linux/arch/powerpc/mm/pgtable.c
<<
>>
Prefs
   1/*
   2 * This file contains common routines for dealing with free of page tables
   3 * Along with common page table handling code
   4 *
   5 *  Derived from arch/powerpc/mm/tlb_64.c:
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 *
   8 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
   9 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  10 *    Copyright (C) 1996 Paul Mackerras
  11 *
  12 *  Derived from "arch/i386/mm/init.c"
  13 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  14 *
  15 *  Dave Engebretsen <engebret@us.ibm.com>
  16 *      Rework for PPC64 port.
  17 *
  18 *  This program is free software; you can redistribute it and/or
  19 *  modify it under the terms of the GNU General Public License
  20 *  as published by the Free Software Foundation; either version
  21 *  2 of the License, or (at your option) any later version.
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/gfp.h>
  26#include <linux/mm.h>
  27#include <linux/percpu.h>
  28#include <linux/hardirq.h>
  29#include <linux/hugetlb.h>
  30#include <asm/pgalloc.h>
  31#include <asm/tlbflush.h>
  32#include <asm/tlb.h>
  33
  34static inline int is_exec_fault(void)
  35{
  36        return current->thread.regs && TRAP(current->thread.regs) == 0x400;
  37}
  38
  39/* We only try to do i/d cache coherency on stuff that looks like
  40 * reasonably "normal" PTEs. We currently require a PTE to be present
  41 * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
  42 * on userspace PTEs
  43 */
  44static inline int pte_looks_normal(pte_t pte)
  45{
  46
  47#if defined(CONFIG_PPC_BOOK3S_64)
  48        if ((pte_val(pte) & (_PAGE_PRESENT | _PAGE_SPECIAL)) == _PAGE_PRESENT) {
  49                if (pte_ci(pte))
  50                        return 0;
  51                if (pte_user(pte))
  52                        return 1;
  53        }
  54        return 0;
  55#else
  56        return (pte_val(pte) &
  57                (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER |
  58                 _PAGE_PRIVILEGED)) ==
  59                (_PAGE_PRESENT | _PAGE_USER);
  60#endif
  61}
  62
  63static struct page *maybe_pte_to_page(pte_t pte)
  64{
  65        unsigned long pfn = pte_pfn(pte);
  66        struct page *page;
  67
  68        if (unlikely(!pfn_valid(pfn)))
  69                return NULL;
  70        page = pfn_to_page(pfn);
  71        if (PageReserved(page))
  72                return NULL;
  73        return page;
  74}
  75
  76#if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
  77
  78/* Server-style MMU handles coherency when hashing if HW exec permission
  79 * is supposed per page (currently 64-bit only). If not, then, we always
  80 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
  81 * support falls into the same category.
  82 */
  83
  84static pte_t set_pte_filter(pte_t pte)
  85{
  86        if (radix_enabled())
  87                return pte;
  88
  89        pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  90        if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
  91                                       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
  92                struct page *pg = maybe_pte_to_page(pte);
  93                if (!pg)
  94                        return pte;
  95                if (!test_bit(PG_arch_1, &pg->flags)) {
  96                        flush_dcache_icache_page(pg);
  97                        set_bit(PG_arch_1, &pg->flags);
  98                }
  99        }
 100        return pte;
 101}
 102
 103static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
 104                                     int dirty)
 105{
 106        return pte;
 107}
 108
 109#else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
 110
 111/* Embedded type MMU with HW exec support. This is a bit more complicated
 112 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
 113 * instead we "filter out" the exec permission for non clean pages.
 114 */
 115static pte_t set_pte_filter(pte_t pte)
 116{
 117        struct page *pg;
 118
 119        /* No exec permission in the first place, move on */
 120        if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
 121                return pte;
 122
 123        /* If you set _PAGE_EXEC on weird pages you're on your own */
 124        pg = maybe_pte_to_page(pte);
 125        if (unlikely(!pg))
 126                return pte;
 127
 128        /* If the page clean, we move on */
 129        if (test_bit(PG_arch_1, &pg->flags))
 130                return pte;
 131
 132        /* If it's an exec fault, we flush the cache and make it clean */
 133        if (is_exec_fault()) {
 134                flush_dcache_icache_page(pg);
 135                set_bit(PG_arch_1, &pg->flags);
 136                return pte;
 137        }
 138
 139        /* Else, we filter out _PAGE_EXEC */
 140        return __pte(pte_val(pte) & ~_PAGE_EXEC);
 141}
 142
 143static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
 144                                     int dirty)
 145{
 146        struct page *pg;
 147
 148        /* So here, we only care about exec faults, as we use them
 149         * to recover lost _PAGE_EXEC and perform I$/D$ coherency
 150         * if necessary. Also if _PAGE_EXEC is already set, same deal,
 151         * we just bail out
 152         */
 153        if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
 154                return pte;
 155
 156#ifdef CONFIG_DEBUG_VM
 157        /* So this is an exec fault, _PAGE_EXEC is not set. If it was
 158         * an error we would have bailed out earlier in do_page_fault()
 159         * but let's make sure of it
 160         */
 161        if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
 162                return pte;
 163#endif /* CONFIG_DEBUG_VM */
 164
 165        /* If you set _PAGE_EXEC on weird pages you're on your own */
 166        pg = maybe_pte_to_page(pte);
 167        if (unlikely(!pg))
 168                goto bail;
 169
 170        /* If the page is already clean, we move on */
 171        if (test_bit(PG_arch_1, &pg->flags))
 172                goto bail;
 173
 174        /* Clean the page and set PG_arch_1 */
 175        flush_dcache_icache_page(pg);
 176        set_bit(PG_arch_1, &pg->flags);
 177
 178 bail:
 179        return __pte(pte_val(pte) | _PAGE_EXEC);
 180}
 181
 182#endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
 183
 184/*
 185 * set_pte stores a linux PTE into the linux page table.
 186 */
 187void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
 188                pte_t pte)
 189{
 190        /*
 191         * When handling numa faults, we already have the pte marked
 192         * _PAGE_PRESENT, but we can be sure that it is not in hpte.
 193         * Hence we can use set_pte_at for them.
 194         */
 195        VM_WARN_ON(pte_present(*ptep) && !pte_protnone(*ptep));
 196
 197        /* Add the pte bit when trying to set a pte */
 198        pte = __pte(pte_val(pte) | _PAGE_PTE);
 199
 200        /* Note: mm->context.id might not yet have been assigned as
 201         * this context might not have been activated yet when this
 202         * is called.
 203         */
 204        pte = set_pte_filter(pte);
 205
 206        /* Perform the setting of the PTE */
 207        __set_pte_at(mm, addr, ptep, pte, 0);
 208}
 209
 210/*
 211 * This is called when relaxing access to a PTE. It's also called in the page
 212 * fault path when we don't hit any of the major fault cases, ie, a minor
 213 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 214 * handled those two for us, we additionally deal with missing execute
 215 * permission here on some processors
 216 */
 217int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 218                          pte_t *ptep, pte_t entry, int dirty)
 219{
 220        int changed;
 221        entry = set_access_flags_filter(entry, vma, dirty);
 222        changed = !pte_same(*(ptep), entry);
 223        if (changed) {
 224                if (!is_vm_hugetlb_page(vma))
 225                        assert_pte_locked(vma->vm_mm, address);
 226                __ptep_set_access_flags(vma->vm_mm, ptep, entry, address);
 227                flush_tlb_page(vma, address);
 228        }
 229        return changed;
 230}
 231
 232#ifdef CONFIG_DEBUG_VM
 233void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
 234{
 235        pgd_t *pgd;
 236        pud_t *pud;
 237        pmd_t *pmd;
 238
 239        if (mm == &init_mm)
 240                return;
 241        pgd = mm->pgd + pgd_index(addr);
 242        BUG_ON(pgd_none(*pgd));
 243        pud = pud_offset(pgd, addr);
 244        BUG_ON(pud_none(*pud));
 245        pmd = pmd_offset(pud, addr);
 246        /*
 247         * khugepaged to collapse normal pages to hugepage, first set
 248         * pmd to none to force page fault/gup to take mmap_sem. After
 249         * pmd is set to none, we do a pte_clear which does this assertion
 250         * so if we find pmd none, return.
 251         */
 252        if (pmd_none(*pmd))
 253                return;
 254        BUG_ON(!pmd_present(*pmd));
 255        assert_spin_locked(pte_lockptr(mm, pmd));
 256}
 257#endif /* CONFIG_DEBUG_VM */
 258
 259unsigned long vmalloc_to_phys(void *va)
 260{
 261        unsigned long pfn = vmalloc_to_pfn(va);
 262
 263        BUG_ON(!pfn);
 264        return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
 265}
 266EXPORT_SYMBOL_GPL(vmalloc_to_phys);
 267