linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
  24#define BHRB_MAX_ENTRIES        32
  25#define BHRB_TARGET             0x0000000000000002
  26#define BHRB_PREDICTION         0x0000000000000001
  27#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30        int n_events;
  31        int n_percpu;
  32        int disabled;
  33        int n_added;
  34        int n_limited;
  35        u8  pmcs_enabled;
  36        struct perf_event *event[MAX_HWEVENTS];
  37        u64 events[MAX_HWEVENTS];
  38        unsigned int flags[MAX_HWEVENTS];
  39        /*
  40         * The order of the MMCR array is:
  41         *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  42         *  - 32-bit, MMCR0, MMCR1, MMCR2
  43         */
  44        unsigned long mmcr[4];
  45        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  46        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  47        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50
  51        unsigned int txn_flags;
  52        int n_txn_start;
  53
  54        /* BHRB bits */
  55        u64                             bhrb_filter;    /* BHRB HW branch filter */
  56        unsigned int                    bhrb_users;
  57        void                            *bhrb_context;
  58        struct  perf_branch_stack       bhrb_stack;
  59        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  60        u64                             ic_init;
  61};
  62
  63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  64
  65static struct power_pmu *ppmu;
  66
  67/*
  68 * Normally, to ignore kernel events we set the FCS (freeze counters
  69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  70 * hypervisor bit set in the MSR, or if we are running on a processor
  71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  72 * then we need to use the FCHV bit to ignore kernel events.
  73 */
  74static unsigned int freeze_events_kernel = MMCR0_FCS;
  75
  76/*
  77 * 32-bit doesn't have MMCRA but does have an MMCR2,
  78 * and a few other names are different.
  79 */
  80#ifdef CONFIG_PPC32
  81
  82#define MMCR0_FCHV              0
  83#define MMCR0_PMCjCE            MMCR0_PMCnCE
  84#define MMCR0_FC56              0
  85#define MMCR0_PMAO              0
  86#define MMCR0_EBE               0
  87#define MMCR0_BHRBA             0
  88#define MMCR0_PMCC              0
  89#define MMCR0_PMCC_U6           0
  90
  91#define SPRN_MMCRA              SPRN_MMCR2
  92#define MMCRA_SAMPLE_ENABLE     0
  93
  94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  95{
  96        return 0;
  97}
  98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 100{
 101        return 0;
 102}
 103static inline void perf_read_regs(struct pt_regs *regs)
 104{
 105        regs->result = 0;
 106}
 107static inline int perf_intr_is_nmi(struct pt_regs *regs)
 108{
 109        return 0;
 110}
 111
 112static inline int siar_valid(struct pt_regs *regs)
 113{
 114        return 1;
 115}
 116
 117static bool is_ebb_event(struct perf_event *event) { return false; }
 118static int ebb_event_check(struct perf_event *event) { return 0; }
 119static void ebb_event_add(struct perf_event *event) { }
 120static void ebb_switch_out(unsigned long mmcr0) { }
 121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 122{
 123        return cpuhw->mmcr[0];
 124}
 125
 126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 130static void pmao_restore_workaround(bool ebb) { }
 131static bool use_ic(u64 event)
 132{
 133        return false;
 134}
 135#endif /* CONFIG_PPC32 */
 136
 137static bool regs_use_siar(struct pt_regs *regs)
 138{
 139        /*
 140         * When we take a performance monitor exception the regs are setup
 141         * using perf_read_regs() which overloads some fields, in particular
 142         * regs->result to tell us whether to use SIAR.
 143         *
 144         * However if the regs are from another exception, eg. a syscall, then
 145         * they have not been setup using perf_read_regs() and so regs->result
 146         * is something random.
 147         */
 148        return ((TRAP(regs) == 0xf00) && regs->result);
 149}
 150
 151/*
 152 * Things that are specific to 64-bit implementations.
 153 */
 154#ifdef CONFIG_PPC64
 155
 156static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 157{
 158        unsigned long mmcra = regs->dsisr;
 159
 160        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 161                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 162                if (slot > 1)
 163                        return 4 * (slot - 1);
 164        }
 165
 166        return 0;
 167}
 168
 169/*
 170 * The user wants a data address recorded.
 171 * If we're not doing instruction sampling, give them the SDAR
 172 * (sampled data address).  If we are doing instruction sampling, then
 173 * only give them the SDAR if it corresponds to the instruction
 174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 176 */
 177static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 178{
 179        unsigned long mmcra = regs->dsisr;
 180        bool sdar_valid;
 181
 182        if (ppmu->flags & PPMU_HAS_SIER)
 183                sdar_valid = regs->dar & SIER_SDAR_VALID;
 184        else {
 185                unsigned long sdsync;
 186
 187                if (ppmu->flags & PPMU_SIAR_VALID)
 188                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 189                else if (ppmu->flags & PPMU_ALT_SIPR)
 190                        sdsync = POWER6_MMCRA_SDSYNC;
 191                else if (ppmu->flags & PPMU_NO_SIAR)
 192                        sdsync = MMCRA_SAMPLE_ENABLE;
 193                else
 194                        sdsync = MMCRA_SDSYNC;
 195
 196                sdar_valid = mmcra & sdsync;
 197        }
 198
 199        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 200                *addrp = mfspr(SPRN_SDAR);
 201
 202        if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 203                is_kernel_addr(mfspr(SPRN_SDAR)))
 204                *addrp = 0;
 205}
 206
 207static bool regs_sihv(struct pt_regs *regs)
 208{
 209        unsigned long sihv = MMCRA_SIHV;
 210
 211        if (ppmu->flags & PPMU_HAS_SIER)
 212                return !!(regs->dar & SIER_SIHV);
 213
 214        if (ppmu->flags & PPMU_ALT_SIPR)
 215                sihv = POWER6_MMCRA_SIHV;
 216
 217        return !!(regs->dsisr & sihv);
 218}
 219
 220static bool regs_sipr(struct pt_regs *regs)
 221{
 222        unsigned long sipr = MMCRA_SIPR;
 223
 224        if (ppmu->flags & PPMU_HAS_SIER)
 225                return !!(regs->dar & SIER_SIPR);
 226
 227        if (ppmu->flags & PPMU_ALT_SIPR)
 228                sipr = POWER6_MMCRA_SIPR;
 229
 230        return !!(regs->dsisr & sipr);
 231}
 232
 233static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 234{
 235        if (regs->msr & MSR_PR)
 236                return PERF_RECORD_MISC_USER;
 237        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 238                return PERF_RECORD_MISC_HYPERVISOR;
 239        return PERF_RECORD_MISC_KERNEL;
 240}
 241
 242static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 243{
 244        bool use_siar = regs_use_siar(regs);
 245
 246        if (!use_siar)
 247                return perf_flags_from_msr(regs);
 248
 249        /*
 250         * If we don't have flags in MMCRA, rather than using
 251         * the MSR, we intuit the flags from the address in
 252         * SIAR which should give slightly more reliable
 253         * results
 254         */
 255        if (ppmu->flags & PPMU_NO_SIPR) {
 256                unsigned long siar = mfspr(SPRN_SIAR);
 257                if (is_kernel_addr(siar))
 258                        return PERF_RECORD_MISC_KERNEL;
 259                return PERF_RECORD_MISC_USER;
 260        }
 261
 262        /* PR has priority over HV, so order below is important */
 263        if (regs_sipr(regs))
 264                return PERF_RECORD_MISC_USER;
 265
 266        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 267                return PERF_RECORD_MISC_HYPERVISOR;
 268
 269        return PERF_RECORD_MISC_KERNEL;
 270}
 271
 272/*
 273 * Overload regs->dsisr to store MMCRA so we only need to read it once
 274 * on each interrupt.
 275 * Overload regs->dar to store SIER if we have it.
 276 * Overload regs->result to specify whether we should use the MSR (result
 277 * is zero) or the SIAR (result is non zero).
 278 */
 279static inline void perf_read_regs(struct pt_regs *regs)
 280{
 281        unsigned long mmcra = mfspr(SPRN_MMCRA);
 282        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 283        int use_siar;
 284
 285        regs->dsisr = mmcra;
 286
 287        if (ppmu->flags & PPMU_HAS_SIER)
 288                regs->dar = mfspr(SPRN_SIER);
 289
 290        /*
 291         * If this isn't a PMU exception (eg a software event) the SIAR is
 292         * not valid. Use pt_regs.
 293         *
 294         * If it is a marked event use the SIAR.
 295         *
 296         * If the PMU doesn't update the SIAR for non marked events use
 297         * pt_regs.
 298         *
 299         * If the PMU has HV/PR flags then check to see if they
 300         * place the exception in userspace. If so, use pt_regs. In
 301         * continuous sampling mode the SIAR and the PMU exception are
 302         * not synchronised, so they may be many instructions apart.
 303         * This can result in confusing backtraces. We still want
 304         * hypervisor samples as well as samples in the kernel with
 305         * interrupts off hence the userspace check.
 306         */
 307        if (TRAP(regs) != 0xf00)
 308                use_siar = 0;
 309        else if ((ppmu->flags & PPMU_NO_SIAR))
 310                use_siar = 0;
 311        else if (marked)
 312                use_siar = 1;
 313        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 314                use_siar = 0;
 315        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 316                use_siar = 0;
 317        else
 318                use_siar = 1;
 319
 320        regs->result = use_siar;
 321}
 322
 323/*
 324 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 325 * it as an NMI.
 326 */
 327static inline int perf_intr_is_nmi(struct pt_regs *regs)
 328{
 329        return (regs->softe & IRQS_DISABLED);
 330}
 331
 332/*
 333 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 334 * must be sampled only if the SIAR-valid bit is set.
 335 *
 336 * For unmarked instructions and for processors that don't have the SIAR-Valid
 337 * bit, assume that SIAR is valid.
 338 */
 339static inline int siar_valid(struct pt_regs *regs)
 340{
 341        unsigned long mmcra = regs->dsisr;
 342        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 343
 344        if (marked) {
 345                if (ppmu->flags & PPMU_HAS_SIER)
 346                        return regs->dar & SIER_SIAR_VALID;
 347
 348                if (ppmu->flags & PPMU_SIAR_VALID)
 349                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 350        }
 351
 352        return 1;
 353}
 354
 355
 356/* Reset all possible BHRB entries */
 357static void power_pmu_bhrb_reset(void)
 358{
 359        asm volatile(PPC_CLRBHRB);
 360}
 361
 362static void power_pmu_bhrb_enable(struct perf_event *event)
 363{
 364        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 365
 366        if (!ppmu->bhrb_nr)
 367                return;
 368
 369        /* Clear BHRB if we changed task context to avoid data leaks */
 370        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 371                power_pmu_bhrb_reset();
 372                cpuhw->bhrb_context = event->ctx;
 373        }
 374        cpuhw->bhrb_users++;
 375        perf_sched_cb_inc(event->ctx->pmu);
 376}
 377
 378static void power_pmu_bhrb_disable(struct perf_event *event)
 379{
 380        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 381
 382        if (!ppmu->bhrb_nr)
 383                return;
 384
 385        WARN_ON_ONCE(!cpuhw->bhrb_users);
 386        cpuhw->bhrb_users--;
 387        perf_sched_cb_dec(event->ctx->pmu);
 388
 389        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 390                /* BHRB cannot be turned off when other
 391                 * events are active on the PMU.
 392                 */
 393
 394                /* avoid stale pointer */
 395                cpuhw->bhrb_context = NULL;
 396        }
 397}
 398
 399/* Called from ctxsw to prevent one process's branch entries to
 400 * mingle with the other process's entries during context switch.
 401 */
 402static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 403{
 404        if (!ppmu->bhrb_nr)
 405                return;
 406
 407        if (sched_in)
 408                power_pmu_bhrb_reset();
 409}
 410/* Calculate the to address for a branch */
 411static __u64 power_pmu_bhrb_to(u64 addr)
 412{
 413        unsigned int instr;
 414        int ret;
 415        __u64 target;
 416
 417        if (is_kernel_addr(addr)) {
 418                if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
 419                        return 0;
 420
 421                return branch_target(&instr);
 422        }
 423
 424        /* Userspace: need copy instruction here then translate it */
 425        pagefault_disable();
 426        ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 427        if (ret) {
 428                pagefault_enable();
 429                return 0;
 430        }
 431        pagefault_enable();
 432
 433        target = branch_target(&instr);
 434        if ((!target) || (instr & BRANCH_ABSOLUTE))
 435                return target;
 436
 437        /* Translate relative branch target from kernel to user address */
 438        return target - (unsigned long)&instr + addr;
 439}
 440
 441/* Processing BHRB entries */
 442static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 443{
 444        u64 val;
 445        u64 addr;
 446        int r_index, u_index, pred;
 447
 448        r_index = 0;
 449        u_index = 0;
 450        while (r_index < ppmu->bhrb_nr) {
 451                /* Assembly read function */
 452                val = read_bhrb(r_index++);
 453                if (!val)
 454                        /* Terminal marker: End of valid BHRB entries */
 455                        break;
 456                else {
 457                        addr = val & BHRB_EA;
 458                        pred = val & BHRB_PREDICTION;
 459
 460                        if (!addr)
 461                                /* invalid entry */
 462                                continue;
 463
 464                        /*
 465                         * BHRB rolling buffer could very much contain the kernel
 466                         * addresses at this point. Check the privileges before
 467                         * exporting it to userspace (avoid exposure of regions
 468                         * where we could have speculative execution)
 469                         */
 470                        if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 471                                is_kernel_addr(addr))
 472                                continue;
 473
 474                        /* Branches are read most recent first (ie. mfbhrb 0 is
 475                         * the most recent branch).
 476                         * There are two types of valid entries:
 477                         * 1) a target entry which is the to address of a
 478                         *    computed goto like a blr,bctr,btar.  The next
 479                         *    entry read from the bhrb will be branch
 480                         *    corresponding to this target (ie. the actual
 481                         *    blr/bctr/btar instruction).
 482                         * 2) a from address which is an actual branch.  If a
 483                         *    target entry proceeds this, then this is the
 484                         *    matching branch for that target.  If this is not
 485                         *    following a target entry, then this is a branch
 486                         *    where the target is given as an immediate field
 487                         *    in the instruction (ie. an i or b form branch).
 488                         *    In this case we need to read the instruction from
 489                         *    memory to determine the target/to address.
 490                         */
 491
 492                        if (val & BHRB_TARGET) {
 493                                /* Target branches use two entries
 494                                 * (ie. computed gotos/XL form)
 495                                 */
 496                                cpuhw->bhrb_entries[u_index].to = addr;
 497                                cpuhw->bhrb_entries[u_index].mispred = pred;
 498                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 499
 500                                /* Get from address in next entry */
 501                                val = read_bhrb(r_index++);
 502                                addr = val & BHRB_EA;
 503                                if (val & BHRB_TARGET) {
 504                                        /* Shouldn't have two targets in a
 505                                           row.. Reset index and try again */
 506                                        r_index--;
 507                                        addr = 0;
 508                                }
 509                                cpuhw->bhrb_entries[u_index].from = addr;
 510                        } else {
 511                                /* Branches to immediate field 
 512                                   (ie I or B form) */
 513                                cpuhw->bhrb_entries[u_index].from = addr;
 514                                cpuhw->bhrb_entries[u_index].to =
 515                                        power_pmu_bhrb_to(addr);
 516                                cpuhw->bhrb_entries[u_index].mispred = pred;
 517                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 518                        }
 519                        u_index++;
 520
 521                }
 522        }
 523        cpuhw->bhrb_stack.nr = u_index;
 524        return;
 525}
 526
 527static bool is_ebb_event(struct perf_event *event)
 528{
 529        /*
 530         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 531         * check that the PMU supports EBB, meaning those that don't can still
 532         * use bit 63 of the event code for something else if they wish.
 533         */
 534        return (ppmu->flags & PPMU_ARCH_207S) &&
 535               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 536}
 537
 538static int ebb_event_check(struct perf_event *event)
 539{
 540        struct perf_event *leader = event->group_leader;
 541
 542        /* Event and group leader must agree on EBB */
 543        if (is_ebb_event(leader) != is_ebb_event(event))
 544                return -EINVAL;
 545
 546        if (is_ebb_event(event)) {
 547                if (!(event->attach_state & PERF_ATTACH_TASK))
 548                        return -EINVAL;
 549
 550                if (!leader->attr.pinned || !leader->attr.exclusive)
 551                        return -EINVAL;
 552
 553                if (event->attr.freq ||
 554                    event->attr.inherit ||
 555                    event->attr.sample_type ||
 556                    event->attr.sample_period ||
 557                    event->attr.enable_on_exec)
 558                        return -EINVAL;
 559        }
 560
 561        return 0;
 562}
 563
 564static void ebb_event_add(struct perf_event *event)
 565{
 566        if (!is_ebb_event(event) || current->thread.used_ebb)
 567                return;
 568
 569        /*
 570         * IFF this is the first time we've added an EBB event, set
 571         * PMXE in the user MMCR0 so we can detect when it's cleared by
 572         * userspace. We need this so that we can context switch while
 573         * userspace is in the EBB handler (where PMXE is 0).
 574         */
 575        current->thread.used_ebb = 1;
 576        current->thread.mmcr0 |= MMCR0_PMXE;
 577}
 578
 579static void ebb_switch_out(unsigned long mmcr0)
 580{
 581        if (!(mmcr0 & MMCR0_EBE))
 582                return;
 583
 584        current->thread.siar  = mfspr(SPRN_SIAR);
 585        current->thread.sier  = mfspr(SPRN_SIER);
 586        current->thread.sdar  = mfspr(SPRN_SDAR);
 587        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 588        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 589}
 590
 591static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 592{
 593        unsigned long mmcr0 = cpuhw->mmcr[0];
 594
 595        if (!ebb)
 596                goto out;
 597
 598        /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 599        mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 600
 601        /*
 602         * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 603         * with pmao_restore_workaround() because we may add PMAO but we never
 604         * clear it here.
 605         */
 606        mmcr0 |= current->thread.mmcr0;
 607
 608        /*
 609         * Be careful not to set PMXE if userspace had it cleared. This is also
 610         * compatible with pmao_restore_workaround() because it has already
 611         * cleared PMXE and we leave PMAO alone.
 612         */
 613        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 614                mmcr0 &= ~MMCR0_PMXE;
 615
 616        mtspr(SPRN_SIAR, current->thread.siar);
 617        mtspr(SPRN_SIER, current->thread.sier);
 618        mtspr(SPRN_SDAR, current->thread.sdar);
 619
 620        /*
 621         * Merge the kernel & user values of MMCR2. The semantics we implement
 622         * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 623         * but not clear bits. If a task wants to be able to clear bits, ie.
 624         * unfreeze counters, it should not set exclude_xxx in its events and
 625         * instead manage the MMCR2 entirely by itself.
 626         */
 627        mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 628out:
 629        return mmcr0;
 630}
 631
 632static void pmao_restore_workaround(bool ebb)
 633{
 634        unsigned pmcs[6];
 635
 636        if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 637                return;
 638
 639        /*
 640         * On POWER8E there is a hardware defect which affects the PMU context
 641         * switch logic, ie. power_pmu_disable/enable().
 642         *
 643         * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 644         * by the hardware. Sometime later the actual PMU exception is
 645         * delivered.
 646         *
 647         * If we context switch, or simply disable/enable, the PMU prior to the
 648         * exception arriving, the exception will be lost when we clear PMAO.
 649         *
 650         * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 651         * set, and this _should_ generate an exception. However because of the
 652         * defect no exception is generated when we write PMAO, and we get
 653         * stuck with no counters counting but no exception delivered.
 654         *
 655         * The workaround is to detect this case and tweak the hardware to
 656         * create another pending PMU exception.
 657         *
 658         * We do that by setting up PMC6 (cycles) for an imminent overflow and
 659         * enabling the PMU. That causes a new exception to be generated in the
 660         * chip, but we don't take it yet because we have interrupts hard
 661         * disabled. We then write back the PMU state as we want it to be seen
 662         * by the exception handler. When we reenable interrupts the exception
 663         * handler will be called and see the correct state.
 664         *
 665         * The logic is the same for EBB, except that the exception is gated by
 666         * us having interrupts hard disabled as well as the fact that we are
 667         * not in userspace. The exception is finally delivered when we return
 668         * to userspace.
 669         */
 670
 671        /* Only if PMAO is set and PMAO_SYNC is clear */
 672        if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 673                return;
 674
 675        /* If we're doing EBB, only if BESCR[GE] is set */
 676        if (ebb && !(current->thread.bescr & BESCR_GE))
 677                return;
 678
 679        /*
 680         * We are already soft-disabled in power_pmu_enable(). We need to hard
 681         * disable to actually prevent the PMU exception from firing.
 682         */
 683        hard_irq_disable();
 684
 685        /*
 686         * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 687         * Using read/write_pmc() in a for loop adds 12 function calls and
 688         * almost doubles our code size.
 689         */
 690        pmcs[0] = mfspr(SPRN_PMC1);
 691        pmcs[1] = mfspr(SPRN_PMC2);
 692        pmcs[2] = mfspr(SPRN_PMC3);
 693        pmcs[3] = mfspr(SPRN_PMC4);
 694        pmcs[4] = mfspr(SPRN_PMC5);
 695        pmcs[5] = mfspr(SPRN_PMC6);
 696
 697        /* Ensure all freeze bits are unset */
 698        mtspr(SPRN_MMCR2, 0);
 699
 700        /* Set up PMC6 to overflow in one cycle */
 701        mtspr(SPRN_PMC6, 0x7FFFFFFE);
 702
 703        /* Enable exceptions and unfreeze PMC6 */
 704        mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 705
 706        /* Now we need to refreeze and restore the PMCs */
 707        mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 708
 709        mtspr(SPRN_PMC1, pmcs[0]);
 710        mtspr(SPRN_PMC2, pmcs[1]);
 711        mtspr(SPRN_PMC3, pmcs[2]);
 712        mtspr(SPRN_PMC4, pmcs[3]);
 713        mtspr(SPRN_PMC5, pmcs[4]);
 714        mtspr(SPRN_PMC6, pmcs[5]);
 715}
 716
 717static bool use_ic(u64 event)
 718{
 719        if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
 720                        (event == 0x200f2 || event == 0x300f2))
 721                return true;
 722
 723        return false;
 724}
 725#endif /* CONFIG_PPC64 */
 726
 727static void perf_event_interrupt(struct pt_regs *regs);
 728
 729/*
 730 * Read one performance monitor counter (PMC).
 731 */
 732static unsigned long read_pmc(int idx)
 733{
 734        unsigned long val;
 735
 736        switch (idx) {
 737        case 1:
 738                val = mfspr(SPRN_PMC1);
 739                break;
 740        case 2:
 741                val = mfspr(SPRN_PMC2);
 742                break;
 743        case 3:
 744                val = mfspr(SPRN_PMC3);
 745                break;
 746        case 4:
 747                val = mfspr(SPRN_PMC4);
 748                break;
 749        case 5:
 750                val = mfspr(SPRN_PMC5);
 751                break;
 752        case 6:
 753                val = mfspr(SPRN_PMC6);
 754                break;
 755#ifdef CONFIG_PPC64
 756        case 7:
 757                val = mfspr(SPRN_PMC7);
 758                break;
 759        case 8:
 760                val = mfspr(SPRN_PMC8);
 761                break;
 762#endif /* CONFIG_PPC64 */
 763        default:
 764                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 765                val = 0;
 766        }
 767        return val;
 768}
 769
 770/*
 771 * Write one PMC.
 772 */
 773static void write_pmc(int idx, unsigned long val)
 774{
 775        switch (idx) {
 776        case 1:
 777                mtspr(SPRN_PMC1, val);
 778                break;
 779        case 2:
 780                mtspr(SPRN_PMC2, val);
 781                break;
 782        case 3:
 783                mtspr(SPRN_PMC3, val);
 784                break;
 785        case 4:
 786                mtspr(SPRN_PMC4, val);
 787                break;
 788        case 5:
 789                mtspr(SPRN_PMC5, val);
 790                break;
 791        case 6:
 792                mtspr(SPRN_PMC6, val);
 793                break;
 794#ifdef CONFIG_PPC64
 795        case 7:
 796                mtspr(SPRN_PMC7, val);
 797                break;
 798        case 8:
 799                mtspr(SPRN_PMC8, val);
 800                break;
 801#endif /* CONFIG_PPC64 */
 802        default:
 803                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 804        }
 805}
 806
 807/* Called from sysrq_handle_showregs() */
 808void perf_event_print_debug(void)
 809{
 810        unsigned long sdar, sier, flags;
 811        u32 pmcs[MAX_HWEVENTS];
 812        int i;
 813
 814        if (!ppmu) {
 815                pr_info("Performance monitor hardware not registered.\n");
 816                return;
 817        }
 818
 819        if (!ppmu->n_counter)
 820                return;
 821
 822        local_irq_save(flags);
 823
 824        pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 825                 smp_processor_id(), ppmu->name, ppmu->n_counter);
 826
 827        for (i = 0; i < ppmu->n_counter; i++)
 828                pmcs[i] = read_pmc(i + 1);
 829
 830        for (; i < MAX_HWEVENTS; i++)
 831                pmcs[i] = 0xdeadbeef;
 832
 833        pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 834                 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 835
 836        if (ppmu->n_counter > 4)
 837                pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 838                         pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 839
 840        pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 841                mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 842
 843        sdar = sier = 0;
 844#ifdef CONFIG_PPC64
 845        sdar = mfspr(SPRN_SDAR);
 846
 847        if (ppmu->flags & PPMU_HAS_SIER)
 848                sier = mfspr(SPRN_SIER);
 849
 850        if (ppmu->flags & PPMU_ARCH_207S) {
 851                pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 852                        mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 853                pr_info("EBBRR: %016lx BESCR: %016lx\n",
 854                        mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 855        }
 856#endif
 857        pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 858                mfspr(SPRN_SIAR), sdar, sier);
 859
 860        local_irq_restore(flags);
 861}
 862
 863/*
 864 * Check if a set of events can all go on the PMU at once.
 865 * If they can't, this will look at alternative codes for the events
 866 * and see if any combination of alternative codes is feasible.
 867 * The feasible set is returned in event_id[].
 868 */
 869static int power_check_constraints(struct cpu_hw_events *cpuhw,
 870                                   u64 event_id[], unsigned int cflags[],
 871                                   int n_ev)
 872{
 873        unsigned long mask, value, nv;
 874        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 875        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 876        int i, j;
 877        unsigned long addf = ppmu->add_fields;
 878        unsigned long tadd = ppmu->test_adder;
 879
 880        if (n_ev > ppmu->n_counter)
 881                return -1;
 882
 883        /* First see if the events will go on as-is */
 884        for (i = 0; i < n_ev; ++i) {
 885                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 886                    && !ppmu->limited_pmc_event(event_id[i])) {
 887                        ppmu->get_alternatives(event_id[i], cflags[i],
 888                                               cpuhw->alternatives[i]);
 889                        event_id[i] = cpuhw->alternatives[i][0];
 890                }
 891                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 892                                         &cpuhw->avalues[i][0]))
 893                        return -1;
 894        }
 895        value = mask = 0;
 896        for (i = 0; i < n_ev; ++i) {
 897                nv = (value | cpuhw->avalues[i][0]) +
 898                        (value & cpuhw->avalues[i][0] & addf);
 899                if ((((nv + tadd) ^ value) & mask) != 0 ||
 900                    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 901                     cpuhw->amasks[i][0]) != 0)
 902                        break;
 903                value = nv;
 904                mask |= cpuhw->amasks[i][0];
 905        }
 906        if (i == n_ev)
 907                return 0;       /* all OK */
 908
 909        /* doesn't work, gather alternatives... */
 910        if (!ppmu->get_alternatives)
 911                return -1;
 912        for (i = 0; i < n_ev; ++i) {
 913                choice[i] = 0;
 914                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 915                                                  cpuhw->alternatives[i]);
 916                for (j = 1; j < n_alt[i]; ++j)
 917                        ppmu->get_constraint(cpuhw->alternatives[i][j],
 918                                             &cpuhw->amasks[i][j],
 919                                             &cpuhw->avalues[i][j]);
 920        }
 921
 922        /* enumerate all possibilities and see if any will work */
 923        i = 0;
 924        j = -1;
 925        value = mask = nv = 0;
 926        while (i < n_ev) {
 927                if (j >= 0) {
 928                        /* we're backtracking, restore context */
 929                        value = svalues[i];
 930                        mask = smasks[i];
 931                        j = choice[i];
 932                }
 933                /*
 934                 * See if any alternative k for event_id i,
 935                 * where k > j, will satisfy the constraints.
 936                 */
 937                while (++j < n_alt[i]) {
 938                        nv = (value | cpuhw->avalues[i][j]) +
 939                                (value & cpuhw->avalues[i][j] & addf);
 940                        if ((((nv + tadd) ^ value) & mask) == 0 &&
 941                            (((nv + tadd) ^ cpuhw->avalues[i][j])
 942                             & cpuhw->amasks[i][j]) == 0)
 943                                break;
 944                }
 945                if (j >= n_alt[i]) {
 946                        /*
 947                         * No feasible alternative, backtrack
 948                         * to event_id i-1 and continue enumerating its
 949                         * alternatives from where we got up to.
 950                         */
 951                        if (--i < 0)
 952                                return -1;
 953                } else {
 954                        /*
 955                         * Found a feasible alternative for event_id i,
 956                         * remember where we got up to with this event_id,
 957                         * go on to the next event_id, and start with
 958                         * the first alternative for it.
 959                         */
 960                        choice[i] = j;
 961                        svalues[i] = value;
 962                        smasks[i] = mask;
 963                        value = nv;
 964                        mask |= cpuhw->amasks[i][j];
 965                        ++i;
 966                        j = -1;
 967                }
 968        }
 969
 970        /* OK, we have a feasible combination, tell the caller the solution */
 971        for (i = 0; i < n_ev; ++i)
 972                event_id[i] = cpuhw->alternatives[i][choice[i]];
 973        return 0;
 974}
 975
 976/*
 977 * Check if newly-added events have consistent settings for
 978 * exclude_{user,kernel,hv} with each other and any previously
 979 * added events.
 980 */
 981static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 982                          int n_prev, int n_new)
 983{
 984        int eu = 0, ek = 0, eh = 0;
 985        int i, n, first;
 986        struct perf_event *event;
 987
 988        /*
 989         * If the PMU we're on supports per event exclude settings then we
 990         * don't need to do any of this logic. NB. This assumes no PMU has both
 991         * per event exclude and limited PMCs.
 992         */
 993        if (ppmu->flags & PPMU_ARCH_207S)
 994                return 0;
 995
 996        n = n_prev + n_new;
 997        if (n <= 1)
 998                return 0;
 999
1000        first = 1;
1001        for (i = 0; i < n; ++i) {
1002                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1003                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1004                        continue;
1005                }
1006                event = ctrs[i];
1007                if (first) {
1008                        eu = event->attr.exclude_user;
1009                        ek = event->attr.exclude_kernel;
1010                        eh = event->attr.exclude_hv;
1011                        first = 0;
1012                } else if (event->attr.exclude_user != eu ||
1013                           event->attr.exclude_kernel != ek ||
1014                           event->attr.exclude_hv != eh) {
1015                        return -EAGAIN;
1016                }
1017        }
1018
1019        if (eu || ek || eh)
1020                for (i = 0; i < n; ++i)
1021                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
1022                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
1023
1024        return 0;
1025}
1026
1027static u64 check_and_compute_delta(u64 prev, u64 val)
1028{
1029        u64 delta = (val - prev) & 0xfffffffful;
1030
1031        /*
1032         * POWER7 can roll back counter values, if the new value is smaller
1033         * than the previous value it will cause the delta and the counter to
1034         * have bogus values unless we rolled a counter over.  If a coutner is
1035         * rolled back, it will be smaller, but within 256, which is the maximum
1036         * number of events to rollback at once.  If we detect a rollback
1037         * return 0.  This can lead to a small lack of precision in the
1038         * counters.
1039         */
1040        if (prev > val && (prev - val) < 256)
1041                delta = 0;
1042
1043        return delta;
1044}
1045
1046static void power_pmu_read(struct perf_event *event)
1047{
1048        s64 val, delta, prev;
1049        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1050
1051        if (event->hw.state & PERF_HES_STOPPED)
1052                return;
1053
1054        if (!event->hw.idx)
1055                return;
1056
1057        if (is_ebb_event(event)) {
1058                val = read_pmc(event->hw.idx);
1059                if (use_ic(event->attr.config)) {
1060                        val = mfspr(SPRN_IC);
1061                        if (val > cpuhw->ic_init)
1062                                val = val - cpuhw->ic_init;
1063                        else
1064                                val = val + (0 - cpuhw->ic_init);
1065                }
1066                local64_set(&event->hw.prev_count, val);
1067                return;
1068        }
1069
1070        /*
1071         * Performance monitor interrupts come even when interrupts
1072         * are soft-disabled, as long as interrupts are hard-enabled.
1073         * Therefore we treat them like NMIs.
1074         */
1075        do {
1076                prev = local64_read(&event->hw.prev_count);
1077                barrier();
1078                val = read_pmc(event->hw.idx);
1079                if (use_ic(event->attr.config)) {
1080                        val = mfspr(SPRN_IC);
1081                        if (val > cpuhw->ic_init)
1082                                val = val - cpuhw->ic_init;
1083                        else
1084                                val = val + (0 - cpuhw->ic_init);
1085                }
1086                delta = check_and_compute_delta(prev, val);
1087                if (!delta)
1088                        return;
1089        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1090
1091        local64_add(delta, &event->count);
1092
1093        /*
1094         * A number of places program the PMC with (0x80000000 - period_left).
1095         * We never want period_left to be less than 1 because we will program
1096         * the PMC with a value >= 0x800000000 and an edge detected PMC will
1097         * roll around to 0 before taking an exception. We have seen this
1098         * on POWER8.
1099         *
1100         * To fix this, clamp the minimum value of period_left to 1.
1101         */
1102        do {
1103                prev = local64_read(&event->hw.period_left);
1104                val = prev - delta;
1105                if (val < 1)
1106                        val = 1;
1107        } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1108}
1109
1110/*
1111 * On some machines, PMC5 and PMC6 can't be written, don't respect
1112 * the freeze conditions, and don't generate interrupts.  This tells
1113 * us if `event' is using such a PMC.
1114 */
1115static int is_limited_pmc(int pmcnum)
1116{
1117        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1118                && (pmcnum == 5 || pmcnum == 6);
1119}
1120
1121static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1122                                    unsigned long pmc5, unsigned long pmc6)
1123{
1124        struct perf_event *event;
1125        u64 val, prev, delta;
1126        int i;
1127
1128        for (i = 0; i < cpuhw->n_limited; ++i) {
1129                event = cpuhw->limited_counter[i];
1130                if (!event->hw.idx)
1131                        continue;
1132                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1133                prev = local64_read(&event->hw.prev_count);
1134                event->hw.idx = 0;
1135                delta = check_and_compute_delta(prev, val);
1136                if (delta)
1137                        local64_add(delta, &event->count);
1138        }
1139}
1140
1141static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1142                                  unsigned long pmc5, unsigned long pmc6)
1143{
1144        struct perf_event *event;
1145        u64 val, prev;
1146        int i;
1147
1148        for (i = 0; i < cpuhw->n_limited; ++i) {
1149                event = cpuhw->limited_counter[i];
1150                event->hw.idx = cpuhw->limited_hwidx[i];
1151                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1152                prev = local64_read(&event->hw.prev_count);
1153                if (check_and_compute_delta(prev, val))
1154                        local64_set(&event->hw.prev_count, val);
1155                perf_event_update_userpage(event);
1156        }
1157}
1158
1159/*
1160 * Since limited events don't respect the freeze conditions, we
1161 * have to read them immediately after freezing or unfreezing the
1162 * other events.  We try to keep the values from the limited
1163 * events as consistent as possible by keeping the delay (in
1164 * cycles and instructions) between freezing/unfreezing and reading
1165 * the limited events as small and consistent as possible.
1166 * Therefore, if any limited events are in use, we read them
1167 * both, and always in the same order, to minimize variability,
1168 * and do it inside the same asm that writes MMCR0.
1169 */
1170static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1171{
1172        unsigned long pmc5, pmc6;
1173
1174        if (!cpuhw->n_limited) {
1175                mtspr(SPRN_MMCR0, mmcr0);
1176                return;
1177        }
1178
1179        /*
1180         * Write MMCR0, then read PMC5 and PMC6 immediately.
1181         * To ensure we don't get a performance monitor interrupt
1182         * between writing MMCR0 and freezing/thawing the limited
1183         * events, we first write MMCR0 with the event overflow
1184         * interrupt enable bits turned off.
1185         */
1186        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1187                     : "=&r" (pmc5), "=&r" (pmc6)
1188                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1189                       "i" (SPRN_MMCR0),
1190                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1191
1192        if (mmcr0 & MMCR0_FC)
1193                freeze_limited_counters(cpuhw, pmc5, pmc6);
1194        else
1195                thaw_limited_counters(cpuhw, pmc5, pmc6);
1196
1197        /*
1198         * Write the full MMCR0 including the event overflow interrupt
1199         * enable bits, if necessary.
1200         */
1201        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1202                mtspr(SPRN_MMCR0, mmcr0);
1203}
1204
1205/*
1206 * Disable all events to prevent PMU interrupts and to allow
1207 * events to be added or removed.
1208 */
1209static void power_pmu_disable(struct pmu *pmu)
1210{
1211        struct cpu_hw_events *cpuhw;
1212        unsigned long flags, mmcr0, val;
1213
1214        if (!ppmu)
1215                return;
1216        local_irq_save(flags);
1217        cpuhw = this_cpu_ptr(&cpu_hw_events);
1218
1219        if (!cpuhw->disabled) {
1220                /*
1221                 * Check if we ever enabled the PMU on this cpu.
1222                 */
1223                if (!cpuhw->pmcs_enabled) {
1224                        ppc_enable_pmcs();
1225                        cpuhw->pmcs_enabled = 1;
1226                }
1227
1228                /*
1229                 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1230                 */
1231                val  = mmcr0 = mfspr(SPRN_MMCR0);
1232                val |= MMCR0_FC;
1233                val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1234                         MMCR0_FC56);
1235
1236                /*
1237                 * The barrier is to make sure the mtspr has been
1238                 * executed and the PMU has frozen the events etc.
1239                 * before we return.
1240                 */
1241                write_mmcr0(cpuhw, val);
1242                mb();
1243                isync();
1244
1245                /*
1246                 * Disable instruction sampling if it was enabled
1247                 */
1248                if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1249                        mtspr(SPRN_MMCRA,
1250                              cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1251                        mb();
1252                        isync();
1253                }
1254
1255                cpuhw->disabled = 1;
1256                cpuhw->n_added = 0;
1257
1258                ebb_switch_out(mmcr0);
1259
1260#ifdef CONFIG_PPC64
1261                /*
1262                 * These are readable by userspace, may contain kernel
1263                 * addresses and are not switched by context switch, so clear
1264                 * them now to avoid leaking anything to userspace in general
1265                 * including to another process.
1266                 */
1267                if (ppmu->flags & PPMU_ARCH_207S) {
1268                        mtspr(SPRN_SDAR, 0);
1269                        mtspr(SPRN_SIAR, 0);
1270                }
1271#endif
1272        }
1273
1274        local_irq_restore(flags);
1275}
1276
1277/*
1278 * Re-enable all events if disable == 0.
1279 * If we were previously disabled and events were added, then
1280 * put the new config on the PMU.
1281 */
1282static void power_pmu_enable(struct pmu *pmu)
1283{
1284        struct perf_event *event;
1285        struct cpu_hw_events *cpuhw;
1286        unsigned long flags;
1287        long i;
1288        unsigned long val, mmcr0;
1289        s64 left;
1290        unsigned int hwc_index[MAX_HWEVENTS];
1291        int n_lim;
1292        int idx;
1293        bool ebb;
1294
1295        if (!ppmu)
1296                return;
1297        local_irq_save(flags);
1298
1299        cpuhw = this_cpu_ptr(&cpu_hw_events);
1300        if (!cpuhw->disabled)
1301                goto out;
1302
1303        if (cpuhw->n_events == 0) {
1304                ppc_set_pmu_inuse(0);
1305                goto out;
1306        }
1307
1308        cpuhw->disabled = 0;
1309
1310        /*
1311         * EBB requires an exclusive group and all events must have the EBB
1312         * flag set, or not set, so we can just check a single event. Also we
1313         * know we have at least one event.
1314         */
1315        ebb = is_ebb_event(cpuhw->event[0]);
1316
1317        /*
1318         * If we didn't change anything, or only removed events,
1319         * no need to recalculate MMCR* settings and reset the PMCs.
1320         * Just reenable the PMU with the current MMCR* settings
1321         * (possibly updated for removal of events).
1322         */
1323        if (!cpuhw->n_added) {
1324                mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325                mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1326                goto out_enable;
1327        }
1328
1329        /*
1330         * Clear all MMCR settings and recompute them for the new set of events.
1331         */
1332        memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1333
1334        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1335                               cpuhw->mmcr, cpuhw->event)) {
1336                /* shouldn't ever get here */
1337                printk(KERN_ERR "oops compute_mmcr failed\n");
1338                goto out;
1339        }
1340
1341        if (!(ppmu->flags & PPMU_ARCH_207S)) {
1342                /*
1343                 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1344                 * bits for the first event. We have already checked that all
1345                 * events have the same value for these bits as the first event.
1346                 */
1347                event = cpuhw->event[0];
1348                if (event->attr.exclude_user)
1349                        cpuhw->mmcr[0] |= MMCR0_FCP;
1350                if (event->attr.exclude_kernel)
1351                        cpuhw->mmcr[0] |= freeze_events_kernel;
1352                if (event->attr.exclude_hv)
1353                        cpuhw->mmcr[0] |= MMCR0_FCHV;
1354        }
1355
1356        /*
1357         * Write the new configuration to MMCR* with the freeze
1358         * bit set and set the hardware events to their initial values.
1359         * Then unfreeze the events.
1360         */
1361        ppc_set_pmu_inuse(1);
1362        mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1363        mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1364        mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1365                                | MMCR0_FC);
1366        if (ppmu->flags & PPMU_ARCH_207S)
1367                mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1368
1369        /*
1370         * Read off any pre-existing events that need to move
1371         * to another PMC.
1372         */
1373        for (i = 0; i < cpuhw->n_events; ++i) {
1374                event = cpuhw->event[i];
1375                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1376                        power_pmu_read(event);
1377                        write_pmc(event->hw.idx, 0);
1378                        event->hw.idx = 0;
1379                }
1380        }
1381
1382        /*
1383         * Initialize the PMCs for all the new and moved events.
1384         */
1385        cpuhw->n_limited = n_lim = 0;
1386        for (i = 0; i < cpuhw->n_events; ++i) {
1387                event = cpuhw->event[i];
1388                if (event->hw.idx)
1389                        continue;
1390                idx = hwc_index[i] + 1;
1391                if (is_limited_pmc(idx)) {
1392                        cpuhw->limited_counter[n_lim] = event;
1393                        cpuhw->limited_hwidx[n_lim] = idx;
1394                        ++n_lim;
1395                        continue;
1396                }
1397
1398                if (ebb)
1399                        val = local64_read(&event->hw.prev_count);
1400                else {
1401                        val = 0;
1402                        if (event->hw.sample_period) {
1403                                left = local64_read(&event->hw.period_left);
1404                                if (left < 0x80000000L)
1405                                        val = 0x80000000L - left;
1406                        }
1407                        local64_set(&event->hw.prev_count, val);
1408                }
1409
1410                event->hw.idx = idx;
1411                if (event->hw.state & PERF_HES_STOPPED)
1412                        val = 0;
1413                write_pmc(idx, val);
1414
1415                perf_event_update_userpage(event);
1416        }
1417        cpuhw->n_limited = n_lim;
1418        cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1419
1420 out_enable:
1421        pmao_restore_workaround(ebb);
1422
1423        mmcr0 = ebb_switch_in(ebb, cpuhw);
1424
1425        mb();
1426        if (cpuhw->bhrb_users)
1427                ppmu->config_bhrb(cpuhw->bhrb_filter);
1428
1429        write_mmcr0(cpuhw, mmcr0);
1430
1431        /*
1432         * Enable instruction sampling if necessary
1433         */
1434        if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1435                mb();
1436                mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1437        }
1438
1439 out:
1440
1441        local_irq_restore(flags);
1442}
1443
1444static int collect_events(struct perf_event *group, int max_count,
1445                          struct perf_event *ctrs[], u64 *events,
1446                          unsigned int *flags)
1447{
1448        int n = 0;
1449        struct perf_event *event;
1450
1451        if (group->pmu->task_ctx_nr == perf_hw_context) {
1452                if (n >= max_count)
1453                        return -1;
1454                ctrs[n] = group;
1455                flags[n] = group->hw.event_base;
1456                events[n++] = group->hw.config;
1457        }
1458        for_each_sibling_event(event, group) {
1459                if (event->pmu->task_ctx_nr == perf_hw_context &&
1460                    event->state != PERF_EVENT_STATE_OFF) {
1461                        if (n >= max_count)
1462                                return -1;
1463                        ctrs[n] = event;
1464                        flags[n] = event->hw.event_base;
1465                        events[n++] = event->hw.config;
1466                }
1467        }
1468        return n;
1469}
1470
1471/*
1472 * Add a event to the PMU.
1473 * If all events are not already frozen, then we disable and
1474 * re-enable the PMU in order to get hw_perf_enable to do the
1475 * actual work of reconfiguring the PMU.
1476 */
1477static int power_pmu_add(struct perf_event *event, int ef_flags)
1478{
1479        struct cpu_hw_events *cpuhw;
1480        unsigned long flags;
1481        int n0;
1482        int ret = -EAGAIN;
1483
1484        local_irq_save(flags);
1485        perf_pmu_disable(event->pmu);
1486
1487        /*
1488         * Add the event to the list (if there is room)
1489         * and check whether the total set is still feasible.
1490         */
1491        cpuhw = this_cpu_ptr(&cpu_hw_events);
1492        n0 = cpuhw->n_events;
1493        if (n0 >= ppmu->n_counter)
1494                goto out;
1495        cpuhw->event[n0] = event;
1496        cpuhw->events[n0] = event->hw.config;
1497        cpuhw->flags[n0] = event->hw.event_base;
1498
1499        /*
1500         * This event may have been disabled/stopped in record_and_restart()
1501         * because we exceeded the ->event_limit. If re-starting the event,
1502         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1503         * notification is re-enabled.
1504         */
1505        if (!(ef_flags & PERF_EF_START))
1506                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1507        else
1508                event->hw.state = 0;
1509
1510        /*
1511         * If group events scheduling transaction was started,
1512         * skip the schedulability test here, it will be performed
1513         * at commit time(->commit_txn) as a whole
1514         */
1515        if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1516                goto nocheck;
1517
1518        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1519                goto out;
1520        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1521                goto out;
1522        event->hw.config = cpuhw->events[n0];
1523
1524nocheck:
1525        ebb_event_add(event);
1526
1527        ++cpuhw->n_events;
1528        ++cpuhw->n_added;
1529
1530        ret = 0;
1531 out:
1532        if (has_branch_stack(event)) {
1533                power_pmu_bhrb_enable(event);
1534                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1535                                        event->attr.branch_sample_type);
1536        }
1537
1538        /*
1539         * Workaround for POWER9 DD1 to use the Instruction Counter
1540         * register value for instruction counting
1541         */
1542        if (use_ic(event->attr.config))
1543                cpuhw->ic_init = mfspr(SPRN_IC);
1544
1545        perf_pmu_enable(event->pmu);
1546        local_irq_restore(flags);
1547        return ret;
1548}
1549
1550/*
1551 * Remove a event from the PMU.
1552 */
1553static void power_pmu_del(struct perf_event *event, int ef_flags)
1554{
1555        struct cpu_hw_events *cpuhw;
1556        long i;
1557        unsigned long flags;
1558
1559        local_irq_save(flags);
1560        perf_pmu_disable(event->pmu);
1561
1562        power_pmu_read(event);
1563
1564        cpuhw = this_cpu_ptr(&cpu_hw_events);
1565        for (i = 0; i < cpuhw->n_events; ++i) {
1566                if (event == cpuhw->event[i]) {
1567                        while (++i < cpuhw->n_events) {
1568                                cpuhw->event[i-1] = cpuhw->event[i];
1569                                cpuhw->events[i-1] = cpuhw->events[i];
1570                                cpuhw->flags[i-1] = cpuhw->flags[i];
1571                        }
1572                        --cpuhw->n_events;
1573                        ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1574                        if (event->hw.idx) {
1575                                write_pmc(event->hw.idx, 0);
1576                                event->hw.idx = 0;
1577                        }
1578                        perf_event_update_userpage(event);
1579                        break;
1580                }
1581        }
1582        for (i = 0; i < cpuhw->n_limited; ++i)
1583                if (event == cpuhw->limited_counter[i])
1584                        break;
1585        if (i < cpuhw->n_limited) {
1586                while (++i < cpuhw->n_limited) {
1587                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1588                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1589                }
1590                --cpuhw->n_limited;
1591        }
1592        if (cpuhw->n_events == 0) {
1593                /* disable exceptions if no events are running */
1594                cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1595        }
1596
1597        if (has_branch_stack(event))
1598                power_pmu_bhrb_disable(event);
1599
1600        perf_pmu_enable(event->pmu);
1601        local_irq_restore(flags);
1602}
1603
1604/*
1605 * POWER-PMU does not support disabling individual counters, hence
1606 * program their cycle counter to their max value and ignore the interrupts.
1607 */
1608
1609static void power_pmu_start(struct perf_event *event, int ef_flags)
1610{
1611        unsigned long flags;
1612        s64 left;
1613        unsigned long val;
1614
1615        if (!event->hw.idx || !event->hw.sample_period)
1616                return;
1617
1618        if (!(event->hw.state & PERF_HES_STOPPED))
1619                return;
1620
1621        if (ef_flags & PERF_EF_RELOAD)
1622                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1623
1624        local_irq_save(flags);
1625        perf_pmu_disable(event->pmu);
1626
1627        event->hw.state = 0;
1628        left = local64_read(&event->hw.period_left);
1629
1630        val = 0;
1631        if (left < 0x80000000L)
1632                val = 0x80000000L - left;
1633
1634        write_pmc(event->hw.idx, val);
1635
1636        perf_event_update_userpage(event);
1637        perf_pmu_enable(event->pmu);
1638        local_irq_restore(flags);
1639}
1640
1641static void power_pmu_stop(struct perf_event *event, int ef_flags)
1642{
1643        unsigned long flags;
1644
1645        if (!event->hw.idx || !event->hw.sample_period)
1646                return;
1647
1648        if (event->hw.state & PERF_HES_STOPPED)
1649                return;
1650
1651        local_irq_save(flags);
1652        perf_pmu_disable(event->pmu);
1653
1654        power_pmu_read(event);
1655        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1656        write_pmc(event->hw.idx, 0);
1657
1658        perf_event_update_userpage(event);
1659        perf_pmu_enable(event->pmu);
1660        local_irq_restore(flags);
1661}
1662
1663/*
1664 * Start group events scheduling transaction
1665 * Set the flag to make pmu::enable() not perform the
1666 * schedulability test, it will be performed at commit time
1667 *
1668 * We only support PERF_PMU_TXN_ADD transactions. Save the
1669 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1670 * transactions.
1671 */
1672static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1673{
1674        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1675
1676        WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1677
1678        cpuhw->txn_flags = txn_flags;
1679        if (txn_flags & ~PERF_PMU_TXN_ADD)
1680                return;
1681
1682        perf_pmu_disable(pmu);
1683        cpuhw->n_txn_start = cpuhw->n_events;
1684}
1685
1686/*
1687 * Stop group events scheduling transaction
1688 * Clear the flag and pmu::enable() will perform the
1689 * schedulability test.
1690 */
1691static void power_pmu_cancel_txn(struct pmu *pmu)
1692{
1693        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1694        unsigned int txn_flags;
1695
1696        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1697
1698        txn_flags = cpuhw->txn_flags;
1699        cpuhw->txn_flags = 0;
1700        if (txn_flags & ~PERF_PMU_TXN_ADD)
1701                return;
1702
1703        perf_pmu_enable(pmu);
1704}
1705
1706/*
1707 * Commit group events scheduling transaction
1708 * Perform the group schedulability test as a whole
1709 * Return 0 if success
1710 */
1711static int power_pmu_commit_txn(struct pmu *pmu)
1712{
1713        struct cpu_hw_events *cpuhw;
1714        long i, n;
1715
1716        if (!ppmu)
1717                return -EAGAIN;
1718
1719        cpuhw = this_cpu_ptr(&cpu_hw_events);
1720        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1721
1722        if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1723                cpuhw->txn_flags = 0;
1724                return 0;
1725        }
1726
1727        n = cpuhw->n_events;
1728        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1729                return -EAGAIN;
1730        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1731        if (i < 0)
1732                return -EAGAIN;
1733
1734        for (i = cpuhw->n_txn_start; i < n; ++i)
1735                cpuhw->event[i]->hw.config = cpuhw->events[i];
1736
1737        cpuhw->txn_flags = 0;
1738        perf_pmu_enable(pmu);
1739        return 0;
1740}
1741
1742/*
1743 * Return 1 if we might be able to put event on a limited PMC,
1744 * or 0 if not.
1745 * A event can only go on a limited PMC if it counts something
1746 * that a limited PMC can count, doesn't require interrupts, and
1747 * doesn't exclude any processor mode.
1748 */
1749static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1750                                 unsigned int flags)
1751{
1752        int n;
1753        u64 alt[MAX_EVENT_ALTERNATIVES];
1754
1755        if (event->attr.exclude_user
1756            || event->attr.exclude_kernel
1757            || event->attr.exclude_hv
1758            || event->attr.sample_period)
1759                return 0;
1760
1761        if (ppmu->limited_pmc_event(ev))
1762                return 1;
1763
1764        /*
1765         * The requested event_id isn't on a limited PMC already;
1766         * see if any alternative code goes on a limited PMC.
1767         */
1768        if (!ppmu->get_alternatives)
1769                return 0;
1770
1771        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1772        n = ppmu->get_alternatives(ev, flags, alt);
1773
1774        return n > 0;
1775}
1776
1777/*
1778 * Find an alternative event_id that goes on a normal PMC, if possible,
1779 * and return the event_id code, or 0 if there is no such alternative.
1780 * (Note: event_id code 0 is "don't count" on all machines.)
1781 */
1782static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1783{
1784        u64 alt[MAX_EVENT_ALTERNATIVES];
1785        int n;
1786
1787        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1788        n = ppmu->get_alternatives(ev, flags, alt);
1789        if (!n)
1790                return 0;
1791        return alt[0];
1792}
1793
1794/* Number of perf_events counting hardware events */
1795static atomic_t num_events;
1796/* Used to avoid races in calling reserve/release_pmc_hardware */
1797static DEFINE_MUTEX(pmc_reserve_mutex);
1798
1799/*
1800 * Release the PMU if this is the last perf_event.
1801 */
1802static void hw_perf_event_destroy(struct perf_event *event)
1803{
1804        if (!atomic_add_unless(&num_events, -1, 1)) {
1805                mutex_lock(&pmc_reserve_mutex);
1806                if (atomic_dec_return(&num_events) == 0)
1807                        release_pmc_hardware();
1808                mutex_unlock(&pmc_reserve_mutex);
1809        }
1810}
1811
1812/*
1813 * Translate a generic cache event_id config to a raw event_id code.
1814 */
1815static int hw_perf_cache_event(u64 config, u64 *eventp)
1816{
1817        unsigned long type, op, result;
1818        int ev;
1819
1820        if (!ppmu->cache_events)
1821                return -EINVAL;
1822
1823        /* unpack config */
1824        type = config & 0xff;
1825        op = (config >> 8) & 0xff;
1826        result = (config >> 16) & 0xff;
1827
1828        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1829            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1830            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1831                return -EINVAL;
1832
1833        ev = (*ppmu->cache_events)[type][op][result];
1834        if (ev == 0)
1835                return -EOPNOTSUPP;
1836        if (ev == -1)
1837                return -EINVAL;
1838        *eventp = ev;
1839        return 0;
1840}
1841
1842static bool is_event_blacklisted(u64 ev)
1843{
1844        int i;
1845
1846        for (i=0; i < ppmu->n_blacklist_ev; i++) {
1847                if (ppmu->blacklist_ev[i] == ev)
1848                        return true;
1849        }
1850
1851        return false;
1852}
1853
1854static int power_pmu_event_init(struct perf_event *event)
1855{
1856        u64 ev;
1857        unsigned long flags;
1858        struct perf_event *ctrs[MAX_HWEVENTS];
1859        u64 events[MAX_HWEVENTS];
1860        unsigned int cflags[MAX_HWEVENTS];
1861        int n;
1862        int err;
1863        struct cpu_hw_events *cpuhw;
1864
1865        if (!ppmu)
1866                return -ENOENT;
1867
1868        if (has_branch_stack(event)) {
1869                /* PMU has BHRB enabled */
1870                if (!(ppmu->flags & PPMU_ARCH_207S))
1871                        return -EOPNOTSUPP;
1872        }
1873
1874        switch (event->attr.type) {
1875        case PERF_TYPE_HARDWARE:
1876                ev = event->attr.config;
1877                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1878                        return -EOPNOTSUPP;
1879
1880                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1881                        return -EINVAL;
1882                ev = ppmu->generic_events[ev];
1883                break;
1884        case PERF_TYPE_HW_CACHE:
1885                err = hw_perf_cache_event(event->attr.config, &ev);
1886                if (err)
1887                        return err;
1888
1889                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1890                        return -EINVAL;
1891                break;
1892        case PERF_TYPE_RAW:
1893                ev = event->attr.config;
1894
1895                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1896                        return -EINVAL;
1897                break;
1898        default:
1899                return -ENOENT;
1900        }
1901
1902        event->hw.config_base = ev;
1903        event->hw.idx = 0;
1904
1905        /*
1906         * If we are not running on a hypervisor, force the
1907         * exclude_hv bit to 0 so that we don't care what
1908         * the user set it to.
1909         */
1910        if (!firmware_has_feature(FW_FEATURE_LPAR))
1911                event->attr.exclude_hv = 0;
1912
1913        /*
1914         * If this is a per-task event, then we can use
1915         * PM_RUN_* events interchangeably with their non RUN_*
1916         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1917         * XXX we should check if the task is an idle task.
1918         */
1919        flags = 0;
1920        if (event->attach_state & PERF_ATTACH_TASK)
1921                flags |= PPMU_ONLY_COUNT_RUN;
1922
1923        /*
1924         * If this machine has limited events, check whether this
1925         * event_id could go on a limited event.
1926         */
1927        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1928                if (can_go_on_limited_pmc(event, ev, flags)) {
1929                        flags |= PPMU_LIMITED_PMC_OK;
1930                } else if (ppmu->limited_pmc_event(ev)) {
1931                        /*
1932                         * The requested event_id is on a limited PMC,
1933                         * but we can't use a limited PMC; see if any
1934                         * alternative goes on a normal PMC.
1935                         */
1936                        ev = normal_pmc_alternative(ev, flags);
1937                        if (!ev)
1938                                return -EINVAL;
1939                }
1940        }
1941
1942        /* Extra checks for EBB */
1943        err = ebb_event_check(event);
1944        if (err)
1945                return err;
1946
1947        /*
1948         * If this is in a group, check if it can go on with all the
1949         * other hardware events in the group.  We assume the event
1950         * hasn't been linked into its leader's sibling list at this point.
1951         */
1952        n = 0;
1953        if (event->group_leader != event) {
1954                n = collect_events(event->group_leader, ppmu->n_counter - 1,
1955                                   ctrs, events, cflags);
1956                if (n < 0)
1957                        return -EINVAL;
1958        }
1959        events[n] = ev;
1960        ctrs[n] = event;
1961        cflags[n] = flags;
1962        if (check_excludes(ctrs, cflags, n, 1))
1963                return -EINVAL;
1964
1965        cpuhw = &get_cpu_var(cpu_hw_events);
1966        err = power_check_constraints(cpuhw, events, cflags, n + 1);
1967
1968        if (has_branch_stack(event)) {
1969                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1970                                        event->attr.branch_sample_type);
1971
1972                if (cpuhw->bhrb_filter == -1) {
1973                        put_cpu_var(cpu_hw_events);
1974                        return -EOPNOTSUPP;
1975                }
1976        }
1977
1978        put_cpu_var(cpu_hw_events);
1979        if (err)
1980                return -EINVAL;
1981
1982        event->hw.config = events[n];
1983        event->hw.event_base = cflags[n];
1984        event->hw.last_period = event->hw.sample_period;
1985        local64_set(&event->hw.period_left, event->hw.last_period);
1986
1987        /*
1988         * For EBB events we just context switch the PMC value, we don't do any
1989         * of the sample_period logic. We use hw.prev_count for this.
1990         */
1991        if (is_ebb_event(event))
1992                local64_set(&event->hw.prev_count, 0);
1993
1994        /*
1995         * See if we need to reserve the PMU.
1996         * If no events are currently in use, then we have to take a
1997         * mutex to ensure that we don't race with another task doing
1998         * reserve_pmc_hardware or release_pmc_hardware.
1999         */
2000        err = 0;
2001        if (!atomic_inc_not_zero(&num_events)) {
2002                mutex_lock(&pmc_reserve_mutex);
2003                if (atomic_read(&num_events) == 0 &&
2004                    reserve_pmc_hardware(perf_event_interrupt))
2005                        err = -EBUSY;
2006                else
2007                        atomic_inc(&num_events);
2008                mutex_unlock(&pmc_reserve_mutex);
2009        }
2010        event->destroy = hw_perf_event_destroy;
2011
2012        return err;
2013}
2014
2015static int power_pmu_event_idx(struct perf_event *event)
2016{
2017        return event->hw.idx;
2018}
2019
2020ssize_t power_events_sysfs_show(struct device *dev,
2021                                struct device_attribute *attr, char *page)
2022{
2023        struct perf_pmu_events_attr *pmu_attr;
2024
2025        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2026
2027        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2028}
2029
2030static struct pmu power_pmu = {
2031        .pmu_enable     = power_pmu_enable,
2032        .pmu_disable    = power_pmu_disable,
2033        .event_init     = power_pmu_event_init,
2034        .add            = power_pmu_add,
2035        .del            = power_pmu_del,
2036        .start          = power_pmu_start,
2037        .stop           = power_pmu_stop,
2038        .read           = power_pmu_read,
2039        .start_txn      = power_pmu_start_txn,
2040        .cancel_txn     = power_pmu_cancel_txn,
2041        .commit_txn     = power_pmu_commit_txn,
2042        .event_idx      = power_pmu_event_idx,
2043        .sched_task     = power_pmu_sched_task,
2044};
2045
2046/*
2047 * A counter has overflowed; update its count and record
2048 * things if requested.  Note that interrupts are hard-disabled
2049 * here so there is no possibility of being interrupted.
2050 */
2051static void record_and_restart(struct perf_event *event, unsigned long val,
2052                               struct pt_regs *regs)
2053{
2054        u64 period = event->hw.sample_period;
2055        s64 prev, delta, left;
2056        int record = 0;
2057
2058        if (event->hw.state & PERF_HES_STOPPED) {
2059                write_pmc(event->hw.idx, 0);
2060                return;
2061        }
2062
2063        /* we don't have to worry about interrupts here */
2064        prev = local64_read(&event->hw.prev_count);
2065        delta = check_and_compute_delta(prev, val);
2066        local64_add(delta, &event->count);
2067
2068        /*
2069         * See if the total period for this event has expired,
2070         * and update for the next period.
2071         */
2072        val = 0;
2073        left = local64_read(&event->hw.period_left) - delta;
2074        if (delta == 0)
2075                left++;
2076        if (period) {
2077                if (left <= 0) {
2078                        left += period;
2079                        if (left <= 0)
2080                                left = period;
2081                        record = siar_valid(regs);
2082                        event->hw.last_period = event->hw.sample_period;
2083                }
2084                if (left < 0x80000000LL)
2085                        val = 0x80000000LL - left;
2086        }
2087
2088        write_pmc(event->hw.idx, val);
2089        local64_set(&event->hw.prev_count, val);
2090        local64_set(&event->hw.period_left, left);
2091        perf_event_update_userpage(event);
2092
2093        /*
2094         * Finally record data if requested.
2095         */
2096        if (record) {
2097                struct perf_sample_data data;
2098
2099                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2100
2101                if (event->attr.sample_type &
2102                    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2103                        perf_get_data_addr(regs, &data.addr);
2104
2105                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2106                        struct cpu_hw_events *cpuhw;
2107                        cpuhw = this_cpu_ptr(&cpu_hw_events);
2108                        power_pmu_bhrb_read(cpuhw);
2109                        data.br_stack = &cpuhw->bhrb_stack;
2110                }
2111
2112                if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2113                                                ppmu->get_mem_data_src)
2114                        ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2115
2116                if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2117                                                ppmu->get_mem_weight)
2118                        ppmu->get_mem_weight(&data.weight);
2119
2120                if (perf_event_overflow(event, &data, regs))
2121                        power_pmu_stop(event, 0);
2122        }
2123}
2124
2125/*
2126 * Called from generic code to get the misc flags (i.e. processor mode)
2127 * for an event_id.
2128 */
2129unsigned long perf_misc_flags(struct pt_regs *regs)
2130{
2131        u32 flags = perf_get_misc_flags(regs);
2132
2133        if (flags)
2134                return flags;
2135        return user_mode(regs) ? PERF_RECORD_MISC_USER :
2136                PERF_RECORD_MISC_KERNEL;
2137}
2138
2139/*
2140 * Called from generic code to get the instruction pointer
2141 * for an event_id.
2142 */
2143unsigned long perf_instruction_pointer(struct pt_regs *regs)
2144{
2145        bool use_siar = regs_use_siar(regs);
2146
2147        if (use_siar && siar_valid(regs))
2148                return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2149        else if (use_siar)
2150                return 0;               // no valid instruction pointer
2151        else
2152                return regs->nip;
2153}
2154
2155static bool pmc_overflow_power7(unsigned long val)
2156{
2157        /*
2158         * Events on POWER7 can roll back if a speculative event doesn't
2159         * eventually complete. Unfortunately in some rare cases they will
2160         * raise a performance monitor exception. We need to catch this to
2161         * ensure we reset the PMC. In all cases the PMC will be 256 or less
2162         * cycles from overflow.
2163         *
2164         * We only do this if the first pass fails to find any overflowing
2165         * PMCs because a user might set a period of less than 256 and we
2166         * don't want to mistakenly reset them.
2167         */
2168        if ((0x80000000 - val) <= 256)
2169                return true;
2170
2171        return false;
2172}
2173
2174static bool pmc_overflow(unsigned long val)
2175{
2176        if ((int)val < 0)
2177                return true;
2178
2179        return false;
2180}
2181
2182/*
2183 * Performance monitor interrupt stuff
2184 */
2185static void perf_event_interrupt(struct pt_regs *regs)
2186{
2187        int i, j;
2188        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2189        struct perf_event *event;
2190        unsigned long val[8];
2191        int found, active;
2192        int nmi;
2193
2194        if (cpuhw->n_limited)
2195                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2196                                        mfspr(SPRN_PMC6));
2197
2198        perf_read_regs(regs);
2199
2200        nmi = perf_intr_is_nmi(regs);
2201        if (nmi)
2202                nmi_enter();
2203        else
2204                irq_enter();
2205
2206        /* Read all the PMCs since we'll need them a bunch of times */
2207        for (i = 0; i < ppmu->n_counter; ++i)
2208                val[i] = read_pmc(i + 1);
2209
2210        /* Try to find what caused the IRQ */
2211        found = 0;
2212        for (i = 0; i < ppmu->n_counter; ++i) {
2213                if (!pmc_overflow(val[i]))
2214                        continue;
2215                if (is_limited_pmc(i + 1))
2216                        continue; /* these won't generate IRQs */
2217                /*
2218                 * We've found one that's overflowed.  For active
2219                 * counters we need to log this.  For inactive
2220                 * counters, we need to reset it anyway
2221                 */
2222                found = 1;
2223                active = 0;
2224                for (j = 0; j < cpuhw->n_events; ++j) {
2225                        event = cpuhw->event[j];
2226                        if (event->hw.idx == (i + 1)) {
2227                                active = 1;
2228                                record_and_restart(event, val[i], regs);
2229                                break;
2230                        }
2231                }
2232                if (!active)
2233                        /* reset non active counters that have overflowed */
2234                        write_pmc(i + 1, 0);
2235        }
2236        if (!found && pvr_version_is(PVR_POWER7)) {
2237                /* check active counters for special buggy p7 overflow */
2238                for (i = 0; i < cpuhw->n_events; ++i) {
2239                        event = cpuhw->event[i];
2240                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2241                                continue;
2242                        if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2243                                /* event has overflowed in a buggy way*/
2244                                found = 1;
2245                                record_and_restart(event,
2246                                                   val[event->hw.idx - 1],
2247                                                   regs);
2248                        }
2249                }
2250        }
2251        if (!found && !nmi && printk_ratelimit())
2252                printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2253
2254        /*
2255         * Reset MMCR0 to its normal value.  This will set PMXE and
2256         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2257         * and thus allow interrupts to occur again.
2258         * XXX might want to use MSR.PM to keep the events frozen until
2259         * we get back out of this interrupt.
2260         */
2261        write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2262
2263        if (nmi)
2264                nmi_exit();
2265        else
2266                irq_exit();
2267}
2268
2269static int power_pmu_prepare_cpu(unsigned int cpu)
2270{
2271        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2272
2273        if (ppmu) {
2274                memset(cpuhw, 0, sizeof(*cpuhw));
2275                cpuhw->mmcr[0] = MMCR0_FC;
2276        }
2277        return 0;
2278}
2279
2280int register_power_pmu(struct power_pmu *pmu)
2281{
2282        if (ppmu)
2283                return -EBUSY;          /* something's already registered */
2284
2285        ppmu = pmu;
2286        pr_info("%s performance monitor hardware support registered\n",
2287                pmu->name);
2288
2289        power_pmu.attr_groups = ppmu->attr_groups;
2290
2291#ifdef MSR_HV
2292        /*
2293         * Use FCHV to ignore kernel events if MSR.HV is set.
2294         */
2295        if (mfmsr() & MSR_HV)
2296                freeze_events_kernel = MMCR0_FCHV;
2297#endif /* CONFIG_PPC64 */
2298
2299        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2300        cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2301                          power_pmu_prepare_cpu, NULL);
2302        return 0;
2303}
2304