linux/arch/x86/kernel/e820.c
<<
>>
Prefs
   1/*
   2 * Low level x86 E820 memory map handling functions.
   3 *
   4 * The firmware and bootloader passes us the "E820 table", which is the primary
   5 * physical memory layout description available about x86 systems.
   6 *
   7 * The kernel takes the E820 memory layout and optionally modifies it with
   8 * quirks and other tweaks, and feeds that into the generic Linux memory
   9 * allocation code routines via a platform independent interface (memblock, etc.).
  10 */
  11#include <linux/crash_dump.h>
  12#include <linux/bootmem.h>
  13#include <linux/suspend.h>
  14#include <linux/acpi.h>
  15#include <linux/firmware-map.h>
  16#include <linux/memblock.h>
  17#include <linux/sort.h>
  18
  19#include <asm/e820/api.h>
  20#include <asm/setup.h>
  21
  22/*
  23 * We organize the E820 table into three main data structures:
  24 *
  25 * - 'e820_table_firmware': the original firmware version passed to us by the
  26 *   bootloader - not modified by the kernel. It is composed of two parts:
  27 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  28 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  29 *
  30 *       - inform the user about the firmware's notion of memory layout
  31 *         via /sys/firmware/memmap
  32 *
  33 *       - the hibernation code uses it to generate a kernel-independent MD5
  34 *         fingerprint of the physical memory layout of a system.
  35 *
  36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  37 *   passed to us by the bootloader - the major difference between
  38 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  39 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  40 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  41 *   might also be modified by the kexec itself to fake a mptable.
  42 *   We use this to:
  43 *
  44 *       - kexec, which is a bootloader in disguise, uses the original E820
  45 *         layout to pass to the kexec-ed kernel. This way the original kernel
  46 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  47 *         can have access to full memory - etc.
  48 *
  49 * - 'e820_table': this is the main E820 table that is massaged by the
  50 *   low level x86 platform code, or modified by boot parameters, before
  51 *   passed on to higher level MM layers.
  52 *
  53 * Once the E820 map has been converted to the standard Linux memory layout
  54 * information its role stops - modifying it has no effect and does not get
  55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  56 * specific memory layout data during early bootup.
  57 */
  58static struct e820_table e820_table_init                __initdata;
  59static struct e820_table e820_table_kexec_init          __initdata;
  60static struct e820_table e820_table_firmware_init       __initdata;
  61
  62struct e820_table *e820_table __refdata                 = &e820_table_init;
  63struct e820_table *e820_table_kexec __refdata           = &e820_table_kexec_init;
  64struct e820_table *e820_table_firmware __refdata        = &e820_table_firmware_init;
  65
  66/* For PCI or other memory-mapped resources */
  67unsigned long pci_mem_start = 0xaeedbabe;
  68#ifdef CONFIG_PCI
  69EXPORT_SYMBOL(pci_mem_start);
  70#endif
  71
  72/*
  73 * This function checks if any part of the range <start,end> is mapped
  74 * with type.
  75 */
  76bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
  77{
  78        int i;
  79
  80        for (i = 0; i < e820_table->nr_entries; i++) {
  81                struct e820_entry *entry = &e820_table->entries[i];
  82
  83                if (type && entry->type != type)
  84                        continue;
  85                if (entry->addr >= end || entry->addr + entry->size <= start)
  86                        continue;
  87                return 1;
  88        }
  89        return 0;
  90}
  91EXPORT_SYMBOL_GPL(e820__mapped_any);
  92
  93/*
  94 * This function checks if the entire <start,end> range is mapped with 'type'.
  95 *
  96 * Note: this function only works correctly once the E820 table is sorted and
  97 * not-overlapping (at least for the range specified), which is the case normally.
  98 */
  99static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 100                                             enum e820_type type)
 101{
 102        int i;
 103
 104        for (i = 0; i < e820_table->nr_entries; i++) {
 105                struct e820_entry *entry = &e820_table->entries[i];
 106
 107                if (type && entry->type != type)
 108                        continue;
 109
 110                /* Is the region (part) in overlap with the current region? */
 111                if (entry->addr >= end || entry->addr + entry->size <= start)
 112                        continue;
 113
 114                /*
 115                 * If the region is at the beginning of <start,end> we move
 116                 * 'start' to the end of the region since it's ok until there
 117                 */
 118                if (entry->addr <= start)
 119                        start = entry->addr + entry->size;
 120
 121                /*
 122                 * If 'start' is now at or beyond 'end', we're done, full
 123                 * coverage of the desired range exists:
 124                 */
 125                if (start >= end)
 126                        return entry;
 127        }
 128
 129        return NULL;
 130}
 131
 132/*
 133 * This function checks if the entire range <start,end> is mapped with type.
 134 */
 135bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 136{
 137        return __e820__mapped_all(start, end, type);
 138}
 139
 140/*
 141 * This function returns the type associated with the range <start,end>.
 142 */
 143int e820__get_entry_type(u64 start, u64 end)
 144{
 145        struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 146
 147        return entry ? entry->type : -EINVAL;
 148}
 149
 150/*
 151 * Add a memory region to the kernel E820 map.
 152 */
 153static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 154{
 155        int x = table->nr_entries;
 156
 157        if (x >= ARRAY_SIZE(table->entries)) {
 158                pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
 159                return;
 160        }
 161
 162        table->entries[x].addr = start;
 163        table->entries[x].size = size;
 164        table->entries[x].type = type;
 165        table->nr_entries++;
 166}
 167
 168void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 169{
 170        __e820__range_add(e820_table, start, size, type);
 171}
 172
 173static void __init e820_print_type(enum e820_type type)
 174{
 175        switch (type) {
 176        case E820_TYPE_RAM:             /* Fall through: */
 177        case E820_TYPE_RESERVED_KERN:   pr_cont("usable");                      break;
 178        case E820_TYPE_RESERVED:        pr_cont("reserved");                    break;
 179        case E820_TYPE_ACPI:            pr_cont("ACPI data");                   break;
 180        case E820_TYPE_NVS:             pr_cont("ACPI NVS");                    break;
 181        case E820_TYPE_UNUSABLE:        pr_cont("unusable");                    break;
 182        case E820_TYPE_PMEM:            /* Fall through: */
 183        case E820_TYPE_PRAM:            pr_cont("persistent (type %u)", type);  break;
 184        default:                        pr_cont("type %u", type);               break;
 185        }
 186}
 187
 188void __init e820__print_table(char *who)
 189{
 190        int i;
 191
 192        for (i = 0; i < e820_table->nr_entries; i++) {
 193                pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
 194                       e820_table->entries[i].addr,
 195                       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 196
 197                e820_print_type(e820_table->entries[i].type);
 198                pr_cont("\n");
 199        }
 200}
 201
 202/*
 203 * Sanitize an E820 map.
 204 *
 205 * Some E820 layouts include overlapping entries. The following
 206 * replaces the original E820 map with a new one, removing overlaps,
 207 * and resolving conflicting memory types in favor of highest
 208 * numbered type.
 209 *
 210 * The input parameter 'entries' points to an array of 'struct
 211 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 212 * valid, and which has space for up to max_nr_entries entries.
 213 * On return, the resulting sanitized E820 map entries will be in
 214 * overwritten in the same location, starting at 'entries'.
 215 *
 216 * The integer pointed to by nr_entries must be valid on entry (the
 217 * current number of valid entries located at 'entries'). If the
 218 * sanitizing succeeds the *nr_entries will be updated with the new
 219 * number of valid entries (something no more than max_nr_entries).
 220 *
 221 * The return value from e820__update_table() is zero if it
 222 * successfully 'sanitized' the map entries passed in, and is -1
 223 * if it did nothing, which can happen if either of (1) it was
 224 * only passed one map entry, or (2) any of the input map entries
 225 * were invalid (start + size < start, meaning that the size was
 226 * so big the described memory range wrapped around through zero.)
 227 *
 228 *      Visually we're performing the following
 229 *      (1,2,3,4 = memory types)...
 230 *
 231 *      Sample memory map (w/overlaps):
 232 *         ____22__________________
 233 *         ______________________4_
 234 *         ____1111________________
 235 *         _44_____________________
 236 *         11111111________________
 237 *         ____________________33__
 238 *         ___________44___________
 239 *         __________33333_________
 240 *         ______________22________
 241 *         ___________________2222_
 242 *         _________111111111______
 243 *         _____________________11_
 244 *         _________________4______
 245 *
 246 *      Sanitized equivalent (no overlap):
 247 *         1_______________________
 248 *         _44_____________________
 249 *         ___1____________________
 250 *         ____22__________________
 251 *         ______11________________
 252 *         _________1______________
 253 *         __________3_____________
 254 *         ___________44___________
 255 *         _____________33_________
 256 *         _______________2________
 257 *         ________________1_______
 258 *         _________________4______
 259 *         ___________________2____
 260 *         ____________________33__
 261 *         ______________________4_
 262 */
 263struct change_member {
 264        /* Pointer to the original entry: */
 265        struct e820_entry       *entry;
 266        /* Address for this change point: */
 267        unsigned long long      addr;
 268};
 269
 270static struct change_member     change_point_list[2*E820_MAX_ENTRIES]   __initdata;
 271static struct change_member     *change_point[2*E820_MAX_ENTRIES]       __initdata;
 272static struct e820_entry        *overlap_list[E820_MAX_ENTRIES]         __initdata;
 273static struct e820_entry        new_entries[E820_MAX_ENTRIES]           __initdata;
 274
 275static int __init cpcompare(const void *a, const void *b)
 276{
 277        struct change_member * const *app = a, * const *bpp = b;
 278        const struct change_member *ap = *app, *bp = *bpp;
 279
 280        /*
 281         * Inputs are pointers to two elements of change_point[].  If their
 282         * addresses are not equal, their difference dominates.  If the addresses
 283         * are equal, then consider one that represents the end of its region
 284         * to be greater than one that does not.
 285         */
 286        if (ap->addr != bp->addr)
 287                return ap->addr > bp->addr ? 1 : -1;
 288
 289        return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 290}
 291
 292int __init e820__update_table(struct e820_table *table)
 293{
 294        struct e820_entry *entries = table->entries;
 295        u32 max_nr_entries = ARRAY_SIZE(table->entries);
 296        enum e820_type current_type, last_type;
 297        unsigned long long last_addr;
 298        u32 new_nr_entries, overlap_entries;
 299        u32 i, chg_idx, chg_nr;
 300
 301        /* If there's only one memory region, don't bother: */
 302        if (table->nr_entries < 2)
 303                return -1;
 304
 305        BUG_ON(table->nr_entries > max_nr_entries);
 306
 307        /* Bail out if we find any unreasonable addresses in the map: */
 308        for (i = 0; i < table->nr_entries; i++) {
 309                if (entries[i].addr + entries[i].size < entries[i].addr)
 310                        return -1;
 311        }
 312
 313        /* Create pointers for initial change-point information (for sorting): */
 314        for (i = 0; i < 2 * table->nr_entries; i++)
 315                change_point[i] = &change_point_list[i];
 316
 317        /*
 318         * Record all known change-points (starting and ending addresses),
 319         * omitting empty memory regions:
 320         */
 321        chg_idx = 0;
 322        for (i = 0; i < table->nr_entries; i++) {
 323                if (entries[i].size != 0) {
 324                        change_point[chg_idx]->addr     = entries[i].addr;
 325                        change_point[chg_idx++]->entry  = &entries[i];
 326                        change_point[chg_idx]->addr     = entries[i].addr + entries[i].size;
 327                        change_point[chg_idx++]->entry  = &entries[i];
 328                }
 329        }
 330        chg_nr = chg_idx;
 331
 332        /* Sort change-point list by memory addresses (low -> high): */
 333        sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 334
 335        /* Create a new memory map, removing overlaps: */
 336        overlap_entries = 0;     /* Number of entries in the overlap table */
 337        new_nr_entries = 0;      /* Index for creating new map entries */
 338        last_type = 0;           /* Start with undefined memory type */
 339        last_addr = 0;           /* Start with 0 as last starting address */
 340
 341        /* Loop through change-points, determining effect on the new map: */
 342        for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 343                /* Keep track of all overlapping entries */
 344                if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 345                        /* Add map entry to overlap list (> 1 entry implies an overlap) */
 346                        overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 347                } else {
 348                        /* Remove entry from list (order independent, so swap with last): */
 349                        for (i = 0; i < overlap_entries; i++) {
 350                                if (overlap_list[i] == change_point[chg_idx]->entry)
 351                                        overlap_list[i] = overlap_list[overlap_entries-1];
 352                        }
 353                        overlap_entries--;
 354                }
 355                /*
 356                 * If there are overlapping entries, decide which
 357                 * "type" to use (larger value takes precedence --
 358                 * 1=usable, 2,3,4,4+=unusable)
 359                 */
 360                current_type = 0;
 361                for (i = 0; i < overlap_entries; i++) {
 362                        if (overlap_list[i]->type > current_type)
 363                                current_type = overlap_list[i]->type;
 364                }
 365
 366                /* Continue building up new map based on this information: */
 367                if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 368                        if (last_type != 0)      {
 369                                new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 370                                /* Move forward only if the new size was non-zero: */
 371                                if (new_entries[new_nr_entries].size != 0)
 372                                        /* No more space left for new entries? */
 373                                        if (++new_nr_entries >= max_nr_entries)
 374                                                break;
 375                        }
 376                        if (current_type != 0)  {
 377                                new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 378                                new_entries[new_nr_entries].type = current_type;
 379                                last_addr = change_point[chg_idx]->addr;
 380                        }
 381                        last_type = current_type;
 382                }
 383        }
 384
 385        /* Copy the new entries into the original location: */
 386        memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 387        table->nr_entries = new_nr_entries;
 388
 389        return 0;
 390}
 391
 392static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 393{
 394        struct boot_e820_entry *entry = entries;
 395
 396        while (nr_entries) {
 397                u64 start = entry->addr;
 398                u64 size = entry->size;
 399                u64 end = start + size - 1;
 400                u32 type = entry->type;
 401
 402                /* Ignore the entry on 64-bit overflow: */
 403                if (start > end && likely(size))
 404                        return -1;
 405
 406                e820__range_add(start, size, type);
 407
 408                entry++;
 409                nr_entries--;
 410        }
 411        return 0;
 412}
 413
 414/*
 415 * Copy the BIOS E820 map into a safe place.
 416 *
 417 * Sanity-check it while we're at it..
 418 *
 419 * If we're lucky and live on a modern system, the setup code
 420 * will have given us a memory map that we can use to properly
 421 * set up memory.  If we aren't, we'll fake a memory map.
 422 */
 423static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 424{
 425        /* Only one memory region (or negative)? Ignore it */
 426        if (nr_entries < 2)
 427                return -1;
 428
 429        return __append_e820_table(entries, nr_entries);
 430}
 431
 432static u64 __init
 433__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 434{
 435        u64 end;
 436        unsigned int i;
 437        u64 real_updated_size = 0;
 438
 439        BUG_ON(old_type == new_type);
 440
 441        if (size > (ULLONG_MAX - start))
 442                size = ULLONG_MAX - start;
 443
 444        end = start + size;
 445        printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 446        e820_print_type(old_type);
 447        pr_cont(" ==> ");
 448        e820_print_type(new_type);
 449        pr_cont("\n");
 450
 451        for (i = 0; i < table->nr_entries; i++) {
 452                struct e820_entry *entry = &table->entries[i];
 453                u64 final_start, final_end;
 454                u64 entry_end;
 455
 456                if (entry->type != old_type)
 457                        continue;
 458
 459                entry_end = entry->addr + entry->size;
 460
 461                /* Completely covered by new range? */
 462                if (entry->addr >= start && entry_end <= end) {
 463                        entry->type = new_type;
 464                        real_updated_size += entry->size;
 465                        continue;
 466                }
 467
 468                /* New range is completely covered? */
 469                if (entry->addr < start && entry_end > end) {
 470                        __e820__range_add(table, start, size, new_type);
 471                        __e820__range_add(table, end, entry_end - end, entry->type);
 472                        entry->size = start - entry->addr;
 473                        real_updated_size += size;
 474                        continue;
 475                }
 476
 477                /* Partially covered: */
 478                final_start = max(start, entry->addr);
 479                final_end = min(end, entry_end);
 480                if (final_start >= final_end)
 481                        continue;
 482
 483                __e820__range_add(table, final_start, final_end - final_start, new_type);
 484
 485                real_updated_size += final_end - final_start;
 486
 487                /*
 488                 * Left range could be head or tail, so need to update
 489                 * its size first:
 490                 */
 491                entry->size -= final_end - final_start;
 492                if (entry->addr < final_start)
 493                        continue;
 494
 495                entry->addr = final_end;
 496        }
 497        return real_updated_size;
 498}
 499
 500u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 501{
 502        return __e820__range_update(e820_table, start, size, old_type, new_type);
 503}
 504
 505static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 506{
 507        return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 508}
 509
 510/* Remove a range of memory from the E820 table: */
 511u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 512{
 513        int i;
 514        u64 end;
 515        u64 real_removed_size = 0;
 516
 517        if (size > (ULLONG_MAX - start))
 518                size = ULLONG_MAX - start;
 519
 520        end = start + size;
 521        printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 522        if (check_type)
 523                e820_print_type(old_type);
 524        pr_cont("\n");
 525
 526        for (i = 0; i < e820_table->nr_entries; i++) {
 527                struct e820_entry *entry = &e820_table->entries[i];
 528                u64 final_start, final_end;
 529                u64 entry_end;
 530
 531                if (check_type && entry->type != old_type)
 532                        continue;
 533
 534                entry_end = entry->addr + entry->size;
 535
 536                /* Completely covered? */
 537                if (entry->addr >= start && entry_end <= end) {
 538                        real_removed_size += entry->size;
 539                        memset(entry, 0, sizeof(*entry));
 540                        continue;
 541                }
 542
 543                /* Is the new range completely covered? */
 544                if (entry->addr < start && entry_end > end) {
 545                        e820__range_add(end, entry_end - end, entry->type);
 546                        entry->size = start - entry->addr;
 547                        real_removed_size += size;
 548                        continue;
 549                }
 550
 551                /* Partially covered: */
 552                final_start = max(start, entry->addr);
 553                final_end = min(end, entry_end);
 554                if (final_start >= final_end)
 555                        continue;
 556
 557                real_removed_size += final_end - final_start;
 558
 559                /*
 560                 * Left range could be head or tail, so need to update
 561                 * the size first:
 562                 */
 563                entry->size -= final_end - final_start;
 564                if (entry->addr < final_start)
 565                        continue;
 566
 567                entry->addr = final_end;
 568        }
 569        return real_removed_size;
 570}
 571
 572void __init e820__update_table_print(void)
 573{
 574        if (e820__update_table(e820_table))
 575                return;
 576
 577        pr_info("e820: modified physical RAM map:\n");
 578        e820__print_table("modified");
 579}
 580
 581static void __init e820__update_table_kexec(void)
 582{
 583        e820__update_table(e820_table_kexec);
 584}
 585
 586#define MAX_GAP_END 0x100000000ull
 587
 588/*
 589 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 590 */
 591static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 592{
 593        unsigned long long last = MAX_GAP_END;
 594        int i = e820_table->nr_entries;
 595        int found = 0;
 596
 597        while (--i >= 0) {
 598                unsigned long long start = e820_table->entries[i].addr;
 599                unsigned long long end = start + e820_table->entries[i].size;
 600
 601                /*
 602                 * Since "last" is at most 4GB, we know we'll
 603                 * fit in 32 bits if this condition is true:
 604                 */
 605                if (last > end) {
 606                        unsigned long gap = last - end;
 607
 608                        if (gap >= *gapsize) {
 609                                *gapsize = gap;
 610                                *gapstart = end;
 611                                found = 1;
 612                        }
 613                }
 614                if (start < last)
 615                        last = start;
 616        }
 617        return found;
 618}
 619
 620/*
 621 * Search for the biggest gap in the low 32 bits of the E820
 622 * memory space. We pass this space to the PCI subsystem, so
 623 * that it can assign MMIO resources for hotplug or
 624 * unconfigured devices in.
 625 *
 626 * Hopefully the BIOS let enough space left.
 627 */
 628__init void e820__setup_pci_gap(void)
 629{
 630        unsigned long gapstart, gapsize;
 631        int found;
 632
 633        gapsize = 0x400000;
 634        found  = e820_search_gap(&gapstart, &gapsize);
 635
 636        if (!found) {
 637#ifdef CONFIG_X86_64
 638                gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 639                pr_err(
 640                        "e820: Cannot find an available gap in the 32-bit address range\n"
 641                        "e820: PCI devices with unassigned 32-bit BARs may not work!\n");
 642#else
 643                gapstart = 0x10000000;
 644#endif
 645        }
 646
 647        /*
 648         * e820__reserve_resources_late() protects stolen RAM already:
 649         */
 650        pci_mem_start = gapstart;
 651
 652        pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
 653}
 654
 655/*
 656 * Called late during init, in free_initmem().
 657 *
 658 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 659 *
 660 * Copy them to a (usually much smaller) dynamically allocated area that is
 661 * sized precisely after the number of e820 entries.
 662 *
 663 * This is done after we've performed all the fixes and tweaks to the tables.
 664 * All functions which modify them are __init functions, which won't exist
 665 * after free_initmem().
 666 */
 667__init void e820__reallocate_tables(void)
 668{
 669        struct e820_table *n;
 670        int size;
 671
 672        size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 673        n = kmalloc(size, GFP_KERNEL);
 674        BUG_ON(!n);
 675        memcpy(n, e820_table, size);
 676        e820_table = n;
 677
 678        size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 679        n = kmalloc(size, GFP_KERNEL);
 680        BUG_ON(!n);
 681        memcpy(n, e820_table_kexec, size);
 682        e820_table_kexec = n;
 683
 684        size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 685        n = kmalloc(size, GFP_KERNEL);
 686        BUG_ON(!n);
 687        memcpy(n, e820_table_firmware, size);
 688        e820_table_firmware = n;
 689}
 690
 691/*
 692 * Because of the small fixed size of struct boot_params, only the first
 693 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 694 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 695 * struct setup_data, which is parsed here.
 696 */
 697void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 698{
 699        int entries;
 700        struct boot_e820_entry *extmap;
 701        struct setup_data *sdata;
 702
 703        sdata = early_memremap(phys_addr, data_len);
 704        entries = sdata->len / sizeof(*extmap);
 705        extmap = (struct boot_e820_entry *)(sdata->data);
 706
 707        __append_e820_table(extmap, entries);
 708        e820__update_table(e820_table);
 709
 710        memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 711        memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 712
 713        early_memunmap(sdata, data_len);
 714        pr_info("e820: extended physical RAM map:\n");
 715        e820__print_table("extended");
 716}
 717
 718/*
 719 * Find the ranges of physical addresses that do not correspond to
 720 * E820 RAM areas and register the corresponding pages as 'nosave' for
 721 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 722 *
 723 * This function requires the E820 map to be sorted and without any
 724 * overlapping entries.
 725 */
 726void __init e820__register_nosave_regions(unsigned long limit_pfn)
 727{
 728        int i;
 729        unsigned long pfn = 0;
 730
 731        for (i = 0; i < e820_table->nr_entries; i++) {
 732                struct e820_entry *entry = &e820_table->entries[i];
 733
 734                if (pfn < PFN_UP(entry->addr))
 735                        register_nosave_region(pfn, PFN_UP(entry->addr));
 736
 737                pfn = PFN_DOWN(entry->addr + entry->size);
 738
 739                if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 740                        register_nosave_region(PFN_UP(entry->addr), pfn);
 741
 742                if (pfn >= limit_pfn)
 743                        break;
 744        }
 745}
 746
 747#ifdef CONFIG_ACPI
 748/*
 749 * Register ACPI NVS memory regions, so that we can save/restore them during
 750 * hibernation and the subsequent resume:
 751 */
 752static int __init e820__register_nvs_regions(void)
 753{
 754        int i;
 755
 756        for (i = 0; i < e820_table->nr_entries; i++) {
 757                struct e820_entry *entry = &e820_table->entries[i];
 758
 759                if (entry->type == E820_TYPE_NVS)
 760                        acpi_nvs_register(entry->addr, entry->size);
 761        }
 762
 763        return 0;
 764}
 765core_initcall(e820__register_nvs_regions);
 766#endif
 767
 768/*
 769 * Allocate the requested number of bytes with the requsted alignment
 770 * and return (the physical address) to the caller. Also register this
 771 * range in the 'kexec' E820 table as a reserved range.
 772 *
 773 * This allows kexec to fake a new mptable, as if it came from the real
 774 * system.
 775 */
 776u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 777{
 778        u64 addr;
 779
 780        addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 781        if (addr) {
 782                e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 783                pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 784                e820__update_table_kexec();
 785        }
 786
 787        return addr;
 788}
 789
 790#ifdef CONFIG_X86_32
 791# ifdef CONFIG_X86_PAE
 792#  define MAX_ARCH_PFN          (1ULL<<(36-PAGE_SHIFT))
 793# else
 794#  define MAX_ARCH_PFN          (1ULL<<(32-PAGE_SHIFT))
 795# endif
 796#else /* CONFIG_X86_32 */
 797# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 798#endif
 799
 800/*
 801 * Find the highest page frame number we have available
 802 */
 803static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 804{
 805        int i;
 806        unsigned long last_pfn = 0;
 807        unsigned long max_arch_pfn = MAX_ARCH_PFN;
 808
 809        for (i = 0; i < e820_table->nr_entries; i++) {
 810                struct e820_entry *entry = &e820_table->entries[i];
 811                unsigned long start_pfn;
 812                unsigned long end_pfn;
 813
 814                if (entry->type != type)
 815                        continue;
 816
 817                start_pfn = entry->addr >> PAGE_SHIFT;
 818                end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 819
 820                if (start_pfn >= limit_pfn)
 821                        continue;
 822                if (end_pfn > limit_pfn) {
 823                        last_pfn = limit_pfn;
 824                        break;
 825                }
 826                if (end_pfn > last_pfn)
 827                        last_pfn = end_pfn;
 828        }
 829
 830        if (last_pfn > max_arch_pfn)
 831                last_pfn = max_arch_pfn;
 832
 833        pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 834                         last_pfn, max_arch_pfn);
 835        return last_pfn;
 836}
 837
 838unsigned long __init e820__end_of_ram_pfn(void)
 839{
 840        return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 841}
 842
 843unsigned long __init e820__end_of_low_ram_pfn(void)
 844{
 845        return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 846}
 847
 848static void __init early_panic(char *msg)
 849{
 850        early_printk(msg);
 851        panic(msg);
 852}
 853
 854static int userdef __initdata;
 855
 856/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 857static int __init parse_memopt(char *p)
 858{
 859        u64 mem_size;
 860
 861        if (!p)
 862                return -EINVAL;
 863
 864        if (!strcmp(p, "nopentium")) {
 865#ifdef CONFIG_X86_32
 866                setup_clear_cpu_cap(X86_FEATURE_PSE);
 867                return 0;
 868#else
 869                pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 870                return -EINVAL;
 871#endif
 872        }
 873
 874        userdef = 1;
 875        mem_size = memparse(p, &p);
 876
 877        /* Don't remove all memory when getting "mem={invalid}" parameter: */
 878        if (mem_size == 0)
 879                return -EINVAL;
 880
 881        e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 882
 883        return 0;
 884}
 885early_param("mem", parse_memopt);
 886
 887static int __init parse_memmap_one(char *p)
 888{
 889        char *oldp;
 890        u64 start_at, mem_size;
 891
 892        if (!p)
 893                return -EINVAL;
 894
 895        if (!strncmp(p, "exactmap", 8)) {
 896#ifdef CONFIG_CRASH_DUMP
 897                /*
 898                 * If we are doing a crash dump, we still need to know
 899                 * the real memory size before the original memory map is
 900                 * reset.
 901                 */
 902                saved_max_pfn = e820__end_of_ram_pfn();
 903#endif
 904                e820_table->nr_entries = 0;
 905                userdef = 1;
 906                return 0;
 907        }
 908
 909        oldp = p;
 910        mem_size = memparse(p, &p);
 911        if (p == oldp)
 912                return -EINVAL;
 913
 914        userdef = 1;
 915        if (*p == '@') {
 916                start_at = memparse(p+1, &p);
 917                e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 918        } else if (*p == '#') {
 919                start_at = memparse(p+1, &p);
 920                e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 921        } else if (*p == '$') {
 922                start_at = memparse(p+1, &p);
 923                e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 924        } else if (*p == '!') {
 925                start_at = memparse(p+1, &p);
 926                e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 927        } else if (*p == '%') {
 928                enum e820_type from = 0, to = 0;
 929
 930                start_at = memparse(p + 1, &p);
 931                if (*p == '-')
 932                        from = simple_strtoull(p + 1, &p, 0);
 933                if (*p == '+')
 934                        to = simple_strtoull(p + 1, &p, 0);
 935                if (*p != '\0')
 936                        return -EINVAL;
 937                if (from && to)
 938                        e820__range_update(start_at, mem_size, from, to);
 939                else if (to)
 940                        e820__range_add(start_at, mem_size, to);
 941                else if (from)
 942                        e820__range_remove(start_at, mem_size, from, 1);
 943                else
 944                        e820__range_remove(start_at, mem_size, 0, 0);
 945        } else {
 946                e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 947        }
 948
 949        return *p == '\0' ? 0 : -EINVAL;
 950}
 951
 952static int __init parse_memmap_opt(char *str)
 953{
 954        while (str) {
 955                char *k = strchr(str, ',');
 956
 957                if (k)
 958                        *k++ = 0;
 959
 960                parse_memmap_one(str);
 961                str = k;
 962        }
 963
 964        return 0;
 965}
 966early_param("memmap", parse_memmap_opt);
 967
 968/*
 969 * Reserve all entries from the bootloader's extensible data nodes list,
 970 * because if present we are going to use it later on to fetch e820
 971 * entries from it:
 972 */
 973void __init e820__reserve_setup_data(void)
 974{
 975        struct setup_data *data;
 976        u64 pa_data;
 977
 978        pa_data = boot_params.hdr.setup_data;
 979        if (!pa_data)
 980                return;
 981
 982        while (pa_data) {
 983                data = early_memremap(pa_data, sizeof(*data));
 984                e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 985                e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 986                pa_data = data->next;
 987                early_memunmap(data, sizeof(*data));
 988        }
 989
 990        e820__update_table(e820_table);
 991        e820__update_table(e820_table_kexec);
 992
 993        pr_info("extended physical RAM map:\n");
 994        e820__print_table("reserve setup_data");
 995}
 996
 997/*
 998 * Called after parse_early_param(), after early parameters (such as mem=)
 999 * have been processed, in which case we already have an E820 table filled in
1000 * via the parameter callback function(s), but it's not sorted and printed yet:
1001 */
1002void __init e820__finish_early_params(void)
1003{
1004        if (userdef) {
1005                if (e820__update_table(e820_table) < 0)
1006                        early_panic("Invalid user supplied memory map");
1007
1008                pr_info("e820: user-defined physical RAM map:\n");
1009                e820__print_table("user");
1010        }
1011}
1012
1013static const char *__init e820_type_to_string(struct e820_entry *entry)
1014{
1015        switch (entry->type) {
1016        case E820_TYPE_RESERVED_KERN:   /* Fall-through: */
1017        case E820_TYPE_RAM:             return "System RAM";
1018        case E820_TYPE_ACPI:            return "ACPI Tables";
1019        case E820_TYPE_NVS:             return "ACPI Non-volatile Storage";
1020        case E820_TYPE_UNUSABLE:        return "Unusable memory";
1021        case E820_TYPE_PRAM:            return "Persistent Memory (legacy)";
1022        case E820_TYPE_PMEM:            return "Persistent Memory";
1023        case E820_TYPE_RESERVED:        return "Reserved";
1024        default:                        return "Unknown E820 type";
1025        }
1026}
1027
1028static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1029{
1030        switch (entry->type) {
1031        case E820_TYPE_RESERVED_KERN:   /* Fall-through: */
1032        case E820_TYPE_RAM:             return IORESOURCE_SYSTEM_RAM;
1033        case E820_TYPE_ACPI:            /* Fall-through: */
1034        case E820_TYPE_NVS:             /* Fall-through: */
1035        case E820_TYPE_UNUSABLE:        /* Fall-through: */
1036        case E820_TYPE_PRAM:            /* Fall-through: */
1037        case E820_TYPE_PMEM:            /* Fall-through: */
1038        case E820_TYPE_RESERVED:        /* Fall-through: */
1039        default:                        return IORESOURCE_MEM;
1040        }
1041}
1042
1043static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1044{
1045        switch (entry->type) {
1046        case E820_TYPE_ACPI:            return IORES_DESC_ACPI_TABLES;
1047        case E820_TYPE_NVS:             return IORES_DESC_ACPI_NV_STORAGE;
1048        case E820_TYPE_PMEM:            return IORES_DESC_PERSISTENT_MEMORY;
1049        case E820_TYPE_PRAM:            return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1050        case E820_TYPE_RESERVED_KERN:   /* Fall-through: */
1051        case E820_TYPE_RAM:             /* Fall-through: */
1052        case E820_TYPE_UNUSABLE:        /* Fall-through: */
1053        case E820_TYPE_RESERVED:        /* Fall-through: */
1054        default:                        return IORES_DESC_NONE;
1055        }
1056}
1057
1058static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1059{
1060        /* this is the legacy bios/dos rom-shadow + mmio region */
1061        if (res->start < (1ULL<<20))
1062                return true;
1063
1064        /*
1065         * Treat persistent memory like device memory, i.e. reserve it
1066         * for exclusive use of a driver
1067         */
1068        switch (type) {
1069        case E820_TYPE_RESERVED:
1070        case E820_TYPE_PRAM:
1071        case E820_TYPE_PMEM:
1072                return false;
1073        case E820_TYPE_RESERVED_KERN:
1074        case E820_TYPE_RAM:
1075        case E820_TYPE_ACPI:
1076        case E820_TYPE_NVS:
1077        case E820_TYPE_UNUSABLE:
1078        default:
1079                return true;
1080        }
1081}
1082
1083/*
1084 * Mark E820 reserved areas as busy for the resource manager:
1085 */
1086
1087static struct resource __initdata *e820_res;
1088
1089void __init e820__reserve_resources(void)
1090{
1091        int i;
1092        struct resource *res;
1093        u64 end;
1094
1095        res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
1096        e820_res = res;
1097
1098        for (i = 0; i < e820_table->nr_entries; i++) {
1099                struct e820_entry *entry = e820_table->entries + i;
1100
1101                end = entry->addr + entry->size - 1;
1102                if (end != (resource_size_t)end) {
1103                        res++;
1104                        continue;
1105                }
1106                res->start = entry->addr;
1107                res->end   = end;
1108                res->name  = e820_type_to_string(entry);
1109                res->flags = e820_type_to_iomem_type(entry);
1110                res->desc  = e820_type_to_iores_desc(entry);
1111
1112                /*
1113                 * Don't register the region that could be conflicted with
1114                 * PCI device BAR resources and insert them later in
1115                 * pcibios_resource_survey():
1116                 */
1117                if (do_mark_busy(entry->type, res)) {
1118                        res->flags |= IORESOURCE_BUSY;
1119                        insert_resource(&iomem_resource, res);
1120                }
1121                res++;
1122        }
1123
1124        /* Expose the bootloader-provided memory layout to the sysfs. */
1125        for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1126                struct e820_entry *entry = e820_table_firmware->entries + i;
1127
1128                firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1129        }
1130}
1131
1132/*
1133 * How much should we pad the end of RAM, depending on where it is?
1134 */
1135static unsigned long __init ram_alignment(resource_size_t pos)
1136{
1137        unsigned long mb = pos >> 20;
1138
1139        /* To 64kB in the first megabyte */
1140        if (!mb)
1141                return 64*1024;
1142
1143        /* To 1MB in the first 16MB */
1144        if (mb < 16)
1145                return 1024*1024;
1146
1147        /* To 64MB for anything above that */
1148        return 64*1024*1024;
1149}
1150
1151#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1152
1153void __init e820__reserve_resources_late(void)
1154{
1155        int i;
1156        struct resource *res;
1157
1158        res = e820_res;
1159        for (i = 0; i < e820_table->nr_entries; i++) {
1160                if (!res->parent && res->end)
1161                        insert_resource_expand_to_fit(&iomem_resource, res);
1162                res++;
1163        }
1164
1165        /*
1166         * Try to bump up RAM regions to reasonable boundaries, to
1167         * avoid stolen RAM:
1168         */
1169        for (i = 0; i < e820_table->nr_entries; i++) {
1170                struct e820_entry *entry = &e820_table->entries[i];
1171                u64 start, end;
1172
1173                if (entry->type != E820_TYPE_RAM)
1174                        continue;
1175
1176                start = entry->addr + entry->size;
1177                end = round_up(start, ram_alignment(start)) - 1;
1178                if (end > MAX_RESOURCE_SIZE)
1179                        end = MAX_RESOURCE_SIZE;
1180                if (start >= end)
1181                        continue;
1182
1183                printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1184                reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1185        }
1186}
1187
1188/*
1189 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1190 */
1191char *__init e820__memory_setup_default(void)
1192{
1193        char *who = "BIOS-e820";
1194
1195        /*
1196         * Try to copy the BIOS-supplied E820-map.
1197         *
1198         * Otherwise fake a memory map; one section from 0k->640k,
1199         * the next section from 1mb->appropriate_mem_k
1200         */
1201        if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1202                u64 mem_size;
1203
1204                /* Compare results from other methods and take the one that gives more RAM: */
1205                if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1206                        mem_size = boot_params.screen_info.ext_mem_k;
1207                        who = "BIOS-88";
1208                } else {
1209                        mem_size = boot_params.alt_mem_k;
1210                        who = "BIOS-e801";
1211                }
1212
1213                e820_table->nr_entries = 0;
1214                e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1215                e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1216        }
1217
1218        /* We just appended a lot of ranges, sanitize the table: */
1219        e820__update_table(e820_table);
1220
1221        return who;
1222}
1223
1224/*
1225 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1226 * E820 map - with an optional platform quirk available for virtual platforms
1227 * to override this method of boot environment processing:
1228 */
1229void __init e820__memory_setup(void)
1230{
1231        char *who;
1232
1233        /* This is a firmware interface ABI - make sure we don't break it: */
1234        BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1235
1236        who = x86_init.resources.memory_setup();
1237
1238        memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1239        memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1240
1241        pr_info("e820: BIOS-provided physical RAM map:\n");
1242        e820__print_table(who);
1243}
1244
1245void __init e820__memblock_setup(void)
1246{
1247        int i;
1248        u64 end;
1249
1250        /*
1251         * The bootstrap memblock region count maximum is 128 entries
1252         * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1253         * than that - so allow memblock resizing.
1254         *
1255         * This is safe, because this call happens pretty late during x86 setup,
1256         * so we know about reserved memory regions already. (This is important
1257         * so that memblock resizing does no stomp over reserved areas.)
1258         */
1259        memblock_allow_resize();
1260
1261        for (i = 0; i < e820_table->nr_entries; i++) {
1262                struct e820_entry *entry = &e820_table->entries[i];
1263
1264                end = entry->addr + entry->size;
1265                if (end != (resource_size_t)end)
1266                        continue;
1267
1268                if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1269                        continue;
1270
1271                memblock_add(entry->addr, entry->size);
1272        }
1273
1274        /* Throw away partial pages: */
1275        memblock_trim_memory(PAGE_SIZE);
1276
1277        memblock_dump_all();
1278}
1279