linux/arch/powerpc/mm/pgtable-radix.c
<<
>>
Prefs
   1/*
   2 * Page table handling routines for radix page table.
   3 *
   4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#define pr_fmt(fmt) "radix-mmu: " fmt
  13
  14#include <linux/kernel.h>
  15#include <linux/sched/mm.h>
  16#include <linux/memblock.h>
  17#include <linux/of_fdt.h>
  18#include <linux/mm.h>
  19#include <linux/string_helpers.h>
  20#include <linux/stop_machine.h>
  21
  22#include <asm/pgtable.h>
  23#include <asm/pgalloc.h>
  24#include <asm/mmu_context.h>
  25#include <asm/dma.h>
  26#include <asm/machdep.h>
  27#include <asm/mmu.h>
  28#include <asm/firmware.h>
  29#include <asm/powernv.h>
  30#include <asm/sections.h>
  31#include <asm/trace.h>
  32
  33#include <trace/events/thp.h>
  34
  35unsigned int mmu_pid_bits;
  36unsigned int mmu_base_pid;
  37
  38static int native_register_process_table(unsigned long base, unsigned long pg_sz,
  39                                         unsigned long table_size)
  40{
  41        unsigned long patb0, patb1;
  42
  43        patb0 = be64_to_cpu(partition_tb[0].patb0);
  44        patb1 = base | table_size | PATB_GR;
  45
  46        mmu_partition_table_set_entry(0, patb0, patb1);
  47
  48        return 0;
  49}
  50
  51static __ref void *early_alloc_pgtable(unsigned long size, int nid,
  52                        unsigned long region_start, unsigned long region_end)
  53{
  54        unsigned long pa = 0;
  55        void *pt;
  56
  57        if (region_start || region_end) /* has region hint */
  58                pa = memblock_alloc_range(size, size, region_start, region_end,
  59                                                MEMBLOCK_NONE);
  60        else if (nid != -1) /* has node hint */
  61                pa = memblock_alloc_base_nid(size, size,
  62                                                MEMBLOCK_ALLOC_ANYWHERE,
  63                                                nid, MEMBLOCK_NONE);
  64
  65        if (!pa)
  66                pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE);
  67
  68        BUG_ON(!pa);
  69
  70        pt = __va(pa);
  71        memset(pt, 0, size);
  72
  73        return pt;
  74}
  75
  76static int early_map_kernel_page(unsigned long ea, unsigned long pa,
  77                          pgprot_t flags,
  78                          unsigned int map_page_size,
  79                          int nid,
  80                          unsigned long region_start, unsigned long region_end)
  81{
  82        unsigned long pfn = pa >> PAGE_SHIFT;
  83        pgd_t *pgdp;
  84        pud_t *pudp;
  85        pmd_t *pmdp;
  86        pte_t *ptep;
  87
  88        pgdp = pgd_offset_k(ea);
  89        if (pgd_none(*pgdp)) {
  90                pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
  91                                                region_start, region_end);
  92                pgd_populate(&init_mm, pgdp, pudp);
  93        }
  94        pudp = pud_offset(pgdp, ea);
  95        if (map_page_size == PUD_SIZE) {
  96                ptep = (pte_t *)pudp;
  97                goto set_the_pte;
  98        }
  99        if (pud_none(*pudp)) {
 100                pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
 101                                                region_start, region_end);
 102                pud_populate(&init_mm, pudp, pmdp);
 103        }
 104        pmdp = pmd_offset(pudp, ea);
 105        if (map_page_size == PMD_SIZE) {
 106                ptep = pmdp_ptep(pmdp);
 107                goto set_the_pte;
 108        }
 109        if (!pmd_present(*pmdp)) {
 110                ptep = early_alloc_pgtable(PAGE_SIZE, nid,
 111                                                region_start, region_end);
 112                pmd_populate_kernel(&init_mm, pmdp, ptep);
 113        }
 114        ptep = pte_offset_kernel(pmdp, ea);
 115
 116set_the_pte:
 117        set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 118        smp_wmb();
 119        return 0;
 120}
 121
 122/*
 123 * nid, region_start, and region_end are hints to try to place the page
 124 * table memory in the same node or region.
 125 */
 126static int __map_kernel_page(unsigned long ea, unsigned long pa,
 127                          pgprot_t flags,
 128                          unsigned int map_page_size,
 129                          int nid,
 130                          unsigned long region_start, unsigned long region_end)
 131{
 132        unsigned long pfn = pa >> PAGE_SHIFT;
 133        pgd_t *pgdp;
 134        pud_t *pudp;
 135        pmd_t *pmdp;
 136        pte_t *ptep;
 137        /*
 138         * Make sure task size is correct as per the max adddr
 139         */
 140        BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
 141
 142        if (unlikely(!slab_is_available()))
 143                return early_map_kernel_page(ea, pa, flags, map_page_size,
 144                                                nid, region_start, region_end);
 145
 146        /*
 147         * Should make page table allocation functions be able to take a
 148         * node, so we can place kernel page tables on the right nodes after
 149         * boot.
 150         */
 151        pgdp = pgd_offset_k(ea);
 152        pudp = pud_alloc(&init_mm, pgdp, ea);
 153        if (!pudp)
 154                return -ENOMEM;
 155        if (map_page_size == PUD_SIZE) {
 156                ptep = (pte_t *)pudp;
 157                goto set_the_pte;
 158        }
 159        pmdp = pmd_alloc(&init_mm, pudp, ea);
 160        if (!pmdp)
 161                return -ENOMEM;
 162        if (map_page_size == PMD_SIZE) {
 163                ptep = pmdp_ptep(pmdp);
 164                goto set_the_pte;
 165        }
 166        ptep = pte_alloc_kernel(pmdp, ea);
 167        if (!ptep)
 168                return -ENOMEM;
 169
 170set_the_pte:
 171        set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 172        smp_wmb();
 173        return 0;
 174}
 175
 176int radix__map_kernel_page(unsigned long ea, unsigned long pa,
 177                          pgprot_t flags,
 178                          unsigned int map_page_size)
 179{
 180        return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
 181}
 182
 183#ifdef CONFIG_STRICT_KERNEL_RWX
 184void radix__change_memory_range(unsigned long start, unsigned long end,
 185                                unsigned long clear)
 186{
 187        unsigned long idx;
 188        pgd_t *pgdp;
 189        pud_t *pudp;
 190        pmd_t *pmdp;
 191        pte_t *ptep;
 192
 193        start = ALIGN_DOWN(start, PAGE_SIZE);
 194        end = PAGE_ALIGN(end); // aligns up
 195
 196        pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
 197                 start, end, clear);
 198
 199        for (idx = start; idx < end; idx += PAGE_SIZE) {
 200                pgdp = pgd_offset_k(idx);
 201                pudp = pud_alloc(&init_mm, pgdp, idx);
 202                if (!pudp)
 203                        continue;
 204                if (pud_huge(*pudp)) {
 205                        ptep = (pte_t *)pudp;
 206                        goto update_the_pte;
 207                }
 208                pmdp = pmd_alloc(&init_mm, pudp, idx);
 209                if (!pmdp)
 210                        continue;
 211                if (pmd_huge(*pmdp)) {
 212                        ptep = pmdp_ptep(pmdp);
 213                        goto update_the_pte;
 214                }
 215                ptep = pte_alloc_kernel(pmdp, idx);
 216                if (!ptep)
 217                        continue;
 218update_the_pte:
 219                radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
 220        }
 221
 222        radix__flush_tlb_kernel_range(start, end);
 223}
 224
 225void radix__mark_rodata_ro(void)
 226{
 227        unsigned long start, end;
 228
 229        /*
 230         * mark_rodata_ro() will mark itself as !writable at some point.
 231         * Due to DD1 workaround in radix__pte_update(), we'll end up with
 232         * an invalid pte and the system will crash quite severly.
 233         */
 234        if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
 235                pr_warn("Warning: Unable to mark rodata read only on P9 DD1\n");
 236                return;
 237        }
 238
 239        start = (unsigned long)_stext;
 240        end = (unsigned long)__init_begin;
 241
 242        radix__change_memory_range(start, end, _PAGE_WRITE);
 243}
 244
 245void radix__mark_initmem_nx(void)
 246{
 247        unsigned long start = (unsigned long)__init_begin;
 248        unsigned long end = (unsigned long)__init_end;
 249
 250        radix__change_memory_range(start, end, _PAGE_EXEC);
 251}
 252#endif /* CONFIG_STRICT_KERNEL_RWX */
 253
 254static inline void __meminit print_mapping(unsigned long start,
 255                                           unsigned long end,
 256                                           unsigned long size)
 257{
 258        char buf[10];
 259
 260        if (end <= start)
 261                return;
 262
 263        string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
 264
 265        pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start, end, buf);
 266}
 267
 268static int __meminit create_physical_mapping(unsigned long start,
 269                                             unsigned long end,
 270                                             int nid)
 271{
 272        unsigned long vaddr, addr, mapping_size = 0;
 273        pgprot_t prot;
 274        unsigned long max_mapping_size;
 275#ifdef CONFIG_STRICT_KERNEL_RWX
 276        int split_text_mapping = 1;
 277#else
 278        int split_text_mapping = 0;
 279#endif
 280
 281        start = _ALIGN_UP(start, PAGE_SIZE);
 282        for (addr = start; addr < end; addr += mapping_size) {
 283                unsigned long gap, previous_size;
 284                int rc;
 285
 286                gap = end - addr;
 287                previous_size = mapping_size;
 288                max_mapping_size = PUD_SIZE;
 289
 290retry:
 291                if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
 292                    mmu_psize_defs[MMU_PAGE_1G].shift &&
 293                    PUD_SIZE <= max_mapping_size)
 294                        mapping_size = PUD_SIZE;
 295                else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
 296                         mmu_psize_defs[MMU_PAGE_2M].shift)
 297                        mapping_size = PMD_SIZE;
 298                else
 299                        mapping_size = PAGE_SIZE;
 300
 301                if (split_text_mapping && (mapping_size == PUD_SIZE) &&
 302                        (addr <= __pa_symbol(__init_begin)) &&
 303                        (addr + mapping_size) >= __pa_symbol(_stext)) {
 304                        max_mapping_size = PMD_SIZE;
 305                        goto retry;
 306                }
 307
 308                if (split_text_mapping && (mapping_size == PMD_SIZE) &&
 309                    (addr <= __pa_symbol(__init_begin)) &&
 310                    (addr + mapping_size) >= __pa_symbol(_stext))
 311                        mapping_size = PAGE_SIZE;
 312
 313                if (mapping_size != previous_size) {
 314                        print_mapping(start, addr, previous_size);
 315                        start = addr;
 316                }
 317
 318                vaddr = (unsigned long)__va(addr);
 319
 320                if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
 321                    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size))
 322                        prot = PAGE_KERNEL_X;
 323                else
 324                        prot = PAGE_KERNEL;
 325
 326                rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
 327                if (rc)
 328                        return rc;
 329        }
 330
 331        print_mapping(start, addr, mapping_size);
 332        return 0;
 333}
 334
 335void __init radix_init_pgtable(void)
 336{
 337        unsigned long rts_field;
 338        struct memblock_region *reg;
 339
 340        /* We don't support slb for radix */
 341        mmu_slb_size = 0;
 342        /*
 343         * Create the linear mapping, using standard page size for now
 344         */
 345        for_each_memblock(memory, reg) {
 346                /*
 347                 * The memblock allocator  is up at this point, so the
 348                 * page tables will be allocated within the range. No
 349                 * need or a node (which we don't have yet).
 350                 */
 351                WARN_ON(create_physical_mapping(reg->base,
 352                                                reg->base + reg->size,
 353                                                -1));
 354        }
 355
 356        /* Find out how many PID bits are supported */
 357        if (cpu_has_feature(CPU_FTR_HVMODE)) {
 358                if (!mmu_pid_bits)
 359                        mmu_pid_bits = 20;
 360#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 361                /*
 362                 * When KVM is possible, we only use the top half of the
 363                 * PID space to avoid collisions between host and guest PIDs
 364                 * which can cause problems due to prefetch when exiting the
 365                 * guest with AIL=3
 366                 */
 367                mmu_base_pid = 1 << (mmu_pid_bits - 1);
 368#else
 369                mmu_base_pid = 1;
 370#endif
 371        } else {
 372                /* The guest uses the bottom half of the PID space */
 373                if (!mmu_pid_bits)
 374                        mmu_pid_bits = 19;
 375                mmu_base_pid = 1;
 376        }
 377
 378        /*
 379         * Allocate Partition table and process table for the
 380         * host.
 381         */
 382        BUG_ON(PRTB_SIZE_SHIFT > 36);
 383        process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
 384        /*
 385         * Fill in the process table.
 386         */
 387        rts_field = radix__get_tree_size();
 388        process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
 389        /*
 390         * Fill in the partition table. We are suppose to use effective address
 391         * of process table here. But our linear mapping also enable us to use
 392         * physical address here.
 393         */
 394        register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
 395        pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
 396        asm volatile("ptesync" : : : "memory");
 397        asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
 398                     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
 399        asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 400        trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
 401
 402        /*
 403         * The init_mm context is given the first available (non-zero) PID,
 404         * which is the "guard PID" and contains no page table. PIDR should
 405         * never be set to zero because that duplicates the kernel address
 406         * space at the 0x0... offset (quadrant 0)!
 407         *
 408         * An arbitrary PID that may later be allocated by the PID allocator
 409         * for userspace processes must not be used either, because that
 410         * would cause stale user mappings for that PID on CPUs outside of
 411         * the TLB invalidation scheme (because it won't be in mm_cpumask).
 412         *
 413         * So permanently carve out one PID for the purpose of a guard PID.
 414         */
 415        init_mm.context.id = mmu_base_pid;
 416        mmu_base_pid++;
 417}
 418
 419static void __init radix_init_partition_table(void)
 420{
 421        unsigned long rts_field, dw0;
 422
 423        mmu_partition_table_init();
 424        rts_field = radix__get_tree_size();
 425        dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
 426        mmu_partition_table_set_entry(0, dw0, 0);
 427
 428        pr_info("Initializing Radix MMU\n");
 429        pr_info("Partition table %p\n", partition_tb);
 430}
 431
 432void __init radix_init_native(void)
 433{
 434        register_process_table = native_register_process_table;
 435}
 436
 437static int __init get_idx_from_shift(unsigned int shift)
 438{
 439        int idx = -1;
 440
 441        switch (shift) {
 442        case 0xc:
 443                idx = MMU_PAGE_4K;
 444                break;
 445        case 0x10:
 446                idx = MMU_PAGE_64K;
 447                break;
 448        case 0x15:
 449                idx = MMU_PAGE_2M;
 450                break;
 451        case 0x1e:
 452                idx = MMU_PAGE_1G;
 453                break;
 454        }
 455        return idx;
 456}
 457
 458static int __init radix_dt_scan_page_sizes(unsigned long node,
 459                                           const char *uname, int depth,
 460                                           void *data)
 461{
 462        int size = 0;
 463        int shift, idx;
 464        unsigned int ap;
 465        const __be32 *prop;
 466        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 467
 468        /* We are scanning "cpu" nodes only */
 469        if (type == NULL || strcmp(type, "cpu") != 0)
 470                return 0;
 471
 472        /* Find MMU PID size */
 473        prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
 474        if (prop && size == 4)
 475                mmu_pid_bits = be32_to_cpup(prop);
 476
 477        /* Grab page size encodings */
 478        prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
 479        if (!prop)
 480                return 0;
 481
 482        pr_info("Page sizes from device-tree:\n");
 483        for (; size >= 4; size -= 4, ++prop) {
 484
 485                struct mmu_psize_def *def;
 486
 487                /* top 3 bit is AP encoding */
 488                shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
 489                ap = be32_to_cpu(prop[0]) >> 29;
 490                pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
 491
 492                idx = get_idx_from_shift(shift);
 493                if (idx < 0)
 494                        continue;
 495
 496                def = &mmu_psize_defs[idx];
 497                def->shift = shift;
 498                def->ap  = ap;
 499        }
 500
 501        /* needed ? */
 502        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 503        return 1;
 504}
 505
 506void __init radix__early_init_devtree(void)
 507{
 508        int rc;
 509
 510        /*
 511         * Try to find the available page sizes in the device-tree
 512         */
 513        rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
 514        if (rc != 0)  /* Found */
 515                goto found;
 516        /*
 517         * let's assume we have page 4k and 64k support
 518         */
 519        mmu_psize_defs[MMU_PAGE_4K].shift = 12;
 520        mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
 521
 522        mmu_psize_defs[MMU_PAGE_64K].shift = 16;
 523        mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
 524found:
 525#ifdef CONFIG_SPARSEMEM_VMEMMAP
 526        if (mmu_psize_defs[MMU_PAGE_2M].shift) {
 527                /*
 528                 * map vmemmap using 2M if available
 529                 */
 530                mmu_vmemmap_psize = MMU_PAGE_2M;
 531        }
 532#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 533        return;
 534}
 535
 536static void update_hid_for_radix(void)
 537{
 538        unsigned long hid0;
 539        unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
 540
 541        asm volatile("ptesync": : :"memory");
 542        /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
 543        asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
 544                     : : "r"(rb), "i"(1), "i"(0), "i"(2), "r"(0) : "memory");
 545        /* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */
 546        asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
 547                     : : "r"(rb), "i"(1), "i"(1), "i"(2), "r"(0) : "memory");
 548        asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
 549        trace_tlbie(0, 0, rb, 0, 2, 0, 1);
 550        trace_tlbie(0, 0, rb, 0, 2, 1, 1);
 551
 552        /*
 553         * now switch the HID
 554         */
 555        hid0  = mfspr(SPRN_HID0);
 556        hid0 |= HID0_POWER9_RADIX;
 557        mtspr(SPRN_HID0, hid0);
 558        asm volatile("isync": : :"memory");
 559
 560        /* Wait for it to happen */
 561        while (!(mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
 562                cpu_relax();
 563}
 564
 565static void radix_init_amor(void)
 566{
 567        /*
 568        * In HV mode, we init AMOR (Authority Mask Override Register) so that
 569        * the hypervisor and guest can setup IAMR (Instruction Authority Mask
 570        * Register), enable key 0 and set it to 1.
 571        *
 572        * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
 573        */
 574        mtspr(SPRN_AMOR, (3ul << 62));
 575}
 576
 577static void radix_init_iamr(void)
 578{
 579        unsigned long iamr;
 580
 581        /*
 582         * The IAMR should set to 0 on DD1.
 583         */
 584        if (cpu_has_feature(CPU_FTR_POWER9_DD1))
 585                iamr = 0;
 586        else
 587                iamr = (1ul << 62);
 588
 589        /*
 590         * Radix always uses key0 of the IAMR to determine if an access is
 591         * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
 592         * fetch.
 593         */
 594        mtspr(SPRN_IAMR, iamr);
 595}
 596
 597void __init radix__early_init_mmu(void)
 598{
 599        unsigned long lpcr;
 600
 601#ifdef CONFIG_PPC_64K_PAGES
 602        /* PAGE_SIZE mappings */
 603        mmu_virtual_psize = MMU_PAGE_64K;
 604#else
 605        mmu_virtual_psize = MMU_PAGE_4K;
 606#endif
 607
 608#ifdef CONFIG_SPARSEMEM_VMEMMAP
 609        /* vmemmap mapping */
 610        mmu_vmemmap_psize = mmu_virtual_psize;
 611#endif
 612        /*
 613         * initialize page table size
 614         */
 615        __pte_index_size = RADIX_PTE_INDEX_SIZE;
 616        __pmd_index_size = RADIX_PMD_INDEX_SIZE;
 617        __pud_index_size = RADIX_PUD_INDEX_SIZE;
 618        __pgd_index_size = RADIX_PGD_INDEX_SIZE;
 619        __pud_cache_index = RADIX_PUD_INDEX_SIZE;
 620        __pmd_cache_index = RADIX_PMD_INDEX_SIZE;
 621        __pte_table_size = RADIX_PTE_TABLE_SIZE;
 622        __pmd_table_size = RADIX_PMD_TABLE_SIZE;
 623        __pud_table_size = RADIX_PUD_TABLE_SIZE;
 624        __pgd_table_size = RADIX_PGD_TABLE_SIZE;
 625
 626        __pmd_val_bits = RADIX_PMD_VAL_BITS;
 627        __pud_val_bits = RADIX_PUD_VAL_BITS;
 628        __pgd_val_bits = RADIX_PGD_VAL_BITS;
 629
 630        __kernel_virt_start = RADIX_KERN_VIRT_START;
 631        __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
 632        __vmalloc_start = RADIX_VMALLOC_START;
 633        __vmalloc_end = RADIX_VMALLOC_END;
 634        __kernel_io_start = RADIX_KERN_IO_START;
 635        vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
 636        ioremap_bot = IOREMAP_BASE;
 637
 638#ifdef CONFIG_PCI
 639        pci_io_base = ISA_IO_BASE;
 640#endif
 641        __pte_frag_nr = RADIX_PTE_FRAG_NR;
 642        __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
 643
 644        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 645                radix_init_native();
 646                if (cpu_has_feature(CPU_FTR_POWER9_DD1))
 647                        update_hid_for_radix();
 648                lpcr = mfspr(SPRN_LPCR);
 649                mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 650                radix_init_partition_table();
 651                radix_init_amor();
 652        } else {
 653                radix_init_pseries();
 654        }
 655
 656        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 657
 658        radix_init_iamr();
 659        radix_init_pgtable();
 660        /* Switch to the guard PID before turning on MMU */
 661        radix__switch_mmu_context(NULL, &init_mm);
 662        if (cpu_has_feature(CPU_FTR_HVMODE))
 663                tlbiel_all();
 664}
 665
 666void radix__early_init_mmu_secondary(void)
 667{
 668        unsigned long lpcr;
 669        /*
 670         * update partition table control register and UPRT
 671         */
 672        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 673
 674                if (cpu_has_feature(CPU_FTR_POWER9_DD1))
 675                        update_hid_for_radix();
 676
 677                lpcr = mfspr(SPRN_LPCR);
 678                mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 679
 680                mtspr(SPRN_PTCR,
 681                      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
 682                radix_init_amor();
 683        }
 684        radix_init_iamr();
 685
 686        radix__switch_mmu_context(NULL, &init_mm);
 687        if (cpu_has_feature(CPU_FTR_HVMODE))
 688                tlbiel_all();
 689}
 690
 691void radix__mmu_cleanup_all(void)
 692{
 693        unsigned long lpcr;
 694
 695        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 696                lpcr = mfspr(SPRN_LPCR);
 697                mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
 698                mtspr(SPRN_PTCR, 0);
 699                powernv_set_nmmu_ptcr(0);
 700                radix__flush_tlb_all();
 701        }
 702}
 703
 704void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
 705                                phys_addr_t first_memblock_size)
 706{
 707        /* We don't currently support the first MEMBLOCK not mapping 0
 708         * physical on those processors
 709         */
 710        BUG_ON(first_memblock_base != 0);
 711
 712        /*
 713         * Radix mode is not limited by RMA / VRMA addressing.
 714         */
 715        ppc64_rma_size = ULONG_MAX;
 716}
 717
 718#ifdef CONFIG_MEMORY_HOTPLUG
 719static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
 720{
 721        pte_t *pte;
 722        int i;
 723
 724        for (i = 0; i < PTRS_PER_PTE; i++) {
 725                pte = pte_start + i;
 726                if (!pte_none(*pte))
 727                        return;
 728        }
 729
 730        pte_free_kernel(&init_mm, pte_start);
 731        pmd_clear(pmd);
 732}
 733
 734static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 735{
 736        pmd_t *pmd;
 737        int i;
 738
 739        for (i = 0; i < PTRS_PER_PMD; i++) {
 740                pmd = pmd_start + i;
 741                if (!pmd_none(*pmd))
 742                        return;
 743        }
 744
 745        pmd_free(&init_mm, pmd_start);
 746        pud_clear(pud);
 747}
 748
 749struct change_mapping_params {
 750        pte_t *pte;
 751        unsigned long start;
 752        unsigned long end;
 753        unsigned long aligned_start;
 754        unsigned long aligned_end;
 755};
 756
 757static int __meminit stop_machine_change_mapping(void *data)
 758{
 759        struct change_mapping_params *params =
 760                        (struct change_mapping_params *)data;
 761
 762        if (!data)
 763                return -1;
 764
 765        spin_unlock(&init_mm.page_table_lock);
 766        pte_clear(&init_mm, params->aligned_start, params->pte);
 767        create_physical_mapping(params->aligned_start, params->start, -1);
 768        create_physical_mapping(params->end, params->aligned_end, -1);
 769        spin_lock(&init_mm.page_table_lock);
 770        return 0;
 771}
 772
 773static void remove_pte_table(pte_t *pte_start, unsigned long addr,
 774                             unsigned long end)
 775{
 776        unsigned long next;
 777        pte_t *pte;
 778
 779        pte = pte_start + pte_index(addr);
 780        for (; addr < end; addr = next, pte++) {
 781                next = (addr + PAGE_SIZE) & PAGE_MASK;
 782                if (next > end)
 783                        next = end;
 784
 785                if (!pte_present(*pte))
 786                        continue;
 787
 788                if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
 789                        /*
 790                         * The vmemmap_free() and remove_section_mapping()
 791                         * codepaths call us with aligned addresses.
 792                         */
 793                        WARN_ONCE(1, "%s: unaligned range\n", __func__);
 794                        continue;
 795                }
 796
 797                pte_clear(&init_mm, addr, pte);
 798        }
 799}
 800
 801/*
 802 * clear the pte and potentially split the mapping helper
 803 */
 804static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
 805                                unsigned long size, pte_t *pte)
 806{
 807        unsigned long mask = ~(size - 1);
 808        unsigned long aligned_start = addr & mask;
 809        unsigned long aligned_end = addr + size;
 810        struct change_mapping_params params;
 811        bool split_region = false;
 812
 813        if ((end - addr) < size) {
 814                /*
 815                 * We're going to clear the PTE, but not flushed
 816                 * the mapping, time to remap and flush. The
 817                 * effects if visible outside the processor or
 818                 * if we are running in code close to the
 819                 * mapping we cleared, we are in trouble.
 820                 */
 821                if (overlaps_kernel_text(aligned_start, addr) ||
 822                        overlaps_kernel_text(end, aligned_end)) {
 823                        /*
 824                         * Hack, just return, don't pte_clear
 825                         */
 826                        WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
 827                                  "text, not splitting\n", addr, end);
 828                        return;
 829                }
 830                split_region = true;
 831        }
 832
 833        if (split_region) {
 834                params.pte = pte;
 835                params.start = addr;
 836                params.end = end;
 837                params.aligned_start = addr & ~(size - 1);
 838                params.aligned_end = min_t(unsigned long, aligned_end,
 839                                (unsigned long)__va(memblock_end_of_DRAM()));
 840                stop_machine(stop_machine_change_mapping, &params, NULL);
 841                return;
 842        }
 843
 844        pte_clear(&init_mm, addr, pte);
 845}
 846
 847static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
 848                             unsigned long end)
 849{
 850        unsigned long next;
 851        pte_t *pte_base;
 852        pmd_t *pmd;
 853
 854        pmd = pmd_start + pmd_index(addr);
 855        for (; addr < end; addr = next, pmd++) {
 856                next = pmd_addr_end(addr, end);
 857
 858                if (!pmd_present(*pmd))
 859                        continue;
 860
 861                if (pmd_huge(*pmd)) {
 862                        split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
 863                        continue;
 864                }
 865
 866                pte_base = (pte_t *)pmd_page_vaddr(*pmd);
 867                remove_pte_table(pte_base, addr, next);
 868                free_pte_table(pte_base, pmd);
 869        }
 870}
 871
 872static void remove_pud_table(pud_t *pud_start, unsigned long addr,
 873                             unsigned long end)
 874{
 875        unsigned long next;
 876        pmd_t *pmd_base;
 877        pud_t *pud;
 878
 879        pud = pud_start + pud_index(addr);
 880        for (; addr < end; addr = next, pud++) {
 881                next = pud_addr_end(addr, end);
 882
 883                if (!pud_present(*pud))
 884                        continue;
 885
 886                if (pud_huge(*pud)) {
 887                        split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
 888                        continue;
 889                }
 890
 891                pmd_base = (pmd_t *)pud_page_vaddr(*pud);
 892                remove_pmd_table(pmd_base, addr, next);
 893                free_pmd_table(pmd_base, pud);
 894        }
 895}
 896
 897static void __meminit remove_pagetable(unsigned long start, unsigned long end)
 898{
 899        unsigned long addr, next;
 900        pud_t *pud_base;
 901        pgd_t *pgd;
 902
 903        spin_lock(&init_mm.page_table_lock);
 904
 905        for (addr = start; addr < end; addr = next) {
 906                next = pgd_addr_end(addr, end);
 907
 908                pgd = pgd_offset_k(addr);
 909                if (!pgd_present(*pgd))
 910                        continue;
 911
 912                if (pgd_huge(*pgd)) {
 913                        split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
 914                        continue;
 915                }
 916
 917                pud_base = (pud_t *)pgd_page_vaddr(*pgd);
 918                remove_pud_table(pud_base, addr, next);
 919        }
 920
 921        spin_unlock(&init_mm.page_table_lock);
 922        radix__flush_tlb_kernel_range(start, end);
 923}
 924
 925int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
 926{
 927        return create_physical_mapping(start, end, nid);
 928}
 929
 930int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
 931{
 932        remove_pagetable(start, end);
 933        return 0;
 934}
 935#endif /* CONFIG_MEMORY_HOTPLUG */
 936
 937#ifdef CONFIG_SPARSEMEM_VMEMMAP
 938static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
 939                                 pgprot_t flags, unsigned int map_page_size,
 940                                 int nid)
 941{
 942        return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
 943}
 944
 945int __meminit radix__vmemmap_create_mapping(unsigned long start,
 946                                      unsigned long page_size,
 947                                      unsigned long phys)
 948{
 949        /* Create a PTE encoding */
 950        unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
 951        int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
 952        int ret;
 953
 954        ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
 955        BUG_ON(ret);
 956
 957        return 0;
 958}
 959
 960#ifdef CONFIG_MEMORY_HOTPLUG
 961void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
 962{
 963        remove_pagetable(start, start + page_size);
 964}
 965#endif
 966#endif
 967
 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 969
 970unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 971                                  pmd_t *pmdp, unsigned long clr,
 972                                  unsigned long set)
 973{
 974        unsigned long old;
 975
 976#ifdef CONFIG_DEBUG_VM
 977        WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 978        assert_spin_locked(&mm->page_table_lock);
 979#endif
 980
 981        old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
 982        trace_hugepage_update(addr, old, clr, set);
 983
 984        return old;
 985}
 986
 987pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 988                        pmd_t *pmdp)
 989
 990{
 991        pmd_t pmd;
 992
 993        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 994        VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
 995        VM_BUG_ON(pmd_devmap(*pmdp));
 996        /*
 997         * khugepaged calls this for normal pmd
 998         */
 999        pmd = *pmdp;
1000        pmd_clear(pmdp);
1001
1002        /*FIXME!!  Verify whether we need this kick below */
1003        serialize_against_pte_lookup(vma->vm_mm);
1004
1005        radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
1006
1007        return pmd;
1008}
1009
1010/*
1011 * For us pgtable_t is pte_t *. Inorder to save the deposisted
1012 * page table, we consider the allocated page table as a list
1013 * head. On withdraw we need to make sure we zero out the used
1014 * list_head memory area.
1015 */
1016void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1017                                 pgtable_t pgtable)
1018{
1019        struct list_head *lh = (struct list_head *) pgtable;
1020
1021        assert_spin_locked(pmd_lockptr(mm, pmdp));
1022
1023        /* FIFO */
1024        if (!pmd_huge_pte(mm, pmdp))
1025                INIT_LIST_HEAD(lh);
1026        else
1027                list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1028        pmd_huge_pte(mm, pmdp) = pgtable;
1029}
1030
1031pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1032{
1033        pte_t *ptep;
1034        pgtable_t pgtable;
1035        struct list_head *lh;
1036
1037        assert_spin_locked(pmd_lockptr(mm, pmdp));
1038
1039        /* FIFO */
1040        pgtable = pmd_huge_pte(mm, pmdp);
1041        lh = (struct list_head *) pgtable;
1042        if (list_empty(lh))
1043                pmd_huge_pte(mm, pmdp) = NULL;
1044        else {
1045                pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1046                list_del(lh);
1047        }
1048        ptep = (pte_t *) pgtable;
1049        *ptep = __pte(0);
1050        ptep++;
1051        *ptep = __pte(0);
1052        return pgtable;
1053}
1054
1055
1056pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1057                               unsigned long addr, pmd_t *pmdp)
1058{
1059        pmd_t old_pmd;
1060        unsigned long old;
1061
1062        old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1063        old_pmd = __pmd(old);
1064        /*
1065         * Serialize against find_current_mm_pte which does lock-less
1066         * lookup in page tables with local interrupts disabled. For huge pages
1067         * it casts pmd_t to pte_t. Since format of pte_t is different from
1068         * pmd_t we want to prevent transit from pmd pointing to page table
1069         * to pmd pointing to huge page (and back) while interrupts are disabled.
1070         * We clear pmd to possibly replace it with page table pointer in
1071         * different code paths. So make sure we wait for the parallel
1072         * find_current_mm_pte to finish.
1073         */
1074        serialize_against_pte_lookup(mm);
1075        return old_pmd;
1076}
1077
1078int radix__has_transparent_hugepage(void)
1079{
1080        /* For radix 2M at PMD level means thp */
1081        if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1082                return 1;
1083        return 0;
1084}
1085#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1086