linux/arch/powerpc/perf/e500-pmu.c
<<
>>
Prefs
   1/*
   2 * Performance counter support for e500 family processors.
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 * Copyright 2010 Freescale Semiconductor, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12#include <linux/string.h>
  13#include <linux/perf_event.h>
  14#include <asm/reg.h>
  15#include <asm/cputable.h>
  16
  17/*
  18 * Map of generic hardware event types to hardware events
  19 * Zero if unsupported
  20 */
  21static int e500_generic_events[] = {
  22        [PERF_COUNT_HW_CPU_CYCLES] = 1,
  23        [PERF_COUNT_HW_INSTRUCTIONS] = 2,
  24        [PERF_COUNT_HW_CACHE_MISSES] = 41, /* Data L1 cache reloads */
  25        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 12,
  26        [PERF_COUNT_HW_BRANCH_MISSES] = 15,
  27        [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 18,
  28        [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 19,
  29};
  30
  31#define C(x)    PERF_COUNT_HW_CACHE_##x
  32
  33/*
  34 * Table of generalized cache-related events.
  35 * 0 means not supported, -1 means nonsensical, other values
  36 * are event codes.
  37 */
  38static int e500_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
  39        /*
  40         * D-cache misses are not split into read/write/prefetch;
  41         * use raw event 41.
  42         */
  43        [C(L1D)] = {            /*      RESULT_ACCESS   RESULT_MISS */
  44                [C(OP_READ)] = {        27,             0       },
  45                [C(OP_WRITE)] = {       28,             0       },
  46                [C(OP_PREFETCH)] = {    29,             0       },
  47        },
  48        [C(L1I)] = {            /*      RESULT_ACCESS   RESULT_MISS */
  49                [C(OP_READ)] = {        2,              60      },
  50                [C(OP_WRITE)] = {       -1,             -1      },
  51                [C(OP_PREFETCH)] = {    0,              0       },
  52        },
  53        /*
  54         * Assuming LL means L2, it's not a good match for this model.
  55         * It allocates only on L1 castout or explicit prefetch, and
  56         * does not have separate read/write events (but it does have
  57         * separate instruction/data events).
  58         */
  59        [C(LL)] = {             /*      RESULT_ACCESS   RESULT_MISS */
  60                [C(OP_READ)] = {        0,              0       },
  61                [C(OP_WRITE)] = {       0,              0       },
  62                [C(OP_PREFETCH)] = {    0,              0       },
  63        },
  64        /*
  65         * There are data/instruction MMU misses, but that's a miss on
  66         * the chip's internal level-one TLB which is probably not
  67         * what the user wants.  Instead, unified level-two TLB misses
  68         * are reported here.
  69         */
  70        [C(DTLB)] = {           /*      RESULT_ACCESS   RESULT_MISS */
  71                [C(OP_READ)] = {        26,             66      },
  72                [C(OP_WRITE)] = {       -1,             -1      },
  73                [C(OP_PREFETCH)] = {    -1,             -1      },
  74        },
  75        [C(BPU)] = {            /*      RESULT_ACCESS   RESULT_MISS */
  76                [C(OP_READ)] = {        12,             15      },
  77                [C(OP_WRITE)] = {       -1,             -1      },
  78                [C(OP_PREFETCH)] = {    -1,             -1      },
  79        },
  80        [C(NODE)] = {           /*      RESULT_ACCESS   RESULT_MISS */
  81                [C(OP_READ)] = {        -1,             -1      },
  82                [C(OP_WRITE)] = {       -1,             -1      },
  83                [C(OP_PREFETCH)] = {    -1,             -1      },
  84        },
  85};
  86
  87static int num_events = 128;
  88
  89/* Upper half of event id is PMLCb, for threshold events */
  90static u64 e500_xlate_event(u64 event_id)
  91{
  92        u32 event_low = (u32)event_id;
  93        u64 ret;
  94
  95        if (event_low >= num_events)
  96                return 0;
  97
  98        ret = FSL_EMB_EVENT_VALID;
  99
 100        if (event_low >= 76 && event_low <= 81) {
 101                ret |= FSL_EMB_EVENT_RESTRICTED;
 102                ret |= event_id &
 103                       (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH);
 104        } else if (event_id &
 105                   (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH)) {
 106                /* Threshold requested on non-threshold event */
 107                return 0;
 108        }
 109
 110        return ret;
 111}
 112
 113static struct fsl_emb_pmu e500_pmu = {
 114        .name                   = "e500 family",
 115        .n_counter              = 4,
 116        .n_restricted           = 2,
 117        .xlate_event            = e500_xlate_event,
 118        .n_generic              = ARRAY_SIZE(e500_generic_events),
 119        .generic_events         = e500_generic_events,
 120        .cache_events           = &e500_cache_events,
 121};
 122
 123static int init_e500_pmu(void)
 124{
 125        if (!cur_cpu_spec->oprofile_cpu_type)
 126                return -ENODEV;
 127
 128        if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500mc"))
 129                num_events = 256;
 130        else if (strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500"))
 131                return -ENODEV;
 132
 133        return register_fsl_emb_pmu(&e500_pmu);
 134}
 135
 136early_initcall(init_e500_pmu);
 137