linux/arch/um/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
   3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
   4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   5 * Copyright 2003 PathScale, Inc.
   6 * Licensed under the GPL
   7 */
   8
   9#include <linux/stddef.h>
  10#include <linux/err.h>
  11#include <linux/hardirq.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/personality.h>
  15#include <linux/proc_fs.h>
  16#include <linux/ptrace.h>
  17#include <linux/random.h>
  18#include <linux/slab.h>
  19#include <linux/sched.h>
  20#include <linux/sched/debug.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/seq_file.h>
  24#include <linux/tick.h>
  25#include <linux/threads.h>
  26#include <linux/tracehook.h>
  27#include <asm/current.h>
  28#include <asm/pgtable.h>
  29#include <asm/mmu_context.h>
  30#include <linux/uaccess.h>
  31#include <as-layout.h>
  32#include <kern_util.h>
  33#include <os.h>
  34#include <skas.h>
  35#include <timer-internal.h>
  36
  37/*
  38 * This is a per-cpu array.  A processor only modifies its entry and it only
  39 * cares about its entry, so it's OK if another processor is modifying its
  40 * entry.
  41 */
  42struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  43
  44static inline int external_pid(void)
  45{
  46        /* FIXME: Need to look up userspace_pid by cpu */
  47        return userspace_pid[0];
  48}
  49
  50int pid_to_processor_id(int pid)
  51{
  52        int i;
  53
  54        for (i = 0; i < ncpus; i++) {
  55                if (cpu_tasks[i].pid == pid)
  56                        return i;
  57        }
  58        return -1;
  59}
  60
  61void free_stack(unsigned long stack, int order)
  62{
  63        free_pages(stack, order);
  64}
  65
  66unsigned long alloc_stack(int order, int atomic)
  67{
  68        unsigned long page;
  69        gfp_t flags = GFP_KERNEL;
  70
  71        if (atomic)
  72                flags = GFP_ATOMIC;
  73        page = __get_free_pages(flags, order);
  74
  75        return page;
  76}
  77
  78static inline void set_current(struct task_struct *task)
  79{
  80        cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  81                { external_pid(), task });
  82}
  83
  84extern void arch_switch_to(struct task_struct *to);
  85
  86void *__switch_to(struct task_struct *from, struct task_struct *to)
  87{
  88        to->thread.prev_sched = from;
  89        set_current(to);
  90
  91        switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
  92        arch_switch_to(current);
  93
  94        return current->thread.prev_sched;
  95}
  96
  97void interrupt_end(void)
  98{
  99        struct pt_regs *regs = &current->thread.regs;
 100
 101        if (need_resched())
 102                schedule();
 103        if (test_thread_flag(TIF_SIGPENDING))
 104                do_signal(regs);
 105        if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
 106                tracehook_notify_resume(regs);
 107}
 108
 109int get_current_pid(void)
 110{
 111        return task_pid_nr(current);
 112}
 113
 114/*
 115 * This is called magically, by its address being stuffed in a jmp_buf
 116 * and being longjmp-d to.
 117 */
 118void new_thread_handler(void)
 119{
 120        int (*fn)(void *), n;
 121        void *arg;
 122
 123        if (current->thread.prev_sched != NULL)
 124                schedule_tail(current->thread.prev_sched);
 125        current->thread.prev_sched = NULL;
 126
 127        fn = current->thread.request.u.thread.proc;
 128        arg = current->thread.request.u.thread.arg;
 129
 130        /*
 131         * callback returns only if the kernel thread execs a process
 132         */
 133        n = fn(arg);
 134        userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
 135}
 136
 137/* Called magically, see new_thread_handler above */
 138void fork_handler(void)
 139{
 140        force_flush_all();
 141
 142        schedule_tail(current->thread.prev_sched);
 143
 144        /*
 145         * XXX: if interrupt_end() calls schedule, this call to
 146         * arch_switch_to isn't needed. We could want to apply this to
 147         * improve performance. -bb
 148         */
 149        arch_switch_to(current);
 150
 151        current->thread.prev_sched = NULL;
 152
 153        userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
 154}
 155
 156int copy_thread(unsigned long clone_flags, unsigned long sp,
 157                unsigned long arg, struct task_struct * p)
 158{
 159        void (*handler)(void);
 160        int kthread = current->flags & PF_KTHREAD;
 161        int ret = 0;
 162
 163        p->thread = (struct thread_struct) INIT_THREAD;
 164
 165        if (!kthread) {
 166                memcpy(&p->thread.regs.regs, current_pt_regs(),
 167                       sizeof(p->thread.regs.regs));
 168                PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
 169                if (sp != 0)
 170                        REGS_SP(p->thread.regs.regs.gp) = sp;
 171
 172                handler = fork_handler;
 173
 174                arch_copy_thread(&current->thread.arch, &p->thread.arch);
 175        } else {
 176                get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
 177                p->thread.request.u.thread.proc = (int (*)(void *))sp;
 178                p->thread.request.u.thread.arg = (void *)arg;
 179                handler = new_thread_handler;
 180        }
 181
 182        new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
 183
 184        if (!kthread) {
 185                clear_flushed_tls(p);
 186
 187                /*
 188                 * Set a new TLS for the child thread?
 189                 */
 190                if (clone_flags & CLONE_SETTLS)
 191                        ret = arch_copy_tls(p);
 192        }
 193
 194        return ret;
 195}
 196
 197void initial_thread_cb(void (*proc)(void *), void *arg)
 198{
 199        int save_kmalloc_ok = kmalloc_ok;
 200
 201        kmalloc_ok = 0;
 202        initial_thread_cb_skas(proc, arg);
 203        kmalloc_ok = save_kmalloc_ok;
 204}
 205
 206void arch_cpu_idle(void)
 207{
 208        cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
 209        os_idle_sleep(UM_NSEC_PER_SEC);
 210        local_irq_enable();
 211}
 212
 213int __cant_sleep(void) {
 214        return in_atomic() || irqs_disabled() || in_interrupt();
 215        /* Is in_interrupt() really needed? */
 216}
 217
 218int user_context(unsigned long sp)
 219{
 220        unsigned long stack;
 221
 222        stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
 223        return stack != (unsigned long) current_thread_info();
 224}
 225
 226extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
 227
 228void do_uml_exitcalls(void)
 229{
 230        exitcall_t *call;
 231
 232        call = &__uml_exitcall_end;
 233        while (--call >= &__uml_exitcall_begin)
 234                (*call)();
 235}
 236
 237char *uml_strdup(const char *string)
 238{
 239        return kstrdup(string, GFP_KERNEL);
 240}
 241EXPORT_SYMBOL(uml_strdup);
 242
 243int copy_to_user_proc(void __user *to, void *from, int size)
 244{
 245        return copy_to_user(to, from, size);
 246}
 247
 248int copy_from_user_proc(void *to, void __user *from, int size)
 249{
 250        return copy_from_user(to, from, size);
 251}
 252
 253int clear_user_proc(void __user *buf, int size)
 254{
 255        return clear_user(buf, size);
 256}
 257
 258int cpu(void)
 259{
 260        return current_thread_info()->cpu;
 261}
 262
 263static atomic_t using_sysemu = ATOMIC_INIT(0);
 264int sysemu_supported;
 265
 266void set_using_sysemu(int value)
 267{
 268        if (value > sysemu_supported)
 269                return;
 270        atomic_set(&using_sysemu, value);
 271}
 272
 273int get_using_sysemu(void)
 274{
 275        return atomic_read(&using_sysemu);
 276}
 277
 278static int sysemu_proc_show(struct seq_file *m, void *v)
 279{
 280        seq_printf(m, "%d\n", get_using_sysemu());
 281        return 0;
 282}
 283
 284static int sysemu_proc_open(struct inode *inode, struct file *file)
 285{
 286        return single_open(file, sysemu_proc_show, NULL);
 287}
 288
 289static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
 290                                 size_t count, loff_t *pos)
 291{
 292        char tmp[2];
 293
 294        if (copy_from_user(tmp, buf, 1))
 295                return -EFAULT;
 296
 297        if (tmp[0] >= '0' && tmp[0] <= '2')
 298                set_using_sysemu(tmp[0] - '0');
 299        /* We use the first char, but pretend to write everything */
 300        return count;
 301}
 302
 303static const struct file_operations sysemu_proc_fops = {
 304        .owner          = THIS_MODULE,
 305        .open           = sysemu_proc_open,
 306        .read           = seq_read,
 307        .llseek         = seq_lseek,
 308        .release        = single_release,
 309        .write          = sysemu_proc_write,
 310};
 311
 312int __init make_proc_sysemu(void)
 313{
 314        struct proc_dir_entry *ent;
 315        if (!sysemu_supported)
 316                return 0;
 317
 318        ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
 319
 320        if (ent == NULL)
 321        {
 322                printk(KERN_WARNING "Failed to register /proc/sysemu\n");
 323                return 0;
 324        }
 325
 326        return 0;
 327}
 328
 329late_initcall(make_proc_sysemu);
 330
 331int singlestepping(void * t)
 332{
 333        struct task_struct *task = t ? t : current;
 334
 335        if (!(task->ptrace & PT_DTRACE))
 336                return 0;
 337
 338        if (task->thread.singlestep_syscall)
 339                return 1;
 340
 341        return 2;
 342}
 343
 344/*
 345 * Only x86 and x86_64 have an arch_align_stack().
 346 * All other arches have "#define arch_align_stack(x) (x)"
 347 * in their asm/exec.h
 348 * As this is included in UML from asm-um/system-generic.h,
 349 * we can use it to behave as the subarch does.
 350 */
 351#ifndef arch_align_stack
 352unsigned long arch_align_stack(unsigned long sp)
 353{
 354        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 355                sp -= get_random_int() % 8192;
 356        return sp & ~0xf;
 357}
 358#endif
 359
 360unsigned long get_wchan(struct task_struct *p)
 361{
 362        unsigned long stack_page, sp, ip;
 363        bool seen_sched = 0;
 364
 365        if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
 366                return 0;
 367
 368        stack_page = (unsigned long) task_stack_page(p);
 369        /* Bail if the process has no kernel stack for some reason */
 370        if (stack_page == 0)
 371                return 0;
 372
 373        sp = p->thread.switch_buf->JB_SP;
 374        /*
 375         * Bail if the stack pointer is below the bottom of the kernel
 376         * stack for some reason
 377         */
 378        if (sp < stack_page)
 379                return 0;
 380
 381        while (sp < stack_page + THREAD_SIZE) {
 382                ip = *((unsigned long *) sp);
 383                if (in_sched_functions(ip))
 384                        /* Ignore everything until we're above the scheduler */
 385                        seen_sched = 1;
 386                else if (kernel_text_address(ip) && seen_sched)
 387                        return ip;
 388
 389                sp += sizeof(unsigned long);
 390        }
 391
 392        return 0;
 393}
 394
 395int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
 396{
 397        int cpu = current_thread_info()->cpu;
 398
 399        return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
 400}
 401
 402