linux/arch/sh/kernel/kgdb.c
<<
>>
Prefs
   1/*
   2 * SuperH KGDB support
   3 *
   4 * Copyright (C) 2008 - 2012  Paul Mundt
   5 *
   6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
   7 *
   8 * This file is subject to the terms and conditions of the GNU General Public
   9 * License.  See the file "COPYING" in the main directory of this archive
  10 * for more details.
  11 */
  12#include <linux/kgdb.h>
  13#include <linux/kdebug.h>
  14#include <linux/irq.h>
  15#include <linux/io.h>
  16#include <linux/sched.h>
  17#include <linux/sched/task_stack.h>
  18
  19#include <asm/cacheflush.h>
  20#include <asm/traps.h>
  21
  22/* Macros for single step instruction identification */
  23#define OPCODE_BT(op)           (((op) & 0xff00) == 0x8900)
  24#define OPCODE_BF(op)           (((op) & 0xff00) == 0x8b00)
  25#define OPCODE_BTF_DISP(op)     (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
  26                                 (((op) & 0x7f ) << 1))
  27#define OPCODE_BFS(op)          (((op) & 0xff00) == 0x8f00)
  28#define OPCODE_BTS(op)          (((op) & 0xff00) == 0x8d00)
  29#define OPCODE_BRA(op)          (((op) & 0xf000) == 0xa000)
  30#define OPCODE_BRA_DISP(op)     (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
  31                                 (((op) & 0x7ff) << 1))
  32#define OPCODE_BRAF(op)         (((op) & 0xf0ff) == 0x0023)
  33#define OPCODE_BRAF_REG(op)     (((op) & 0x0f00) >> 8)
  34#define OPCODE_BSR(op)          (((op) & 0xf000) == 0xb000)
  35#define OPCODE_BSR_DISP(op)     (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
  36                                 (((op) & 0x7ff) << 1))
  37#define OPCODE_BSRF(op)         (((op) & 0xf0ff) == 0x0003)
  38#define OPCODE_BSRF_REG(op)     (((op) >> 8) & 0xf)
  39#define OPCODE_JMP(op)          (((op) & 0xf0ff) == 0x402b)
  40#define OPCODE_JMP_REG(op)      (((op) >> 8) & 0xf)
  41#define OPCODE_JSR(op)          (((op) & 0xf0ff) == 0x400b)
  42#define OPCODE_JSR_REG(op)      (((op) >> 8) & 0xf)
  43#define OPCODE_RTS(op)          ((op) == 0xb)
  44#define OPCODE_RTE(op)          ((op) == 0x2b)
  45
  46#define SR_T_BIT_MASK           0x1
  47#define STEP_OPCODE             0xc33d
  48
  49/* Calculate the new address for after a step */
  50static short *get_step_address(struct pt_regs *linux_regs)
  51{
  52        insn_size_t op = __raw_readw(linux_regs->pc);
  53        long addr;
  54
  55        /* BT */
  56        if (OPCODE_BT(op)) {
  57                if (linux_regs->sr & SR_T_BIT_MASK)
  58                        addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
  59                else
  60                        addr = linux_regs->pc + 2;
  61        }
  62
  63        /* BTS */
  64        else if (OPCODE_BTS(op)) {
  65                if (linux_regs->sr & SR_T_BIT_MASK)
  66                        addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
  67                else
  68                        addr = linux_regs->pc + 4;      /* Not in delay slot */
  69        }
  70
  71        /* BF */
  72        else if (OPCODE_BF(op)) {
  73                if (!(linux_regs->sr & SR_T_BIT_MASK))
  74                        addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
  75                else
  76                        addr = linux_regs->pc + 2;
  77        }
  78
  79        /* BFS */
  80        else if (OPCODE_BFS(op)) {
  81                if (!(linux_regs->sr & SR_T_BIT_MASK))
  82                        addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
  83                else
  84                        addr = linux_regs->pc + 4;      /* Not in delay slot */
  85        }
  86
  87        /* BRA */
  88        else if (OPCODE_BRA(op))
  89                addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
  90
  91        /* BRAF */
  92        else if (OPCODE_BRAF(op))
  93                addr = linux_regs->pc + 4
  94                    + linux_regs->regs[OPCODE_BRAF_REG(op)];
  95
  96        /* BSR */
  97        else if (OPCODE_BSR(op))
  98                addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
  99
 100        /* BSRF */
 101        else if (OPCODE_BSRF(op))
 102                addr = linux_regs->pc + 4
 103                    + linux_regs->regs[OPCODE_BSRF_REG(op)];
 104
 105        /* JMP */
 106        else if (OPCODE_JMP(op))
 107                addr = linux_regs->regs[OPCODE_JMP_REG(op)];
 108
 109        /* JSR */
 110        else if (OPCODE_JSR(op))
 111                addr = linux_regs->regs[OPCODE_JSR_REG(op)];
 112
 113        /* RTS */
 114        else if (OPCODE_RTS(op))
 115                addr = linux_regs->pr;
 116
 117        /* RTE */
 118        else if (OPCODE_RTE(op))
 119                addr = linux_regs->regs[15];
 120
 121        /* Other */
 122        else
 123                addr = linux_regs->pc + instruction_size(op);
 124
 125        flush_icache_range(addr, addr + instruction_size(op));
 126        return (short *)addr;
 127}
 128
 129/*
 130 * Replace the instruction immediately after the current instruction
 131 * (i.e. next in the expected flow of control) with a trap instruction,
 132 * so that returning will cause only a single instruction to be executed.
 133 * Note that this model is slightly broken for instructions with delay
 134 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
 135 * instruction in the delay slot will be executed.
 136 */
 137
 138static unsigned long stepped_address;
 139static insn_size_t stepped_opcode;
 140
 141static void do_single_step(struct pt_regs *linux_regs)
 142{
 143        /* Determine where the target instruction will send us to */
 144        unsigned short *addr = get_step_address(linux_regs);
 145
 146        stepped_address = (int)addr;
 147
 148        /* Replace it */
 149        stepped_opcode = __raw_readw((long)addr);
 150        *addr = STEP_OPCODE;
 151
 152        /* Flush and return */
 153        flush_icache_range((long)addr, (long)addr +
 154                           instruction_size(stepped_opcode));
 155}
 156
 157/* Undo a single step */
 158static void undo_single_step(struct pt_regs *linux_regs)
 159{
 160        /* If we have stepped, put back the old instruction */
 161        /* Use stepped_address in case we stopped elsewhere */
 162        if (stepped_opcode != 0) {
 163                __raw_writew(stepped_opcode, stepped_address);
 164                flush_icache_range(stepped_address, stepped_address + 2);
 165        }
 166
 167        stepped_opcode = 0;
 168}
 169
 170struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
 171        { "r0",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
 172        { "r1",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
 173        { "r2",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
 174        { "r3",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
 175        { "r4",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
 176        { "r5",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
 177        { "r6",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
 178        { "r7",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
 179        { "r8",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
 180        { "r9",         GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
 181        { "r10",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
 182        { "r11",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
 183        { "r12",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
 184        { "r13",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
 185        { "r14",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
 186        { "r15",        GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
 187        { "pc",         GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
 188        { "pr",         GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
 189        { "sr",         GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
 190        { "gbr",        GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
 191        { "mach",       GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
 192        { "macl",       GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
 193        { "vbr",        GDB_SIZEOF_REG, -1 },
 194};
 195
 196int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
 197{
 198        if (regno < 0 || regno >= DBG_MAX_REG_NUM)
 199                return -EINVAL;
 200
 201        if (dbg_reg_def[regno].offset != -1)
 202                memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
 203                       dbg_reg_def[regno].size);
 204
 205        return 0;
 206}
 207
 208char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
 209{
 210        if (regno >= DBG_MAX_REG_NUM || regno < 0)
 211                return NULL;
 212
 213        if (dbg_reg_def[regno].size != -1)
 214                memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
 215                       dbg_reg_def[regno].size);
 216
 217        switch (regno) {
 218        case GDB_VBR:
 219                __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
 220                break;
 221        }
 222
 223        return dbg_reg_def[regno].name;
 224}
 225
 226void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
 227{
 228        struct pt_regs *thread_regs = task_pt_regs(p);
 229        int reg;
 230
 231        /* Initialize to zero */
 232        for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
 233                gdb_regs[reg] = 0;
 234
 235        /*
 236         * Copy out GP regs 8 to 14.
 237         *
 238         * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
 239         * and need privileged instructions to get to. The r15 value we
 240         * fetch from the thread info directly.
 241         */
 242        for (reg = GDB_R8; reg < GDB_R15; reg++)
 243                gdb_regs[reg] = thread_regs->regs[reg];
 244
 245        gdb_regs[GDB_R15] = p->thread.sp;
 246        gdb_regs[GDB_PC] = p->thread.pc;
 247
 248        /*
 249         * Additional registers we have context for
 250         */
 251        gdb_regs[GDB_PR] = thread_regs->pr;
 252        gdb_regs[GDB_GBR] = thread_regs->gbr;
 253}
 254
 255int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
 256                               char *remcomInBuffer, char *remcomOutBuffer,
 257                               struct pt_regs *linux_regs)
 258{
 259        unsigned long addr;
 260        char *ptr;
 261
 262        /* Undo any stepping we may have done */
 263        undo_single_step(linux_regs);
 264
 265        switch (remcomInBuffer[0]) {
 266        case 'c':
 267        case 's':
 268                /* try to read optional parameter, pc unchanged if no parm */
 269                ptr = &remcomInBuffer[1];
 270                if (kgdb_hex2long(&ptr, &addr))
 271                        linux_regs->pc = addr;
 272        case 'D':
 273        case 'k':
 274                atomic_set(&kgdb_cpu_doing_single_step, -1);
 275
 276                if (remcomInBuffer[0] == 's') {
 277                        do_single_step(linux_regs);
 278                        kgdb_single_step = 1;
 279
 280                        atomic_set(&kgdb_cpu_doing_single_step,
 281                                   raw_smp_processor_id());
 282                }
 283
 284                return 0;
 285        }
 286
 287        /* this means that we do not want to exit from the handler: */
 288        return -1;
 289}
 290
 291unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
 292{
 293        if (exception == 60)
 294                return instruction_pointer(regs) - 2;
 295        return instruction_pointer(regs);
 296}
 297
 298void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
 299{
 300        regs->pc = ip;
 301}
 302
 303/*
 304 * The primary entry points for the kgdb debug trap table entries.
 305 */
 306BUILD_TRAP_HANDLER(singlestep)
 307{
 308        unsigned long flags;
 309        TRAP_HANDLER_DECL;
 310
 311        local_irq_save(flags);
 312        regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
 313        kgdb_handle_exception(0, SIGTRAP, 0, regs);
 314        local_irq_restore(flags);
 315}
 316
 317static void kgdb_call_nmi_hook(void *ignored)
 318{
 319        kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
 320}
 321
 322void kgdb_roundup_cpus(unsigned long flags)
 323{
 324        local_irq_enable();
 325        smp_call_function(kgdb_call_nmi_hook, NULL, 0);
 326        local_irq_disable();
 327}
 328
 329static int __kgdb_notify(struct die_args *args, unsigned long cmd)
 330{
 331        int ret;
 332
 333        switch (cmd) {
 334        case DIE_BREAKPOINT:
 335                /*
 336                 * This means a user thread is single stepping
 337                 * a system call which should be ignored
 338                 */
 339                if (test_thread_flag(TIF_SINGLESTEP))
 340                        return NOTIFY_DONE;
 341
 342                ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
 343                                            args->err, args->regs);
 344                if (ret)
 345                        return NOTIFY_DONE;
 346
 347                break;
 348        }
 349
 350        return NOTIFY_STOP;
 351}
 352
 353static int
 354kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
 355{
 356        unsigned long flags;
 357        int ret;
 358
 359        local_irq_save(flags);
 360        ret = __kgdb_notify(ptr, cmd);
 361        local_irq_restore(flags);
 362
 363        return ret;
 364}
 365
 366static struct notifier_block kgdb_notifier = {
 367        .notifier_call  = kgdb_notify,
 368
 369        /*
 370         * Lowest-prio notifier priority, we want to be notified last:
 371         */
 372        .priority       = -INT_MAX,
 373};
 374
 375int kgdb_arch_init(void)
 376{
 377        return register_die_notifier(&kgdb_notifier);
 378}
 379
 380void kgdb_arch_exit(void)
 381{
 382        unregister_die_notifier(&kgdb_notifier);
 383}
 384
 385struct kgdb_arch arch_kgdb_ops = {
 386        /* Breakpoint instruction: trapa #0x3c */
 387#ifdef CONFIG_CPU_LITTLE_ENDIAN
 388        .gdb_bpt_instr          = { 0x3c, 0xc3 },
 389#else
 390        .gdb_bpt_instr          = { 0xc3, 0x3c },
 391#endif
 392};
 393