linux/arch/powerpc/mm/pgtable-hash64.c
<<
>>
Prefs
   1/*
   2 * Copyright 2005, Paul Mackerras, IBM Corporation.
   3 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
   4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/sched.h>
  13#include <linux/mm_types.h>
  14#include <linux/mm.h>
  15
  16#include <asm/pgalloc.h>
  17#include <asm/pgtable.h>
  18#include <asm/sections.h>
  19#include <asm/mmu.h>
  20#include <asm/tlb.h>
  21
  22#include "mmu_decl.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include <trace/events/thp.h>
  26
  27#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
  28#warning Limited user VSID range means pagetable space is wasted
  29#endif
  30
  31#ifdef CONFIG_SPARSEMEM_VMEMMAP
  32/*
  33 * vmemmap is the starting address of the virtual address space where
  34 * struct pages are allocated for all possible PFNs present on the system
  35 * including holes and bad memory (hence sparse). These virtual struct
  36 * pages are stored in sequence in this virtual address space irrespective
  37 * of the fact whether the corresponding PFN is valid or not. This achieves
  38 * constant relationship between address of struct page and its PFN.
  39 *
  40 * During boot or memory hotplug operation when a new memory section is
  41 * added, physical memory allocation (including hash table bolting) will
  42 * be performed for the set of struct pages which are part of the memory
  43 * section. This saves memory by not allocating struct pages for PFNs
  44 * which are not valid.
  45 *
  46 *              ----------------------------------------------
  47 *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
  48 *              ----------------------------------------------
  49 *
  50 *         f000000000000000                  c000000000000000
  51 * vmemmap +--------------+                  +--------------+
  52 *  +      |  page struct | +--------------> |  page struct |
  53 *  |      +--------------+                  +--------------+
  54 *  |      |  page struct | +--------------> |  page struct |
  55 *  |      +--------------+ |                +--------------+
  56 *  |      |  page struct | +       +------> |  page struct |
  57 *  |      +--------------+         |        +--------------+
  58 *  |      |  page struct |         |   +--> |  page struct |
  59 *  |      +--------------+         |   |    +--------------+
  60 *  |      |  page struct |         |   |
  61 *  |      +--------------+         |   |
  62 *  |      |  page struct |         |   |
  63 *  |      +--------------+         |   |
  64 *  |      |  page struct |         |   |
  65 *  |      +--------------+         |   |
  66 *  |      |  page struct |         |   |
  67 *  |      +--------------+         |   |
  68 *  |      |  page struct | +-------+   |
  69 *  |      +--------------+             |
  70 *  |      |  page struct | +-----------+
  71 *  |      +--------------+
  72 *  |      |  page struct | No mapping
  73 *  |      +--------------+
  74 *  |      |  page struct | No mapping
  75 *  v      +--------------+
  76 *
  77 *              -----------------------------------------
  78 *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
  79 *              -----------------------------------------
  80 *
  81 * vmemmap +--------------+                 +---------------+
  82 *  +      |  page struct | +-------------> |      PFN      |
  83 *  |      +--------------+                 +---------------+
  84 *  |      |  page struct | +-------------> |      PFN      |
  85 *  |      +--------------+                 +---------------+
  86 *  |      |  page struct | +-------------> |      PFN      |
  87 *  |      +--------------+                 +---------------+
  88 *  |      |  page struct | +-------------> |      PFN      |
  89 *  |      +--------------+                 +---------------+
  90 *  |      |              |
  91 *  |      +--------------+
  92 *  |      |              |
  93 *  |      +--------------+
  94 *  |      |              |
  95 *  |      +--------------+                 +---------------+
  96 *  |      |  page struct | +-------------> |      PFN      |
  97 *  |      +--------------+                 +---------------+
  98 *  |      |              |
  99 *  |      +--------------+
 100 *  |      |              |
 101 *  |      +--------------+                 +---------------+
 102 *  |      |  page struct | +-------------> |      PFN      |
 103 *  |      +--------------+                 +---------------+
 104 *  |      |  page struct | +-------------> |      PFN      |
 105 *  v      +--------------+                 +---------------+
 106 */
 107/*
 108 * On hash-based CPUs, the vmemmap is bolted in the hash table.
 109 *
 110 */
 111int __meminit hash__vmemmap_create_mapping(unsigned long start,
 112                                       unsigned long page_size,
 113                                       unsigned long phys)
 114{
 115        int rc = htab_bolt_mapping(start, start + page_size, phys,
 116                                   pgprot_val(PAGE_KERNEL),
 117                                   mmu_vmemmap_psize, mmu_kernel_ssize);
 118        if (rc < 0) {
 119                int rc2 = htab_remove_mapping(start, start + page_size,
 120                                              mmu_vmemmap_psize,
 121                                              mmu_kernel_ssize);
 122                BUG_ON(rc2 && (rc2 != -ENOENT));
 123        }
 124        return rc;
 125}
 126
 127#ifdef CONFIG_MEMORY_HOTPLUG
 128void hash__vmemmap_remove_mapping(unsigned long start,
 129                              unsigned long page_size)
 130{
 131        int rc = htab_remove_mapping(start, start + page_size,
 132                                     mmu_vmemmap_psize,
 133                                     mmu_kernel_ssize);
 134        BUG_ON((rc < 0) && (rc != -ENOENT));
 135        WARN_ON(rc == -ENOENT);
 136}
 137#endif
 138#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 139
 140/*
 141 * map_kernel_page currently only called by __ioremap
 142 * map_kernel_page adds an entry to the ioremap page table
 143 * and adds an entry to the HPT, possibly bolting it
 144 */
 145int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
 146{
 147        pgd_t *pgdp;
 148        pud_t *pudp;
 149        pmd_t *pmdp;
 150        pte_t *ptep;
 151
 152        BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
 153        if (slab_is_available()) {
 154                pgdp = pgd_offset_k(ea);
 155                pudp = pud_alloc(&init_mm, pgdp, ea);
 156                if (!pudp)
 157                        return -ENOMEM;
 158                pmdp = pmd_alloc(&init_mm, pudp, ea);
 159                if (!pmdp)
 160                        return -ENOMEM;
 161                ptep = pte_alloc_kernel(pmdp, ea);
 162                if (!ptep)
 163                        return -ENOMEM;
 164                set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
 165                                                          __pgprot(flags)));
 166        } else {
 167                /*
 168                 * If the mm subsystem is not fully up, we cannot create a
 169                 * linux page table entry for this mapping.  Simply bolt an
 170                 * entry in the hardware page table.
 171                 *
 172                 */
 173                if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
 174                                      mmu_io_psize, mmu_kernel_ssize)) {
 175                        printk(KERN_ERR "Failed to do bolted mapping IO "
 176                               "memory at %016lx !\n", pa);
 177                        return -ENOMEM;
 178                }
 179        }
 180
 181        smp_wmb();
 182        return 0;
 183}
 184
 185#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 186
 187unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 188                                    pmd_t *pmdp, unsigned long clr,
 189                                    unsigned long set)
 190{
 191        __be64 old_be, tmp;
 192        unsigned long old;
 193
 194#ifdef CONFIG_DEBUG_VM
 195        WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 196        assert_spin_locked(&mm->page_table_lock);
 197#endif
 198
 199        __asm__ __volatile__(
 200        "1:     ldarx   %0,0,%3\n\
 201                and.    %1,%0,%6\n\
 202                bne-    1b \n\
 203                andc    %1,%0,%4 \n\
 204                or      %1,%1,%7\n\
 205                stdcx.  %1,0,%3 \n\
 206                bne-    1b"
 207        : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
 208        : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
 209          "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
 210        : "cc" );
 211
 212        old = be64_to_cpu(old_be);
 213
 214        trace_hugepage_update(addr, old, clr, set);
 215        if (old & H_PAGE_HASHPTE)
 216                hpte_do_hugepage_flush(mm, addr, pmdp, old);
 217        return old;
 218}
 219
 220pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 221                            pmd_t *pmdp)
 222{
 223        pmd_t pmd;
 224
 225        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 226        VM_BUG_ON(pmd_trans_huge(*pmdp));
 227        VM_BUG_ON(pmd_devmap(*pmdp));
 228
 229        pmd = *pmdp;
 230        pmd_clear(pmdp);
 231        /*
 232         * Wait for all pending hash_page to finish. This is needed
 233         * in case of subpage collapse. When we collapse normal pages
 234         * to hugepage, we first clear the pmd, then invalidate all
 235         * the PTE entries. The assumption here is that any low level
 236         * page fault will see a none pmd and take the slow path that
 237         * will wait on mmap_sem. But we could very well be in a
 238         * hash_page with local ptep pointer value. Such a hash page
 239         * can result in adding new HPTE entries for normal subpages.
 240         * That means we could be modifying the page content as we
 241         * copy them to a huge page. So wait for parallel hash_page
 242         * to finish before invalidating HPTE entries. We can do this
 243         * by sending an IPI to all the cpus and executing a dummy
 244         * function there.
 245         */
 246        serialize_against_pte_lookup(vma->vm_mm);
 247        /*
 248         * Now invalidate the hpte entries in the range
 249         * covered by pmd. This make sure we take a
 250         * fault and will find the pmd as none, which will
 251         * result in a major fault which takes mmap_sem and
 252         * hence wait for collapse to complete. Without this
 253         * the __collapse_huge_page_copy can result in copying
 254         * the old content.
 255         */
 256        flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
 257        return pmd;
 258}
 259
 260/*
 261 * We want to put the pgtable in pmd and use pgtable for tracking
 262 * the base page size hptes
 263 */
 264void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 265                                  pgtable_t pgtable)
 266{
 267        pgtable_t *pgtable_slot;
 268        assert_spin_locked(&mm->page_table_lock);
 269        /*
 270         * we store the pgtable in the second half of PMD
 271         */
 272        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 273        *pgtable_slot = pgtable;
 274        /*
 275         * expose the deposited pgtable to other cpus.
 276         * before we set the hugepage PTE at pmd level
 277         * hash fault code looks at the deposted pgtable
 278         * to store hash index values.
 279         */
 280        smp_wmb();
 281}
 282
 283pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 284{
 285        pgtable_t pgtable;
 286        pgtable_t *pgtable_slot;
 287
 288        assert_spin_locked(&mm->page_table_lock);
 289        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 290        pgtable = *pgtable_slot;
 291        /*
 292         * Once we withdraw, mark the entry NULL.
 293         */
 294        *pgtable_slot = NULL;
 295        /*
 296         * We store HPTE information in the deposited PTE fragment.
 297         * zero out the content on withdraw.
 298         */
 299        memset(pgtable, 0, PTE_FRAG_SIZE);
 300        return pgtable;
 301}
 302
 303/*
 304 * A linux hugepage PMD was changed and the corresponding hash table entries
 305 * neesd to be flushed.
 306 */
 307void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
 308                            pmd_t *pmdp, unsigned long old_pmd)
 309{
 310        int ssize;
 311        unsigned int psize;
 312        unsigned long vsid;
 313        unsigned long flags = 0;
 314
 315        /* get the base page size,vsid and segment size */
 316#ifdef CONFIG_DEBUG_VM
 317        psize = get_slice_psize(mm, addr);
 318        BUG_ON(psize == MMU_PAGE_16M);
 319#endif
 320        if (old_pmd & H_PAGE_COMBO)
 321                psize = MMU_PAGE_4K;
 322        else
 323                psize = MMU_PAGE_64K;
 324
 325        if (!is_kernel_addr(addr)) {
 326                ssize = user_segment_size(addr);
 327                vsid = get_user_vsid(&mm->context, addr, ssize);
 328                WARN_ON(vsid == 0);
 329        } else {
 330                vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
 331                ssize = mmu_kernel_ssize;
 332        }
 333
 334        if (mm_is_thread_local(mm))
 335                flags |= HPTE_LOCAL_UPDATE;
 336
 337        return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
 338}
 339
 340pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
 341                                unsigned long addr, pmd_t *pmdp)
 342{
 343        pmd_t old_pmd;
 344        pgtable_t pgtable;
 345        unsigned long old;
 346        pgtable_t *pgtable_slot;
 347
 348        old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
 349        old_pmd = __pmd(old);
 350        /*
 351         * We have pmd == none and we are holding page_table_lock.
 352         * So we can safely go and clear the pgtable hash
 353         * index info.
 354         */
 355        pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 356        pgtable = *pgtable_slot;
 357        /*
 358         * Let's zero out old valid and hash index details
 359         * hash fault look at them.
 360         */
 361        memset(pgtable, 0, PTE_FRAG_SIZE);
 362        /*
 363         * Serialize against find_current_mm_pte variants which does lock-less
 364         * lookup in page tables with local interrupts disabled. For huge pages
 365         * it casts pmd_t to pte_t. Since format of pte_t is different from
 366         * pmd_t we want to prevent transit from pmd pointing to page table
 367         * to pmd pointing to huge page (and back) while interrupts are disabled.
 368         * We clear pmd to possibly replace it with page table pointer in
 369         * different code paths. So make sure we wait for the parallel
 370         * find_curren_mm_pte to finish.
 371         */
 372        serialize_against_pte_lookup(mm);
 373        return old_pmd;
 374}
 375
 376int hash__has_transparent_hugepage(void)
 377{
 378
 379        if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 380                return 0;
 381        /*
 382         * We support THP only if PMD_SIZE is 16MB.
 383         */
 384        if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
 385                return 0;
 386        /*
 387         * We need to make sure that we support 16MB hugepage in a segement
 388         * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
 389         * of 64K.
 390         */
 391        /*
 392         * If we have 64K HPTE, we will be using that by default
 393         */
 394        if (mmu_psize_defs[MMU_PAGE_64K].shift &&
 395            (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
 396                return 0;
 397        /*
 398         * Ok we only have 4K HPTE
 399         */
 400        if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
 401                return 0;
 402
 403        return 1;
 404}
 405#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 406
 407#ifdef CONFIG_STRICT_KERNEL_RWX
 408static bool hash__change_memory_range(unsigned long start, unsigned long end,
 409                                      unsigned long newpp)
 410{
 411        unsigned long idx;
 412        unsigned int step, shift;
 413
 414        shift = mmu_psize_defs[mmu_linear_psize].shift;
 415        step = 1 << shift;
 416
 417        start = ALIGN_DOWN(start, step);
 418        end = ALIGN(end, step); // aligns up
 419
 420        if (start >= end)
 421                return false;
 422
 423        pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
 424                 start, end, newpp, step);
 425
 426        for (idx = start; idx < end; idx += step)
 427                /* Not sure if we can do much with the return value */
 428                mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
 429                                                        mmu_kernel_ssize);
 430
 431        return true;
 432}
 433
 434void hash__mark_rodata_ro(void)
 435{
 436        unsigned long start, end;
 437
 438        start = (unsigned long)_stext;
 439        end = (unsigned long)__init_begin;
 440
 441        WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
 442}
 443
 444void hash__mark_initmem_nx(void)
 445{
 446        unsigned long start, end, pp;
 447
 448        start = (unsigned long)__init_begin;
 449        end = (unsigned long)__init_end;
 450
 451        pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
 452
 453        WARN_ON(!hash__change_memory_range(start, end, pp));
 454}
 455#endif
 456