linux/arch/x86/kernel/cpu/common.c
<<
>>
Prefs
   1#include <linux/bootmem.h>
   2#include <linux/linkage.h>
   3#include <linux/bitops.h>
   4#include <linux/kernel.h>
   5#include <linux/export.h>
   6#include <linux/percpu.h>
   7#include <linux/string.h>
   8#include <linux/ctype.h>
   9#include <linux/delay.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/clock.h>
  12#include <linux/sched/task.h>
  13#include <linux/init.h>
  14#include <linux/kprobes.h>
  15#include <linux/kgdb.h>
  16#include <linux/smp.h>
  17#include <linux/io.h>
  18#include <linux/syscore_ops.h>
  19
  20#include <asm/stackprotector.h>
  21#include <asm/perf_event.h>
  22#include <asm/mmu_context.h>
  23#include <asm/archrandom.h>
  24#include <asm/hypervisor.h>
  25#include <asm/processor.h>
  26#include <asm/tlbflush.h>
  27#include <asm/debugreg.h>
  28#include <asm/sections.h>
  29#include <asm/vsyscall.h>
  30#include <linux/topology.h>
  31#include <linux/cpumask.h>
  32#include <asm/pgtable.h>
  33#include <linux/atomic.h>
  34#include <asm/proto.h>
  35#include <asm/setup.h>
  36#include <asm/apic.h>
  37#include <asm/desc.h>
  38#include <asm/fpu/internal.h>
  39#include <asm/mtrr.h>
  40#include <asm/hwcap2.h>
  41#include <linux/numa.h>
  42#include <asm/asm.h>
  43#include <asm/bugs.h>
  44#include <asm/cpu.h>
  45#include <asm/mce.h>
  46#include <asm/msr.h>
  47#include <asm/pat.h>
  48#include <asm/microcode.h>
  49#include <asm/microcode_intel.h>
  50#include <asm/intel-family.h>
  51#include <asm/cpu_device_id.h>
  52
  53#ifdef CONFIG_X86_LOCAL_APIC
  54#include <asm/uv/uv.h>
  55#endif
  56
  57#include "cpu.h"
  58
  59u32 elf_hwcap2 __read_mostly;
  60
  61/* all of these masks are initialized in setup_cpu_local_masks() */
  62cpumask_var_t cpu_initialized_mask;
  63cpumask_var_t cpu_callout_mask;
  64cpumask_var_t cpu_callin_mask;
  65
  66/* representing cpus for which sibling maps can be computed */
  67cpumask_var_t cpu_sibling_setup_mask;
  68
  69/* correctly size the local cpu masks */
  70void __init setup_cpu_local_masks(void)
  71{
  72        alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  73        alloc_bootmem_cpumask_var(&cpu_callin_mask);
  74        alloc_bootmem_cpumask_var(&cpu_callout_mask);
  75        alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  76}
  77
  78static void default_init(struct cpuinfo_x86 *c)
  79{
  80#ifdef CONFIG_X86_64
  81        cpu_detect_cache_sizes(c);
  82#else
  83        /* Not much we can do here... */
  84        /* Check if at least it has cpuid */
  85        if (c->cpuid_level == -1) {
  86                /* No cpuid. It must be an ancient CPU */
  87                if (c->x86 == 4)
  88                        strcpy(c->x86_model_id, "486");
  89                else if (c->x86 == 3)
  90                        strcpy(c->x86_model_id, "386");
  91        }
  92#endif
  93}
  94
  95static const struct cpu_dev default_cpu = {
  96        .c_init         = default_init,
  97        .c_vendor       = "Unknown",
  98        .c_x86_vendor   = X86_VENDOR_UNKNOWN,
  99};
 100
 101static const struct cpu_dev *this_cpu = &default_cpu;
 102
 103DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 104#ifdef CONFIG_X86_64
 105        /*
 106         * We need valid kernel segments for data and code in long mode too
 107         * IRET will check the segment types  kkeil 2000/10/28
 108         * Also sysret mandates a special GDT layout
 109         *
 110         * TLS descriptors are currently at a different place compared to i386.
 111         * Hopefully nobody expects them at a fixed place (Wine?)
 112         */
 113        [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 114        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 115        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 116        [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 117        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 118        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 119#else
 120        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 121        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 122        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 123        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 124        /*
 125         * Segments used for calling PnP BIOS have byte granularity.
 126         * They code segments and data segments have fixed 64k limits,
 127         * the transfer segment sizes are set at run time.
 128         */
 129        /* 32-bit code */
 130        [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 131        /* 16-bit code */
 132        [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 133        /* 16-bit data */
 134        [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 135        /* 16-bit data */
 136        [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 137        /* 16-bit data */
 138        [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 139        /*
 140         * The APM segments have byte granularity and their bases
 141         * are set at run time.  All have 64k limits.
 142         */
 143        /* 32-bit code */
 144        [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 145        /* 16-bit code */
 146        [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 147        /* data */
 148        [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 149
 150        [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 151        [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 152        GDT_STACK_CANARY_INIT
 153#endif
 154} };
 155EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 156
 157static int __init x86_mpx_setup(char *s)
 158{
 159        /* require an exact match without trailing characters */
 160        if (strlen(s))
 161                return 0;
 162
 163        /* do not emit a message if the feature is not present */
 164        if (!boot_cpu_has(X86_FEATURE_MPX))
 165                return 1;
 166
 167        setup_clear_cpu_cap(X86_FEATURE_MPX);
 168        pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
 169        return 1;
 170}
 171__setup("nompx", x86_mpx_setup);
 172
 173#ifdef CONFIG_X86_64
 174static int __init x86_nopcid_setup(char *s)
 175{
 176        /* nopcid doesn't accept parameters */
 177        if (s)
 178                return -EINVAL;
 179
 180        /* do not emit a message if the feature is not present */
 181        if (!boot_cpu_has(X86_FEATURE_PCID))
 182                return 0;
 183
 184        setup_clear_cpu_cap(X86_FEATURE_PCID);
 185        pr_info("nopcid: PCID feature disabled\n");
 186        return 0;
 187}
 188early_param("nopcid", x86_nopcid_setup);
 189#endif
 190
 191static int __init x86_noinvpcid_setup(char *s)
 192{
 193        /* noinvpcid doesn't accept parameters */
 194        if (s)
 195                return -EINVAL;
 196
 197        /* do not emit a message if the feature is not present */
 198        if (!boot_cpu_has(X86_FEATURE_INVPCID))
 199                return 0;
 200
 201        setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 202        pr_info("noinvpcid: INVPCID feature disabled\n");
 203        return 0;
 204}
 205early_param("noinvpcid", x86_noinvpcid_setup);
 206
 207#ifdef CONFIG_X86_32
 208static int cachesize_override = -1;
 209static int disable_x86_serial_nr = 1;
 210
 211static int __init cachesize_setup(char *str)
 212{
 213        get_option(&str, &cachesize_override);
 214        return 1;
 215}
 216__setup("cachesize=", cachesize_setup);
 217
 218static int __init x86_sep_setup(char *s)
 219{
 220        setup_clear_cpu_cap(X86_FEATURE_SEP);
 221        return 1;
 222}
 223__setup("nosep", x86_sep_setup);
 224
 225/* Standard macro to see if a specific flag is changeable */
 226static inline int flag_is_changeable_p(u32 flag)
 227{
 228        u32 f1, f2;
 229
 230        /*
 231         * Cyrix and IDT cpus allow disabling of CPUID
 232         * so the code below may return different results
 233         * when it is executed before and after enabling
 234         * the CPUID. Add "volatile" to not allow gcc to
 235         * optimize the subsequent calls to this function.
 236         */
 237        asm volatile ("pushfl           \n\t"
 238                      "pushfl           \n\t"
 239                      "popl %0          \n\t"
 240                      "movl %0, %1      \n\t"
 241                      "xorl %2, %0      \n\t"
 242                      "pushl %0         \n\t"
 243                      "popfl            \n\t"
 244                      "pushfl           \n\t"
 245                      "popl %0          \n\t"
 246                      "popfl            \n\t"
 247
 248                      : "=&r" (f1), "=&r" (f2)
 249                      : "ir" (flag));
 250
 251        return ((f1^f2) & flag) != 0;
 252}
 253
 254/* Probe for the CPUID instruction */
 255int have_cpuid_p(void)
 256{
 257        return flag_is_changeable_p(X86_EFLAGS_ID);
 258}
 259
 260static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 261{
 262        unsigned long lo, hi;
 263
 264        if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 265                return;
 266
 267        /* Disable processor serial number: */
 268
 269        rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 270        lo |= 0x200000;
 271        wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 272
 273        pr_notice("CPU serial number disabled.\n");
 274        clear_cpu_cap(c, X86_FEATURE_PN);
 275
 276        /* Disabling the serial number may affect the cpuid level */
 277        c->cpuid_level = cpuid_eax(0);
 278}
 279
 280static int __init x86_serial_nr_setup(char *s)
 281{
 282        disable_x86_serial_nr = 0;
 283        return 1;
 284}
 285__setup("serialnumber", x86_serial_nr_setup);
 286#else
 287static inline int flag_is_changeable_p(u32 flag)
 288{
 289        return 1;
 290}
 291static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 292{
 293}
 294#endif
 295
 296static __init int setup_disable_smep(char *arg)
 297{
 298        setup_clear_cpu_cap(X86_FEATURE_SMEP);
 299        /* Check for things that depend on SMEP being enabled: */
 300        check_mpx_erratum(&boot_cpu_data);
 301        return 1;
 302}
 303__setup("nosmep", setup_disable_smep);
 304
 305static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 306{
 307        if (cpu_has(c, X86_FEATURE_SMEP))
 308                cr4_set_bits(X86_CR4_SMEP);
 309}
 310
 311static __init int setup_disable_smap(char *arg)
 312{
 313        setup_clear_cpu_cap(X86_FEATURE_SMAP);
 314        return 1;
 315}
 316__setup("nosmap", setup_disable_smap);
 317
 318static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 319{
 320        unsigned long eflags = native_save_fl();
 321
 322        /* This should have been cleared long ago */
 323        BUG_ON(eflags & X86_EFLAGS_AC);
 324
 325        if (cpu_has(c, X86_FEATURE_SMAP)) {
 326#ifdef CONFIG_X86_SMAP
 327                cr4_set_bits(X86_CR4_SMAP);
 328#else
 329                cr4_clear_bits(X86_CR4_SMAP);
 330#endif
 331        }
 332}
 333
 334static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 335{
 336        /* Check the boot processor, plus build option for UMIP. */
 337        if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 338                goto out;
 339
 340        /* Check the current processor's cpuid bits. */
 341        if (!cpu_has(c, X86_FEATURE_UMIP))
 342                goto out;
 343
 344        cr4_set_bits(X86_CR4_UMIP);
 345
 346        pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
 347
 348        return;
 349
 350out:
 351        /*
 352         * Make sure UMIP is disabled in case it was enabled in a
 353         * previous boot (e.g., via kexec).
 354         */
 355        cr4_clear_bits(X86_CR4_UMIP);
 356}
 357
 358/*
 359 * Protection Keys are not available in 32-bit mode.
 360 */
 361static bool pku_disabled;
 362
 363static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 364{
 365        /* check the boot processor, plus compile options for PKU: */
 366        if (!cpu_feature_enabled(X86_FEATURE_PKU))
 367                return;
 368        /* checks the actual processor's cpuid bits: */
 369        if (!cpu_has(c, X86_FEATURE_PKU))
 370                return;
 371        if (pku_disabled)
 372                return;
 373
 374        cr4_set_bits(X86_CR4_PKE);
 375        /*
 376         * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
 377         * cpuid bit to be set.  We need to ensure that we
 378         * update that bit in this CPU's "cpu_info".
 379         */
 380        get_cpu_cap(c);
 381}
 382
 383#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 384static __init int setup_disable_pku(char *arg)
 385{
 386        /*
 387         * Do not clear the X86_FEATURE_PKU bit.  All of the
 388         * runtime checks are against OSPKE so clearing the
 389         * bit does nothing.
 390         *
 391         * This way, we will see "pku" in cpuinfo, but not
 392         * "ospke", which is exactly what we want.  It shows
 393         * that the CPU has PKU, but the OS has not enabled it.
 394         * This happens to be exactly how a system would look
 395         * if we disabled the config option.
 396         */
 397        pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 398        pku_disabled = true;
 399        return 1;
 400}
 401__setup("nopku", setup_disable_pku);
 402#endif /* CONFIG_X86_64 */
 403
 404/*
 405 * Some CPU features depend on higher CPUID levels, which may not always
 406 * be available due to CPUID level capping or broken virtualization
 407 * software.  Add those features to this table to auto-disable them.
 408 */
 409struct cpuid_dependent_feature {
 410        u32 feature;
 411        u32 level;
 412};
 413
 414static const struct cpuid_dependent_feature
 415cpuid_dependent_features[] = {
 416        { X86_FEATURE_MWAIT,            0x00000005 },
 417        { X86_FEATURE_DCA,              0x00000009 },
 418        { X86_FEATURE_XSAVE,            0x0000000d },
 419        { 0, 0 }
 420};
 421
 422static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 423{
 424        const struct cpuid_dependent_feature *df;
 425
 426        for (df = cpuid_dependent_features; df->feature; df++) {
 427
 428                if (!cpu_has(c, df->feature))
 429                        continue;
 430                /*
 431                 * Note: cpuid_level is set to -1 if unavailable, but
 432                 * extended_extended_level is set to 0 if unavailable
 433                 * and the legitimate extended levels are all negative
 434                 * when signed; hence the weird messing around with
 435                 * signs here...
 436                 */
 437                if (!((s32)df->level < 0 ?
 438                     (u32)df->level > (u32)c->extended_cpuid_level :
 439                     (s32)df->level > (s32)c->cpuid_level))
 440                        continue;
 441
 442                clear_cpu_cap(c, df->feature);
 443                if (!warn)
 444                        continue;
 445
 446                pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 447                        x86_cap_flag(df->feature), df->level);
 448        }
 449}
 450
 451/*
 452 * Naming convention should be: <Name> [(<Codename>)]
 453 * This table only is used unless init_<vendor>() below doesn't set it;
 454 * in particular, if CPUID levels 0x80000002..4 are supported, this
 455 * isn't used
 456 */
 457
 458/* Look up CPU names by table lookup. */
 459static const char *table_lookup_model(struct cpuinfo_x86 *c)
 460{
 461#ifdef CONFIG_X86_32
 462        const struct legacy_cpu_model_info *info;
 463
 464        if (c->x86_model >= 16)
 465                return NULL;    /* Range check */
 466
 467        if (!this_cpu)
 468                return NULL;
 469
 470        info = this_cpu->legacy_models;
 471
 472        while (info->family) {
 473                if (info->family == c->x86)
 474                        return info->model_names[c->x86_model];
 475                info++;
 476        }
 477#endif
 478        return NULL;            /* Not found */
 479}
 480
 481__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
 482__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
 483
 484void load_percpu_segment(int cpu)
 485{
 486#ifdef CONFIG_X86_32
 487        loadsegment(fs, __KERNEL_PERCPU);
 488#else
 489        __loadsegment_simple(gs, 0);
 490        wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 491#endif
 492        load_stack_canary_segment();
 493}
 494
 495#ifdef CONFIG_X86_32
 496/* The 32-bit entry code needs to find cpu_entry_area. */
 497DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 498#endif
 499
 500#ifdef CONFIG_X86_64
 501/*
 502 * Special IST stacks which the CPU switches to when it calls
 503 * an IST-marked descriptor entry. Up to 7 stacks (hardware
 504 * limit), all of them are 4K, except the debug stack which
 505 * is 8K.
 506 */
 507static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
 508          [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
 509          [DEBUG_STACK - 1]                     = DEBUG_STKSZ
 510};
 511#endif
 512
 513/* Load the original GDT from the per-cpu structure */
 514void load_direct_gdt(int cpu)
 515{
 516        struct desc_ptr gdt_descr;
 517
 518        gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 519        gdt_descr.size = GDT_SIZE - 1;
 520        load_gdt(&gdt_descr);
 521}
 522EXPORT_SYMBOL_GPL(load_direct_gdt);
 523
 524/* Load a fixmap remapping of the per-cpu GDT */
 525void load_fixmap_gdt(int cpu)
 526{
 527        struct desc_ptr gdt_descr;
 528
 529        gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 530        gdt_descr.size = GDT_SIZE - 1;
 531        load_gdt(&gdt_descr);
 532}
 533EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 534
 535/*
 536 * Current gdt points %fs at the "master" per-cpu area: after this,
 537 * it's on the real one.
 538 */
 539void switch_to_new_gdt(int cpu)
 540{
 541        /* Load the original GDT */
 542        load_direct_gdt(cpu);
 543        /* Reload the per-cpu base */
 544        load_percpu_segment(cpu);
 545}
 546
 547static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 548
 549static void get_model_name(struct cpuinfo_x86 *c)
 550{
 551        unsigned int *v;
 552        char *p, *q, *s;
 553
 554        if (c->extended_cpuid_level < 0x80000004)
 555                return;
 556
 557        v = (unsigned int *)c->x86_model_id;
 558        cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 559        cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 560        cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 561        c->x86_model_id[48] = 0;
 562
 563        /* Trim whitespace */
 564        p = q = s = &c->x86_model_id[0];
 565
 566        while (*p == ' ')
 567                p++;
 568
 569        while (*p) {
 570                /* Note the last non-whitespace index */
 571                if (!isspace(*p))
 572                        s = q;
 573
 574                *q++ = *p++;
 575        }
 576
 577        *(s + 1) = '\0';
 578}
 579
 580void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 581{
 582        unsigned int n, dummy, ebx, ecx, edx, l2size;
 583
 584        n = c->extended_cpuid_level;
 585
 586        if (n >= 0x80000005) {
 587                cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 588                c->x86_cache_size = (ecx>>24) + (edx>>24);
 589#ifdef CONFIG_X86_64
 590                /* On K8 L1 TLB is inclusive, so don't count it */
 591                c->x86_tlbsize = 0;
 592#endif
 593        }
 594
 595        if (n < 0x80000006)     /* Some chips just has a large L1. */
 596                return;
 597
 598        cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 599        l2size = ecx >> 16;
 600
 601#ifdef CONFIG_X86_64
 602        c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 603#else
 604        /* do processor-specific cache resizing */
 605        if (this_cpu->legacy_cache_size)
 606                l2size = this_cpu->legacy_cache_size(c, l2size);
 607
 608        /* Allow user to override all this if necessary. */
 609        if (cachesize_override != -1)
 610                l2size = cachesize_override;
 611
 612        if (l2size == 0)
 613                return;         /* Again, no L2 cache is possible */
 614#endif
 615
 616        c->x86_cache_size = l2size;
 617}
 618
 619u16 __read_mostly tlb_lli_4k[NR_INFO];
 620u16 __read_mostly tlb_lli_2m[NR_INFO];
 621u16 __read_mostly tlb_lli_4m[NR_INFO];
 622u16 __read_mostly tlb_lld_4k[NR_INFO];
 623u16 __read_mostly tlb_lld_2m[NR_INFO];
 624u16 __read_mostly tlb_lld_4m[NR_INFO];
 625u16 __read_mostly tlb_lld_1g[NR_INFO];
 626
 627static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 628{
 629        if (this_cpu->c_detect_tlb)
 630                this_cpu->c_detect_tlb(c);
 631
 632        pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 633                tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 634                tlb_lli_4m[ENTRIES]);
 635
 636        pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 637                tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 638                tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 639}
 640
 641void detect_ht(struct cpuinfo_x86 *c)
 642{
 643#ifdef CONFIG_SMP
 644        u32 eax, ebx, ecx, edx;
 645        int index_msb, core_bits;
 646        static bool printed;
 647
 648        if (!cpu_has(c, X86_FEATURE_HT))
 649                return;
 650
 651        if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 652                goto out;
 653
 654        if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 655                return;
 656
 657        cpuid(1, &eax, &ebx, &ecx, &edx);
 658
 659        smp_num_siblings = (ebx & 0xff0000) >> 16;
 660
 661        if (smp_num_siblings == 1) {
 662                pr_info_once("CPU0: Hyper-Threading is disabled\n");
 663                goto out;
 664        }
 665
 666        if (smp_num_siblings <= 1)
 667                goto out;
 668
 669        index_msb = get_count_order(smp_num_siblings);
 670        c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 671
 672        smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 673
 674        index_msb = get_count_order(smp_num_siblings);
 675
 676        core_bits = get_count_order(c->x86_max_cores);
 677
 678        c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 679                                       ((1 << core_bits) - 1);
 680
 681out:
 682        if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
 683                pr_info("CPU: Physical Processor ID: %d\n",
 684                        c->phys_proc_id);
 685                pr_info("CPU: Processor Core ID: %d\n",
 686                        c->cpu_core_id);
 687                printed = 1;
 688        }
 689#endif
 690}
 691
 692static void get_cpu_vendor(struct cpuinfo_x86 *c)
 693{
 694        char *v = c->x86_vendor_id;
 695        int i;
 696
 697        for (i = 0; i < X86_VENDOR_NUM; i++) {
 698                if (!cpu_devs[i])
 699                        break;
 700
 701                if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 702                    (cpu_devs[i]->c_ident[1] &&
 703                     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 704
 705                        this_cpu = cpu_devs[i];
 706                        c->x86_vendor = this_cpu->c_x86_vendor;
 707                        return;
 708                }
 709        }
 710
 711        pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 712                    "CPU: Your system may be unstable.\n", v);
 713
 714        c->x86_vendor = X86_VENDOR_UNKNOWN;
 715        this_cpu = &default_cpu;
 716}
 717
 718void cpu_detect(struct cpuinfo_x86 *c)
 719{
 720        /* Get vendor name */
 721        cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 722              (unsigned int *)&c->x86_vendor_id[0],
 723              (unsigned int *)&c->x86_vendor_id[8],
 724              (unsigned int *)&c->x86_vendor_id[4]);
 725
 726        c->x86 = 4;
 727        /* Intel-defined flags: level 0x00000001 */
 728        if (c->cpuid_level >= 0x00000001) {
 729                u32 junk, tfms, cap0, misc;
 730
 731                cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 732                c->x86          = x86_family(tfms);
 733                c->x86_model    = x86_model(tfms);
 734                c->x86_stepping = x86_stepping(tfms);
 735
 736                if (cap0 & (1<<19)) {
 737                        c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 738                        c->x86_cache_alignment = c->x86_clflush_size;
 739                }
 740        }
 741}
 742
 743static void apply_forced_caps(struct cpuinfo_x86 *c)
 744{
 745        int i;
 746
 747        for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 748                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 749                c->x86_capability[i] |= cpu_caps_set[i];
 750        }
 751}
 752
 753static void init_speculation_control(struct cpuinfo_x86 *c)
 754{
 755        /*
 756         * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 757         * and they also have a different bit for STIBP support. Also,
 758         * a hypervisor might have set the individual AMD bits even on
 759         * Intel CPUs, for finer-grained selection of what's available.
 760         */
 761        if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 762                set_cpu_cap(c, X86_FEATURE_IBRS);
 763                set_cpu_cap(c, X86_FEATURE_IBPB);
 764                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 765        }
 766
 767        if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 768                set_cpu_cap(c, X86_FEATURE_STIBP);
 769
 770        if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 771            cpu_has(c, X86_FEATURE_VIRT_SSBD))
 772                set_cpu_cap(c, X86_FEATURE_SSBD);
 773
 774        if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 775                set_cpu_cap(c, X86_FEATURE_IBRS);
 776                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 777        }
 778
 779        if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 780                set_cpu_cap(c, X86_FEATURE_IBPB);
 781
 782        if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 783                set_cpu_cap(c, X86_FEATURE_STIBP);
 784                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 785        }
 786}
 787
 788void get_cpu_cap(struct cpuinfo_x86 *c)
 789{
 790        u32 eax, ebx, ecx, edx;
 791
 792        /* Intel-defined flags: level 0x00000001 */
 793        if (c->cpuid_level >= 0x00000001) {
 794                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 795
 796                c->x86_capability[CPUID_1_ECX] = ecx;
 797                c->x86_capability[CPUID_1_EDX] = edx;
 798        }
 799
 800        /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 801        if (c->cpuid_level >= 0x00000006)
 802                c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 803
 804        /* Additional Intel-defined flags: level 0x00000007 */
 805        if (c->cpuid_level >= 0x00000007) {
 806                cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 807                c->x86_capability[CPUID_7_0_EBX] = ebx;
 808                c->x86_capability[CPUID_7_ECX] = ecx;
 809                c->x86_capability[CPUID_7_EDX] = edx;
 810        }
 811
 812        /* Extended state features: level 0x0000000d */
 813        if (c->cpuid_level >= 0x0000000d) {
 814                cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 815
 816                c->x86_capability[CPUID_D_1_EAX] = eax;
 817        }
 818
 819        /* Additional Intel-defined flags: level 0x0000000F */
 820        if (c->cpuid_level >= 0x0000000F) {
 821
 822                /* QoS sub-leaf, EAX=0Fh, ECX=0 */
 823                cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
 824                c->x86_capability[CPUID_F_0_EDX] = edx;
 825
 826                if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
 827                        /* will be overridden if occupancy monitoring exists */
 828                        c->x86_cache_max_rmid = ebx;
 829
 830                        /* QoS sub-leaf, EAX=0Fh, ECX=1 */
 831                        cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
 832                        c->x86_capability[CPUID_F_1_EDX] = edx;
 833
 834                        if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
 835                              ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
 836                               (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
 837                                c->x86_cache_max_rmid = ecx;
 838                                c->x86_cache_occ_scale = ebx;
 839                        }
 840                } else {
 841                        c->x86_cache_max_rmid = -1;
 842                        c->x86_cache_occ_scale = -1;
 843                }
 844        }
 845
 846        /* AMD-defined flags: level 0x80000001 */
 847        eax = cpuid_eax(0x80000000);
 848        c->extended_cpuid_level = eax;
 849
 850        if ((eax & 0xffff0000) == 0x80000000) {
 851                if (eax >= 0x80000001) {
 852                        cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 853
 854                        c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 855                        c->x86_capability[CPUID_8000_0001_EDX] = edx;
 856                }
 857        }
 858
 859        if (c->extended_cpuid_level >= 0x80000007) {
 860                cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 861
 862                c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 863                c->x86_power = edx;
 864        }
 865
 866        if (c->extended_cpuid_level >= 0x80000008) {
 867                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 868                c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 869        }
 870
 871        if (c->extended_cpuid_level >= 0x8000000a)
 872                c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 873
 874        init_scattered_cpuid_features(c);
 875        init_speculation_control(c);
 876
 877        /*
 878         * Clear/Set all flags overridden by options, after probe.
 879         * This needs to happen each time we re-probe, which may happen
 880         * several times during CPU initialization.
 881         */
 882        apply_forced_caps(c);
 883}
 884
 885static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 886{
 887        u32 eax, ebx, ecx, edx;
 888
 889        if (c->extended_cpuid_level >= 0x80000008) {
 890                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 891
 892                c->x86_virt_bits = (eax >> 8) & 0xff;
 893                c->x86_phys_bits = eax & 0xff;
 894        }
 895#ifdef CONFIG_X86_32
 896        else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 897                c->x86_phys_bits = 36;
 898#endif
 899}
 900
 901static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 902{
 903#ifdef CONFIG_X86_32
 904        int i;
 905
 906        /*
 907         * First of all, decide if this is a 486 or higher
 908         * It's a 486 if we can modify the AC flag
 909         */
 910        if (flag_is_changeable_p(X86_EFLAGS_AC))
 911                c->x86 = 4;
 912        else
 913                c->x86 = 3;
 914
 915        for (i = 0; i < X86_VENDOR_NUM; i++)
 916                if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 917                        c->x86_vendor_id[0] = 0;
 918                        cpu_devs[i]->c_identify(c);
 919                        if (c->x86_vendor_id[0]) {
 920                                get_cpu_vendor(c);
 921                                break;
 922                        }
 923                }
 924#endif
 925}
 926
 927static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
 928        { X86_VENDOR_INTEL,     6, INTEL_FAM6_ATOM_CEDARVIEW,   X86_FEATURE_ANY },
 929        { X86_VENDOR_INTEL,     6, INTEL_FAM6_ATOM_CLOVERVIEW,  X86_FEATURE_ANY },
 930        { X86_VENDOR_INTEL,     6, INTEL_FAM6_ATOM_LINCROFT,    X86_FEATURE_ANY },
 931        { X86_VENDOR_INTEL,     6, INTEL_FAM6_ATOM_PENWELL,     X86_FEATURE_ANY },
 932        { X86_VENDOR_INTEL,     6, INTEL_FAM6_ATOM_PINEVIEW,    X86_FEATURE_ANY },
 933        { X86_VENDOR_CENTAUR,   5 },
 934        { X86_VENDOR_INTEL,     5 },
 935        { X86_VENDOR_NSC,       5 },
 936        { X86_VENDOR_ANY,       4 },
 937        {}
 938};
 939
 940static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
 941        { X86_VENDOR_AMD },
 942        {}
 943};
 944
 945/* Only list CPUs which speculate but are non susceptible to SSB */
 946static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
 947        { X86_VENDOR_INTEL,     6,      INTEL_FAM6_ATOM_SILVERMONT1     },
 948        { X86_VENDOR_INTEL,     6,      INTEL_FAM6_ATOM_AIRMONT         },
 949        { X86_VENDOR_INTEL,     6,      INTEL_FAM6_ATOM_SILVERMONT2     },
 950        { X86_VENDOR_INTEL,     6,      INTEL_FAM6_ATOM_MERRIFIELD      },
 951        { X86_VENDOR_INTEL,     6,      INTEL_FAM6_CORE_YONAH           },
 952        { X86_VENDOR_INTEL,     6,      INTEL_FAM6_XEON_PHI_KNL         },
 953        { X86_VENDOR_INTEL,     6,      INTEL_FAM6_XEON_PHI_KNM         },
 954        { X86_VENDOR_AMD,       0x12,                                   },
 955        { X86_VENDOR_AMD,       0x11,                                   },
 956        { X86_VENDOR_AMD,       0x10,                                   },
 957        { X86_VENDOR_AMD,       0xf,                                    },
 958        {}
 959};
 960
 961static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
 962{
 963        u64 ia32_cap = 0;
 964
 965        if (x86_match_cpu(cpu_no_speculation))
 966                return;
 967
 968        setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
 969        setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
 970
 971        if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
 972                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
 973
 974        if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
 975           !(ia32_cap & ARCH_CAP_SSB_NO))
 976                setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
 977
 978        if (x86_match_cpu(cpu_no_meltdown))
 979                return;
 980
 981        /* Rogue Data Cache Load? No! */
 982        if (ia32_cap & ARCH_CAP_RDCL_NO)
 983                return;
 984
 985        setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
 986}
 987
 988/*
 989 * Do minimum CPU detection early.
 990 * Fields really needed: vendor, cpuid_level, family, model, mask,
 991 * cache alignment.
 992 * The others are not touched to avoid unwanted side effects.
 993 *
 994 * WARNING: this function is only called on the boot CPU.  Don't add code
 995 * here that is supposed to run on all CPUs.
 996 */
 997static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 998{
 999#ifdef CONFIG_X86_64
1000        c->x86_clflush_size = 64;
1001        c->x86_phys_bits = 36;
1002        c->x86_virt_bits = 48;
1003#else
1004        c->x86_clflush_size = 32;
1005        c->x86_phys_bits = 32;
1006        c->x86_virt_bits = 32;
1007#endif
1008        c->x86_cache_alignment = c->x86_clflush_size;
1009
1010        memset(&c->x86_capability, 0, sizeof c->x86_capability);
1011        c->extended_cpuid_level = 0;
1012
1013        /* cyrix could have cpuid enabled via c_identify()*/
1014        if (have_cpuid_p()) {
1015                cpu_detect(c);
1016                get_cpu_vendor(c);
1017                get_cpu_cap(c);
1018                get_cpu_address_sizes(c);
1019                setup_force_cpu_cap(X86_FEATURE_CPUID);
1020
1021                if (this_cpu->c_early_init)
1022                        this_cpu->c_early_init(c);
1023
1024                c->cpu_index = 0;
1025                filter_cpuid_features(c, false);
1026
1027                if (this_cpu->c_bsp_init)
1028                        this_cpu->c_bsp_init(c);
1029        } else {
1030                identify_cpu_without_cpuid(c);
1031                setup_clear_cpu_cap(X86_FEATURE_CPUID);
1032        }
1033
1034        setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1035
1036        cpu_set_bug_bits(c);
1037
1038        fpu__init_system(c);
1039
1040#ifdef CONFIG_X86_32
1041        /*
1042         * Regardless of whether PCID is enumerated, the SDM says
1043         * that it can't be enabled in 32-bit mode.
1044         */
1045        setup_clear_cpu_cap(X86_FEATURE_PCID);
1046#endif
1047}
1048
1049void __init early_cpu_init(void)
1050{
1051        const struct cpu_dev *const *cdev;
1052        int count = 0;
1053
1054#ifdef CONFIG_PROCESSOR_SELECT
1055        pr_info("KERNEL supported cpus:\n");
1056#endif
1057
1058        for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1059                const struct cpu_dev *cpudev = *cdev;
1060
1061                if (count >= X86_VENDOR_NUM)
1062                        break;
1063                cpu_devs[count] = cpudev;
1064                count++;
1065
1066#ifdef CONFIG_PROCESSOR_SELECT
1067                {
1068                        unsigned int j;
1069
1070                        for (j = 0; j < 2; j++) {
1071                                if (!cpudev->c_ident[j])
1072                                        continue;
1073                                pr_info("  %s %s\n", cpudev->c_vendor,
1074                                        cpudev->c_ident[j]);
1075                        }
1076                }
1077#endif
1078        }
1079        early_identify_cpu(&boot_cpu_data);
1080}
1081
1082/*
1083 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1084 * unfortunately, that's not true in practice because of early VIA
1085 * chips and (more importantly) broken virtualizers that are not easy
1086 * to detect. In the latter case it doesn't even *fail* reliably, so
1087 * probing for it doesn't even work. Disable it completely on 32-bit
1088 * unless we can find a reliable way to detect all the broken cases.
1089 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1090 */
1091static void detect_nopl(struct cpuinfo_x86 *c)
1092{
1093#ifdef CONFIG_X86_32
1094        clear_cpu_cap(c, X86_FEATURE_NOPL);
1095#else
1096        set_cpu_cap(c, X86_FEATURE_NOPL);
1097#endif
1098}
1099
1100static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1101{
1102#ifdef CONFIG_X86_64
1103        /*
1104         * Empirically, writing zero to a segment selector on AMD does
1105         * not clear the base, whereas writing zero to a segment
1106         * selector on Intel does clear the base.  Intel's behavior
1107         * allows slightly faster context switches in the common case
1108         * where GS is unused by the prev and next threads.
1109         *
1110         * Since neither vendor documents this anywhere that I can see,
1111         * detect it directly instead of hardcoding the choice by
1112         * vendor.
1113         *
1114         * I've designated AMD's behavior as the "bug" because it's
1115         * counterintuitive and less friendly.
1116         */
1117
1118        unsigned long old_base, tmp;
1119        rdmsrl(MSR_FS_BASE, old_base);
1120        wrmsrl(MSR_FS_BASE, 1);
1121        loadsegment(fs, 0);
1122        rdmsrl(MSR_FS_BASE, tmp);
1123        if (tmp != 0)
1124                set_cpu_bug(c, X86_BUG_NULL_SEG);
1125        wrmsrl(MSR_FS_BASE, old_base);
1126#endif
1127}
1128
1129static void generic_identify(struct cpuinfo_x86 *c)
1130{
1131        c->extended_cpuid_level = 0;
1132
1133        if (!have_cpuid_p())
1134                identify_cpu_without_cpuid(c);
1135
1136        /* cyrix could have cpuid enabled via c_identify()*/
1137        if (!have_cpuid_p())
1138                return;
1139
1140        cpu_detect(c);
1141
1142        get_cpu_vendor(c);
1143
1144        get_cpu_cap(c);
1145
1146        get_cpu_address_sizes(c);
1147
1148        if (c->cpuid_level >= 0x00000001) {
1149                c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1150#ifdef CONFIG_X86_32
1151# ifdef CONFIG_SMP
1152                c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1153# else
1154                c->apicid = c->initial_apicid;
1155# endif
1156#endif
1157                c->phys_proc_id = c->initial_apicid;
1158        }
1159
1160        get_model_name(c); /* Default name */
1161
1162        detect_nopl(c);
1163
1164        detect_null_seg_behavior(c);
1165
1166        /*
1167         * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1168         * systems that run Linux at CPL > 0 may or may not have the
1169         * issue, but, even if they have the issue, there's absolutely
1170         * nothing we can do about it because we can't use the real IRET
1171         * instruction.
1172         *
1173         * NB: For the time being, only 32-bit kernels support
1174         * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1175         * whether to apply espfix using paravirt hooks.  If any
1176         * non-paravirt system ever shows up that does *not* have the
1177         * ESPFIX issue, we can change this.
1178         */
1179#ifdef CONFIG_X86_32
1180# ifdef CONFIG_PARAVIRT
1181        do {
1182                extern void native_iret(void);
1183                if (pv_cpu_ops.iret == native_iret)
1184                        set_cpu_bug(c, X86_BUG_ESPFIX);
1185        } while (0);
1186# else
1187        set_cpu_bug(c, X86_BUG_ESPFIX);
1188# endif
1189#endif
1190}
1191
1192static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1193{
1194        /*
1195         * The heavy lifting of max_rmid and cache_occ_scale are handled
1196         * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1197         * in case CQM bits really aren't there in this CPU.
1198         */
1199        if (c != &boot_cpu_data) {
1200                boot_cpu_data.x86_cache_max_rmid =
1201                        min(boot_cpu_data.x86_cache_max_rmid,
1202                            c->x86_cache_max_rmid);
1203        }
1204}
1205
1206/*
1207 * Validate that ACPI/mptables have the same information about the
1208 * effective APIC id and update the package map.
1209 */
1210static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1211{
1212#ifdef CONFIG_SMP
1213        unsigned int apicid, cpu = smp_processor_id();
1214
1215        apicid = apic->cpu_present_to_apicid(cpu);
1216
1217        if (apicid != c->apicid) {
1218                pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1219                       cpu, apicid, c->initial_apicid);
1220        }
1221        BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1222#else
1223        c->logical_proc_id = 0;
1224#endif
1225}
1226
1227/*
1228 * This does the hard work of actually picking apart the CPU stuff...
1229 */
1230static void identify_cpu(struct cpuinfo_x86 *c)
1231{
1232        int i;
1233
1234        c->loops_per_jiffy = loops_per_jiffy;
1235        c->x86_cache_size = 0;
1236        c->x86_vendor = X86_VENDOR_UNKNOWN;
1237        c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1238        c->x86_vendor_id[0] = '\0'; /* Unset */
1239        c->x86_model_id[0] = '\0';  /* Unset */
1240        c->x86_max_cores = 1;
1241        c->x86_coreid_bits = 0;
1242        c->cu_id = 0xff;
1243#ifdef CONFIG_X86_64
1244        c->x86_clflush_size = 64;
1245        c->x86_phys_bits = 36;
1246        c->x86_virt_bits = 48;
1247#else
1248        c->cpuid_level = -1;    /* CPUID not detected */
1249        c->x86_clflush_size = 32;
1250        c->x86_phys_bits = 32;
1251        c->x86_virt_bits = 32;
1252#endif
1253        c->x86_cache_alignment = c->x86_clflush_size;
1254        memset(&c->x86_capability, 0, sizeof c->x86_capability);
1255
1256        generic_identify(c);
1257
1258        if (this_cpu->c_identify)
1259                this_cpu->c_identify(c);
1260
1261        /* Clear/Set all flags overridden by options, after probe */
1262        apply_forced_caps(c);
1263
1264#ifdef CONFIG_X86_64
1265        c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1266#endif
1267
1268        /*
1269         * Vendor-specific initialization.  In this section we
1270         * canonicalize the feature flags, meaning if there are
1271         * features a certain CPU supports which CPUID doesn't
1272         * tell us, CPUID claiming incorrect flags, or other bugs,
1273         * we handle them here.
1274         *
1275         * At the end of this section, c->x86_capability better
1276         * indicate the features this CPU genuinely supports!
1277         */
1278        if (this_cpu->c_init)
1279                this_cpu->c_init(c);
1280
1281        /* Disable the PN if appropriate */
1282        squash_the_stupid_serial_number(c);
1283
1284        /* Set up SMEP/SMAP/UMIP */
1285        setup_smep(c);
1286        setup_smap(c);
1287        setup_umip(c);
1288
1289        /*
1290         * The vendor-specific functions might have changed features.
1291         * Now we do "generic changes."
1292         */
1293
1294        /* Filter out anything that depends on CPUID levels we don't have */
1295        filter_cpuid_features(c, true);
1296
1297        /* If the model name is still unset, do table lookup. */
1298        if (!c->x86_model_id[0]) {
1299                const char *p;
1300                p = table_lookup_model(c);
1301                if (p)
1302                        strcpy(c->x86_model_id, p);
1303                else
1304                        /* Last resort... */
1305                        sprintf(c->x86_model_id, "%02x/%02x",
1306                                c->x86, c->x86_model);
1307        }
1308
1309#ifdef CONFIG_X86_64
1310        detect_ht(c);
1311#endif
1312
1313        x86_init_rdrand(c);
1314        x86_init_cache_qos(c);
1315        setup_pku(c);
1316
1317        /*
1318         * Clear/Set all flags overridden by options, need do it
1319         * before following smp all cpus cap AND.
1320         */
1321        apply_forced_caps(c);
1322
1323        /*
1324         * On SMP, boot_cpu_data holds the common feature set between
1325         * all CPUs; so make sure that we indicate which features are
1326         * common between the CPUs.  The first time this routine gets
1327         * executed, c == &boot_cpu_data.
1328         */
1329        if (c != &boot_cpu_data) {
1330                /* AND the already accumulated flags with these */
1331                for (i = 0; i < NCAPINTS; i++)
1332                        boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1333
1334                /* OR, i.e. replicate the bug flags */
1335                for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1336                        c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1337        }
1338
1339        /* Init Machine Check Exception if available. */
1340        mcheck_cpu_init(c);
1341
1342        select_idle_routine(c);
1343
1344#ifdef CONFIG_NUMA
1345        numa_add_cpu(smp_processor_id());
1346#endif
1347}
1348
1349/*
1350 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1351 * on 32-bit kernels:
1352 */
1353#ifdef CONFIG_X86_32
1354void enable_sep_cpu(void)
1355{
1356        struct tss_struct *tss;
1357        int cpu;
1358
1359        if (!boot_cpu_has(X86_FEATURE_SEP))
1360                return;
1361
1362        cpu = get_cpu();
1363        tss = &per_cpu(cpu_tss_rw, cpu);
1364
1365        /*
1366         * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1367         * see the big comment in struct x86_hw_tss's definition.
1368         */
1369
1370        tss->x86_tss.ss1 = __KERNEL_CS;
1371        wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1372        wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1373        wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1374
1375        put_cpu();
1376}
1377#endif
1378
1379void __init identify_boot_cpu(void)
1380{
1381        identify_cpu(&boot_cpu_data);
1382#ifdef CONFIG_X86_32
1383        sysenter_setup();
1384        enable_sep_cpu();
1385#endif
1386        cpu_detect_tlb(&boot_cpu_data);
1387}
1388
1389void identify_secondary_cpu(struct cpuinfo_x86 *c)
1390{
1391        BUG_ON(c == &boot_cpu_data);
1392        identify_cpu(c);
1393#ifdef CONFIG_X86_32
1394        enable_sep_cpu();
1395#endif
1396        mtrr_ap_init();
1397        validate_apic_and_package_id(c);
1398        x86_spec_ctrl_setup_ap();
1399}
1400
1401static __init int setup_noclflush(char *arg)
1402{
1403        setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1404        setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1405        return 1;
1406}
1407__setup("noclflush", setup_noclflush);
1408
1409void print_cpu_info(struct cpuinfo_x86 *c)
1410{
1411        const char *vendor = NULL;
1412
1413        if (c->x86_vendor < X86_VENDOR_NUM) {
1414                vendor = this_cpu->c_vendor;
1415        } else {
1416                if (c->cpuid_level >= 0)
1417                        vendor = c->x86_vendor_id;
1418        }
1419
1420        if (vendor && !strstr(c->x86_model_id, vendor))
1421                pr_cont("%s ", vendor);
1422
1423        if (c->x86_model_id[0])
1424                pr_cont("%s", c->x86_model_id);
1425        else
1426                pr_cont("%d86", c->x86);
1427
1428        pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1429
1430        if (c->x86_stepping || c->cpuid_level >= 0)
1431                pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1432        else
1433                pr_cont(")\n");
1434}
1435
1436/*
1437 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1438 * But we need to keep a dummy __setup around otherwise it would
1439 * show up as an environment variable for init.
1440 */
1441static __init int setup_clearcpuid(char *arg)
1442{
1443        return 1;
1444}
1445__setup("clearcpuid=", setup_clearcpuid);
1446
1447#ifdef CONFIG_X86_64
1448DEFINE_PER_CPU_FIRST(union irq_stack_union,
1449                     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1450EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
1451
1452/*
1453 * The following percpu variables are hot.  Align current_task to
1454 * cacheline size such that they fall in the same cacheline.
1455 */
1456DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1457        &init_task;
1458EXPORT_PER_CPU_SYMBOL(current_task);
1459
1460DEFINE_PER_CPU(char *, irq_stack_ptr) =
1461        init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1462
1463DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1464
1465DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1466EXPORT_PER_CPU_SYMBOL(__preempt_count);
1467
1468/* May not be marked __init: used by software suspend */
1469void syscall_init(void)
1470{
1471        extern char _entry_trampoline[];
1472        extern char entry_SYSCALL_64_trampoline[];
1473
1474        int cpu = smp_processor_id();
1475        unsigned long SYSCALL64_entry_trampoline =
1476                (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1477                (entry_SYSCALL_64_trampoline - _entry_trampoline);
1478
1479        wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1480        if (static_cpu_has(X86_FEATURE_PTI))
1481                wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1482        else
1483                wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1484
1485#ifdef CONFIG_IA32_EMULATION
1486        wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1487        /*
1488         * This only works on Intel CPUs.
1489         * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1490         * This does not cause SYSENTER to jump to the wrong location, because
1491         * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1492         */
1493        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1494        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1495        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1496#else
1497        wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1498        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1499        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1500        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1501#endif
1502
1503        /* Flags to clear on syscall */
1504        wrmsrl(MSR_SYSCALL_MASK,
1505               X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1506               X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1507}
1508
1509/*
1510 * Copies of the original ist values from the tss are only accessed during
1511 * debugging, no special alignment required.
1512 */
1513DEFINE_PER_CPU(struct orig_ist, orig_ist);
1514
1515static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1516DEFINE_PER_CPU(int, debug_stack_usage);
1517
1518int is_debug_stack(unsigned long addr)
1519{
1520        return __this_cpu_read(debug_stack_usage) ||
1521                (addr <= __this_cpu_read(debug_stack_addr) &&
1522                 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1523}
1524NOKPROBE_SYMBOL(is_debug_stack);
1525
1526DEFINE_PER_CPU(u32, debug_idt_ctr);
1527
1528void debug_stack_set_zero(void)
1529{
1530        this_cpu_inc(debug_idt_ctr);
1531        load_current_idt();
1532}
1533NOKPROBE_SYMBOL(debug_stack_set_zero);
1534
1535void debug_stack_reset(void)
1536{
1537        if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1538                return;
1539        if (this_cpu_dec_return(debug_idt_ctr) == 0)
1540                load_current_idt();
1541}
1542NOKPROBE_SYMBOL(debug_stack_reset);
1543
1544#else   /* CONFIG_X86_64 */
1545
1546DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1547EXPORT_PER_CPU_SYMBOL(current_task);
1548DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1549EXPORT_PER_CPU_SYMBOL(__preempt_count);
1550
1551/*
1552 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1553 * the top of the kernel stack.  Use an extra percpu variable to track the
1554 * top of the kernel stack directly.
1555 */
1556DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1557        (unsigned long)&init_thread_union + THREAD_SIZE;
1558EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1559
1560#ifdef CONFIG_CC_STACKPROTECTOR
1561DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1562#endif
1563
1564#endif  /* CONFIG_X86_64 */
1565
1566/*
1567 * Clear all 6 debug registers:
1568 */
1569static void clear_all_debug_regs(void)
1570{
1571        int i;
1572
1573        for (i = 0; i < 8; i++) {
1574                /* Ignore db4, db5 */
1575                if ((i == 4) || (i == 5))
1576                        continue;
1577
1578                set_debugreg(0, i);
1579        }
1580}
1581
1582#ifdef CONFIG_KGDB
1583/*
1584 * Restore debug regs if using kgdbwait and you have a kernel debugger
1585 * connection established.
1586 */
1587static void dbg_restore_debug_regs(void)
1588{
1589        if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1590                arch_kgdb_ops.correct_hw_break();
1591}
1592#else /* ! CONFIG_KGDB */
1593#define dbg_restore_debug_regs()
1594#endif /* ! CONFIG_KGDB */
1595
1596static void wait_for_master_cpu(int cpu)
1597{
1598#ifdef CONFIG_SMP
1599        /*
1600         * wait for ACK from master CPU before continuing
1601         * with AP initialization
1602         */
1603        WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1604        while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1605                cpu_relax();
1606#endif
1607}
1608
1609/*
1610 * cpu_init() initializes state that is per-CPU. Some data is already
1611 * initialized (naturally) in the bootstrap process, such as the GDT
1612 * and IDT. We reload them nevertheless, this function acts as a
1613 * 'CPU state barrier', nothing should get across.
1614 * A lot of state is already set up in PDA init for 64 bit
1615 */
1616#ifdef CONFIG_X86_64
1617
1618void cpu_init(void)
1619{
1620        struct orig_ist *oist;
1621        struct task_struct *me;
1622        struct tss_struct *t;
1623        unsigned long v;
1624        int cpu = raw_smp_processor_id();
1625        int i;
1626
1627        wait_for_master_cpu(cpu);
1628
1629        /*
1630         * Initialize the CR4 shadow before doing anything that could
1631         * try to read it.
1632         */
1633        cr4_init_shadow();
1634
1635        if (cpu)
1636                load_ucode_ap();
1637
1638        t = &per_cpu(cpu_tss_rw, cpu);
1639        oist = &per_cpu(orig_ist, cpu);
1640
1641#ifdef CONFIG_NUMA
1642        if (this_cpu_read(numa_node) == 0 &&
1643            early_cpu_to_node(cpu) != NUMA_NO_NODE)
1644                set_numa_node(early_cpu_to_node(cpu));
1645#endif
1646
1647        me = current;
1648
1649        pr_debug("Initializing CPU#%d\n", cpu);
1650
1651        cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1652
1653        /*
1654         * Initialize the per-CPU GDT with the boot GDT,
1655         * and set up the GDT descriptor:
1656         */
1657
1658        switch_to_new_gdt(cpu);
1659        loadsegment(fs, 0);
1660
1661        load_current_idt();
1662
1663        memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1664        syscall_init();
1665
1666        wrmsrl(MSR_FS_BASE, 0);
1667        wrmsrl(MSR_KERNEL_GS_BASE, 0);
1668        barrier();
1669
1670        x86_configure_nx();
1671        x2apic_setup();
1672
1673        /*
1674         * set up and load the per-CPU TSS
1675         */
1676        if (!oist->ist[0]) {
1677                char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1678
1679                for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1680                        estacks += exception_stack_sizes[v];
1681                        oist->ist[v] = t->x86_tss.ist[v] =
1682                                        (unsigned long)estacks;
1683                        if (v == DEBUG_STACK-1)
1684                                per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1685                }
1686        }
1687
1688        t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1689
1690        /*
1691         * <= is required because the CPU will access up to
1692         * 8 bits beyond the end of the IO permission bitmap.
1693         */
1694        for (i = 0; i <= IO_BITMAP_LONGS; i++)
1695                t->io_bitmap[i] = ~0UL;
1696
1697        mmgrab(&init_mm);
1698        me->active_mm = &init_mm;
1699        BUG_ON(me->mm);
1700        initialize_tlbstate_and_flush();
1701        enter_lazy_tlb(&init_mm, me);
1702
1703        /*
1704         * Initialize the TSS.  sp0 points to the entry trampoline stack
1705         * regardless of what task is running.
1706         */
1707        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1708        load_TR_desc();
1709        load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1710
1711        load_mm_ldt(&init_mm);
1712
1713        clear_all_debug_regs();
1714        dbg_restore_debug_regs();
1715
1716        fpu__init_cpu();
1717
1718        if (is_uv_system())
1719                uv_cpu_init();
1720
1721        load_fixmap_gdt(cpu);
1722}
1723
1724#else
1725
1726void cpu_init(void)
1727{
1728        int cpu = smp_processor_id();
1729        struct task_struct *curr = current;
1730        struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1731
1732        wait_for_master_cpu(cpu);
1733
1734        /*
1735         * Initialize the CR4 shadow before doing anything that could
1736         * try to read it.
1737         */
1738        cr4_init_shadow();
1739
1740        show_ucode_info_early();
1741
1742        pr_info("Initializing CPU#%d\n", cpu);
1743
1744        if (cpu_feature_enabled(X86_FEATURE_VME) ||
1745            boot_cpu_has(X86_FEATURE_TSC) ||
1746            boot_cpu_has(X86_FEATURE_DE))
1747                cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1748
1749        load_current_idt();
1750        switch_to_new_gdt(cpu);
1751
1752        /*
1753         * Set up and load the per-CPU TSS and LDT
1754         */
1755        mmgrab(&init_mm);
1756        curr->active_mm = &init_mm;
1757        BUG_ON(curr->mm);
1758        initialize_tlbstate_and_flush();
1759        enter_lazy_tlb(&init_mm, curr);
1760
1761        /*
1762         * Initialize the TSS.  Don't bother initializing sp0, as the initial
1763         * task never enters user mode.
1764         */
1765        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1766        load_TR_desc();
1767
1768        load_mm_ldt(&init_mm);
1769
1770        t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1771
1772#ifdef CONFIG_DOUBLEFAULT
1773        /* Set up doublefault TSS pointer in the GDT */
1774        __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1775#endif
1776
1777        clear_all_debug_regs();
1778        dbg_restore_debug_regs();
1779
1780        fpu__init_cpu();
1781
1782        load_fixmap_gdt(cpu);
1783}
1784#endif
1785
1786static void bsp_resume(void)
1787{
1788        if (this_cpu->c_bsp_resume)
1789                this_cpu->c_bsp_resume(&boot_cpu_data);
1790}
1791
1792static struct syscore_ops cpu_syscore_ops = {
1793        .resume         = bsp_resume,
1794};
1795
1796static int __init init_cpu_syscore(void)
1797{
1798        register_syscore_ops(&cpu_syscore_ops);
1799        return 0;
1800}
1801core_initcall(init_cpu_syscore);
1802
1803/*
1804 * The microcode loader calls this upon late microcode load to recheck features,
1805 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1806 * hotplug lock.
1807 */
1808void microcode_check(void)
1809{
1810        struct cpuinfo_x86 info;
1811
1812        perf_check_microcode();
1813
1814        /* Reload CPUID max function as it might've changed. */
1815        info.cpuid_level = cpuid_eax(0);
1816
1817        /*
1818         * Copy all capability leafs to pick up the synthetic ones so that
1819         * memcmp() below doesn't fail on that. The ones coming from CPUID will
1820         * get overwritten in get_cpu_cap().
1821         */
1822        memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1823
1824        get_cpu_cap(&info);
1825
1826        if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1827                return;
1828
1829        pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1830        pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1831}
1832