linux/arch/x86/kernel/cpu/intel.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/kernel.h>
   3
   4#include <linux/string.h>
   5#include <linux/bitops.h>
   6#include <linux/smp.h>
   7#include <linux/sched.h>
   8#include <linux/sched/clock.h>
   9#include <linux/thread_info.h>
  10#include <linux/init.h>
  11#include <linux/uaccess.h>
  12
  13#include <asm/cpufeature.h>
  14#include <asm/pgtable.h>
  15#include <asm/msr.h>
  16#include <asm/bugs.h>
  17#include <asm/cpu.h>
  18#include <asm/intel-family.h>
  19#include <asm/microcode_intel.h>
  20#include <asm/hwcap2.h>
  21#include <asm/elf.h>
  22
  23#ifdef CONFIG_X86_64
  24#include <linux/topology.h>
  25#endif
  26
  27#include "cpu.h"
  28
  29#ifdef CONFIG_X86_LOCAL_APIC
  30#include <asm/mpspec.h>
  31#include <asm/apic.h>
  32#endif
  33
  34/*
  35 * Just in case our CPU detection goes bad, or you have a weird system,
  36 * allow a way to override the automatic disabling of MPX.
  37 */
  38static int forcempx;
  39
  40static int __init forcempx_setup(char *__unused)
  41{
  42        forcempx = 1;
  43
  44        return 1;
  45}
  46__setup("intel-skd-046-workaround=disable", forcempx_setup);
  47
  48void check_mpx_erratum(struct cpuinfo_x86 *c)
  49{
  50        if (forcempx)
  51                return;
  52        /*
  53         * Turn off the MPX feature on CPUs where SMEP is not
  54         * available or disabled.
  55         *
  56         * Works around Intel Erratum SKD046: "Branch Instructions
  57         * May Initialize MPX Bound Registers Incorrectly".
  58         *
  59         * This might falsely disable MPX on systems without
  60         * SMEP, like Atom processors without SMEP.  But there
  61         * is no such hardware known at the moment.
  62         */
  63        if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  64                setup_clear_cpu_cap(X86_FEATURE_MPX);
  65                pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  66        }
  67}
  68
  69static bool ring3mwait_disabled __read_mostly;
  70
  71static int __init ring3mwait_disable(char *__unused)
  72{
  73        ring3mwait_disabled = true;
  74        return 0;
  75}
  76__setup("ring3mwait=disable", ring3mwait_disable);
  77
  78static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  79{
  80        /*
  81         * Ring 3 MONITOR/MWAIT feature cannot be detected without
  82         * cpu model and family comparison.
  83         */
  84        if (c->x86 != 6)
  85                return;
  86        switch (c->x86_model) {
  87        case INTEL_FAM6_XEON_PHI_KNL:
  88        case INTEL_FAM6_XEON_PHI_KNM:
  89                break;
  90        default:
  91                return;
  92        }
  93
  94        if (ring3mwait_disabled)
  95                return;
  96
  97        set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
  98        this_cpu_or(msr_misc_features_shadow,
  99                    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 100
 101        if (c == &boot_cpu_data)
 102                ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 103}
 104
 105/*
 106 * Early microcode releases for the Spectre v2 mitigation were broken.
 107 * Information taken from;
 108 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
 109 * - https://kb.vmware.com/s/article/52345
 110 * - Microcode revisions observed in the wild
 111 * - Release note from 20180108 microcode release
 112 */
 113struct sku_microcode {
 114        u8 model;
 115        u8 stepping;
 116        u32 microcode;
 117};
 118static const struct sku_microcode spectre_bad_microcodes[] = {
 119        { INTEL_FAM6_KABYLAKE_DESKTOP,  0x0B,   0x80 },
 120        { INTEL_FAM6_KABYLAKE_DESKTOP,  0x0A,   0x80 },
 121        { INTEL_FAM6_KABYLAKE_DESKTOP,  0x09,   0x80 },
 122        { INTEL_FAM6_KABYLAKE_MOBILE,   0x0A,   0x80 },
 123        { INTEL_FAM6_KABYLAKE_MOBILE,   0x09,   0x80 },
 124        { INTEL_FAM6_SKYLAKE_X,         0x03,   0x0100013e },
 125        { INTEL_FAM6_SKYLAKE_X,         0x04,   0x0200003c },
 126        { INTEL_FAM6_BROADWELL_CORE,    0x04,   0x28 },
 127        { INTEL_FAM6_BROADWELL_GT3E,    0x01,   0x1b },
 128        { INTEL_FAM6_BROADWELL_XEON_D,  0x02,   0x14 },
 129        { INTEL_FAM6_BROADWELL_XEON_D,  0x03,   0x07000011 },
 130        { INTEL_FAM6_BROADWELL_X,       0x01,   0x0b000025 },
 131        { INTEL_FAM6_HASWELL_ULT,       0x01,   0x21 },
 132        { INTEL_FAM6_HASWELL_GT3E,      0x01,   0x18 },
 133        { INTEL_FAM6_HASWELL_CORE,      0x03,   0x23 },
 134        { INTEL_FAM6_HASWELL_X,         0x02,   0x3b },
 135        { INTEL_FAM6_HASWELL_X,         0x04,   0x10 },
 136        { INTEL_FAM6_IVYBRIDGE_X,       0x04,   0x42a },
 137        /* Observed in the wild */
 138        { INTEL_FAM6_SANDYBRIDGE_X,     0x06,   0x61b },
 139        { INTEL_FAM6_SANDYBRIDGE_X,     0x07,   0x712 },
 140};
 141
 142static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
 143{
 144        int i;
 145
 146        /*
 147         * We know that the hypervisor lie to us on the microcode version so
 148         * we may as well hope that it is running the correct version.
 149         */
 150        if (cpu_has(c, X86_FEATURE_HYPERVISOR))
 151                return false;
 152
 153        for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
 154                if (c->x86_model == spectre_bad_microcodes[i].model &&
 155                    c->x86_stepping == spectre_bad_microcodes[i].stepping)
 156                        return (c->microcode <= spectre_bad_microcodes[i].microcode);
 157        }
 158        return false;
 159}
 160
 161static void early_init_intel(struct cpuinfo_x86 *c)
 162{
 163        u64 misc_enable;
 164
 165        /* Unmask CPUID levels if masked: */
 166        if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 167                if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 168                                  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 169                        c->cpuid_level = cpuid_eax(0);
 170                        get_cpu_cap(c);
 171                }
 172        }
 173
 174        if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 175                (c->x86 == 0x6 && c->x86_model >= 0x0e))
 176                set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 177
 178        if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
 179                c->microcode = intel_get_microcode_revision();
 180
 181        /* Now if any of them are set, check the blacklist and clear the lot */
 182        if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
 183             cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
 184             cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
 185             cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
 186                pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
 187                setup_clear_cpu_cap(X86_FEATURE_IBRS);
 188                setup_clear_cpu_cap(X86_FEATURE_IBPB);
 189                setup_clear_cpu_cap(X86_FEATURE_STIBP);
 190                setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
 191                setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
 192                setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
 193                setup_clear_cpu_cap(X86_FEATURE_SSBD);
 194                setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
 195        }
 196
 197        /*
 198         * Atom erratum AAE44/AAF40/AAG38/AAH41:
 199         *
 200         * A race condition between speculative fetches and invalidating
 201         * a large page.  This is worked around in microcode, but we
 202         * need the microcode to have already been loaded... so if it is
 203         * not, recommend a BIOS update and disable large pages.
 204         */
 205        if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
 206            c->microcode < 0x20e) {
 207                pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 208                clear_cpu_cap(c, X86_FEATURE_PSE);
 209        }
 210
 211#ifdef CONFIG_X86_64
 212        set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 213#else
 214        /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 215        if (c->x86 == 15 && c->x86_cache_alignment == 64)
 216                c->x86_cache_alignment = 128;
 217#endif
 218
 219        /* CPUID workaround for 0F33/0F34 CPU */
 220        if (c->x86 == 0xF && c->x86_model == 0x3
 221            && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
 222                c->x86_phys_bits = 36;
 223
 224        /*
 225         * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 226         * with P/T states and does not stop in deep C-states.
 227         *
 228         * It is also reliable across cores and sockets. (but not across
 229         * cabinets - we turn it off in that case explicitly.)
 230         */
 231        if (c->x86_power & (1 << 8)) {
 232                set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 233                set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 234        }
 235
 236        /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 237        if (c->x86 == 6) {
 238                switch (c->x86_model) {
 239                case 0x27:      /* Penwell */
 240                case 0x35:      /* Cloverview */
 241                case 0x4a:      /* Merrifield */
 242                        set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
 243                        break;
 244                default:
 245                        break;
 246                }
 247        }
 248
 249        /*
 250         * There is a known erratum on Pentium III and Core Solo
 251         * and Core Duo CPUs.
 252         * " Page with PAT set to WC while associated MTRR is UC
 253         *   may consolidate to UC "
 254         * Because of this erratum, it is better to stick with
 255         * setting WC in MTRR rather than using PAT on these CPUs.
 256         *
 257         * Enable PAT WC only on P4, Core 2 or later CPUs.
 258         */
 259        if (c->x86 == 6 && c->x86_model < 15)
 260                clear_cpu_cap(c, X86_FEATURE_PAT);
 261
 262        /*
 263         * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
 264         * clear the fast string and enhanced fast string CPU capabilities.
 265         */
 266        if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 267                rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 268                if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
 269                        pr_info("Disabled fast string operations\n");
 270                        setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
 271                        setup_clear_cpu_cap(X86_FEATURE_ERMS);
 272                }
 273        }
 274
 275        /*
 276         * Intel Quark Core DevMan_001.pdf section 6.4.11
 277         * "The operating system also is required to invalidate (i.e., flush)
 278         *  the TLB when any changes are made to any of the page table entries.
 279         *  The operating system must reload CR3 to cause the TLB to be flushed"
 280         *
 281         * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
 282         * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
 283         * to be modified.
 284         */
 285        if (c->x86 == 5 && c->x86_model == 9) {
 286                pr_info("Disabling PGE capability bit\n");
 287                setup_clear_cpu_cap(X86_FEATURE_PGE);
 288        }
 289
 290        if (c->cpuid_level >= 0x00000001) {
 291                u32 eax, ebx, ecx, edx;
 292
 293                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 294                /*
 295                 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
 296                 * apicids which are reserved per package. Store the resulting
 297                 * shift value for the package management code.
 298                 */
 299                if (edx & (1U << 28))
 300                        c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
 301        }
 302
 303        check_mpx_erratum(c);
 304}
 305
 306#ifdef CONFIG_X86_32
 307/*
 308 *      Early probe support logic for ppro memory erratum #50
 309 *
 310 *      This is called before we do cpu ident work
 311 */
 312
 313int ppro_with_ram_bug(void)
 314{
 315        /* Uses data from early_cpu_detect now */
 316        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 317            boot_cpu_data.x86 == 6 &&
 318            boot_cpu_data.x86_model == 1 &&
 319            boot_cpu_data.x86_stepping < 8) {
 320                pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
 321                return 1;
 322        }
 323        return 0;
 324}
 325
 326static void intel_smp_check(struct cpuinfo_x86 *c)
 327{
 328        /* calling is from identify_secondary_cpu() ? */
 329        if (!c->cpu_index)
 330                return;
 331
 332        /*
 333         * Mask B, Pentium, but not Pentium MMX
 334         */
 335        if (c->x86 == 5 &&
 336            c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
 337            c->x86_model <= 3) {
 338                /*
 339                 * Remember we have B step Pentia with bugs
 340                 */
 341                WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
 342                                    "with B stepping processors.\n");
 343        }
 344}
 345
 346static int forcepae;
 347static int __init forcepae_setup(char *__unused)
 348{
 349        forcepae = 1;
 350        return 1;
 351}
 352__setup("forcepae", forcepae_setup);
 353
 354static void intel_workarounds(struct cpuinfo_x86 *c)
 355{
 356#ifdef CONFIG_X86_F00F_BUG
 357        /*
 358         * All models of Pentium and Pentium with MMX technology CPUs
 359         * have the F0 0F bug, which lets nonprivileged users lock up the
 360         * system. Announce that the fault handler will be checking for it.
 361         * The Quark is also family 5, but does not have the same bug.
 362         */
 363        clear_cpu_bug(c, X86_BUG_F00F);
 364        if (c->x86 == 5 && c->x86_model < 9) {
 365                static int f00f_workaround_enabled;
 366
 367                set_cpu_bug(c, X86_BUG_F00F);
 368                if (!f00f_workaround_enabled) {
 369                        pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
 370                        f00f_workaround_enabled = 1;
 371                }
 372        }
 373#endif
 374
 375        /*
 376         * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
 377         * model 3 mask 3
 378         */
 379        if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
 380                clear_cpu_cap(c, X86_FEATURE_SEP);
 381
 382        /*
 383         * PAE CPUID issue: many Pentium M report no PAE but may have a
 384         * functionally usable PAE implementation.
 385         * Forcefully enable PAE if kernel parameter "forcepae" is present.
 386         */
 387        if (forcepae) {
 388                pr_warn("PAE forced!\n");
 389                set_cpu_cap(c, X86_FEATURE_PAE);
 390                add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
 391        }
 392
 393        /*
 394         * P4 Xeon erratum 037 workaround.
 395         * Hardware prefetcher may cause stale data to be loaded into the cache.
 396         */
 397        if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
 398                if (msr_set_bit(MSR_IA32_MISC_ENABLE,
 399                                MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
 400                        pr_info("CPU: C0 stepping P4 Xeon detected.\n");
 401                        pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
 402                }
 403        }
 404
 405        /*
 406         * See if we have a good local APIC by checking for buggy Pentia,
 407         * i.e. all B steppings and the C2 stepping of P54C when using their
 408         * integrated APIC (see 11AP erratum in "Pentium Processor
 409         * Specification Update").
 410         */
 411        if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
 412            (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
 413                set_cpu_bug(c, X86_BUG_11AP);
 414
 415
 416#ifdef CONFIG_X86_INTEL_USERCOPY
 417        /*
 418         * Set up the preferred alignment for movsl bulk memory moves
 419         */
 420        switch (c->x86) {
 421        case 4:         /* 486: untested */
 422                break;
 423        case 5:         /* Old Pentia: untested */
 424                break;
 425        case 6:         /* PII/PIII only like movsl with 8-byte alignment */
 426                movsl_mask.mask = 7;
 427                break;
 428        case 15:        /* P4 is OK down to 8-byte alignment */
 429                movsl_mask.mask = 7;
 430                break;
 431        }
 432#endif
 433
 434        intel_smp_check(c);
 435}
 436#else
 437static void intel_workarounds(struct cpuinfo_x86 *c)
 438{
 439}
 440#endif
 441
 442static void srat_detect_node(struct cpuinfo_x86 *c)
 443{
 444#ifdef CONFIG_NUMA
 445        unsigned node;
 446        int cpu = smp_processor_id();
 447
 448        /* Don't do the funky fallback heuristics the AMD version employs
 449           for now. */
 450        node = numa_cpu_node(cpu);
 451        if (node == NUMA_NO_NODE || !node_online(node)) {
 452                /* reuse the value from init_cpu_to_node() */
 453                node = cpu_to_node(cpu);
 454        }
 455        numa_set_node(cpu, node);
 456#endif
 457}
 458
 459/*
 460 * find out the number of processor cores on the die
 461 */
 462static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
 463{
 464        unsigned int eax, ebx, ecx, edx;
 465
 466        if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 467                return 1;
 468
 469        /* Intel has a non-standard dependency on %ecx for this CPUID level. */
 470        cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 471        if (eax & 0x1f)
 472                return (eax >> 26) + 1;
 473        else
 474                return 1;
 475}
 476
 477static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
 478{
 479        /* Intel VMX MSR indicated features */
 480#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW    0x00200000
 481#define X86_VMX_FEATURE_PROC_CTLS_VNMI          0x00400000
 482#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS      0x80000000
 483#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC    0x00000001
 484#define X86_VMX_FEATURE_PROC_CTLS2_EPT          0x00000002
 485#define X86_VMX_FEATURE_PROC_CTLS2_VPID         0x00000020
 486
 487        u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
 488
 489        clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 490        clear_cpu_cap(c, X86_FEATURE_VNMI);
 491        clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 492        clear_cpu_cap(c, X86_FEATURE_EPT);
 493        clear_cpu_cap(c, X86_FEATURE_VPID);
 494
 495        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
 496        msr_ctl = vmx_msr_high | vmx_msr_low;
 497        if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
 498                set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 499        if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
 500                set_cpu_cap(c, X86_FEATURE_VNMI);
 501        if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
 502                rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
 503                      vmx_msr_low, vmx_msr_high);
 504                msr_ctl2 = vmx_msr_high | vmx_msr_low;
 505                if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
 506                    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
 507                        set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 508                if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
 509                        set_cpu_cap(c, X86_FEATURE_EPT);
 510                if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
 511                        set_cpu_cap(c, X86_FEATURE_VPID);
 512        }
 513}
 514
 515#define MSR_IA32_TME_ACTIVATE           0x982
 516
 517/* Helpers to access TME_ACTIVATE MSR */
 518#define TME_ACTIVATE_LOCKED(x)          (x & 0x1)
 519#define TME_ACTIVATE_ENABLED(x)         (x & 0x2)
 520
 521#define TME_ACTIVATE_POLICY(x)          ((x >> 4) & 0xf)        /* Bits 7:4 */
 522#define TME_ACTIVATE_POLICY_AES_XTS_128 0
 523
 524#define TME_ACTIVATE_KEYID_BITS(x)      ((x >> 32) & 0xf)       /* Bits 35:32 */
 525
 526#define TME_ACTIVATE_CRYPTO_ALGS(x)     ((x >> 48) & 0xffff)    /* Bits 63:48 */
 527#define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
 528
 529/* Values for mktme_status (SW only construct) */
 530#define MKTME_ENABLED                   0
 531#define MKTME_DISABLED                  1
 532#define MKTME_UNINITIALIZED             2
 533static int mktme_status = MKTME_UNINITIALIZED;
 534
 535static void detect_tme(struct cpuinfo_x86 *c)
 536{
 537        u64 tme_activate, tme_policy, tme_crypto_algs;
 538        int keyid_bits = 0, nr_keyids = 0;
 539        static u64 tme_activate_cpu0 = 0;
 540
 541        rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
 542
 543        if (mktme_status != MKTME_UNINITIALIZED) {
 544                if (tme_activate != tme_activate_cpu0) {
 545                        /* Broken BIOS? */
 546                        pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
 547                        pr_err_once("x86/tme: MKTME is not usable\n");
 548                        mktme_status = MKTME_DISABLED;
 549
 550                        /* Proceed. We may need to exclude bits from x86_phys_bits. */
 551                }
 552        } else {
 553                tme_activate_cpu0 = tme_activate;
 554        }
 555
 556        if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
 557                pr_info_once("x86/tme: not enabled by BIOS\n");
 558                mktme_status = MKTME_DISABLED;
 559                return;
 560        }
 561
 562        if (mktme_status != MKTME_UNINITIALIZED)
 563                goto detect_keyid_bits;
 564
 565        pr_info("x86/tme: enabled by BIOS\n");
 566
 567        tme_policy = TME_ACTIVATE_POLICY(tme_activate);
 568        if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
 569                pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
 570
 571        tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
 572        if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
 573                pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
 574                                tme_crypto_algs);
 575                mktme_status = MKTME_DISABLED;
 576        }
 577detect_keyid_bits:
 578        keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
 579        nr_keyids = (1UL << keyid_bits) - 1;
 580        if (nr_keyids) {
 581                pr_info_once("x86/mktme: enabled by BIOS\n");
 582                pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
 583        } else {
 584                pr_info_once("x86/mktme: disabled by BIOS\n");
 585        }
 586
 587        if (mktme_status == MKTME_UNINITIALIZED) {
 588                /* MKTME is usable */
 589                mktme_status = MKTME_ENABLED;
 590        }
 591
 592        /*
 593         * KeyID bits effectively lower the number of physical address
 594         * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
 595         */
 596        c->x86_phys_bits -= keyid_bits;
 597}
 598
 599static void init_intel_energy_perf(struct cpuinfo_x86 *c)
 600{
 601        u64 epb;
 602
 603        /*
 604         * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
 605         * (x86_energy_perf_policy(8) is available to change it at run-time.)
 606         */
 607        if (!cpu_has(c, X86_FEATURE_EPB))
 608                return;
 609
 610        rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
 611        if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
 612                return;
 613
 614        pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
 615        pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
 616        epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
 617        wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
 618}
 619
 620static void intel_bsp_resume(struct cpuinfo_x86 *c)
 621{
 622        /*
 623         * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
 624         * so reinitialize it properly like during bootup:
 625         */
 626        init_intel_energy_perf(c);
 627}
 628
 629static void init_cpuid_fault(struct cpuinfo_x86 *c)
 630{
 631        u64 msr;
 632
 633        if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
 634                if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
 635                        set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
 636        }
 637}
 638
 639static void init_intel_misc_features(struct cpuinfo_x86 *c)
 640{
 641        u64 msr;
 642
 643        if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
 644                return;
 645
 646        /* Clear all MISC features */
 647        this_cpu_write(msr_misc_features_shadow, 0);
 648
 649        /* Check features and update capabilities and shadow control bits */
 650        init_cpuid_fault(c);
 651        probe_xeon_phi_r3mwait(c);
 652
 653        msr = this_cpu_read(msr_misc_features_shadow);
 654        wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
 655}
 656
 657static void init_intel(struct cpuinfo_x86 *c)
 658{
 659        unsigned int l2 = 0;
 660
 661        early_init_intel(c);
 662
 663        intel_workarounds(c);
 664
 665        /*
 666         * Detect the extended topology information if available. This
 667         * will reinitialise the initial_apicid which will be used
 668         * in init_intel_cacheinfo()
 669         */
 670        detect_extended_topology(c);
 671
 672        if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
 673                /*
 674                 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
 675                 * detection.
 676                 */
 677                c->x86_max_cores = intel_num_cpu_cores(c);
 678#ifdef CONFIG_X86_32
 679                detect_ht(c);
 680#endif
 681        }
 682
 683        l2 = init_intel_cacheinfo(c);
 684
 685        /* Detect legacy cache sizes if init_intel_cacheinfo did not */
 686        if (l2 == 0) {
 687                cpu_detect_cache_sizes(c);
 688                l2 = c->x86_cache_size;
 689        }
 690
 691        if (c->cpuid_level > 9) {
 692                unsigned eax = cpuid_eax(10);
 693                /* Check for version and the number of counters */
 694                if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
 695                        set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
 696        }
 697
 698        if (cpu_has(c, X86_FEATURE_XMM2))
 699                set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
 700
 701        if (boot_cpu_has(X86_FEATURE_DS)) {
 702                unsigned int l1;
 703                rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
 704                if (!(l1 & (1<<11)))
 705                        set_cpu_cap(c, X86_FEATURE_BTS);
 706                if (!(l1 & (1<<12)))
 707                        set_cpu_cap(c, X86_FEATURE_PEBS);
 708        }
 709
 710        if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
 711            (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
 712                set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
 713
 714        if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
 715                ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
 716                set_cpu_bug(c, X86_BUG_MONITOR);
 717
 718#ifdef CONFIG_X86_64
 719        if (c->x86 == 15)
 720                c->x86_cache_alignment = c->x86_clflush_size * 2;
 721        if (c->x86 == 6)
 722                set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 723#else
 724        /*
 725         * Names for the Pentium II/Celeron processors
 726         * detectable only by also checking the cache size.
 727         * Dixon is NOT a Celeron.
 728         */
 729        if (c->x86 == 6) {
 730                char *p = NULL;
 731
 732                switch (c->x86_model) {
 733                case 5:
 734                        if (l2 == 0)
 735                                p = "Celeron (Covington)";
 736                        else if (l2 == 256)
 737                                p = "Mobile Pentium II (Dixon)";
 738                        break;
 739
 740                case 6:
 741                        if (l2 == 128)
 742                                p = "Celeron (Mendocino)";
 743                        else if (c->x86_stepping == 0 || c->x86_stepping == 5)
 744                                p = "Celeron-A";
 745                        break;
 746
 747                case 8:
 748                        if (l2 == 128)
 749                                p = "Celeron (Coppermine)";
 750                        break;
 751                }
 752
 753                if (p)
 754                        strcpy(c->x86_model_id, p);
 755        }
 756
 757        if (c->x86 == 15)
 758                set_cpu_cap(c, X86_FEATURE_P4);
 759        if (c->x86 == 6)
 760                set_cpu_cap(c, X86_FEATURE_P3);
 761#endif
 762
 763        /* Work around errata */
 764        srat_detect_node(c);
 765
 766        if (cpu_has(c, X86_FEATURE_VMX))
 767                detect_vmx_virtcap(c);
 768
 769        if (cpu_has(c, X86_FEATURE_TME))
 770                detect_tme(c);
 771
 772        init_intel_energy_perf(c);
 773
 774        init_intel_misc_features(c);
 775}
 776
 777#ifdef CONFIG_X86_32
 778static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
 779{
 780        /*
 781         * Intel PIII Tualatin. This comes in two flavours.
 782         * One has 256kb of cache, the other 512. We have no way
 783         * to determine which, so we use a boottime override
 784         * for the 512kb model, and assume 256 otherwise.
 785         */
 786        if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
 787                size = 256;
 788
 789        /*
 790         * Intel Quark SoC X1000 contains a 4-way set associative
 791         * 16K cache with a 16 byte cache line and 256 lines per tag
 792         */
 793        if ((c->x86 == 5) && (c->x86_model == 9))
 794                size = 16;
 795        return size;
 796}
 797#endif
 798
 799#define TLB_INST_4K     0x01
 800#define TLB_INST_4M     0x02
 801#define TLB_INST_2M_4M  0x03
 802
 803#define TLB_INST_ALL    0x05
 804#define TLB_INST_1G     0x06
 805
 806#define TLB_DATA_4K     0x11
 807#define TLB_DATA_4M     0x12
 808#define TLB_DATA_2M_4M  0x13
 809#define TLB_DATA_4K_4M  0x14
 810
 811#define TLB_DATA_1G     0x16
 812
 813#define TLB_DATA0_4K    0x21
 814#define TLB_DATA0_4M    0x22
 815#define TLB_DATA0_2M_4M 0x23
 816
 817#define STLB_4K         0x41
 818#define STLB_4K_2M      0x42
 819
 820static const struct _tlb_table intel_tlb_table[] = {
 821        { 0x01, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages, 4-way set associative" },
 822        { 0x02, TLB_INST_4M,            2,      " TLB_INST 4 MByte pages, full associative" },
 823        { 0x03, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way set associative" },
 824        { 0x04, TLB_DATA_4M,            8,      " TLB_DATA 4 MByte pages, 4-way set associative" },
 825        { 0x05, TLB_DATA_4M,            32,     " TLB_DATA 4 MByte pages, 4-way set associative" },
 826        { 0x0b, TLB_INST_4M,            4,      " TLB_INST 4 MByte pages, 4-way set associative" },
 827        { 0x4f, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages */" },
 828        { 0x50, TLB_INST_ALL,           64,     " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 829        { 0x51, TLB_INST_ALL,           128,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 830        { 0x52, TLB_INST_ALL,           256,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 831        { 0x55, TLB_INST_2M_4M,         7,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 832        { 0x56, TLB_DATA0_4M,           16,     " TLB_DATA0 4 MByte pages, 4-way set associative" },
 833        { 0x57, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, 4-way associative" },
 834        { 0x59, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, fully associative" },
 835        { 0x5a, TLB_DATA0_2M_4M,        32,     " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
 836        { 0x5b, TLB_DATA_4K_4M,         64,     " TLB_DATA 4 KByte and 4 MByte pages" },
 837        { 0x5c, TLB_DATA_4K_4M,         128,    " TLB_DATA 4 KByte and 4 MByte pages" },
 838        { 0x5d, TLB_DATA_4K_4M,         256,    " TLB_DATA 4 KByte and 4 MByte pages" },
 839        { 0x61, TLB_INST_4K,            48,     " TLB_INST 4 KByte pages, full associative" },
 840        { 0x63, TLB_DATA_1G,            4,      " TLB_DATA 1 GByte pages, 4-way set associative" },
 841        { 0x6b, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 8-way associative" },
 842        { 0x6c, TLB_DATA_2M_4M,         128,    " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
 843        { 0x6d, TLB_DATA_1G,            16,     " TLB_DATA 1 GByte pages, fully associative" },
 844        { 0x76, TLB_INST_2M_4M,         8,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 845        { 0xb0, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 4-way set associative" },
 846        { 0xb1, TLB_INST_2M_4M,         4,      " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
 847        { 0xb2, TLB_INST_4K,            64,     " TLB_INST 4KByte pages, 4-way set associative" },
 848        { 0xb3, TLB_DATA_4K,            128,    " TLB_DATA 4 KByte pages, 4-way set associative" },
 849        { 0xb4, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 4-way associative" },
 850        { 0xb5, TLB_INST_4K,            64,     " TLB_INST 4 KByte pages, 8-way set associative" },
 851        { 0xb6, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 8-way set associative" },
 852        { 0xba, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way associative" },
 853        { 0xc0, TLB_DATA_4K_4M,         8,      " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
 854        { 0xc1, STLB_4K_2M,             1024,   " STLB 4 KByte and 2 MByte pages, 8-way associative" },
 855        { 0xc2, TLB_DATA_2M_4M,         16,     " DTLB 2 MByte/4MByte pages, 4-way associative" },
 856        { 0xca, STLB_4K,                512,    " STLB 4 KByte pages, 4-way associative" },
 857        { 0x00, 0, 0 }
 858};
 859
 860static void intel_tlb_lookup(const unsigned char desc)
 861{
 862        unsigned char k;
 863        if (desc == 0)
 864                return;
 865
 866        /* look up this descriptor in the table */
 867        for (k = 0; intel_tlb_table[k].descriptor != desc && \
 868                        intel_tlb_table[k].descriptor != 0; k++)
 869                ;
 870
 871        if (intel_tlb_table[k].tlb_type == 0)
 872                return;
 873
 874        switch (intel_tlb_table[k].tlb_type) {
 875        case STLB_4K:
 876                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 877                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 878                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 879                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 880                break;
 881        case STLB_4K_2M:
 882                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 883                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 884                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 885                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 886                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 887                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 888                if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 889                        tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 890                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 891                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 892                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 893                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 894                break;
 895        case TLB_INST_ALL:
 896                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 897                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 898                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 899                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 900                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 901                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 902                break;
 903        case TLB_INST_4K:
 904                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 905                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 906                break;
 907        case TLB_INST_4M:
 908                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 909                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 910                break;
 911        case TLB_INST_2M_4M:
 912                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 913                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 914                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 915                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 916                break;
 917        case TLB_DATA_4K:
 918        case TLB_DATA0_4K:
 919                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 920                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 921                break;
 922        case TLB_DATA_4M:
 923        case TLB_DATA0_4M:
 924                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 925                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 926                break;
 927        case TLB_DATA_2M_4M:
 928        case TLB_DATA0_2M_4M:
 929                if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 930                        tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 931                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 932                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 933                break;
 934        case TLB_DATA_4K_4M:
 935                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 936                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 937                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 938                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 939                break;
 940        case TLB_DATA_1G:
 941                if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
 942                        tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
 943                break;
 944        }
 945}
 946
 947static void intel_detect_tlb(struct cpuinfo_x86 *c)
 948{
 949        int i, j, n;
 950        unsigned int regs[4];
 951        unsigned char *desc = (unsigned char *)regs;
 952
 953        if (c->cpuid_level < 2)
 954                return;
 955
 956        /* Number of times to iterate */
 957        n = cpuid_eax(2) & 0xFF;
 958
 959        for (i = 0 ; i < n ; i++) {
 960                cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
 961
 962                /* If bit 31 is set, this is an unknown format */
 963                for (j = 0 ; j < 3 ; j++)
 964                        if (regs[j] & (1 << 31))
 965                                regs[j] = 0;
 966
 967                /* Byte 0 is level count, not a descriptor */
 968                for (j = 1 ; j < 16 ; j++)
 969                        intel_tlb_lookup(desc[j]);
 970        }
 971}
 972
 973static const struct cpu_dev intel_cpu_dev = {
 974        .c_vendor       = "Intel",
 975        .c_ident        = { "GenuineIntel" },
 976#ifdef CONFIG_X86_32
 977        .legacy_models = {
 978                { .family = 4, .model_names =
 979                  {
 980                          [0] = "486 DX-25/33",
 981                          [1] = "486 DX-50",
 982                          [2] = "486 SX",
 983                          [3] = "486 DX/2",
 984                          [4] = "486 SL",
 985                          [5] = "486 SX/2",
 986                          [7] = "486 DX/2-WB",
 987                          [8] = "486 DX/4",
 988                          [9] = "486 DX/4-WB"
 989                  }
 990                },
 991                { .family = 5, .model_names =
 992                  {
 993                          [0] = "Pentium 60/66 A-step",
 994                          [1] = "Pentium 60/66",
 995                          [2] = "Pentium 75 - 200",
 996                          [3] = "OverDrive PODP5V83",
 997                          [4] = "Pentium MMX",
 998                          [7] = "Mobile Pentium 75 - 200",
 999                          [8] = "Mobile Pentium MMX",
1000                          [9] = "Quark SoC X1000",
1001                  }
1002                },
1003                { .family = 6, .model_names =
1004                  {
1005                          [0] = "Pentium Pro A-step",
1006                          [1] = "Pentium Pro",
1007                          [3] = "Pentium II (Klamath)",
1008                          [4] = "Pentium II (Deschutes)",
1009                          [5] = "Pentium II (Deschutes)",
1010                          [6] = "Mobile Pentium II",
1011                          [7] = "Pentium III (Katmai)",
1012                          [8] = "Pentium III (Coppermine)",
1013                          [10] = "Pentium III (Cascades)",
1014                          [11] = "Pentium III (Tualatin)",
1015                  }
1016                },
1017                { .family = 15, .model_names =
1018                  {
1019                          [0] = "Pentium 4 (Unknown)",
1020                          [1] = "Pentium 4 (Willamette)",
1021                          [2] = "Pentium 4 (Northwood)",
1022                          [4] = "Pentium 4 (Foster)",
1023                          [5] = "Pentium 4 (Foster)",
1024                  }
1025                },
1026        },
1027        .legacy_cache_size = intel_size_cache,
1028#endif
1029        .c_detect_tlb   = intel_detect_tlb,
1030        .c_early_init   = early_init_intel,
1031        .c_init         = init_intel,
1032        .c_bsp_resume   = intel_bsp_resume,
1033        .c_x86_vendor   = X86_VENDOR_INTEL,
1034};
1035
1036cpu_dev_register(intel_cpu_dev);
1037
1038