number; i++)
1748                        flush_hash_page(batch->vpn[i], batch->pte[i],
1749                                        batch->psize, batch->ssize, local);
1750        }
1751}
1752
1753/*
1754 * low_hash_fault is called when we the low level hash code failed
1755 * to instert a PTE due to an hypervisor error
1756 */
1757void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1758{
1759        enum ctx_state prev_state = exception_enter();
1760
1761        if (user_mode(regs)) {
1762#ifdef CONFIG_PPC_SUBPAGE_PROT
1763                if (rc == -2)
1764                        _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1765                else
1766#endif
1767                        _exception(SIGBUS, regs, BUS_ADRERR, address);
1768        } else
1769                bad_page_fault(regs, address, SIGBUS);
1770
1771        exception_exit(prev_state);
1772}
1773
1774long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1775                           unsigned long pa, unsigned long rflags,
1776                           unsigned long vflags, int psize, int ssize)
1777{
1778        unsigned long hpte_group;
1779        long slot;
1780
1781repeat:
1782        hpte_group = ((hash & htab_hash_mask) *
1783                       HPTES_PER_GROUP) & ~0x7UL;
1784
1785        /* Insert into the hash table, primary slot */
1786        slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1787                                        psize, psize, ssize);
1788
1789        /* Primary is full, try the secondary */
1790        if (unlikely(slot == -1)) {
1791                hpte_group = ((~hash & htab_hash_mask) *
1792                              HPTES_PER_GROUP) & ~0x7UL;
1793                slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1794                                                vflags | HPTE_V_SECONDARY,
1795                                                psize, psize, ssize);
1796                if (slot == -1) {
1797                        if (mftb() & 0x1)
1798                                hpte_group = ((hash & htab_hash_mask) *
1799                                              HPTES_PER_GROUP)&~0x7UL;
1800
1801                        mmu_hash_ops.hpte_remove(hpte_group);
1802                        goto repeat;
1803                }
1804        }
1805
1806        return slot;
1807}
1808
1809#ifdef CONFIG_DEBUG_PAGEALLOC
1810static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1811{
1812        unsigned long hash;
1813        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1814        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1815        unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1816        long ret;
1817
1818        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1819
1820        /* Don't create HPTE entries for bad address */
1821        if (!vsid)
1822                return;
1823
1824        ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1825                                    HPTE_V_BOLTED,
1826                                    mmu_linear_psize, mmu_kernel_ssize);
1827
1828        BUG_ON (ret < 0);
1829        spin_lock(&linear_map_hash_lock);
1830        BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1831        linear_map_hash_slots[lmi] = ret | 0x80;
1832        spin_unlock(&linear_map_hash_lock);
1833}
1834
1835static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1836{
1837        unsigned long hash, hidx, slot;
1838        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1839        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1840
1841        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1842        spin_lock(&linear_map_hash_lock);
1843        BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1844        hidx = linear_map_hash_slots[lmi] & 0x7f;
1845        linear_map_hash_slots[lmi] = 0;
1846        spin_unlock(&linear_map_hash_lock);
1847        if (hidx & _PTEIDX_SECONDARY)
1848                hash = ~hash;
1849        slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1850        slot += hidx & _PTEIDX_GROUP_IX;
1851        mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1852                                     mmu_linear_psize,
1853                                     mmu_kernel_ssize, 0);
1854}
1855
1856void __kernel_map_pages(struct page *page, int numpages, int enable)
1857{
1858        unsigned long flags, vaddr, lmi;
1859        int i;
1860
1861        local_irq_save(flags);
1862        for (i = 0; i < numpages; i++, page++) {
1863                vaddr = (unsigned long)page_address(page);
1864                lmi = __pa(vaddr) >> PAGE_SHIFT;
1865                if (lmi >= linear_map_hash_count)
1866                        continue;
1867                if (enable)
1868                        kernel_map_linear_page(vaddr, lmi);
1869                else
1870                        kernel_unmap_linear_page(vaddr, lmi);
1871        }
1872        local_irq_restore(flags);
1873}
1874#endif /* CONFIG_DEBUG_PAGEALLOC */
1875
1876void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1877                                phys_addr_t first_memblock_size)
1878{
1879        /* We don't currently support the first MEMBLOCK not mapping 0
1880         * physical on those processors
1881         */
1882        BUG_ON(first_memblock_base != 0);
1883
1884        /*
1885         * On virtualized systems the first entry is our RMA region aka VRMA,
1886         * non-virtualized 64-bit hash MMU systems don't have a limitation
1887         * on real mode access.
1888         *
1889         * For guests on platforms before POWER9, we clamp the it limit to 1G
1890         * to avoid some funky things such as RTAS bugs etc...
1891         */
1892        if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1893                ppc64_rma_size = first_memblock_size;
1894                if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1895                        ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1896
1897                /* Finally limit subsequent allocations */
1898                memblock_set_current_limit(ppc64_rma_size);
1899        } else {
1900                ppc64_rma_size = ULONG_MAX;
1901        }
1902}
1903
1904#ifdef CONFIG_DEBUG_FS
1905
1906static int hpt_order_get(void *data, u64 *val)
1907{
1908        *val = ppc64_pft_size;
1909        return 0;
1910}
1911
1912static int hpt_order_set(void *data, u64 val)
1913{
1914        if (!mmu_hash_ops.resize_hpt)
1915                return -ENODEV;
1916
1917        return mmu_hash_ops.resize_hpt(val);
1918}
1919
1920DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1921
1922static int __init hash64_debugfs(void)
1923{
1924        if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1925                                 NULL, &fops_hpt_order)) {
1926                pr_err("lpar: unable to create hpt_order debugsfs file\n");
1927        }
1928
1929        return 0;
1930}
1931machine_device_initcall(pseries, hash64_debugfs);
1932#endif /* CONFIG_DEBUG_FS */
1933