linux/arch/powerpc/mm/numa.c
<<
>>
Prefs
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#define pr_fmt(fmt) "numa: " fmt
  12
  13#include <linux/threads.h>
  14#include <linux/bootmem.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/mmzone.h>
  18#include <linux/export.h>
  19#include <linux/nodemask.h>
  20#include <linux/cpu.h>
  21#include <linux/notifier.h>
  22#include <linux/memblock.h>
  23#include <linux/of.h>
  24#include <linux/pfn.h>
  25#include <linux/cpuset.h>
  26#include <linux/node.h>
  27#include <linux/stop_machine.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/uaccess.h>
  31#include <linux/slab.h>
  32#include <asm/cputhreads.h>
  33#include <asm/sparsemem.h>
  34#include <asm/prom.h>
  35#include <asm/smp.h>
  36#include <asm/cputhreads.h>
  37#include <asm/topology.h>
  38#include <asm/firmware.h>
  39#include <asm/paca.h>
  40#include <asm/hvcall.h>
  41#include <asm/setup.h>
  42#include <asm/vdso.h>
  43#include <asm/drmem.h>
  44
  45static int numa_enabled = 1;
  46
  47static char *cmdline __initdata;
  48
  49static int numa_debug;
  50#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  51
  52int numa_cpu_lookup_table[NR_CPUS];
  53cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  54struct pglist_data *node_data[MAX_NUMNODES];
  55
  56EXPORT_SYMBOL(numa_cpu_lookup_table);
  57EXPORT_SYMBOL(node_to_cpumask_map);
  58EXPORT_SYMBOL(node_data);
  59
  60static int min_common_depth;
  61static int n_mem_addr_cells, n_mem_size_cells;
  62static int form1_affinity;
  63
  64#define MAX_DISTANCE_REF_POINTS 4
  65static int distance_ref_points_depth;
  66static const __be32 *distance_ref_points;
  67static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  68
  69/*
  70 * Allocate node_to_cpumask_map based on number of available nodes
  71 * Requires node_possible_map to be valid.
  72 *
  73 * Note: cpumask_of_node() is not valid until after this is done.
  74 */
  75static void __init setup_node_to_cpumask_map(void)
  76{
  77        unsigned int node;
  78
  79        /* setup nr_node_ids if not done yet */
  80        if (nr_node_ids == MAX_NUMNODES)
  81                setup_nr_node_ids();
  82
  83        /* allocate the map */
  84        for_each_node(node)
  85                alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  86
  87        /* cpumask_of_node() will now work */
  88        dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  89}
  90
  91static int __init fake_numa_create_new_node(unsigned long end_pfn,
  92                                                unsigned int *nid)
  93{
  94        unsigned long long mem;
  95        char *p = cmdline;
  96        static unsigned int fake_nid;
  97        static unsigned long long curr_boundary;
  98
  99        /*
 100         * Modify node id, iff we started creating NUMA nodes
 101         * We want to continue from where we left of the last time
 102         */
 103        if (fake_nid)
 104                *nid = fake_nid;
 105        /*
 106         * In case there are no more arguments to parse, the
 107         * node_id should be the same as the last fake node id
 108         * (we've handled this above).
 109         */
 110        if (!p)
 111                return 0;
 112
 113        mem = memparse(p, &p);
 114        if (!mem)
 115                return 0;
 116
 117        if (mem < curr_boundary)
 118                return 0;
 119
 120        curr_boundary = mem;
 121
 122        if ((end_pfn << PAGE_SHIFT) > mem) {
 123                /*
 124                 * Skip commas and spaces
 125                 */
 126                while (*p == ',' || *p == ' ' || *p == '\t')
 127                        p++;
 128
 129                cmdline = p;
 130                fake_nid++;
 131                *nid = fake_nid;
 132                dbg("created new fake_node with id %d\n", fake_nid);
 133                return 1;
 134        }
 135        return 0;
 136}
 137
 138static void reset_numa_cpu_lookup_table(void)
 139{
 140        unsigned int cpu;
 141
 142        for_each_possible_cpu(cpu)
 143                numa_cpu_lookup_table[cpu] = -1;
 144}
 145
 146static void map_cpu_to_node(int cpu, int node)
 147{
 148        update_numa_cpu_lookup_table(cpu, node);
 149
 150        dbg("adding cpu %d to node %d\n", cpu, node);
 151
 152        if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 153                cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 154}
 155
 156#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 157static void unmap_cpu_from_node(unsigned long cpu)
 158{
 159        int node = numa_cpu_lookup_table[cpu];
 160
 161        dbg("removing cpu %lu from node %d\n", cpu, node);
 162
 163        if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 164                cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 165        } else {
 166                printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 167                       cpu, node);
 168        }
 169}
 170#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 171
 172/* must hold reference to node during call */
 173static const __be32 *of_get_associativity(struct device_node *dev)
 174{
 175        return of_get_property(dev, "ibm,associativity", NULL);
 176}
 177
 178int __node_distance(int a, int b)
 179{
 180        int i;
 181        int distance = LOCAL_DISTANCE;
 182
 183        if (!form1_affinity)
 184                return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 185
 186        for (i = 0; i < distance_ref_points_depth; i++) {
 187                if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 188                        break;
 189
 190                /* Double the distance for each NUMA level */
 191                distance *= 2;
 192        }
 193
 194        return distance;
 195}
 196EXPORT_SYMBOL(__node_distance);
 197
 198static void initialize_distance_lookup_table(int nid,
 199                const __be32 *associativity)
 200{
 201        int i;
 202
 203        if (!form1_affinity)
 204                return;
 205
 206        for (i = 0; i < distance_ref_points_depth; i++) {
 207                const __be32 *entry;
 208
 209                entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
 210                distance_lookup_table[nid][i] = of_read_number(entry, 1);
 211        }
 212}
 213
 214/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 215 * info is found.
 216 */
 217static int associativity_to_nid(const __be32 *associativity)
 218{
 219        int nid = -1;
 220
 221        if (min_common_depth == -1)
 222                goto out;
 223
 224        if (of_read_number(associativity, 1) >= min_common_depth)
 225                nid = of_read_number(&associativity[min_common_depth], 1);
 226
 227        /* POWER4 LPAR uses 0xffff as invalid node */
 228        if (nid == 0xffff || nid >= MAX_NUMNODES)
 229                nid = -1;
 230
 231        if (nid > 0 &&
 232                of_read_number(associativity, 1) >= distance_ref_points_depth) {
 233                /*
 234                 * Skip the length field and send start of associativity array
 235                 */
 236                initialize_distance_lookup_table(nid, associativity + 1);
 237        }
 238
 239out:
 240        return nid;
 241}
 242
 243/* Returns the nid associated with the given device tree node,
 244 * or -1 if not found.
 245 */
 246static int of_node_to_nid_single(struct device_node *device)
 247{
 248        int nid = -1;
 249        const __be32 *tmp;
 250
 251        tmp = of_get_associativity(device);
 252        if (tmp)
 253                nid = associativity_to_nid(tmp);
 254        return nid;
 255}
 256
 257/* Walk the device tree upwards, looking for an associativity id */
 258int of_node_to_nid(struct device_node *device)
 259{
 260        int nid = -1;
 261
 262        of_node_get(device);
 263        while (device) {
 264                nid = of_node_to_nid_single(device);
 265                if (nid != -1)
 266                        break;
 267
 268                device = of_get_next_parent(device);
 269        }
 270        of_node_put(device);
 271
 272        return nid;
 273}
 274EXPORT_SYMBOL(of_node_to_nid);
 275
 276static int __init find_min_common_depth(void)
 277{
 278        int depth;
 279        struct device_node *root;
 280
 281        if (firmware_has_feature(FW_FEATURE_OPAL))
 282                root = of_find_node_by_path("/ibm,opal");
 283        else
 284                root = of_find_node_by_path("/rtas");
 285        if (!root)
 286                root = of_find_node_by_path("/");
 287
 288        /*
 289         * This property is a set of 32-bit integers, each representing
 290         * an index into the ibm,associativity nodes.
 291         *
 292         * With form 0 affinity the first integer is for an SMP configuration
 293         * (should be all 0's) and the second is for a normal NUMA
 294         * configuration. We have only one level of NUMA.
 295         *
 296         * With form 1 affinity the first integer is the most significant
 297         * NUMA boundary and the following are progressively less significant
 298         * boundaries. There can be more than one level of NUMA.
 299         */
 300        distance_ref_points = of_get_property(root,
 301                                        "ibm,associativity-reference-points",
 302                                        &distance_ref_points_depth);
 303
 304        if (!distance_ref_points) {
 305                dbg("NUMA: ibm,associativity-reference-points not found.\n");
 306                goto err;
 307        }
 308
 309        distance_ref_points_depth /= sizeof(int);
 310
 311        if (firmware_has_feature(FW_FEATURE_OPAL) ||
 312            firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 313                dbg("Using form 1 affinity\n");
 314                form1_affinity = 1;
 315        }
 316
 317        if (form1_affinity) {
 318                depth = of_read_number(distance_ref_points, 1);
 319        } else {
 320                if (distance_ref_points_depth < 2) {
 321                        printk(KERN_WARNING "NUMA: "
 322                                "short ibm,associativity-reference-points\n");
 323                        goto err;
 324                }
 325
 326                depth = of_read_number(&distance_ref_points[1], 1);
 327        }
 328
 329        /*
 330         * Warn and cap if the hardware supports more than
 331         * MAX_DISTANCE_REF_POINTS domains.
 332         */
 333        if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 334                printk(KERN_WARNING "NUMA: distance array capped at "
 335                        "%d entries\n", MAX_DISTANCE_REF_POINTS);
 336                distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 337        }
 338
 339        of_node_put(root);
 340        return depth;
 341
 342err:
 343        of_node_put(root);
 344        return -1;
 345}
 346
 347static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 348{
 349        struct device_node *memory = NULL;
 350
 351        memory = of_find_node_by_type(memory, "memory");
 352        if (!memory)
 353                panic("numa.c: No memory nodes found!");
 354
 355        *n_addr_cells = of_n_addr_cells(memory);
 356        *n_size_cells = of_n_size_cells(memory);
 357        of_node_put(memory);
 358}
 359
 360static unsigned long read_n_cells(int n, const __be32 **buf)
 361{
 362        unsigned long result = 0;
 363
 364        while (n--) {
 365                result = (result << 32) | of_read_number(*buf, 1);
 366                (*buf)++;
 367        }
 368        return result;
 369}
 370
 371struct assoc_arrays {
 372        u32     n_arrays;
 373        u32     array_sz;
 374        const __be32 *arrays;
 375};
 376
 377/*
 378 * Retrieve and validate the list of associativity arrays for drconf
 379 * memory from the ibm,associativity-lookup-arrays property of the
 380 * device tree..
 381 *
 382 * The layout of the ibm,associativity-lookup-arrays property is a number N
 383 * indicating the number of associativity arrays, followed by a number M
 384 * indicating the size of each associativity array, followed by a list
 385 * of N associativity arrays.
 386 */
 387static int of_get_assoc_arrays(struct assoc_arrays *aa)
 388{
 389        struct device_node *memory;
 390        const __be32 *prop;
 391        u32 len;
 392
 393        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 394        if (!memory)
 395                return -1;
 396
 397        prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 398        if (!prop || len < 2 * sizeof(unsigned int)) {
 399                of_node_put(memory);
 400                return -1;
 401        }
 402
 403        aa->n_arrays = of_read_number(prop++, 1);
 404        aa->array_sz = of_read_number(prop++, 1);
 405
 406        of_node_put(memory);
 407
 408        /* Now that we know the number of arrays and size of each array,
 409         * revalidate the size of the property read in.
 410         */
 411        if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 412                return -1;
 413
 414        aa->arrays = prop;
 415        return 0;
 416}
 417
 418/*
 419 * This is like of_node_to_nid_single() for memory represented in the
 420 * ibm,dynamic-reconfiguration-memory node.
 421 */
 422static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 423{
 424        struct assoc_arrays aa = { .arrays = NULL };
 425        int default_nid = 0;
 426        int nid = default_nid;
 427        int rc, index;
 428
 429        rc = of_get_assoc_arrays(&aa);
 430        if (rc)
 431                return default_nid;
 432
 433        if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
 434            !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
 435            lmb->aa_index < aa.n_arrays) {
 436                index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
 437                nid = of_read_number(&aa.arrays[index], 1);
 438
 439                if (nid == 0xffff || nid >= MAX_NUMNODES)
 440                        nid = default_nid;
 441
 442                if (nid > 0) {
 443                        index = lmb->aa_index * aa.array_sz;
 444                        initialize_distance_lookup_table(nid,
 445                                                        &aa.arrays[index]);
 446                }
 447        }
 448
 449        return nid;
 450}
 451
 452/*
 453 * Figure out to which domain a cpu belongs and stick it there.
 454 * Return the id of the domain used.
 455 */
 456static int numa_setup_cpu(unsigned long lcpu)
 457{
 458        int nid = -1;
 459        struct device_node *cpu;
 460
 461        /*
 462         * If a valid cpu-to-node mapping is already available, use it
 463         * directly instead of querying the firmware, since it represents
 464         * the most recent mapping notified to us by the platform (eg: VPHN).
 465         */
 466        if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
 467                map_cpu_to_node(lcpu, nid);
 468                return nid;
 469        }
 470
 471        cpu = of_get_cpu_node(lcpu, NULL);
 472
 473        if (!cpu) {
 474                WARN_ON(1);
 475                if (cpu_present(lcpu))
 476                        goto out_present;
 477                else
 478                        goto out;
 479        }
 480
 481        nid = of_node_to_nid_single(cpu);
 482
 483out_present:
 484        if (nid < 0 || !node_possible(nid))
 485                nid = first_online_node;
 486
 487        map_cpu_to_node(lcpu, nid);
 488        of_node_put(cpu);
 489out:
 490        return nid;
 491}
 492
 493static void verify_cpu_node_mapping(int cpu, int node)
 494{
 495        int base, sibling, i;
 496
 497        /* Verify that all the threads in the core belong to the same node */
 498        base = cpu_first_thread_sibling(cpu);
 499
 500        for (i = 0; i < threads_per_core; i++) {
 501                sibling = base + i;
 502
 503                if (sibling == cpu || cpu_is_offline(sibling))
 504                        continue;
 505
 506                if (cpu_to_node(sibling) != node) {
 507                        WARN(1, "CPU thread siblings %d and %d don't belong"
 508                                " to the same node!\n", cpu, sibling);
 509                        break;
 510                }
 511        }
 512}
 513
 514/* Must run before sched domains notifier. */
 515static int ppc_numa_cpu_prepare(unsigned int cpu)
 516{
 517        int nid;
 518
 519        nid = numa_setup_cpu(cpu);
 520        verify_cpu_node_mapping(cpu, nid);
 521        return 0;
 522}
 523
 524static int ppc_numa_cpu_dead(unsigned int cpu)
 525{
 526#ifdef CONFIG_HOTPLUG_CPU
 527        unmap_cpu_from_node(cpu);
 528#endif
 529        return 0;
 530}
 531
 532/*
 533 * Check and possibly modify a memory region to enforce the memory limit.
 534 *
 535 * Returns the size the region should have to enforce the memory limit.
 536 * This will either be the original value of size, a truncated value,
 537 * or zero. If the returned value of size is 0 the region should be
 538 * discarded as it lies wholly above the memory limit.
 539 */
 540static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 541                                                      unsigned long size)
 542{
 543        /*
 544         * We use memblock_end_of_DRAM() in here instead of memory_limit because
 545         * we've already adjusted it for the limit and it takes care of
 546         * having memory holes below the limit.  Also, in the case of
 547         * iommu_is_off, memory_limit is not set but is implicitly enforced.
 548         */
 549
 550        if (start + size <= memblock_end_of_DRAM())
 551                return size;
 552
 553        if (start >= memblock_end_of_DRAM())
 554                return 0;
 555
 556        return memblock_end_of_DRAM() - start;
 557}
 558
 559/*
 560 * Reads the counter for a given entry in
 561 * linux,drconf-usable-memory property
 562 */
 563static inline int __init read_usm_ranges(const __be32 **usm)
 564{
 565        /*
 566         * For each lmb in ibm,dynamic-memory a corresponding
 567         * entry in linux,drconf-usable-memory property contains
 568         * a counter followed by that many (base, size) duple.
 569         * read the counter from linux,drconf-usable-memory
 570         */
 571        return read_n_cells(n_mem_size_cells, usm);
 572}
 573
 574/*
 575 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 576 * node.  This assumes n_mem_{addr,size}_cells have been set.
 577 */
 578static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 579                                        const __be32 **usm)
 580{
 581        unsigned int ranges, is_kexec_kdump = 0;
 582        unsigned long base, size, sz;
 583        int nid;
 584
 585        /*
 586         * Skip this block if the reserved bit is set in flags (0x80)
 587         * or if the block is not assigned to this partition (0x8)
 588         */
 589        if ((lmb->flags & DRCONF_MEM_RESERVED)
 590            || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 591                return;
 592
 593        if (*usm)
 594                is_kexec_kdump = 1;
 595
 596        base = lmb->base_addr;
 597        size = drmem_lmb_size();
 598        ranges = 1;
 599
 600        if (is_kexec_kdump) {
 601                ranges = read_usm_ranges(usm);
 602                if (!ranges) /* there are no (base, size) duple */
 603                        return;
 604        }
 605
 606        do {
 607                if (is_kexec_kdump) {
 608                        base = read_n_cells(n_mem_addr_cells, usm);
 609                        size = read_n_cells(n_mem_size_cells, usm);
 610                }
 611
 612                nid = of_drconf_to_nid_single(lmb);
 613                fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 614                                          &nid);
 615                node_set_online(nid);
 616                sz = numa_enforce_memory_limit(base, size);
 617                if (sz)
 618                        memblock_set_node(base, sz, &memblock.memory, nid);
 619        } while (--ranges);
 620}
 621
 622static int __init parse_numa_properties(void)
 623{
 624        struct device_node *memory;
 625        int default_nid = 0;
 626        unsigned long i;
 627
 628        if (numa_enabled == 0) {
 629                printk(KERN_WARNING "NUMA disabled by user\n");
 630                return -1;
 631        }
 632
 633        min_common_depth = find_min_common_depth();
 634
 635        if (min_common_depth < 0)
 636                return min_common_depth;
 637
 638        dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 639
 640        /*
 641         * Even though we connect cpus to numa domains later in SMP
 642         * init, we need to know the node ids now. This is because
 643         * each node to be onlined must have NODE_DATA etc backing it.
 644         */
 645        for_each_present_cpu(i) {
 646                struct device_node *cpu;
 647                int nid;
 648
 649                cpu = of_get_cpu_node(i, NULL);
 650                BUG_ON(!cpu);
 651                nid = of_node_to_nid_single(cpu);
 652                of_node_put(cpu);
 653
 654                /*
 655                 * Don't fall back to default_nid yet -- we will plug
 656                 * cpus into nodes once the memory scan has discovered
 657                 * the topology.
 658                 */
 659                if (nid < 0)
 660                        continue;
 661                node_set_online(nid);
 662        }
 663
 664        get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 665
 666        for_each_node_by_type(memory, "memory") {
 667                unsigned long start;
 668                unsigned long size;
 669                int nid;
 670                int ranges;
 671                const __be32 *memcell_buf;
 672                unsigned int len;
 673
 674                memcell_buf = of_get_property(memory,
 675                        "linux,usable-memory", &len);
 676                if (!memcell_buf || len <= 0)
 677                        memcell_buf = of_get_property(memory, "reg", &len);
 678                if (!memcell_buf || len <= 0)
 679                        continue;
 680
 681                /* ranges in cell */
 682                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 683new_range:
 684                /* these are order-sensitive, and modify the buffer pointer */
 685                start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 686                size = read_n_cells(n_mem_size_cells, &memcell_buf);
 687
 688                /*
 689                 * Assumption: either all memory nodes or none will
 690                 * have associativity properties.  If none, then
 691                 * everything goes to default_nid.
 692                 */
 693                nid = of_node_to_nid_single(memory);
 694                if (nid < 0)
 695                        nid = default_nid;
 696
 697                fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 698                node_set_online(nid);
 699
 700                size = numa_enforce_memory_limit(start, size);
 701                if (size)
 702                        memblock_set_node(start, size, &memblock.memory, nid);
 703
 704                if (--ranges)
 705                        goto new_range;
 706        }
 707
 708        /*
 709         * Now do the same thing for each MEMBLOCK listed in the
 710         * ibm,dynamic-memory property in the
 711         * ibm,dynamic-reconfiguration-memory node.
 712         */
 713        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 714        if (memory) {
 715                walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
 716                of_node_put(memory);
 717        }
 718
 719        return 0;
 720}
 721
 722static void __init setup_nonnuma(void)
 723{
 724        unsigned long top_of_ram = memblock_end_of_DRAM();
 725        unsigned long total_ram = memblock_phys_mem_size();
 726        unsigned long start_pfn, end_pfn;
 727        unsigned int nid = 0;
 728        struct memblock_region *reg;
 729
 730        printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 731               top_of_ram, total_ram);
 732        printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 733               (top_of_ram - total_ram) >> 20);
 734
 735        for_each_memblock(memory, reg) {
 736                start_pfn = memblock_region_memory_base_pfn(reg);
 737                end_pfn = memblock_region_memory_end_pfn(reg);
 738
 739                fake_numa_create_new_node(end_pfn, &nid);
 740                memblock_set_node(PFN_PHYS(start_pfn),
 741                                  PFN_PHYS(end_pfn - start_pfn),
 742                                  &memblock.memory, nid);
 743                node_set_online(nid);
 744        }
 745}
 746
 747void __init dump_numa_cpu_topology(void)
 748{
 749        unsigned int node;
 750        unsigned int cpu, count;
 751
 752        if (min_common_depth == -1 || !numa_enabled)
 753                return;
 754
 755        for_each_online_node(node) {
 756                pr_info("Node %d CPUs:", node);
 757
 758                count = 0;
 759                /*
 760                 * If we used a CPU iterator here we would miss printing
 761                 * the holes in the cpumap.
 762                 */
 763                for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 764                        if (cpumask_test_cpu(cpu,
 765                                        node_to_cpumask_map[node])) {
 766                                if (count == 0)
 767                                        pr_cont(" %u", cpu);
 768                                ++count;
 769                        } else {
 770                                if (count > 1)
 771                                        pr_cont("-%u", cpu - 1);
 772                                count = 0;
 773                        }
 774                }
 775
 776                if (count > 1)
 777                        pr_cont("-%u", nr_cpu_ids - 1);
 778                pr_cont("\n");
 779        }
 780}
 781
 782/* Initialize NODE_DATA for a node on the local memory */
 783static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
 784{
 785        u64 spanned_pages = end_pfn - start_pfn;
 786        const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
 787        u64 nd_pa;
 788        void *nd;
 789        int tnid;
 790
 791        nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 792        nd = __va(nd_pa);
 793
 794        /* report and initialize */
 795        pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
 796                nd_pa, nd_pa + nd_size - 1);
 797        tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 798        if (tnid != nid)
 799                pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 800
 801        node_data[nid] = nd;
 802        memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 803        NODE_DATA(nid)->node_id = nid;
 804        NODE_DATA(nid)->node_start_pfn = start_pfn;
 805        NODE_DATA(nid)->node_spanned_pages = spanned_pages;
 806}
 807
 808static void __init find_possible_nodes(void)
 809{
 810        struct device_node *rtas;
 811        u32 numnodes, i;
 812
 813        if (min_common_depth <= 0)
 814                return;
 815
 816        rtas = of_find_node_by_path("/rtas");
 817        if (!rtas)
 818                return;
 819
 820        if (of_property_read_u32_index(rtas,
 821                                "ibm,max-associativity-domains",
 822                                min_common_depth, &numnodes))
 823                goto out;
 824
 825        for (i = 0; i < numnodes; i++) {
 826                if (!node_possible(i))
 827                        node_set(i, node_possible_map);
 828        }
 829
 830out:
 831        of_node_put(rtas);
 832}
 833
 834void __init mem_topology_setup(void)
 835{
 836        int cpu;
 837
 838        if (parse_numa_properties())
 839                setup_nonnuma();
 840
 841        /*
 842         * Modify the set of possible NUMA nodes to reflect information
 843         * available about the set of online nodes, and the set of nodes
 844         * that we expect to make use of for this platform's affinity
 845         * calculations.
 846         */
 847        nodes_and(node_possible_map, node_possible_map, node_online_map);
 848
 849        find_possible_nodes();
 850
 851        setup_node_to_cpumask_map();
 852
 853        reset_numa_cpu_lookup_table();
 854
 855        for_each_present_cpu(cpu)
 856                numa_setup_cpu(cpu);
 857}
 858
 859void __init initmem_init(void)
 860{
 861        int nid;
 862
 863        max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 864        max_pfn = max_low_pfn;
 865
 866        memblock_dump_all();
 867
 868        for_each_online_node(nid) {
 869                unsigned long start_pfn, end_pfn;
 870
 871                get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 872                setup_node_data(nid, start_pfn, end_pfn);
 873                sparse_memory_present_with_active_regions(nid);
 874        }
 875
 876        sparse_init();
 877
 878        /*
 879         * We need the numa_cpu_lookup_table to be accurate for all CPUs,
 880         * even before we online them, so that we can use cpu_to_{node,mem}
 881         * early in boot, cf. smp_prepare_cpus().
 882         * _nocalls() + manual invocation is used because cpuhp is not yet
 883         * initialized for the boot CPU.
 884         */
 885        cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
 886                                  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
 887}
 888
 889static int __init early_numa(char *p)
 890{
 891        if (!p)
 892                return 0;
 893
 894        if (strstr(p, "off"))
 895                numa_enabled = 0;
 896
 897        if (strstr(p, "debug"))
 898                numa_debug = 1;
 899
 900        p = strstr(p, "fake=");
 901        if (p)
 902                cmdline = p + strlen("fake=");
 903
 904        return 0;
 905}
 906early_param("numa", early_numa);
 907
 908static bool topology_updates_enabled = true;
 909
 910static int __init early_topology_updates(char *p)
 911{
 912        if (!p)
 913                return 0;
 914
 915        if (!strcmp(p, "off")) {
 916                pr_info("Disabling topology updates\n");
 917                topology_updates_enabled = false;
 918        }
 919
 920        return 0;
 921}
 922early_param("topology_updates", early_topology_updates);
 923
 924#ifdef CONFIG_MEMORY_HOTPLUG
 925/*
 926 * Find the node associated with a hot added memory section for
 927 * memory represented in the device tree by the property
 928 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 929 */
 930static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
 931{
 932        struct drmem_lmb *lmb;
 933        unsigned long lmb_size;
 934        int nid = -1;
 935
 936        lmb_size = drmem_lmb_size();
 937
 938        for_each_drmem_lmb(lmb) {
 939                /* skip this block if it is reserved or not assigned to
 940                 * this partition */
 941                if ((lmb->flags & DRCONF_MEM_RESERVED)
 942                    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 943                        continue;
 944
 945                if ((scn_addr < lmb->base_addr)
 946                    || (scn_addr >= (lmb->base_addr + lmb_size)))
 947                        continue;
 948
 949                nid = of_drconf_to_nid_single(lmb);
 950                break;
 951        }
 952
 953        return nid;
 954}
 955
 956/*
 957 * Find the node associated with a hot added memory section for memory
 958 * represented in the device tree as a node (i.e. memory@XXXX) for
 959 * each memblock.
 960 */
 961static int hot_add_node_scn_to_nid(unsigned long scn_addr)
 962{
 963        struct device_node *memory;
 964        int nid = -1;
 965
 966        for_each_node_by_type(memory, "memory") {
 967                unsigned long start, size;
 968                int ranges;
 969                const __be32 *memcell_buf;
 970                unsigned int len;
 971
 972                memcell_buf = of_get_property(memory, "reg", &len);
 973                if (!memcell_buf || len <= 0)
 974                        continue;
 975
 976                /* ranges in cell */
 977                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 978
 979                while (ranges--) {
 980                        start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 981                        size = read_n_cells(n_mem_size_cells, &memcell_buf);
 982
 983                        if ((scn_addr < start) || (scn_addr >= (start + size)))
 984                                continue;
 985
 986                        nid = of_node_to_nid_single(memory);
 987                        break;
 988                }
 989
 990                if (nid >= 0)
 991                        break;
 992        }
 993
 994        of_node_put(memory);
 995
 996        return nid;
 997}
 998
 999/*
1000 * Find the node associated with a hot added memory section.  Section
1001 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1002 * sections are fully contained within a single MEMBLOCK.
1003 */
1004int hot_add_scn_to_nid(unsigned long scn_addr)
1005{
1006        struct device_node *memory = NULL;
1007        int nid;
1008
1009        if (!numa_enabled || (min_common_depth < 0))
1010                return first_online_node;
1011
1012        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1013        if (memory) {
1014                nid = hot_add_drconf_scn_to_nid(scn_addr);
1015                of_node_put(memory);
1016        } else {
1017                nid = hot_add_node_scn_to_nid(scn_addr);
1018        }
1019
1020        if (nid < 0 || !node_possible(nid))
1021                nid = first_online_node;
1022
1023        return nid;
1024}
1025
1026static u64 hot_add_drconf_memory_max(void)
1027{
1028        struct device_node *memory = NULL;
1029        struct device_node *dn = NULL;
1030        const __be64 *lrdr = NULL;
1031
1032        dn = of_find_node_by_path("/rtas");
1033        if (dn) {
1034                lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1035                of_node_put(dn);
1036                if (lrdr)
1037                        return be64_to_cpup(lrdr);
1038        }
1039
1040        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1041        if (memory) {
1042                of_node_put(memory);
1043                return drmem_lmb_memory_max();
1044        }
1045        return 0;
1046}
1047
1048/*
1049 * memory_hotplug_max - return max address of memory that may be added
1050 *
1051 * This is currently only used on systems that support drconfig memory
1052 * hotplug.
1053 */
1054u64 memory_hotplug_max(void)
1055{
1056        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1057}
1058#endif /* CONFIG_MEMORY_HOTPLUG */
1059
1060/* Virtual Processor Home Node (VPHN) support */
1061#ifdef CONFIG_PPC_SPLPAR
1062
1063#include "vphn.h"
1064
1065struct topology_update_data {
1066        struct topology_update_data *next;
1067        unsigned int cpu;
1068        int old_nid;
1069        int new_nid;
1070};
1071
1072#define TOPOLOGY_DEF_TIMER_SECS 60
1073
1074static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1075static cpumask_t cpu_associativity_changes_mask;
1076static int vphn_enabled;
1077static int prrn_enabled;
1078static void reset_topology_timer(void);
1079static int topology_timer_secs = 1;
1080static int topology_inited;
1081static int topology_update_needed;
1082
1083/*
1084 * Change polling interval for associativity changes.
1085 */
1086int timed_topology_update(int nsecs)
1087{
1088        if (vphn_enabled) {
1089                if (nsecs > 0)
1090                        topology_timer_secs = nsecs;
1091                else
1092                        topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1093
1094                reset_topology_timer();
1095        }
1096
1097        return 0;
1098}
1099
1100/*
1101 * Store the current values of the associativity change counters in the
1102 * hypervisor.
1103 */
1104static void setup_cpu_associativity_change_counters(void)
1105{
1106        int cpu;
1107
1108        /* The VPHN feature supports a maximum of 8 reference points */
1109        BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1110
1111        for_each_possible_cpu(cpu) {
1112                int i;
1113                u8 *counts = vphn_cpu_change_counts[cpu];
1114                volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1115
1116                for (i = 0; i < distance_ref_points_depth; i++)
1117                        counts[i] = hypervisor_counts[i];
1118        }
1119}
1120
1121/*
1122 * The hypervisor maintains a set of 8 associativity change counters in
1123 * the VPA of each cpu that correspond to the associativity levels in the
1124 * ibm,associativity-reference-points property. When an associativity
1125 * level changes, the corresponding counter is incremented.
1126 *
1127 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1128 * node associativity levels have changed.
1129 *
1130 * Returns the number of cpus with unhandled associativity changes.
1131 */
1132static int update_cpu_associativity_changes_mask(void)
1133{
1134        int cpu;
1135        cpumask_t *changes = &cpu_associativity_changes_mask;
1136
1137        for_each_possible_cpu(cpu) {
1138                int i, changed = 0;
1139                u8 *counts = vphn_cpu_change_counts[cpu];
1140                volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1141
1142                for (i = 0; i < distance_ref_points_depth; i++) {
1143                        if (hypervisor_counts[i] != counts[i]) {
1144                                counts[i] = hypervisor_counts[i];
1145                                changed = 1;
1146                        }
1147                }
1148                if (changed) {
1149                        cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1150                        cpu = cpu_last_thread_sibling(cpu);
1151                }
1152        }
1153
1154        return cpumask_weight(changes);
1155}
1156
1157/*
1158 * Retrieve the new associativity information for a virtual processor's
1159 * home node.
1160 */
1161static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1162{
1163        long rc;
1164        long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1165        u64 flags = 1;
1166        int hwcpu = get_hard_smp_processor_id(cpu);
1167
1168        rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1169        vphn_unpack_associativity(retbuf, associativity);
1170
1171        return rc;
1172}
1173
1174static long vphn_get_associativity(unsigned long cpu,
1175                                        __be32 *associativity)
1176{
1177        long rc;
1178
1179        rc = hcall_vphn(cpu, associativity);
1180
1181        switch (rc) {
1182        case H_FUNCTION:
1183                printk(KERN_INFO
1184                        "VPHN is not supported. Disabling polling...\n");
1185                stop_topology_update();
1186                break;
1187        case H_HARDWARE:
1188                printk(KERN_ERR
1189                        "hcall_vphn() experienced a hardware fault "
1190                        "preventing VPHN. Disabling polling...\n");
1191                stop_topology_update();
1192                break;
1193        case H_SUCCESS:
1194                dbg("VPHN hcall succeeded. Reset polling...\n");
1195                timed_topology_update(0);
1196                break;
1197        }
1198
1199        return rc;
1200}
1201
1202int find_and_online_cpu_nid(int cpu)
1203{
1204        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1205        int new_nid;
1206
1207        /* Use associativity from first thread for all siblings */
1208        vphn_get_associativity(cpu, associativity);
1209        new_nid = associativity_to_nid(associativity);
1210        if (new_nid < 0 || !node_possible(new_nid))
1211                new_nid = first_online_node;
1212
1213        if (NODE_DATA(new_nid) == NULL) {
1214#ifdef CONFIG_MEMORY_HOTPLUG
1215                /*
1216                 * Need to ensure that NODE_DATA is initialized for a node from
1217                 * available memory (see memblock_alloc_try_nid). If unable to
1218                 * init the node, then default to nearest node that has memory
1219                 * installed.
1220                 */
1221                if (try_online_node(new_nid))
1222                        new_nid = first_online_node;
1223#else
1224                /*
1225                 * Default to using the nearest node that has memory installed.
1226                 * Otherwise, it would be necessary to patch the kernel MM code
1227                 * to deal with more memoryless-node error conditions.
1228                 */
1229                new_nid = first_online_node;
1230#endif
1231        }
1232
1233        pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1234                cpu, new_nid);
1235        return new_nid;
1236}
1237
1238/*
1239 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1240 * characteristics change. This function doesn't perform any locking and is
1241 * only safe to call from stop_machine().
1242 */
1243static int update_cpu_topology(void *data)
1244{
1245        struct topology_update_data *update;
1246        unsigned long cpu;
1247
1248        if (!data)
1249                return -EINVAL;
1250
1251        cpu = smp_processor_id();
1252
1253        for (update = data; update; update = update->next) {
1254                int new_nid = update->new_nid;
1255                if (cpu != update->cpu)
1256                        continue;
1257
1258                unmap_cpu_from_node(cpu);
1259                map_cpu_to_node(cpu, new_nid);
1260                set_cpu_numa_node(cpu, new_nid);
1261                set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1262                vdso_getcpu_init();
1263        }
1264
1265        return 0;
1266}
1267
1268static int update_lookup_table(void *data)
1269{
1270        struct topology_update_data *update;
1271
1272        if (!data)
1273                return -EINVAL;
1274
1275        /*
1276         * Upon topology update, the numa-cpu lookup table needs to be updated
1277         * for all threads in the core, including offline CPUs, to ensure that
1278         * future hotplug operations respect the cpu-to-node associativity
1279         * properly.
1280         */
1281        for (update = data; update; update = update->next) {
1282                int nid, base, j;
1283
1284                nid = update->new_nid;
1285                base = cpu_first_thread_sibling(update->cpu);
1286
1287                for (j = 0; j < threads_per_core; j++) {
1288                        update_numa_cpu_lookup_table(base + j, nid);
1289                }
1290        }
1291
1292        return 0;
1293}
1294
1295/*
1296 * Update the node maps and sysfs entries for each cpu whose home node
1297 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1298 *
1299 * cpus_locked says whether we already hold cpu_hotplug_lock.
1300 */
1301int numa_update_cpu_topology(bool cpus_locked)
1302{
1303        unsigned int cpu, sibling, changed = 0;
1304        struct topology_update_data *updates, *ud;
1305        cpumask_t updated_cpus;
1306        struct device *dev;
1307        int weight, new_nid, i = 0;
1308
1309        if (!prrn_enabled && !vphn_enabled) {
1310                if (!topology_inited)
1311                        topology_update_needed = 1;
1312                return 0;
1313        }
1314
1315        weight = cpumask_weight(&cpu_associativity_changes_mask);
1316        if (!weight)
1317                return 0;
1318
1319        updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1320        if (!updates)
1321                return 0;
1322
1323        cpumask_clear(&updated_cpus);
1324
1325        for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1326                /*
1327                 * If siblings aren't flagged for changes, updates list
1328                 * will be too short. Skip on this update and set for next
1329                 * update.
1330                 */
1331                if (!cpumask_subset(cpu_sibling_mask(cpu),
1332                                        &cpu_associativity_changes_mask)) {
1333                        pr_info("Sibling bits not set for associativity "
1334                                        "change, cpu%d\n", cpu);
1335                        cpumask_or(&cpu_associativity_changes_mask,
1336                                        &cpu_associativity_changes_mask,
1337                                        cpu_sibling_mask(cpu));
1338                        cpu = cpu_last_thread_sibling(cpu);
1339                        continue;
1340                }
1341
1342                new_nid = find_and_online_cpu_nid(cpu);
1343
1344                if (new_nid == numa_cpu_lookup_table[cpu]) {
1345                        cpumask_andnot(&cpu_associativity_changes_mask,
1346                                        &cpu_associativity_changes_mask,
1347                                        cpu_sibling_mask(cpu));
1348                        dbg("Assoc chg gives same node %d for cpu%d\n",
1349                                        new_nid, cpu);
1350                        cpu = cpu_last_thread_sibling(cpu);
1351                        continue;
1352                }
1353
1354                for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1355                        ud = &updates[i++];
1356                        ud->next = &updates[i];
1357                        ud->cpu = sibling;
1358                        ud->new_nid = new_nid;
1359                        ud->old_nid = numa_cpu_lookup_table[sibling];
1360                        cpumask_set_cpu(sibling, &updated_cpus);
1361                }
1362                cpu = cpu_last_thread_sibling(cpu);
1363        }
1364
1365        /*
1366         * Prevent processing of 'updates' from overflowing array
1367         * where last entry filled in a 'next' pointer.
1368         */
1369        if (i)
1370                updates[i-1].next = NULL;
1371
1372        pr_debug("Topology update for the following CPUs:\n");
1373        if (cpumask_weight(&updated_cpus)) {
1374                for (ud = &updates[0]; ud; ud = ud->next) {
1375                        pr_debug("cpu %d moving from node %d "
1376                                          "to %d\n", ud->cpu,
1377                                          ud->old_nid, ud->new_nid);
1378                }
1379        }
1380
1381        /*
1382         * In cases where we have nothing to update (because the updates list
1383         * is too short or because the new topology is same as the old one),
1384         * skip invoking update_cpu_topology() via stop-machine(). This is
1385         * necessary (and not just a fast-path optimization) since stop-machine
1386         * can end up electing a random CPU to run update_cpu_topology(), and
1387         * thus trick us into setting up incorrect cpu-node mappings (since
1388         * 'updates' is kzalloc()'ed).
1389         *
1390         * And for the similar reason, we will skip all the following updating.
1391         */
1392        if (!cpumask_weight(&updated_cpus))
1393                goto out;
1394
1395        if (cpus_locked)
1396                stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1397                                        &updated_cpus);
1398        else
1399                stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1400
1401        /*
1402         * Update the numa-cpu lookup table with the new mappings, even for
1403         * offline CPUs. It is best to perform this update from the stop-
1404         * machine context.
1405         */
1406        if (cpus_locked)
1407                stop_machine_cpuslocked(update_lookup_table, &updates[0],
1408                                        cpumask_of(raw_smp_processor_id()));
1409        else
1410                stop_machine(update_lookup_table, &updates[0],
1411                             cpumask_of(raw_smp_processor_id()));
1412
1413        for (ud = &updates[0]; ud; ud = ud->next) {
1414                unregister_cpu_under_node(ud->cpu, ud->old_nid);
1415                register_cpu_under_node(ud->cpu, ud->new_nid);
1416
1417                dev = get_cpu_device(ud->cpu);
1418                if (dev)
1419                        kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1420                cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1421                changed = 1;
1422        }
1423
1424out:
1425        kfree(updates);
1426        topology_update_needed = 0;
1427        return changed;
1428}
1429
1430int arch_update_cpu_topology(void)
1431{
1432        return numa_update_cpu_topology(true);
1433}
1434
1435static void topology_work_fn(struct work_struct *work)
1436{
1437        rebuild_sched_domains();
1438}
1439static DECLARE_WORK(topology_work, topology_work_fn);
1440
1441static void topology_schedule_update(void)
1442{
1443        schedule_work(&topology_work);
1444}
1445
1446static void topology_timer_fn(struct timer_list *unused)
1447{
1448        if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1449                topology_schedule_update();
1450        else if (vphn_enabled) {
1451                if (update_cpu_associativity_changes_mask() > 0)
1452                        topology_schedule_update();
1453                reset_topology_timer();
1454        }
1455}
1456static struct timer_list topology_timer;
1457
1458static void reset_topology_timer(void)
1459{
1460        mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1461}
1462
1463#ifdef CONFIG_SMP
1464
1465static void stage_topology_update(int core_id)
1466{
1467        cpumask_or(&cpu_associativity_changes_mask,
1468                &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1469        reset_topology_timer();
1470}
1471
1472static int dt_update_callback(struct notifier_block *nb,
1473                                unsigned long action, void *data)
1474{
1475        struct of_reconfig_data *update = data;
1476        int rc = NOTIFY_DONE;
1477
1478        switch (action) {
1479        case OF_RECONFIG_UPDATE_PROPERTY:
1480                if (!of_prop_cmp(update->dn->type, "cpu") &&
1481                    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1482                        u32 core_id;
1483                        of_property_read_u32(update->dn, "reg", &core_id);
1484                        stage_topology_update(core_id);
1485                        rc = NOTIFY_OK;
1486                }
1487                break;
1488        }
1489
1490        return rc;
1491}
1492
1493static struct notifier_block dt_update_nb = {
1494        .notifier_call = dt_update_callback,
1495};
1496
1497#endif
1498
1499/*
1500 * Start polling for associativity changes.
1501 */
1502int start_topology_update(void)
1503{
1504        int rc = 0;
1505
1506        if (firmware_has_feature(FW_FEATURE_PRRN)) {
1507                if (!prrn_enabled) {
1508                        prrn_enabled = 1;
1509#ifdef CONFIG_SMP
1510                        rc = of_reconfig_notifier_register(&dt_update_nb);
1511#endif
1512                }
1513        }
1514        if (firmware_has_feature(FW_FEATURE_VPHN) &&
1515                   lppaca_shared_proc(get_lppaca())) {
1516                if (!vphn_enabled) {
1517                        vphn_enabled = 1;
1518                        setup_cpu_associativity_change_counters();
1519                        timer_setup(&topology_timer, topology_timer_fn,
1520                                    TIMER_DEFERRABLE);
1521                        reset_topology_timer();
1522                }
1523        }
1524
1525        return rc;
1526}
1527
1528/*
1529 * Disable polling for VPHN associativity changes.
1530 */
1531int stop_topology_update(void)
1532{
1533        int rc = 0;
1534
1535        if (prrn_enabled) {
1536                prrn_enabled = 0;
1537#ifdef CONFIG_SMP
1538                rc = of_reconfig_notifier_unregister(&dt_update_nb);
1539#endif
1540        }
1541        if (vphn_enabled) {
1542                vphn_enabled = 0;
1543                rc = del_timer_sync(&topology_timer);
1544        }
1545
1546        return rc;
1547}
1548
1549int prrn_is_enabled(void)
1550{
1551        return prrn_enabled;
1552}
1553
1554static int topology_read(struct seq_file *file, void *v)
1555{
1556        if (vphn_enabled || prrn_enabled)
1557                seq_puts(file, "on\n");
1558        else
1559                seq_puts(file, "off\n");
1560
1561        return 0;
1562}
1563
1564static int topology_open(struct inode *inode, struct file *file)
1565{
1566        return single_open(file, topology_read, NULL);
1567}
1568
1569static ssize_t topology_write(struct file *file, const char __user *buf,
1570                              size_t count, loff_t *off)
1571{
1572        char kbuf[4]; /* "on" or "off" plus null. */
1573        int read_len;
1574
1575        read_len = count < 3 ? count : 3;
1576        if (copy_from_user(kbuf, buf, read_len))
1577                return -EINVAL;
1578
1579        kbuf[read_len] = '\0';
1580
1581        if (!strncmp(kbuf, "on", 2))
1582                start_topology_update();
1583        else if (!strncmp(kbuf, "off", 3))
1584                stop_topology_update();
1585        else
1586                return -EINVAL;
1587
1588        return count;
1589}
1590
1591static const struct file_operations topology_ops = {
1592        .read = seq_read,
1593        .write = topology_write,
1594        .open = topology_open,
1595        .release = single_release
1596};
1597
1598static int topology_update_init(void)
1599{
1600        /* Do not poll for changes if disabled at boot */
1601        if (topology_updates_enabled)
1602                start_topology_update();
1603
1604        if (vphn_enabled)
1605                topology_schedule_update();
1606
1607        if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1608                return -ENOMEM;
1609
1610        topology_inited = 1;
1611        if (topology_update_needed)
1612                bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1613                                        nr_cpumask_bits);
1614
1615        return 0;
1616}
1617device_initcall(topology_update_init);
1618#endif /* CONFIG_PPC_SPLPAR */
1619