linux/arch/sparc/kernel/perf_event.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Performance event support for sparc64.
   3 *
   4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   5 *
   6 * This code is based almost entirely upon the x86 perf event
   7 * code, which is:
   8 *
   9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11 *  Copyright (C) 2009 Jaswinder Singh Rajput
  12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  14 */
  15
  16#include <linux/perf_event.h>
  17#include <linux/kprobes.h>
  18#include <linux/ftrace.h>
  19#include <linux/kernel.h>
  20#include <linux/kdebug.h>
  21#include <linux/mutex.h>
  22
  23#include <asm/stacktrace.h>
  24#include <asm/cpudata.h>
  25#include <linux/uaccess.h>
  26#include <linux/atomic.h>
  27#include <asm/nmi.h>
  28#include <asm/pcr.h>
  29#include <asm/cacheflush.h>
  30
  31#include "kernel.h"
  32#include "kstack.h"
  33
  34/* Two classes of sparc64 chips currently exist.  All of which have
  35 * 32-bit counters which can generate overflow interrupts on the
  36 * transition from 0xffffffff to 0.
  37 *
  38 * All chips upto and including SPARC-T3 have two performance
  39 * counters.  The two 32-bit counters are accessed in one go using a
  40 * single 64-bit register.
  41 *
  42 * On these older chips both counters are controlled using a single
  43 * control register.  The only way to stop all sampling is to clear
  44 * all of the context (user, supervisor, hypervisor) sampling enable
  45 * bits.  But these bits apply to both counters, thus the two counters
  46 * can't be enabled/disabled individually.
  47 *
  48 * Furthermore, the control register on these older chips have two
  49 * event fields, one for each of the two counters.  It's thus nearly
  50 * impossible to have one counter going while keeping the other one
  51 * stopped.  Therefore it is possible to get overflow interrupts for
  52 * counters not currently "in use" and that condition must be checked
  53 * in the overflow interrupt handler.
  54 *
  55 * So we use a hack, in that we program inactive counters with the
  56 * "sw_count0" and "sw_count1" events.  These count how many times
  57 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  58 * unusual way to encode a NOP and therefore will not trigger in
  59 * normal code.
  60 *
  61 * Starting with SPARC-T4 we have one control register per counter.
  62 * And the counters are stored in individual registers.  The registers
  63 * for the counters are 64-bit but only a 32-bit counter is
  64 * implemented.  The event selections on SPARC-T4 lack any
  65 * restrictions, therefore we can elide all of the complicated
  66 * conflict resolution code we have for SPARC-T3 and earlier chips.
  67 */
  68
  69#define MAX_HWEVENTS                    4
  70#define MAX_PCRS                        4
  71#define MAX_PERIOD                      ((1UL << 32) - 1)
  72
  73#define PIC_UPPER_INDEX                 0
  74#define PIC_LOWER_INDEX                 1
  75#define PIC_NO_INDEX                    -1
  76
  77struct cpu_hw_events {
  78        /* Number of events currently scheduled onto this cpu.
  79         * This tells how many entries in the arrays below
  80         * are valid.
  81         */
  82        int                     n_events;
  83
  84        /* Number of new events added since the last hw_perf_disable().
  85         * This works because the perf event layer always adds new
  86         * events inside of a perf_{disable,enable}() sequence.
  87         */
  88        int                     n_added;
  89
  90        /* Array of events current scheduled on this cpu.  */
  91        struct perf_event       *event[MAX_HWEVENTS];
  92
  93        /* Array of encoded longs, specifying the %pcr register
  94         * encoding and the mask of PIC counters this even can
  95         * be scheduled on.  See perf_event_encode() et al.
  96         */
  97        unsigned long           events[MAX_HWEVENTS];
  98
  99        /* The current counter index assigned to an event.  When the
 100         * event hasn't been programmed into the cpu yet, this will
 101         * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 102         * we ought to schedule the event.
 103         */
 104        int                     current_idx[MAX_HWEVENTS];
 105
 106        /* Software copy of %pcr register(s) on this cpu.  */
 107        u64                     pcr[MAX_HWEVENTS];
 108
 109        /* Enabled/disable state.  */
 110        int                     enabled;
 111
 112        unsigned int            txn_flags;
 113};
 114static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 115
 116/* An event map describes the characteristics of a performance
 117 * counter event.  In particular it gives the encoding as well as
 118 * a mask telling which counters the event can be measured on.
 119 *
 120 * The mask is unused on SPARC-T4 and later.
 121 */
 122struct perf_event_map {
 123        u16     encoding;
 124        u8      pic_mask;
 125#define PIC_NONE        0x00
 126#define PIC_UPPER       0x01
 127#define PIC_LOWER       0x02
 128};
 129
 130/* Encode a perf_event_map entry into a long.  */
 131static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 132{
 133        return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 134}
 135
 136static u8 perf_event_get_msk(unsigned long val)
 137{
 138        return val & 0xff;
 139}
 140
 141static u64 perf_event_get_enc(unsigned long val)
 142{
 143        return val >> 16;
 144}
 145
 146#define C(x) PERF_COUNT_HW_CACHE_##x
 147
 148#define CACHE_OP_UNSUPPORTED    0xfffe
 149#define CACHE_OP_NONSENSE       0xffff
 150
 151typedef struct perf_event_map cache_map_t
 152                                [PERF_COUNT_HW_CACHE_MAX]
 153                                [PERF_COUNT_HW_CACHE_OP_MAX]
 154                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
 155
 156struct sparc_pmu {
 157        const struct perf_event_map     *(*event_map)(int);
 158        const cache_map_t               *cache_map;
 159        int                             max_events;
 160        u32                             (*read_pmc)(int);
 161        void                            (*write_pmc)(int, u64);
 162        int                             upper_shift;
 163        int                             lower_shift;
 164        int                             event_mask;
 165        int                             user_bit;
 166        int                             priv_bit;
 167        int                             hv_bit;
 168        int                             irq_bit;
 169        int                             upper_nop;
 170        int                             lower_nop;
 171        unsigned int                    flags;
 172#define SPARC_PMU_ALL_EXCLUDES_SAME     0x00000001
 173#define SPARC_PMU_HAS_CONFLICTS         0x00000002
 174        int                             max_hw_events;
 175        int                             num_pcrs;
 176        int                             num_pic_regs;
 177};
 178
 179static u32 sparc_default_read_pmc(int idx)
 180{
 181        u64 val;
 182
 183        val = pcr_ops->read_pic(0);
 184        if (idx == PIC_UPPER_INDEX)
 185                val >>= 32;
 186
 187        return val & 0xffffffff;
 188}
 189
 190static void sparc_default_write_pmc(int idx, u64 val)
 191{
 192        u64 shift, mask, pic;
 193
 194        shift = 0;
 195        if (idx == PIC_UPPER_INDEX)
 196                shift = 32;
 197
 198        mask = ((u64) 0xffffffff) << shift;
 199        val <<= shift;
 200
 201        pic = pcr_ops->read_pic(0);
 202        pic &= ~mask;
 203        pic |= val;
 204        pcr_ops->write_pic(0, pic);
 205}
 206
 207static const struct perf_event_map ultra3_perfmon_event_map[] = {
 208        [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 209        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 210        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 211        [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 212};
 213
 214static const struct perf_event_map *ultra3_event_map(int event_id)
 215{
 216        return &ultra3_perfmon_event_map[event_id];
 217}
 218
 219static const cache_map_t ultra3_cache_map = {
 220[C(L1D)] = {
 221        [C(OP_READ)] = {
 222                [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 223                [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 224        },
 225        [C(OP_WRITE)] = {
 226                [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 227                [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 228        },
 229        [C(OP_PREFETCH)] = {
 230                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 231                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 232        },
 233},
 234[C(L1I)] = {
 235        [C(OP_READ)] = {
 236                [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 237                [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 238        },
 239        [ C(OP_WRITE) ] = {
 240                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 241                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 242        },
 243        [ C(OP_PREFETCH) ] = {
 244                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 245                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 246        },
 247},
 248[C(LL)] = {
 249        [C(OP_READ)] = {
 250                [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 251                [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 252        },
 253        [C(OP_WRITE)] = {
 254                [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 255                [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 256        },
 257        [C(OP_PREFETCH)] = {
 258                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 259                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 260        },
 261},
 262[C(DTLB)] = {
 263        [C(OP_READ)] = {
 264                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 265                [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 266        },
 267        [ C(OP_WRITE) ] = {
 268                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 269                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 270        },
 271        [ C(OP_PREFETCH) ] = {
 272                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 273                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 274        },
 275},
 276[C(ITLB)] = {
 277        [C(OP_READ)] = {
 278                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 279                [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 280        },
 281        [ C(OP_WRITE) ] = {
 282                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 283                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 284        },
 285        [ C(OP_PREFETCH) ] = {
 286                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 287                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 288        },
 289},
 290[C(BPU)] = {
 291        [C(OP_READ)] = {
 292                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 293                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 294        },
 295        [ C(OP_WRITE) ] = {
 296                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 297                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 298        },
 299        [ C(OP_PREFETCH) ] = {
 300                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 301                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 302        },
 303},
 304[C(NODE)] = {
 305        [C(OP_READ)] = {
 306                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 307                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 308        },
 309        [ C(OP_WRITE) ] = {
 310                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 311                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 312        },
 313        [ C(OP_PREFETCH) ] = {
 314                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 315                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 316        },
 317},
 318};
 319
 320static const struct sparc_pmu ultra3_pmu = {
 321        .event_map      = ultra3_event_map,
 322        .cache_map      = &ultra3_cache_map,
 323        .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
 324        .read_pmc       = sparc_default_read_pmc,
 325        .write_pmc      = sparc_default_write_pmc,
 326        .upper_shift    = 11,
 327        .lower_shift    = 4,
 328        .event_mask     = 0x3f,
 329        .user_bit       = PCR_UTRACE,
 330        .priv_bit       = PCR_STRACE,
 331        .upper_nop      = 0x1c,
 332        .lower_nop      = 0x14,
 333        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 334                           SPARC_PMU_HAS_CONFLICTS),
 335        .max_hw_events  = 2,
 336        .num_pcrs       = 1,
 337        .num_pic_regs   = 1,
 338};
 339
 340/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 341 * only instructions, so it is free running which creates all kinds of
 342 * problems.  Some hardware designs make one wonder if the creator
 343 * even looked at how this stuff gets used by software.
 344 */
 345static const struct perf_event_map niagara1_perfmon_event_map[] = {
 346        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 347        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 348        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 349        [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 350};
 351
 352static const struct perf_event_map *niagara1_event_map(int event_id)
 353{
 354        return &niagara1_perfmon_event_map[event_id];
 355}
 356
 357static const cache_map_t niagara1_cache_map = {
 358[C(L1D)] = {
 359        [C(OP_READ)] = {
 360                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 361                [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 362        },
 363        [C(OP_WRITE)] = {
 364                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 365                [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 366        },
 367        [C(OP_PREFETCH)] = {
 368                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 369                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 370        },
 371},
 372[C(L1I)] = {
 373        [C(OP_READ)] = {
 374                [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 375                [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 376        },
 377        [ C(OP_WRITE) ] = {
 378                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 379                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 380        },
 381        [ C(OP_PREFETCH) ] = {
 382                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 383                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 384        },
 385},
 386[C(LL)] = {
 387        [C(OP_READ)] = {
 388                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 389                [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 390        },
 391        [C(OP_WRITE)] = {
 392                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 393                [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 394        },
 395        [C(OP_PREFETCH)] = {
 396                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 397                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 398        },
 399},
 400[C(DTLB)] = {
 401        [C(OP_READ)] = {
 402                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 403                [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 404        },
 405        [ C(OP_WRITE) ] = {
 406                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 407                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 408        },
 409        [ C(OP_PREFETCH) ] = {
 410                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 411                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 412        },
 413},
 414[C(ITLB)] = {
 415        [C(OP_READ)] = {
 416                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 417                [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 418        },
 419        [ C(OP_WRITE) ] = {
 420                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 421                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 422        },
 423        [ C(OP_PREFETCH) ] = {
 424                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 425                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 426        },
 427},
 428[C(BPU)] = {
 429        [C(OP_READ)] = {
 430                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 431                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 432        },
 433        [ C(OP_WRITE) ] = {
 434                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 435                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 436        },
 437        [ C(OP_PREFETCH) ] = {
 438                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 439                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 440        },
 441},
 442[C(NODE)] = {
 443        [C(OP_READ)] = {
 444                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 445                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 446        },
 447        [ C(OP_WRITE) ] = {
 448                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 449                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 450        },
 451        [ C(OP_PREFETCH) ] = {
 452                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 453                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 454        },
 455},
 456};
 457
 458static const struct sparc_pmu niagara1_pmu = {
 459        .event_map      = niagara1_event_map,
 460        .cache_map      = &niagara1_cache_map,
 461        .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
 462        .read_pmc       = sparc_default_read_pmc,
 463        .write_pmc      = sparc_default_write_pmc,
 464        .upper_shift    = 0,
 465        .lower_shift    = 4,
 466        .event_mask     = 0x7,
 467        .user_bit       = PCR_UTRACE,
 468        .priv_bit       = PCR_STRACE,
 469        .upper_nop      = 0x0,
 470        .lower_nop      = 0x0,
 471        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 472                           SPARC_PMU_HAS_CONFLICTS),
 473        .max_hw_events  = 2,
 474        .num_pcrs       = 1,
 475        .num_pic_regs   = 1,
 476};
 477
 478static const struct perf_event_map niagara2_perfmon_event_map[] = {
 479        [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 481        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 482        [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 483        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 484        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 485};
 486
 487static const struct perf_event_map *niagara2_event_map(int event_id)
 488{
 489        return &niagara2_perfmon_event_map[event_id];
 490}
 491
 492static const cache_map_t niagara2_cache_map = {
 493[C(L1D)] = {
 494        [C(OP_READ)] = {
 495                [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 496                [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 497        },
 498        [C(OP_WRITE)] = {
 499                [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 500                [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 501        },
 502        [C(OP_PREFETCH)] = {
 503                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 504                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 505        },
 506},
 507[C(L1I)] = {
 508        [C(OP_READ)] = {
 509                [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 510                [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 511        },
 512        [ C(OP_WRITE) ] = {
 513                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 514                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 515        },
 516        [ C(OP_PREFETCH) ] = {
 517                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 518                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 519        },
 520},
 521[C(LL)] = {
 522        [C(OP_READ)] = {
 523                [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 524                [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 525        },
 526        [C(OP_WRITE)] = {
 527                [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 528                [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 529        },
 530        [C(OP_PREFETCH)] = {
 531                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 532                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 533        },
 534},
 535[C(DTLB)] = {
 536        [C(OP_READ)] = {
 537                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 538                [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 539        },
 540        [ C(OP_WRITE) ] = {
 541                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 542                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 543        },
 544        [ C(OP_PREFETCH) ] = {
 545                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 546                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 547        },
 548},
 549[C(ITLB)] = {
 550        [C(OP_READ)] = {
 551                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 552                [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 553        },
 554        [ C(OP_WRITE) ] = {
 555                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 556                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 557        },
 558        [ C(OP_PREFETCH) ] = {
 559                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 560                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 561        },
 562},
 563[C(BPU)] = {
 564        [C(OP_READ)] = {
 565                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 566                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 567        },
 568        [ C(OP_WRITE) ] = {
 569                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 570                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 571        },
 572        [ C(OP_PREFETCH) ] = {
 573                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 574                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 575        },
 576},
 577[C(NODE)] = {
 578        [C(OP_READ)] = {
 579                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 580                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 581        },
 582        [ C(OP_WRITE) ] = {
 583                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 584                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 585        },
 586        [ C(OP_PREFETCH) ] = {
 587                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 588                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 589        },
 590},
 591};
 592
 593static const struct sparc_pmu niagara2_pmu = {
 594        .event_map      = niagara2_event_map,
 595        .cache_map      = &niagara2_cache_map,
 596        .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
 597        .read_pmc       = sparc_default_read_pmc,
 598        .write_pmc      = sparc_default_write_pmc,
 599        .upper_shift    = 19,
 600        .lower_shift    = 6,
 601        .event_mask     = 0xfff,
 602        .user_bit       = PCR_UTRACE,
 603        .priv_bit       = PCR_STRACE,
 604        .hv_bit         = PCR_N2_HTRACE,
 605        .irq_bit        = 0x30,
 606        .upper_nop      = 0x220,
 607        .lower_nop      = 0x220,
 608        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 609                           SPARC_PMU_HAS_CONFLICTS),
 610        .max_hw_events  = 2,
 611        .num_pcrs       = 1,
 612        .num_pic_regs   = 1,
 613};
 614
 615static const struct perf_event_map niagara4_perfmon_event_map[] = {
 616        [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 617        [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 618        [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 619        [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 620        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 621        [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 622};
 623
 624static const struct perf_event_map *niagara4_event_map(int event_id)
 625{
 626        return &niagara4_perfmon_event_map[event_id];
 627}
 628
 629static const cache_map_t niagara4_cache_map = {
 630[C(L1D)] = {
 631        [C(OP_READ)] = {
 632                [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 633                [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 634        },
 635        [C(OP_WRITE)] = {
 636                [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 637                [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 638        },
 639        [C(OP_PREFETCH)] = {
 640                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 641                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 642        },
 643},
 644[C(L1I)] = {
 645        [C(OP_READ)] = {
 646                [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 647                [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 648        },
 649        [ C(OP_WRITE) ] = {
 650                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 651                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 652        },
 653        [ C(OP_PREFETCH) ] = {
 654                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 655                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 656        },
 657},
 658[C(LL)] = {
 659        [C(OP_READ)] = {
 660                [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 661                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 662        },
 663        [C(OP_WRITE)] = {
 664                [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 665                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 666        },
 667        [C(OP_PREFETCH)] = {
 668                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 669                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 670        },
 671},
 672[C(DTLB)] = {
 673        [C(OP_READ)] = {
 674                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 675                [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 676        },
 677        [ C(OP_WRITE) ] = {
 678                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 679                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 680        },
 681        [ C(OP_PREFETCH) ] = {
 682                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 683                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 684        },
 685},
 686[C(ITLB)] = {
 687        [C(OP_READ)] = {
 688                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 689                [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 690        },
 691        [ C(OP_WRITE) ] = {
 692                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 693                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 694        },
 695        [ C(OP_PREFETCH) ] = {
 696                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 697                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 698        },
 699},
 700[C(BPU)] = {
 701        [C(OP_READ)] = {
 702                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 703                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 704        },
 705        [ C(OP_WRITE) ] = {
 706                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 707                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 708        },
 709        [ C(OP_PREFETCH) ] = {
 710                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 711                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 712        },
 713},
 714[C(NODE)] = {
 715        [C(OP_READ)] = {
 716                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 717                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 718        },
 719        [ C(OP_WRITE) ] = {
 720                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 721                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 722        },
 723        [ C(OP_PREFETCH) ] = {
 724                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 725                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 726        },
 727},
 728};
 729
 730static u32 sparc_vt_read_pmc(int idx)
 731{
 732        u64 val = pcr_ops->read_pic(idx);
 733
 734        return val & 0xffffffff;
 735}
 736
 737static void sparc_vt_write_pmc(int idx, u64 val)
 738{
 739        u64 pcr;
 740
 741        pcr = pcr_ops->read_pcr(idx);
 742        /* ensure ov and ntc are reset */
 743        pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 744
 745        pcr_ops->write_pic(idx, val & 0xffffffff);
 746
 747        pcr_ops->write_pcr(idx, pcr);
 748}
 749
 750static const struct sparc_pmu niagara4_pmu = {
 751        .event_map      = niagara4_event_map,
 752        .cache_map      = &niagara4_cache_map,
 753        .max_events     = ARRAY_SIZE(niagara4_perfmon_event_map),
 754        .read_pmc       = sparc_vt_read_pmc,
 755        .write_pmc      = sparc_vt_write_pmc,
 756        .upper_shift    = 5,
 757        .lower_shift    = 5,
 758        .event_mask     = 0x7ff,
 759        .user_bit       = PCR_N4_UTRACE,
 760        .priv_bit       = PCR_N4_STRACE,
 761
 762        /* We explicitly don't support hypervisor tracing.  The T4
 763         * generates the overflow event for precise events via a trap
 764         * which will not be generated (ie. it's completely lost) if
 765         * we happen to be in the hypervisor when the event triggers.
 766         * Essentially, the overflow event reporting is completely
 767         * unusable when you have hypervisor mode tracing enabled.
 768         */
 769        .hv_bit         = 0,
 770
 771        .irq_bit        = PCR_N4_TOE,
 772        .upper_nop      = 0,
 773        .lower_nop      = 0,
 774        .flags          = 0,
 775        .max_hw_events  = 4,
 776        .num_pcrs       = 4,
 777        .num_pic_regs   = 4,
 778};
 779
 780static const struct sparc_pmu sparc_m7_pmu = {
 781        .event_map      = niagara4_event_map,
 782        .cache_map      = &niagara4_cache_map,
 783        .max_events     = ARRAY_SIZE(niagara4_perfmon_event_map),
 784        .read_pmc       = sparc_vt_read_pmc,
 785        .write_pmc      = sparc_vt_write_pmc,
 786        .upper_shift    = 5,
 787        .lower_shift    = 5,
 788        .event_mask     = 0x7ff,
 789        .user_bit       = PCR_N4_UTRACE,
 790        .priv_bit       = PCR_N4_STRACE,
 791
 792        /* We explicitly don't support hypervisor tracing. */
 793        .hv_bit         = 0,
 794
 795        .irq_bit        = PCR_N4_TOE,
 796        .upper_nop      = 0,
 797        .lower_nop      = 0,
 798        .flags          = 0,
 799        .max_hw_events  = 4,
 800        .num_pcrs       = 4,
 801        .num_pic_regs   = 4,
 802};
 803static const struct sparc_pmu *sparc_pmu __read_mostly;
 804
 805static u64 event_encoding(u64 event_id, int idx)
 806{
 807        if (idx == PIC_UPPER_INDEX)
 808                event_id <<= sparc_pmu->upper_shift;
 809        else
 810                event_id <<= sparc_pmu->lower_shift;
 811        return event_id;
 812}
 813
 814static u64 mask_for_index(int idx)
 815{
 816        return event_encoding(sparc_pmu->event_mask, idx);
 817}
 818
 819static u64 nop_for_index(int idx)
 820{
 821        return event_encoding(idx == PIC_UPPER_INDEX ?
 822                              sparc_pmu->upper_nop :
 823                              sparc_pmu->lower_nop, idx);
 824}
 825
 826static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 827{
 828        u64 enc, val, mask = mask_for_index(idx);
 829        int pcr_index = 0;
 830
 831        if (sparc_pmu->num_pcrs > 1)
 832                pcr_index = idx;
 833
 834        enc = perf_event_get_enc(cpuc->events[idx]);
 835
 836        val = cpuc->pcr[pcr_index];
 837        val &= ~mask;
 838        val |= event_encoding(enc, idx);
 839        cpuc->pcr[pcr_index] = val;
 840
 841        pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 842}
 843
 844static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 845{
 846        u64 mask = mask_for_index(idx);
 847        u64 nop = nop_for_index(idx);
 848        int pcr_index = 0;
 849        u64 val;
 850
 851        if (sparc_pmu->num_pcrs > 1)
 852                pcr_index = idx;
 853
 854        val = cpuc->pcr[pcr_index];
 855        val &= ~mask;
 856        val |= nop;
 857        cpuc->pcr[pcr_index] = val;
 858
 859        pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 860}
 861
 862static u64 sparc_perf_event_update(struct perf_event *event,
 863                                   struct hw_perf_event *hwc, int idx)
 864{
 865        int shift = 64 - 32;
 866        u64 prev_raw_count, new_raw_count;
 867        s64 delta;
 868
 869again:
 870        prev_raw_count = local64_read(&hwc->prev_count);
 871        new_raw_count = sparc_pmu->read_pmc(idx);
 872
 873        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 874                             new_raw_count) != prev_raw_count)
 875                goto again;
 876
 877        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 878        delta >>= shift;
 879
 880        local64_add(delta, &event->count);
 881        local64_sub(delta, &hwc->period_left);
 882
 883        return new_raw_count;
 884}
 885
 886static int sparc_perf_event_set_period(struct perf_event *event,
 887                                       struct hw_perf_event *hwc, int idx)
 888{
 889        s64 left = local64_read(&hwc->period_left);
 890        s64 period = hwc->sample_period;
 891        int ret = 0;
 892
 893        if (unlikely(left <= -period)) {
 894                left = period;
 895                local64_set(&hwc->period_left, left);
 896                hwc->last_period = period;
 897                ret = 1;
 898        }
 899
 900        if (unlikely(left <= 0)) {
 901                left += period;
 902                local64_set(&hwc->period_left, left);
 903                hwc->last_period = period;
 904                ret = 1;
 905        }
 906        if (left > MAX_PERIOD)
 907                left = MAX_PERIOD;
 908
 909        local64_set(&hwc->prev_count, (u64)-left);
 910
 911        sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 912
 913        perf_event_update_userpage(event);
 914
 915        return ret;
 916}
 917
 918static void read_in_all_counters(struct cpu_hw_events *cpuc)
 919{
 920        int i;
 921
 922        for (i = 0; i < cpuc->n_events; i++) {
 923                struct perf_event *cp = cpuc->event[i];
 924
 925                if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 926                    cpuc->current_idx[i] != cp->hw.idx) {
 927                        sparc_perf_event_update(cp, &cp->hw,
 928                                                cpuc->current_idx[i]);
 929                        cpuc->current_idx[i] = PIC_NO_INDEX;
 930                }
 931        }
 932}
 933
 934/* On this PMU all PICs are programmed using a single PCR.  Calculate
 935 * the combined control register value.
 936 *
 937 * For such chips we require that all of the events have the same
 938 * configuration, so just fetch the settings from the first entry.
 939 */
 940static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 941{
 942        int i;
 943
 944        if (!cpuc->n_added)
 945                goto out;
 946
 947        /* Assign to counters all unassigned events.  */
 948        for (i = 0; i < cpuc->n_events; i++) {
 949                struct perf_event *cp = cpuc->event[i];
 950                struct hw_perf_event *hwc = &cp->hw;
 951                int idx = hwc->idx;
 952                u64 enc;
 953
 954                if (cpuc->current_idx[i] != PIC_NO_INDEX)
 955                        continue;
 956
 957                sparc_perf_event_set_period(cp, hwc, idx);
 958                cpuc->current_idx[i] = idx;
 959
 960                enc = perf_event_get_enc(cpuc->events[i]);
 961                cpuc->pcr[0] &= ~mask_for_index(idx);
 962                if (hwc->state & PERF_HES_STOPPED)
 963                        cpuc->pcr[0] |= nop_for_index(idx);
 964                else
 965                        cpuc->pcr[0] |= event_encoding(enc, idx);
 966        }
 967out:
 968        cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 969}
 970
 971static void sparc_pmu_start(struct perf_event *event, int flags);
 972
 973/* On this PMU each PIC has it's own PCR control register.  */
 974static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 975{
 976        int i;
 977
 978        if (!cpuc->n_added)
 979                goto out;
 980
 981        for (i = 0; i < cpuc->n_events; i++) {
 982                struct perf_event *cp = cpuc->event[i];
 983                struct hw_perf_event *hwc = &cp->hw;
 984                int idx = hwc->idx;
 985
 986                if (cpuc->current_idx[i] != PIC_NO_INDEX)
 987                        continue;
 988
 989                cpuc->current_idx[i] = idx;
 990
 991                sparc_pmu_start(cp, PERF_EF_RELOAD);
 992        }
 993out:
 994        for (i = 0; i < cpuc->n_events; i++) {
 995                struct perf_event *cp = cpuc->event[i];
 996                int idx = cp->hw.idx;
 997
 998                cpuc->pcr[idx] |= cp->hw.config_base;
 999        }
1000}
1001
1002/* If performance event entries have been added, move existing events
1003 * around (if necessary) and then assign new entries to counters.
1004 */
1005static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1006{
1007        if (cpuc->n_added)
1008                read_in_all_counters(cpuc);
1009
1010        if (sparc_pmu->num_pcrs == 1) {
1011                calculate_single_pcr(cpuc);
1012        } else {
1013                calculate_multiple_pcrs(cpuc);
1014        }
1015}
1016
1017static void sparc_pmu_enable(struct pmu *pmu)
1018{
1019        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020        int i;
1021
1022        if (cpuc->enabled)
1023                return;
1024
1025        cpuc->enabled = 1;
1026        barrier();
1027
1028        if (cpuc->n_events)
1029                update_pcrs_for_enable(cpuc);
1030
1031        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1032                pcr_ops->write_pcr(i, cpuc->pcr[i]);
1033}
1034
1035static void sparc_pmu_disable(struct pmu *pmu)
1036{
1037        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038        int i;
1039
1040        if (!cpuc->enabled)
1041                return;
1042
1043        cpuc->enabled = 0;
1044        cpuc->n_added = 0;
1045
1046        for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1047                u64 val = cpuc->pcr[i];
1048
1049                val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1050                         sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1051                cpuc->pcr[i] = val;
1052                pcr_ops->write_pcr(i, cpuc->pcr[i]);
1053        }
1054}
1055
1056static int active_event_index(struct cpu_hw_events *cpuc,
1057                              struct perf_event *event)
1058{
1059        int i;
1060
1061        for (i = 0; i < cpuc->n_events; i++) {
1062                if (cpuc->event[i] == event)
1063                        break;
1064        }
1065        BUG_ON(i == cpuc->n_events);
1066        return cpuc->current_idx[i];
1067}
1068
1069static void sparc_pmu_start(struct perf_event *event, int flags)
1070{
1071        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072        int idx = active_event_index(cpuc, event);
1073
1074        if (flags & PERF_EF_RELOAD) {
1075                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1076                sparc_perf_event_set_period(event, &event->hw, idx);
1077        }
1078
1079        event->hw.state = 0;
1080
1081        sparc_pmu_enable_event(cpuc, &event->hw, idx);
1082}
1083
1084static void sparc_pmu_stop(struct perf_event *event, int flags)
1085{
1086        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1087        int idx = active_event_index(cpuc, event);
1088
1089        if (!(event->hw.state & PERF_HES_STOPPED)) {
1090                sparc_pmu_disable_event(cpuc, &event->hw, idx);
1091                event->hw.state |= PERF_HES_STOPPED;
1092        }
1093
1094        if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1095                sparc_perf_event_update(event, &event->hw, idx);
1096                event->hw.state |= PERF_HES_UPTODATE;
1097        }
1098}
1099
1100static void sparc_pmu_del(struct perf_event *event, int _flags)
1101{
1102        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103        unsigned long flags;
1104        int i;
1105
1106        local_irq_save(flags);
1107
1108        for (i = 0; i < cpuc->n_events; i++) {
1109                if (event == cpuc->event[i]) {
1110                        /* Absorb the final count and turn off the
1111                         * event.
1112                         */
1113                        sparc_pmu_stop(event, PERF_EF_UPDATE);
1114
1115                        /* Shift remaining entries down into
1116                         * the existing slot.
1117                         */
1118                        while (++i < cpuc->n_events) {
1119                                cpuc->event[i - 1] = cpuc->event[i];
1120                                cpuc->events[i - 1] = cpuc->events[i];
1121                                cpuc->current_idx[i - 1] =
1122                                        cpuc->current_idx[i];
1123                        }
1124
1125                        perf_event_update_userpage(event);
1126
1127                        cpuc->n_events--;
1128                        break;
1129                }
1130        }
1131
1132        local_irq_restore(flags);
1133}
1134
1135static void sparc_pmu_read(struct perf_event *event)
1136{
1137        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138        int idx = active_event_index(cpuc, event);
1139        struct hw_perf_event *hwc = &event->hw;
1140
1141        sparc_perf_event_update(event, hwc, idx);
1142}
1143
1144static atomic_t active_events = ATOMIC_INIT(0);
1145static DEFINE_MUTEX(pmc_grab_mutex);
1146
1147static void perf_stop_nmi_watchdog(void *unused)
1148{
1149        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150        int i;
1151
1152        stop_nmi_watchdog(NULL);
1153        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1154                cpuc->pcr[i] = pcr_ops->read_pcr(i);
1155}
1156
1157static void perf_event_grab_pmc(void)
1158{
1159        if (atomic_inc_not_zero(&active_events))
1160                return;
1161
1162        mutex_lock(&pmc_grab_mutex);
1163        if (atomic_read(&active_events) == 0) {
1164                if (atomic_read(&nmi_active) > 0) {
1165                        on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166                        BUG_ON(atomic_read(&nmi_active) != 0);
1167                }
1168                atomic_inc(&active_events);
1169        }
1170        mutex_unlock(&pmc_grab_mutex);
1171}
1172
1173static void perf_event_release_pmc(void)
1174{
1175        if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176                if (atomic_read(&nmi_active) == 0)
1177                        on_each_cpu(start_nmi_watchdog, NULL, 1);
1178                mutex_unlock(&pmc_grab_mutex);
1179        }
1180}
1181
1182static const struct perf_event_map *sparc_map_cache_event(u64 config)
1183{
1184        unsigned int cache_type, cache_op, cache_result;
1185        const struct perf_event_map *pmap;
1186
1187        if (!sparc_pmu->cache_map)
1188                return ERR_PTR(-ENOENT);
1189
1190        cache_type = (config >>  0) & 0xff;
1191        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1192                return ERR_PTR(-EINVAL);
1193
1194        cache_op = (config >>  8) & 0xff;
1195        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1196                return ERR_PTR(-EINVAL);
1197
1198        cache_result = (config >> 16) & 0xff;
1199        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1200                return ERR_PTR(-EINVAL);
1201
1202        pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1203
1204        if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1205                return ERR_PTR(-ENOENT);
1206
1207        if (pmap->encoding == CACHE_OP_NONSENSE)
1208                return ERR_PTR(-EINVAL);
1209
1210        return pmap;
1211}
1212
1213static void hw_perf_event_destroy(struct perf_event *event)
1214{
1215        perf_event_release_pmc();
1216}
1217
1218/* Make sure all events can be scheduled into the hardware at
1219 * the same time.  This is simplified by the fact that we only
1220 * need to support 2 simultaneous HW events.
1221 *
1222 * As a side effect, the evts[]->hw.idx values will be assigned
1223 * on success.  These are pending indexes.  When the events are
1224 * actually programmed into the chip, these values will propagate
1225 * to the per-cpu cpuc->current_idx[] slots, see the code in
1226 * maybe_change_configuration() for details.
1227 */
1228static int sparc_check_constraints(struct perf_event **evts,
1229                                   unsigned long *events, int n_ev)
1230{
1231        u8 msk0 = 0, msk1 = 0;
1232        int idx0 = 0;
1233
1234        /* This case is possible when we are invoked from
1235         * hw_perf_group_sched_in().
1236         */
1237        if (!n_ev)
1238                return 0;
1239
1240        if (n_ev > sparc_pmu->max_hw_events)
1241                return -1;
1242
1243        if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1244                int i;
1245
1246                for (i = 0; i < n_ev; i++)
1247                        evts[i]->hw.idx = i;
1248                return 0;
1249        }
1250
1251        msk0 = perf_event_get_msk(events[0]);
1252        if (n_ev == 1) {
1253                if (msk0 & PIC_LOWER)
1254                        idx0 = 1;
1255                goto success;
1256        }
1257        BUG_ON(n_ev != 2);
1258        msk1 = perf_event_get_msk(events[1]);
1259
1260        /* If both events can go on any counter, OK.  */
1261        if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1262            msk1 == (PIC_UPPER | PIC_LOWER))
1263                goto success;
1264
1265        /* If one event is limited to a specific counter,
1266         * and the other can go on both, OK.
1267         */
1268        if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1269            msk1 == (PIC_UPPER | PIC_LOWER)) {
1270                if (msk0 & PIC_LOWER)
1271                        idx0 = 1;
1272                goto success;
1273        }
1274
1275        if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1276            msk0 == (PIC_UPPER | PIC_LOWER)) {
1277                if (msk1 & PIC_UPPER)
1278                        idx0 = 1;
1279                goto success;
1280        }
1281
1282        /* If the events are fixed to different counters, OK.  */
1283        if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1284            (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1285                if (msk0 & PIC_LOWER)
1286                        idx0 = 1;
1287                goto success;
1288        }
1289
1290        /* Otherwise, there is a conflict.  */
1291        return -1;
1292
1293success:
1294        evts[0]->hw.idx = idx0;
1295        if (n_ev == 2)
1296                evts[1]->hw.idx = idx0 ^ 1;
1297        return 0;
1298}
1299
1300static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1301{
1302        int eu = 0, ek = 0, eh = 0;
1303        struct perf_event *event;
1304        int i, n, first;
1305
1306        if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1307                return 0;
1308
1309        n = n_prev + n_new;
1310        if (n <= 1)
1311                return 0;
1312
1313        first = 1;
1314        for (i = 0; i < n; i++) {
1315                event = evts[i];
1316                if (first) {
1317                        eu = event->attr.exclude_user;
1318                        ek = event->attr.exclude_kernel;
1319                        eh = event->attr.exclude_hv;
1320                        first = 0;
1321                } else if (event->attr.exclude_user != eu ||
1322                           event->attr.exclude_kernel != ek ||
1323                           event->attr.exclude_hv != eh) {
1324                        return -EAGAIN;
1325                }
1326        }
1327
1328        return 0;
1329}
1330
1331static int collect_events(struct perf_event *group, int max_count,
1332                          struct perf_event *evts[], unsigned long *events,
1333                          int *current_idx)
1334{
1335        struct perf_event *event;
1336        int n = 0;
1337
1338        if (!is_software_event(group)) {
1339                if (n >= max_count)
1340                        return -1;
1341                evts[n] = group;
1342                events[n] = group->hw.event_base;
1343                current_idx[n++] = PIC_NO_INDEX;
1344        }
1345        for_each_sibling_event(event, group) {
1346                if (!is_software_event(event) &&
1347                    event->state != PERF_EVENT_STATE_OFF) {
1348                        if (n >= max_count)
1349                                return -1;
1350                        evts[n] = event;
1351                        events[n] = event->hw.event_base;
1352                        current_idx[n++] = PIC_NO_INDEX;
1353                }
1354        }
1355        return n;
1356}
1357
1358static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359{
1360        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361        int n0, ret = -EAGAIN;
1362        unsigned long flags;
1363
1364        local_irq_save(flags);
1365
1366        n0 = cpuc->n_events;
1367        if (n0 >= sparc_pmu->max_hw_events)
1368                goto out;
1369
1370        cpuc->event[n0] = event;
1371        cpuc->events[n0] = event->hw.event_base;
1372        cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374        event->hw.state = PERF_HES_UPTODATE;
1375        if (!(ef_flags & PERF_EF_START))
1376                event->hw.state |= PERF_HES_STOPPED;
1377
1378        /*
1379         * If group events scheduling transaction was started,
1380         * skip the schedulability test here, it will be performed
1381         * at commit time(->commit_txn) as a whole
1382         */
1383        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384                goto nocheck;
1385
1386        if (check_excludes(cpuc->event, n0, 1))
1387                goto out;
1388        if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389                goto out;
1390
1391nocheck:
1392        cpuc->n_events++;
1393        cpuc->n_added++;
1394
1395        ret = 0;
1396out:
1397        local_irq_restore(flags);
1398        return ret;
1399}
1400
1401static int sparc_pmu_event_init(struct perf_event *event)
1402{
1403        struct perf_event_attr *attr = &event->attr;
1404        struct perf_event *evts[MAX_HWEVENTS];
1405        struct hw_perf_event *hwc = &event->hw;
1406        unsigned long events[MAX_HWEVENTS];
1407        int current_idx_dmy[MAX_HWEVENTS];
1408        const struct perf_event_map *pmap;
1409        int n;
1410
1411        if (atomic_read(&nmi_active) < 0)
1412                return -ENODEV;
1413
1414        /* does not support taken branch sampling */
1415        if (has_branch_stack(event))
1416                return -EOPNOTSUPP;
1417
1418        switch (attr->type) {
1419        case PERF_TYPE_HARDWARE:
1420                if (attr->config >= sparc_pmu->max_events)
1421                        return -EINVAL;
1422                pmap = sparc_pmu->event_map(attr->config);
1423                break;
1424
1425        case PERF_TYPE_HW_CACHE:
1426                pmap = sparc_map_cache_event(attr->config);
1427                if (IS_ERR(pmap))
1428                        return PTR_ERR(pmap);
1429                break;
1430
1431        case PERF_TYPE_RAW:
1432                pmap = NULL;
1433                break;
1434
1435        default:
1436                return -ENOENT;
1437
1438        }
1439
1440        if (pmap) {
1441                hwc->event_base = perf_event_encode(pmap);
1442        } else {
1443                /*
1444                 * User gives us "(encoding << 16) | pic_mask" for
1445                 * PERF_TYPE_RAW events.
1446                 */
1447                hwc->event_base = attr->config;
1448        }
1449
1450        /* We save the enable bits in the config_base.  */
1451        hwc->config_base = sparc_pmu->irq_bit;
1452        if (!attr->exclude_user)
1453                hwc->config_base |= sparc_pmu->user_bit;
1454        if (!attr->exclude_kernel)
1455                hwc->config_base |= sparc_pmu->priv_bit;
1456        if (!attr->exclude_hv)
1457                hwc->config_base |= sparc_pmu->hv_bit;
1458
1459        n = 0;
1460        if (event->group_leader != event) {
1461                n = collect_events(event->group_leader,
1462                                   sparc_pmu->max_hw_events - 1,
1463                                   evts, events, current_idx_dmy);
1464                if (n < 0)
1465                        return -EINVAL;
1466        }
1467        events[n] = hwc->event_base;
1468        evts[n] = event;
1469
1470        if (check_excludes(evts, n, 1))
1471                return -EINVAL;
1472
1473        if (sparc_check_constraints(evts, events, n + 1))
1474                return -EINVAL;
1475
1476        hwc->idx = PIC_NO_INDEX;
1477
1478        /* Try to do all error checking before this point, as unwinding
1479         * state after grabbing the PMC is difficult.
1480         */
1481        perf_event_grab_pmc();
1482        event->destroy = hw_perf_event_destroy;
1483
1484        if (!hwc->sample_period) {
1485                hwc->sample_period = MAX_PERIOD;
1486                hwc->last_period = hwc->sample_period;
1487                local64_set(&hwc->period_left, hwc->sample_period);
1488        }
1489
1490        return 0;
1491}
1492
1493/*
1494 * Start group events scheduling transaction
1495 * Set the flag to make pmu::enable() not perform the
1496 * schedulability test, it will be performed at commit time
1497 */
1498static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1499{
1500        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501
1502        WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1503
1504        cpuhw->txn_flags = txn_flags;
1505        if (txn_flags & ~PERF_PMU_TXN_ADD)
1506                return;
1507
1508        perf_pmu_disable(pmu);
1509}
1510
1511/*
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1515 */
1516static void sparc_pmu_cancel_txn(struct pmu *pmu)
1517{
1518        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519        unsigned int txn_flags;
1520
1521        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1522
1523        txn_flags = cpuhw->txn_flags;
1524        cpuhw->txn_flags = 0;
1525        if (txn_flags & ~PERF_PMU_TXN_ADD)
1526                return;
1527
1528        perf_pmu_enable(pmu);
1529}
1530
1531/*
1532 * Commit group events scheduling transaction
1533 * Perform the group schedulability test as a whole
1534 * Return 0 if success
1535 */
1536static int sparc_pmu_commit_txn(struct pmu *pmu)
1537{
1538        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539        int n;
1540
1541        if (!sparc_pmu)
1542                return -EINVAL;
1543
1544        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1545
1546        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1547                cpuc->txn_flags = 0;
1548                return 0;
1549        }
1550
1551        n = cpuc->n_events;
1552        if (check_excludes(cpuc->event, 0, n))
1553                return -EINVAL;
1554        if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1555                return -EAGAIN;
1556
1557        cpuc->txn_flags = 0;
1558        perf_pmu_enable(pmu);
1559        return 0;
1560}
1561
1562static struct pmu pmu = {
1563        .pmu_enable     = sparc_pmu_enable,
1564        .pmu_disable    = sparc_pmu_disable,
1565        .event_init     = sparc_pmu_event_init,
1566        .add            = sparc_pmu_add,
1567        .del            = sparc_pmu_del,
1568        .start          = sparc_pmu_start,
1569        .stop           = sparc_pmu_stop,
1570        .read           = sparc_pmu_read,
1571        .start_txn      = sparc_pmu_start_txn,
1572        .cancel_txn     = sparc_pmu_cancel_txn,
1573        .commit_txn     = sparc_pmu_commit_txn,
1574};
1575
1576void perf_event_print_debug(void)
1577{
1578        unsigned long flags;
1579        int cpu, i;
1580
1581        if (!sparc_pmu)
1582                return;
1583
1584        local_irq_save(flags);
1585
1586        cpu = smp_processor_id();
1587
1588        pr_info("\n");
1589        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1590                pr_info("CPU#%d: PCR%d[%016llx]\n",
1591                        cpu, i, pcr_ops->read_pcr(i));
1592        for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1593                pr_info("CPU#%d: PIC%d[%016llx]\n",
1594                        cpu, i, pcr_ops->read_pic(i));
1595
1596        local_irq_restore(flags);
1597}
1598
1599static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600                                            unsigned long cmd, void *__args)
1601{
1602        struct die_args *args = __args;
1603        struct perf_sample_data data;
1604        struct cpu_hw_events *cpuc;
1605        struct pt_regs *regs;
1606        int i;
1607
1608        if (!atomic_read(&active_events))
1609                return NOTIFY_DONE;
1610
1611        switch (cmd) {
1612        case DIE_NMI:
1613                break;
1614
1615        default:
1616                return NOTIFY_DONE;
1617        }
1618
1619        regs = args->regs;
1620
1621        cpuc = this_cpu_ptr(&cpu_hw_events);
1622
1623        /* If the PMU has the TOE IRQ enable bits, we need to do a
1624         * dummy write to the %pcr to clear the overflow bits and thus
1625         * the interrupt.
1626         *
1627         * Do this before we peek at the counters to determine
1628         * overflow so we don't lose any events.
1629         */
1630        if (sparc_pmu->irq_bit &&
1631            sparc_pmu->num_pcrs == 1)
1632                pcr_ops->write_pcr(0, cpuc->pcr[0]);
1633
1634        for (i = 0; i < cpuc->n_events; i++) {
1635                struct perf_event *event = cpuc->event[i];
1636                int idx = cpuc->current_idx[i];
1637                struct hw_perf_event *hwc;
1638                u64 val;
1639
1640                if (sparc_pmu->irq_bit &&
1641                    sparc_pmu->num_pcrs > 1)
1642                        pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1643
1644                hwc = &event->hw;
1645                val = sparc_perf_event_update(event, hwc, idx);
1646                if (val & (1ULL << 31))
1647                        continue;
1648
1649                perf_sample_data_init(&data, 0, hwc->last_period);
1650                if (!sparc_perf_event_set_period(event, hwc, idx))
1651                        continue;
1652
1653                if (perf_event_overflow(event, &data, regs))
1654                        sparc_pmu_stop(event, 0);
1655        }
1656
1657        return NOTIFY_STOP;
1658}
1659
1660static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1661        .notifier_call          = perf_event_nmi_handler,
1662};
1663
1664static bool __init supported_pmu(void)
1665{
1666        if (!strcmp(sparc_pmu_type, "ultra3") ||
1667            !strcmp(sparc_pmu_type, "ultra3+") ||
1668            !strcmp(sparc_pmu_type, "ultra3i") ||
1669            !strcmp(sparc_pmu_type, "ultra4+")) {
1670                sparc_pmu = &ultra3_pmu;
1671                return true;
1672        }
1673        if (!strcmp(sparc_pmu_type, "niagara")) {
1674                sparc_pmu = &niagara1_pmu;
1675                return true;
1676        }
1677        if (!strcmp(sparc_pmu_type, "niagara2") ||
1678            !strcmp(sparc_pmu_type, "niagara3")) {
1679                sparc_pmu = &niagara2_pmu;
1680                return true;
1681        }
1682        if (!strcmp(sparc_pmu_type, "niagara4") ||
1683            !strcmp(sparc_pmu_type, "niagara5")) {
1684                sparc_pmu = &niagara4_pmu;
1685                return true;
1686        }
1687        if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1688                sparc_pmu = &sparc_m7_pmu;
1689                return true;
1690        }
1691        return false;
1692}
1693
1694static int __init init_hw_perf_events(void)
1695{
1696        int err;
1697
1698        pr_info("Performance events: ");
1699
1700        err = pcr_arch_init();
1701        if (err || !supported_pmu()) {
1702                pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703                return 0;
1704        }
1705
1706        pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1707
1708        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709        register_die_notifier(&perf_event_nmi_notifier);
1710
1711        return 0;
1712}
1713pure_initcall(init_hw_perf_events);
1714
1715void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716                           struct pt_regs *regs)
1717{
1718        unsigned long ksp, fp;
1719#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1720        int graph = 0;
1721#endif
1722
1723        stack_trace_flush();
1724
1725        perf_callchain_store(entry, regs->tpc);
1726
1727        ksp = regs->u_regs[UREG_I6];
1728        fp = ksp + STACK_BIAS;
1729        do {
1730                struct sparc_stackf *sf;
1731                struct pt_regs *regs;
1732                unsigned long pc;
1733
1734                if (!kstack_valid(current_thread_info(), fp))
1735                        break;
1736
1737                sf = (struct sparc_stackf *) fp;
1738                regs = (struct pt_regs *) (sf + 1);
1739
1740                if (kstack_is_trap_frame(current_thread_info(), regs)) {
1741                        if (user_mode(regs))
1742                                break;
1743                        pc = regs->tpc;
1744                        fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1745                } else {
1746                        pc = sf->callers_pc;
1747                        fp = (unsigned long)sf->fp + STACK_BIAS;
1748                }
1749                perf_callchain_store(entry, pc);
1750#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751                if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1752                        int index = current->curr_ret_stack;
1753                        if (current->ret_stack && index >= graph) {
1754                                pc = current->ret_stack[index - graph].ret;
1755                                perf_callchain_store(entry, pc);
1756                                graph++;
1757                        }
1758                }
1759#endif
1760        } while (entry->nr < entry->max_stack);
1761}
1762
1763static inline int
1764valid_user_frame(const void __user *fp, unsigned long size)
1765{
1766        /* addresses should be at least 4-byte aligned */
1767        if (((unsigned long) fp) & 3)
1768                return 0;
1769
1770        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1771}
1772
1773static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774                                   struct pt_regs *regs)
1775{
1776        unsigned long ufp;
1777
1778        ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1779        do {
1780                struct sparc_stackf __user *usf;
1781                struct sparc_stackf sf;
1782                unsigned long pc;
1783
1784                usf = (struct sparc_stackf __user *)ufp;
1785                if (!valid_user_frame(usf, sizeof(sf)))
1786                        break;
1787
1788                if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789                        break;
1790
1791                pc = sf.callers_pc;
1792                ufp = (unsigned long)sf.fp + STACK_BIAS;
1793                perf_callchain_store(entry, pc);
1794        } while (entry->nr < entry->max_stack);
1795}
1796
1797static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798                                   struct pt_regs *regs)
1799{
1800        unsigned long ufp;
1801
1802        ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1803        do {
1804                unsigned long pc;
1805
1806                if (thread32_stack_is_64bit(ufp)) {
1807                        struct sparc_stackf __user *usf;
1808                        struct sparc_stackf sf;
1809
1810                        ufp += STACK_BIAS;
1811                        usf = (struct sparc_stackf __user *)ufp;
1812                        if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813                                break;
1814                        pc = sf.callers_pc & 0xffffffff;
1815                        ufp = ((unsigned long) sf.fp) & 0xffffffff;
1816                } else {
1817                        struct sparc_stackf32 __user *usf;
1818                        struct sparc_stackf32 sf;
1819                        usf = (struct sparc_stackf32 __user *)ufp;
1820                        if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1821                                break;
1822                        pc = sf.callers_pc;
1823                        ufp = (unsigned long)sf.fp;
1824                }
1825                perf_callchain_store(entry, pc);
1826        } while (entry->nr < entry->max_stack);
1827}
1828
1829void
1830perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1831{
1832        u64 saved_fault_address = current_thread_info()->fault_address;
1833        u8 saved_fault_code = get_thread_fault_code();
1834        mm_segment_t old_fs;
1835
1836        perf_callchain_store(entry, regs->tpc);
1837
1838        if (!current->mm)
1839                return;
1840
1841        old_fs = get_fs();
1842        set_fs(USER_DS);
1843
1844        flushw_user();
1845
1846        pagefault_disable();
1847
1848        if (test_thread_flag(TIF_32BIT))
1849                perf_callchain_user_32(entry, regs);
1850        else
1851                perf_callchain_user_64(entry, regs);
1852
1853        pagefault_enable();
1854
1855        set_fs(old_fs);
1856        set_thread_fault_code(saved_fault_code);
1857        current_thread_info()->fault_address = saved_fault_address;
1858}
1859