linux/arch/x86/include/asm/tlbflush.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_TLBFLUSH_H
   3#define _ASM_X86_TLBFLUSH_H
   4
   5#include <linux/mm.h>
   6#include <linux/sched.h>
   7
   8#include <asm/processor.h>
   9#include <asm/cpufeature.h>
  10#include <asm/special_insns.h>
  11#include <asm/smp.h>
  12#include <asm/invpcid.h>
  13#include <asm/pti.h>
  14#include <asm/processor-flags.h>
  15
  16/*
  17 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  18 * to what is traditionally called ASID on the RISC processors.
  19 *
  20 * We don't use the traditional ASID implementation, where each process/mm gets
  21 * its own ASID and flush/restart when we run out of ASID space.
  22 *
  23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  24 * that came by on this CPU, allowing cheaper switch_mm between processes on
  25 * this CPU.
  26 *
  27 * We end up with different spaces for different things. To avoid confusion we
  28 * use different names for each of them:
  29 *
  30 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  31 *         the canonical identifier for an mm
  32 *
  33 * kPCID - [1, TLB_NR_DYN_ASIDS]
  34 *         the value we write into the PCID part of CR3; corresponds to the
  35 *         ASID+1, because PCID 0 is special.
  36 *
  37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  38 *         for KPTI each mm has two address spaces and thus needs two
  39 *         PCID values, but we can still do with a single ASID denomination
  40 *         for each mm. Corresponds to kPCID + 2048.
  41 *
  42 */
  43
  44/* There are 12 bits of space for ASIDS in CR3 */
  45#define CR3_HW_ASID_BITS                12
  46
  47/*
  48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  49 * user/kernel switches
  50 */
  51#ifdef CONFIG_PAGE_TABLE_ISOLATION
  52# define PTI_CONSUMED_PCID_BITS 1
  53#else
  54# define PTI_CONSUMED_PCID_BITS 0
  55#endif
  56
  57#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
  58
  59/*
  60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
  61 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
  62 * use by non-PCID-aware users.
  63 */
  64#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
  65
  66/*
  67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
  68 * lines.
  69 */
  70#define TLB_NR_DYN_ASIDS        6
  71
  72/*
  73 * Given @asid, compute kPCID
  74 */
  75static inline u16 kern_pcid(u16 asid)
  76{
  77        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
  78
  79#ifdef CONFIG_PAGE_TABLE_ISOLATION
  80        /*
  81         * Make sure that the dynamic ASID space does not confict with the
  82         * bit we are using to switch between user and kernel ASIDs.
  83         */
  84        BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
  85
  86        /*
  87         * The ASID being passed in here should have respected the
  88         * MAX_ASID_AVAILABLE and thus never have the switch bit set.
  89         */
  90        VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
  91#endif
  92        /*
  93         * The dynamically-assigned ASIDs that get passed in are small
  94         * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
  95         * so do not bother to clear it.
  96         *
  97         * If PCID is on, ASID-aware code paths put the ASID+1 into the
  98         * PCID bits.  This serves two purposes.  It prevents a nasty
  99         * situation in which PCID-unaware code saves CR3, loads some other
 100         * value (with PCID == 0), and then restores CR3, thus corrupting
 101         * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 102         * that any bugs involving loading a PCID-enabled CR3 with
 103         * CR4.PCIDE off will trigger deterministically.
 104         */
 105        return asid + 1;
 106}
 107
 108/*
 109 * Given @asid, compute uPCID
 110 */
 111static inline u16 user_pcid(u16 asid)
 112{
 113        u16 ret = kern_pcid(asid);
 114#ifdef CONFIG_PAGE_TABLE_ISOLATION
 115        ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 116#endif
 117        return ret;
 118}
 119
 120struct pgd_t;
 121static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 122{
 123        if (static_cpu_has(X86_FEATURE_PCID)) {
 124                return __sme_pa(pgd) | kern_pcid(asid);
 125        } else {
 126                VM_WARN_ON_ONCE(asid != 0);
 127                return __sme_pa(pgd);
 128        }
 129}
 130
 131static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 132{
 133        VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 134        /*
 135         * Use boot_cpu_has() instead of this_cpu_has() as this function
 136         * might be called during early boot. This should work even after
 137         * boot because all CPU's the have same capabilities:
 138         */
 139        VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 140        return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 141}
 142
 143#ifdef CONFIG_PARAVIRT
 144#include <asm/paravirt.h>
 145#else
 146#define __flush_tlb() __native_flush_tlb()
 147#define __flush_tlb_global() __native_flush_tlb_global()
 148#define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
 149#endif
 150
 151static inline bool tlb_defer_switch_to_init_mm(void)
 152{
 153        /*
 154         * If we have PCID, then switching to init_mm is reasonably
 155         * fast.  If we don't have PCID, then switching to init_mm is
 156         * quite slow, so we try to defer it in the hopes that we can
 157         * avoid it entirely.  The latter approach runs the risk of
 158         * receiving otherwise unnecessary IPIs.
 159         *
 160         * This choice is just a heuristic.  The tlb code can handle this
 161         * function returning true or false regardless of whether we have
 162         * PCID.
 163         */
 164        return !static_cpu_has(X86_FEATURE_PCID);
 165}
 166
 167struct tlb_context {
 168        u64 ctx_id;
 169        u64 tlb_gen;
 170};
 171
 172struct tlb_state {
 173        /*
 174         * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
 175         * are on.  This means that it may not match current->active_mm,
 176         * which will contain the previous user mm when we're in lazy TLB
 177         * mode even if we've already switched back to swapper_pg_dir.
 178         */
 179        struct mm_struct *loaded_mm;
 180        u16 loaded_mm_asid;
 181        u16 next_asid;
 182        /* last user mm's ctx id */
 183        u64 last_ctx_id;
 184
 185        /*
 186         * We can be in one of several states:
 187         *
 188         *  - Actively using an mm.  Our CPU's bit will be set in
 189         *    mm_cpumask(loaded_mm) and is_lazy == false;
 190         *
 191         *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
 192         *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
 193         *
 194         *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
 195         *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
 196         *    We're heuristically guessing that the CR3 load we
 197         *    skipped more than makes up for the overhead added by
 198         *    lazy mode.
 199         */
 200        bool is_lazy;
 201
 202        /*
 203         * If set we changed the page tables in such a way that we
 204         * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
 205         * This tells us to go invalidate all the non-loaded ctxs[]
 206         * on the next context switch.
 207         *
 208         * The current ctx was kept up-to-date as it ran and does not
 209         * need to be invalidated.
 210         */
 211        bool invalidate_other;
 212
 213        /*
 214         * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
 215         * the corresponding user PCID needs a flush next time we
 216         * switch to it; see SWITCH_TO_USER_CR3.
 217         */
 218        unsigned short user_pcid_flush_mask;
 219
 220        /*
 221         * Access to this CR4 shadow and to H/W CR4 is protected by
 222         * disabling interrupts when modifying either one.
 223         */
 224        unsigned long cr4;
 225
 226        /*
 227         * This is a list of all contexts that might exist in the TLB.
 228         * There is one per ASID that we use, and the ASID (what the
 229         * CPU calls PCID) is the index into ctxts.
 230         *
 231         * For each context, ctx_id indicates which mm the TLB's user
 232         * entries came from.  As an invariant, the TLB will never
 233         * contain entries that are out-of-date as when that mm reached
 234         * the tlb_gen in the list.
 235         *
 236         * To be clear, this means that it's legal for the TLB code to
 237         * flush the TLB without updating tlb_gen.  This can happen
 238         * (for now, at least) due to paravirt remote flushes.
 239         *
 240         * NB: context 0 is a bit special, since it's also used by
 241         * various bits of init code.  This is fine -- code that
 242         * isn't aware of PCID will end up harmlessly flushing
 243         * context 0.
 244         */
 245        struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
 246};
 247DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
 248
 249/* Initialize cr4 shadow for this CPU. */
 250static inline void cr4_init_shadow(void)
 251{
 252        this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
 253}
 254
 255static inline void __cr4_set(unsigned long cr4)
 256{
 257        lockdep_assert_irqs_disabled();
 258        this_cpu_write(cpu_tlbstate.cr4, cr4);
 259        __write_cr4(cr4);
 260}
 261
 262/* Set in this cpu's CR4. */
 263static inline void cr4_set_bits(unsigned long mask)
 264{
 265        unsigned long cr4, flags;
 266
 267        local_irq_save(flags);
 268        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 269        if ((cr4 | mask) != cr4)
 270                __cr4_set(cr4 | mask);
 271        local_irq_restore(flags);
 272}
 273
 274/* Clear in this cpu's CR4. */
 275static inline void cr4_clear_bits(unsigned long mask)
 276{
 277        unsigned long cr4, flags;
 278
 279        local_irq_save(flags);
 280        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 281        if ((cr4 & ~mask) != cr4)
 282                __cr4_set(cr4 & ~mask);
 283        local_irq_restore(flags);
 284}
 285
 286static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 287{
 288        unsigned long cr4;
 289
 290        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 291        __cr4_set(cr4 ^ mask);
 292}
 293
 294/* Read the CR4 shadow. */
 295static inline unsigned long cr4_read_shadow(void)
 296{
 297        return this_cpu_read(cpu_tlbstate.cr4);
 298}
 299
 300/*
 301 * Mark all other ASIDs as invalid, preserves the current.
 302 */
 303static inline void invalidate_other_asid(void)
 304{
 305        this_cpu_write(cpu_tlbstate.invalidate_other, true);
 306}
 307
 308/*
 309 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
 310 * enable and PPro Global page enable), so that any CPU's that boot
 311 * up after us can get the correct flags.  This should only be used
 312 * during boot on the boot cpu.
 313 */
 314extern unsigned long mmu_cr4_features;
 315extern u32 *trampoline_cr4_features;
 316
 317static inline void cr4_set_bits_and_update_boot(unsigned long mask)
 318{
 319        mmu_cr4_features |= mask;
 320        if (trampoline_cr4_features)
 321                *trampoline_cr4_features = mmu_cr4_features;
 322        cr4_set_bits(mask);
 323}
 324
 325extern void initialize_tlbstate_and_flush(void);
 326
 327/*
 328 * Given an ASID, flush the corresponding user ASID.  We can delay this
 329 * until the next time we switch to it.
 330 *
 331 * See SWITCH_TO_USER_CR3.
 332 */
 333static inline void invalidate_user_asid(u16 asid)
 334{
 335        /* There is no user ASID if address space separation is off */
 336        if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 337                return;
 338
 339        /*
 340         * We only have a single ASID if PCID is off and the CR3
 341         * write will have flushed it.
 342         */
 343        if (!cpu_feature_enabled(X86_FEATURE_PCID))
 344                return;
 345
 346        if (!static_cpu_has(X86_FEATURE_PTI))
 347                return;
 348
 349        __set_bit(kern_pcid(asid),
 350                  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 351}
 352
 353/*
 354 * flush the entire current user mapping
 355 */
 356static inline void __native_flush_tlb(void)
 357{
 358        /*
 359         * Preemption or interrupts must be disabled to protect the access
 360         * to the per CPU variable and to prevent being preempted between
 361         * read_cr3() and write_cr3().
 362         */
 363        WARN_ON_ONCE(preemptible());
 364
 365        invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
 366
 367        /* If current->mm == NULL then the read_cr3() "borrows" an mm */
 368        native_write_cr3(__native_read_cr3());
 369}
 370
 371/*
 372 * flush everything
 373 */
 374static inline void __native_flush_tlb_global(void)
 375{
 376        unsigned long cr4, flags;
 377
 378        if (static_cpu_has(X86_FEATURE_INVPCID)) {
 379                /*
 380                 * Using INVPCID is considerably faster than a pair of writes
 381                 * to CR4 sandwiched inside an IRQ flag save/restore.
 382                 *
 383                 * Note, this works with CR4.PCIDE=0 or 1.
 384                 */
 385                invpcid_flush_all();
 386                return;
 387        }
 388
 389        /*
 390         * Read-modify-write to CR4 - protect it from preemption and
 391         * from interrupts. (Use the raw variant because this code can
 392         * be called from deep inside debugging code.)
 393         */
 394        raw_local_irq_save(flags);
 395
 396        cr4 = this_cpu_read(cpu_tlbstate.cr4);
 397        /* toggle PGE */
 398        native_write_cr4(cr4 ^ X86_CR4_PGE);
 399        /* write old PGE again and flush TLBs */
 400        native_write_cr4(cr4);
 401
 402        raw_local_irq_restore(flags);
 403}
 404
 405/*
 406 * flush one page in the user mapping
 407 */
 408static inline void __native_flush_tlb_one_user(unsigned long addr)
 409{
 410        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 411
 412        asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
 413
 414        if (!static_cpu_has(X86_FEATURE_PTI))
 415                return;
 416
 417        /*
 418         * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
 419         * Just use invalidate_user_asid() in case we are called early.
 420         */
 421        if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
 422                invalidate_user_asid(loaded_mm_asid);
 423        else
 424                invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
 425}
 426
 427/*
 428 * flush everything
 429 */
 430static inline void __flush_tlb_all(void)
 431{
 432        if (boot_cpu_has(X86_FEATURE_PGE)) {
 433                __flush_tlb_global();
 434        } else {
 435                /*
 436                 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
 437                 */
 438                __flush_tlb();
 439        }
 440}
 441
 442/*
 443 * flush one page in the kernel mapping
 444 */
 445static inline void __flush_tlb_one_kernel(unsigned long addr)
 446{
 447        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
 448
 449        /*
 450         * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
 451         * paravirt equivalent.  Even with PCID, this is sufficient: we only
 452         * use PCID if we also use global PTEs for the kernel mapping, and
 453         * INVLPG flushes global translations across all address spaces.
 454         *
 455         * If PTI is on, then the kernel is mapped with non-global PTEs, and
 456         * __flush_tlb_one_user() will flush the given address for the current
 457         * kernel address space and for its usermode counterpart, but it does
 458         * not flush it for other address spaces.
 459         */
 460        __flush_tlb_one_user(addr);
 461
 462        if (!static_cpu_has(X86_FEATURE_PTI))
 463                return;
 464
 465        /*
 466         * See above.  We need to propagate the flush to all other address
 467         * spaces.  In principle, we only need to propagate it to kernelmode
 468         * address spaces, but the extra bookkeeping we would need is not
 469         * worth it.
 470         */
 471        invalidate_other_asid();
 472}
 473
 474#define TLB_FLUSH_ALL   -1UL
 475
 476/*
 477 * TLB flushing:
 478 *
 479 *  - flush_tlb_all() flushes all processes TLBs
 480 *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
 481 *  - flush_tlb_page(vma, vmaddr) flushes one page
 482 *  - flush_tlb_range(vma, start, end) flushes a range of pages
 483 *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
 484 *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
 485 *
 486 * ..but the i386 has somewhat limited tlb flushing capabilities,
 487 * and page-granular flushes are available only on i486 and up.
 488 */
 489struct flush_tlb_info {
 490        /*
 491         * We support several kinds of flushes.
 492         *
 493         * - Fully flush a single mm.  .mm will be set, .end will be
 494         *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
 495         *   which the IPI sender is trying to catch us up.
 496         *
 497         * - Partially flush a single mm.  .mm will be set, .start and
 498         *   .end will indicate the range, and .new_tlb_gen will be set
 499         *   such that the changes between generation .new_tlb_gen-1 and
 500         *   .new_tlb_gen are entirely contained in the indicated range.
 501         *
 502         * - Fully flush all mms whose tlb_gens have been updated.  .mm
 503         *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
 504         *   will be zero.
 505         */
 506        struct mm_struct        *mm;
 507        unsigned long           start;
 508        unsigned long           end;
 509        u64                     new_tlb_gen;
 510};
 511
 512#define local_flush_tlb() __flush_tlb()
 513
 514#define flush_tlb_mm(mm)        flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
 515
 516#define flush_tlb_range(vma, start, end)        \
 517                flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
 518
 519extern void flush_tlb_all(void);
 520extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 521                                unsigned long end, unsigned long vmflag);
 522extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
 523
 524static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
 525{
 526        flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
 527}
 528
 529void native_flush_tlb_others(const struct cpumask *cpumask,
 530                             const struct flush_tlb_info *info);
 531
 532static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
 533{
 534        /*
 535         * Bump the generation count.  This also serves as a full barrier
 536         * that synchronizes with switch_mm(): callers are required to order
 537         * their read of mm_cpumask after their writes to the paging
 538         * structures.
 539         */
 540        return atomic64_inc_return(&mm->context.tlb_gen);
 541}
 542
 543static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
 544                                        struct mm_struct *mm)
 545{
 546        inc_mm_tlb_gen(mm);
 547        cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
 548}
 549
 550extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
 551
 552#ifndef CONFIG_PARAVIRT
 553#define flush_tlb_others(mask, info)    \
 554        native_flush_tlb_others(mask, info)
 555#endif
 556
 557#endif /* _ASM_X86_TLBFLUSH_H */
 558