linux/arch/x86/kernel/hpet.c
<<
>>
Prefs
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/cpufeature.h>
  16#include <asm/irqdomain.h>
  17#include <asm/fixmap.h>
  18#include <asm/hpet.h>
  19#include <asm/time.h>
  20
  21#define HPET_MASK                       CLOCKSOURCE_MASK(32)
  22
  23/* FSEC = 10^-15
  24   NSEC = 10^-9 */
  25#define FSEC_PER_NSEC                   1000000L
  26
  27#define HPET_DEV_USED_BIT               2
  28#define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
  29#define HPET_DEV_VALID                  0x8
  30#define HPET_DEV_FSB_CAP                0x1000
  31#define HPET_DEV_PERI_CAP               0x2000
  32
  33#define HPET_MIN_CYCLES                 128
  34#define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  35
  36/*
  37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  38 */
  39unsigned long                           hpet_address;
  40u8                                      hpet_blockid; /* OS timer block num */
  41bool                                    hpet_msi_disable;
  42
  43#ifdef CONFIG_PCI_MSI
  44static unsigned int                     hpet_num_timers;
  45#endif
  46static void __iomem                     *hpet_virt_address;
  47
  48struct hpet_dev {
  49        struct clock_event_device       evt;
  50        unsigned int                    num;
  51        int                             cpu;
  52        unsigned int                    irq;
  53        unsigned int                    flags;
  54        char                            name[10];
  55};
  56
  57static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
  58{
  59        return container_of(evtdev, struct hpet_dev, evt);
  60}
  61
  62inline unsigned int hpet_readl(unsigned int a)
  63{
  64        return readl(hpet_virt_address + a);
  65}
  66
  67static inline void hpet_writel(unsigned int d, unsigned int a)
  68{
  69        writel(d, hpet_virt_address + a);
  70}
  71
  72#ifdef CONFIG_X86_64
  73#include <asm/pgtable.h>
  74#endif
  75
  76static inline void hpet_set_mapping(void)
  77{
  78        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  79}
  80
  81static inline void hpet_clear_mapping(void)
  82{
  83        iounmap(hpet_virt_address);
  84        hpet_virt_address = NULL;
  85}
  86
  87/*
  88 * HPET command line enable / disable
  89 */
  90bool boot_hpet_disable;
  91bool hpet_force_user;
  92static bool hpet_verbose;
  93
  94static int __init hpet_setup(char *str)
  95{
  96        while (str) {
  97                char *next = strchr(str, ',');
  98
  99                if (next)
 100                        *next++ = 0;
 101                if (!strncmp("disable", str, 7))
 102                        boot_hpet_disable = true;
 103                if (!strncmp("force", str, 5))
 104                        hpet_force_user = true;
 105                if (!strncmp("verbose", str, 7))
 106                        hpet_verbose = true;
 107                str = next;
 108        }
 109        return 1;
 110}
 111__setup("hpet=", hpet_setup);
 112
 113static int __init disable_hpet(char *str)
 114{
 115        boot_hpet_disable = true;
 116        return 1;
 117}
 118__setup("nohpet", disable_hpet);
 119
 120static inline int is_hpet_capable(void)
 121{
 122        return !boot_hpet_disable && hpet_address;
 123}
 124
 125/*
 126 * HPET timer interrupt enable / disable
 127 */
 128static bool hpet_legacy_int_enabled;
 129
 130/**
 131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 132 */
 133int is_hpet_enabled(void)
 134{
 135        return is_hpet_capable() && hpet_legacy_int_enabled;
 136}
 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
 138
 139static void _hpet_print_config(const char *function, int line)
 140{
 141        u32 i, timers, l, h;
 142        printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 143        l = hpet_readl(HPET_ID);
 144        h = hpet_readl(HPET_PERIOD);
 145        timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 146        printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 147        l = hpet_readl(HPET_CFG);
 148        h = hpet_readl(HPET_STATUS);
 149        printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 150        l = hpet_readl(HPET_COUNTER);
 151        h = hpet_readl(HPET_COUNTER+4);
 152        printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 153
 154        for (i = 0; i < timers; i++) {
 155                l = hpet_readl(HPET_Tn_CFG(i));
 156                h = hpet_readl(HPET_Tn_CFG(i)+4);
 157                printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 158                       i, l, h);
 159                l = hpet_readl(HPET_Tn_CMP(i));
 160                h = hpet_readl(HPET_Tn_CMP(i)+4);
 161                printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 162                       i, l, h);
 163                l = hpet_readl(HPET_Tn_ROUTE(i));
 164                h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 165                printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 166                       i, l, h);
 167        }
 168}
 169
 170#define hpet_print_config()                                     \
 171do {                                                            \
 172        if (hpet_verbose)                                       \
 173                _hpet_print_config(__func__, __LINE__); \
 174} while (0)
 175
 176/*
 177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 178 * timer 0 and timer 1 in case of RTC emulation.
 179 */
 180#ifdef CONFIG_HPET
 181
 182static void hpet_reserve_msi_timers(struct hpet_data *hd);
 183
 184static void hpet_reserve_platform_timers(unsigned int id)
 185{
 186        struct hpet __iomem *hpet = hpet_virt_address;
 187        struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 188        unsigned int nrtimers, i;
 189        struct hpet_data hd;
 190
 191        nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 192
 193        memset(&hd, 0, sizeof(hd));
 194        hd.hd_phys_address      = hpet_address;
 195        hd.hd_address           = hpet;
 196        hd.hd_nirqs             = nrtimers;
 197        hpet_reserve_timer(&hd, 0);
 198
 199#ifdef CONFIG_HPET_EMULATE_RTC
 200        hpet_reserve_timer(&hd, 1);
 201#endif
 202
 203        /*
 204         * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 205         * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 206         * don't bother configuring *any* comparator interrupts.
 207         */
 208        hd.hd_irq[0] = HPET_LEGACY_8254;
 209        hd.hd_irq[1] = HPET_LEGACY_RTC;
 210
 211        for (i = 2; i < nrtimers; timer++, i++) {
 212                hd.hd_irq[i] = (readl(&timer->hpet_config) &
 213                        Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 214        }
 215
 216        hpet_reserve_msi_timers(&hd);
 217
 218        hpet_alloc(&hd);
 219
 220}
 221#else
 222static void hpet_reserve_platform_timers(unsigned int id) { }
 223#endif
 224
 225/*
 226 * Common hpet info
 227 */
 228static unsigned long hpet_freq;
 229
 230static struct clock_event_device hpet_clockevent;
 231
 232static void hpet_stop_counter(void)
 233{
 234        u32 cfg = hpet_readl(HPET_CFG);
 235        cfg &= ~HPET_CFG_ENABLE;
 236        hpet_writel(cfg, HPET_CFG);
 237}
 238
 239static void hpet_reset_counter(void)
 240{
 241        hpet_writel(0, HPET_COUNTER);
 242        hpet_writel(0, HPET_COUNTER + 4);
 243}
 244
 245static void hpet_start_counter(void)
 246{
 247        unsigned int cfg = hpet_readl(HPET_CFG);
 248        cfg |= HPET_CFG_ENABLE;
 249        hpet_writel(cfg, HPET_CFG);
 250}
 251
 252static void hpet_restart_counter(void)
 253{
 254        hpet_stop_counter();
 255        hpet_reset_counter();
 256        hpet_start_counter();
 257}
 258
 259static void hpet_resume_device(void)
 260{
 261        force_hpet_resume();
 262}
 263
 264static void hpet_resume_counter(struct clocksource *cs)
 265{
 266        hpet_resume_device();
 267        hpet_restart_counter();
 268}
 269
 270static void hpet_enable_legacy_int(void)
 271{
 272        unsigned int cfg = hpet_readl(HPET_CFG);
 273
 274        cfg |= HPET_CFG_LEGACY;
 275        hpet_writel(cfg, HPET_CFG);
 276        hpet_legacy_int_enabled = true;
 277}
 278
 279static void hpet_legacy_clockevent_register(void)
 280{
 281        /* Start HPET legacy interrupts */
 282        hpet_enable_legacy_int();
 283
 284        /*
 285         * Start hpet with the boot cpu mask and make it
 286         * global after the IO_APIC has been initialized.
 287         */
 288        hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
 289        clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 290                                        HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 291        global_clock_event = &hpet_clockevent;
 292        printk(KERN_DEBUG "hpet clockevent registered\n");
 293}
 294
 295static int hpet_set_periodic(struct clock_event_device *evt, int timer)
 296{
 297        unsigned int cfg, cmp, now;
 298        uint64_t delta;
 299
 300        hpet_stop_counter();
 301        delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 302        delta >>= evt->shift;
 303        now = hpet_readl(HPET_COUNTER);
 304        cmp = now + (unsigned int)delta;
 305        cfg = hpet_readl(HPET_Tn_CFG(timer));
 306        cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 307               HPET_TN_32BIT;
 308        hpet_writel(cfg, HPET_Tn_CFG(timer));
 309        hpet_writel(cmp, HPET_Tn_CMP(timer));
 310        udelay(1);
 311        /*
 312         * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 313         * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 314         * bit is automatically cleared after the first write.
 315         * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 316         * Publication # 24674)
 317         */
 318        hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
 319        hpet_start_counter();
 320        hpet_print_config();
 321
 322        return 0;
 323}
 324
 325static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
 326{
 327        unsigned int cfg;
 328
 329        cfg = hpet_readl(HPET_Tn_CFG(timer));
 330        cfg &= ~HPET_TN_PERIODIC;
 331        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 332        hpet_writel(cfg, HPET_Tn_CFG(timer));
 333
 334        return 0;
 335}
 336
 337static int hpet_shutdown(struct clock_event_device *evt, int timer)
 338{
 339        unsigned int cfg;
 340
 341        cfg = hpet_readl(HPET_Tn_CFG(timer));
 342        cfg &= ~HPET_TN_ENABLE;
 343        hpet_writel(cfg, HPET_Tn_CFG(timer));
 344
 345        return 0;
 346}
 347
 348static int hpet_resume(struct clock_event_device *evt)
 349{
 350        hpet_enable_legacy_int();
 351        hpet_print_config();
 352        return 0;
 353}
 354
 355static int hpet_next_event(unsigned long delta,
 356                           struct clock_event_device *evt, int timer)
 357{
 358        u32 cnt;
 359        s32 res;
 360
 361        cnt = hpet_readl(HPET_COUNTER);
 362        cnt += (u32) delta;
 363        hpet_writel(cnt, HPET_Tn_CMP(timer));
 364
 365        /*
 366         * HPETs are a complete disaster. The compare register is
 367         * based on a equal comparison and neither provides a less
 368         * than or equal functionality (which would require to take
 369         * the wraparound into account) nor a simple count down event
 370         * mode. Further the write to the comparator register is
 371         * delayed internally up to two HPET clock cycles in certain
 372         * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 373         * longer delays. We worked around that by reading back the
 374         * compare register, but that required another workaround for
 375         * ICH9,10 chips where the first readout after write can
 376         * return the old stale value. We already had a minimum
 377         * programming delta of 5us enforced, but a NMI or SMI hitting
 378         * between the counter readout and the comparator write can
 379         * move us behind that point easily. Now instead of reading
 380         * the compare register back several times, we make the ETIME
 381         * decision based on the following: Return ETIME if the
 382         * counter value after the write is less than HPET_MIN_CYCLES
 383         * away from the event or if the counter is already ahead of
 384         * the event. The minimum programming delta for the generic
 385         * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 386         */
 387        res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 388
 389        return res < HPET_MIN_CYCLES ? -ETIME : 0;
 390}
 391
 392static int hpet_legacy_shutdown(struct clock_event_device *evt)
 393{
 394        return hpet_shutdown(evt, 0);
 395}
 396
 397static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
 398{
 399        return hpet_set_oneshot(evt, 0);
 400}
 401
 402static int hpet_legacy_set_periodic(struct clock_event_device *evt)
 403{
 404        return hpet_set_periodic(evt, 0);
 405}
 406
 407static int hpet_legacy_resume(struct clock_event_device *evt)
 408{
 409        return hpet_resume(evt);
 410}
 411
 412static int hpet_legacy_next_event(unsigned long delta,
 413                        struct clock_event_device *evt)
 414{
 415        return hpet_next_event(delta, evt, 0);
 416}
 417
 418/*
 419 * The hpet clock event device
 420 */
 421static struct clock_event_device hpet_clockevent = {
 422        .name                   = "hpet",
 423        .features               = CLOCK_EVT_FEAT_PERIODIC |
 424                                  CLOCK_EVT_FEAT_ONESHOT,
 425        .set_state_periodic     = hpet_legacy_set_periodic,
 426        .set_state_oneshot      = hpet_legacy_set_oneshot,
 427        .set_state_shutdown     = hpet_legacy_shutdown,
 428        .tick_resume            = hpet_legacy_resume,
 429        .set_next_event         = hpet_legacy_next_event,
 430        .irq                    = 0,
 431        .rating                 = 50,
 432};
 433
 434/*
 435 * HPET MSI Support
 436 */
 437#ifdef CONFIG_PCI_MSI
 438
 439static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 440static struct hpet_dev  *hpet_devs;
 441static struct irq_domain *hpet_domain;
 442
 443void hpet_msi_unmask(struct irq_data *data)
 444{
 445        struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
 446        unsigned int cfg;
 447
 448        /* unmask it */
 449        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 450        cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 451        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 452}
 453
 454void hpet_msi_mask(struct irq_data *data)
 455{
 456        struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
 457        unsigned int cfg;
 458
 459        /* mask it */
 460        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 461        cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 462        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 463}
 464
 465void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 466{
 467        hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 468        hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 469}
 470
 471void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 472{
 473        msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 474        msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 475        msg->address_hi = 0;
 476}
 477
 478static int hpet_msi_shutdown(struct clock_event_device *evt)
 479{
 480        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 481
 482        return hpet_shutdown(evt, hdev->num);
 483}
 484
 485static int hpet_msi_set_oneshot(struct clock_event_device *evt)
 486{
 487        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 488
 489        return hpet_set_oneshot(evt, hdev->num);
 490}
 491
 492static int hpet_msi_set_periodic(struct clock_event_device *evt)
 493{
 494        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 495
 496        return hpet_set_periodic(evt, hdev->num);
 497}
 498
 499static int hpet_msi_resume(struct clock_event_device *evt)
 500{
 501        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 502        struct irq_data *data = irq_get_irq_data(hdev->irq);
 503        struct msi_msg msg;
 504
 505        /* Restore the MSI msg and unmask the interrupt */
 506        irq_chip_compose_msi_msg(data, &msg);
 507        hpet_msi_write(hdev, &msg);
 508        hpet_msi_unmask(data);
 509        return 0;
 510}
 511
 512static int hpet_msi_next_event(unsigned long delta,
 513                                struct clock_event_device *evt)
 514{
 515        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 516        return hpet_next_event(delta, evt, hdev->num);
 517}
 518
 519static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 520{
 521        struct hpet_dev *dev = (struct hpet_dev *)data;
 522        struct clock_event_device *hevt = &dev->evt;
 523
 524        if (!hevt->event_handler) {
 525                printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 526                                dev->num);
 527                return IRQ_HANDLED;
 528        }
 529
 530        hevt->event_handler(hevt);
 531        return IRQ_HANDLED;
 532}
 533
 534static int hpet_setup_irq(struct hpet_dev *dev)
 535{
 536
 537        if (request_irq(dev->irq, hpet_interrupt_handler,
 538                        IRQF_TIMER | IRQF_NOBALANCING,
 539                        dev->name, dev))
 540                return -1;
 541
 542        disable_irq(dev->irq);
 543        irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 544        enable_irq(dev->irq);
 545
 546        printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 547                         dev->name, dev->irq);
 548
 549        return 0;
 550}
 551
 552/* This should be called in specific @cpu */
 553static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 554{
 555        struct clock_event_device *evt = &hdev->evt;
 556
 557        WARN_ON(cpu != smp_processor_id());
 558        if (!(hdev->flags & HPET_DEV_VALID))
 559                return;
 560
 561        hdev->cpu = cpu;
 562        per_cpu(cpu_hpet_dev, cpu) = hdev;
 563        evt->name = hdev->name;
 564        hpet_setup_irq(hdev);
 565        evt->irq = hdev->irq;
 566
 567        evt->rating = 110;
 568        evt->features = CLOCK_EVT_FEAT_ONESHOT;
 569        if (hdev->flags & HPET_DEV_PERI_CAP) {
 570                evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 571                evt->set_state_periodic = hpet_msi_set_periodic;
 572        }
 573
 574        evt->set_state_shutdown = hpet_msi_shutdown;
 575        evt->set_state_oneshot = hpet_msi_set_oneshot;
 576        evt->tick_resume = hpet_msi_resume;
 577        evt->set_next_event = hpet_msi_next_event;
 578        evt->cpumask = cpumask_of(hdev->cpu);
 579
 580        clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 581                                        0x7FFFFFFF);
 582}
 583
 584#ifdef CONFIG_HPET
 585/* Reserve at least one timer for userspace (/dev/hpet) */
 586#define RESERVE_TIMERS 1
 587#else
 588#define RESERVE_TIMERS 0
 589#endif
 590
 591static void hpet_msi_capability_lookup(unsigned int start_timer)
 592{
 593        unsigned int id;
 594        unsigned int num_timers;
 595        unsigned int num_timers_used = 0;
 596        int i, irq;
 597
 598        if (hpet_msi_disable)
 599                return;
 600
 601        if (boot_cpu_has(X86_FEATURE_ARAT))
 602                return;
 603        id = hpet_readl(HPET_ID);
 604
 605        num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 606        num_timers++; /* Value read out starts from 0 */
 607        hpet_print_config();
 608
 609        hpet_domain = hpet_create_irq_domain(hpet_blockid);
 610        if (!hpet_domain)
 611                return;
 612
 613        hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 614        if (!hpet_devs)
 615                return;
 616
 617        hpet_num_timers = num_timers;
 618
 619        for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 620                struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 621                unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 622
 623                /* Only consider HPET timer with MSI support */
 624                if (!(cfg & HPET_TN_FSB_CAP))
 625                        continue;
 626
 627                hdev->flags = 0;
 628                if (cfg & HPET_TN_PERIODIC_CAP)
 629                        hdev->flags |= HPET_DEV_PERI_CAP;
 630                sprintf(hdev->name, "hpet%d", i);
 631                hdev->num = i;
 632
 633                irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
 634                if (irq <= 0)
 635                        continue;
 636
 637                hdev->irq = irq;
 638                hdev->flags |= HPET_DEV_FSB_CAP;
 639                hdev->flags |= HPET_DEV_VALID;
 640                num_timers_used++;
 641                if (num_timers_used == num_possible_cpus())
 642                        break;
 643        }
 644
 645        printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 646                num_timers, num_timers_used);
 647}
 648
 649#ifdef CONFIG_HPET
 650static void hpet_reserve_msi_timers(struct hpet_data *hd)
 651{
 652        int i;
 653
 654        if (!hpet_devs)
 655                return;
 656
 657        for (i = 0; i < hpet_num_timers; i++) {
 658                struct hpet_dev *hdev = &hpet_devs[i];
 659
 660                if (!(hdev->flags & HPET_DEV_VALID))
 661                        continue;
 662
 663                hd->hd_irq[hdev->num] = hdev->irq;
 664                hpet_reserve_timer(hd, hdev->num);
 665        }
 666}
 667#endif
 668
 669static struct hpet_dev *hpet_get_unused_timer(void)
 670{
 671        int i;
 672
 673        if (!hpet_devs)
 674                return NULL;
 675
 676        for (i = 0; i < hpet_num_timers; i++) {
 677                struct hpet_dev *hdev = &hpet_devs[i];
 678
 679                if (!(hdev->flags & HPET_DEV_VALID))
 680                        continue;
 681                if (test_and_set_bit(HPET_DEV_USED_BIT,
 682                        (unsigned long *)&hdev->flags))
 683                        continue;
 684                return hdev;
 685        }
 686        return NULL;
 687}
 688
 689struct hpet_work_struct {
 690        struct delayed_work work;
 691        struct completion complete;
 692};
 693
 694static void hpet_work(struct work_struct *w)
 695{
 696        struct hpet_dev *hdev;
 697        int cpu = smp_processor_id();
 698        struct hpet_work_struct *hpet_work;
 699
 700        hpet_work = container_of(w, struct hpet_work_struct, work.work);
 701
 702        hdev = hpet_get_unused_timer();
 703        if (hdev)
 704                init_one_hpet_msi_clockevent(hdev, cpu);
 705
 706        complete(&hpet_work->complete);
 707}
 708
 709static int hpet_cpuhp_online(unsigned int cpu)
 710{
 711        struct hpet_work_struct work;
 712
 713        INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 714        init_completion(&work.complete);
 715        /* FIXME: add schedule_work_on() */
 716        schedule_delayed_work_on(cpu, &work.work, 0);
 717        wait_for_completion(&work.complete);
 718        destroy_delayed_work_on_stack(&work.work);
 719        return 0;
 720}
 721
 722static int hpet_cpuhp_dead(unsigned int cpu)
 723{
 724        struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 725
 726        if (!hdev)
 727                return 0;
 728        free_irq(hdev->irq, hdev);
 729        hdev->flags &= ~HPET_DEV_USED;
 730        per_cpu(cpu_hpet_dev, cpu) = NULL;
 731        return 0;
 732}
 733#else
 734
 735static void hpet_msi_capability_lookup(unsigned int start_timer)
 736{
 737        return;
 738}
 739
 740#ifdef CONFIG_HPET
 741static void hpet_reserve_msi_timers(struct hpet_data *hd)
 742{
 743        return;
 744}
 745#endif
 746
 747#define hpet_cpuhp_online       NULL
 748#define hpet_cpuhp_dead         NULL
 749
 750#endif
 751
 752/*
 753 * Clock source related code
 754 */
 755#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 756/*
 757 * Reading the HPET counter is a very slow operation. If a large number of
 758 * CPUs are trying to access the HPET counter simultaneously, it can cause
 759 * massive delay and slow down system performance dramatically. This may
 760 * happen when HPET is the default clock source instead of TSC. For a
 761 * really large system with hundreds of CPUs, the slowdown may be so
 762 * severe that it may actually crash the system because of a NMI watchdog
 763 * soft lockup, for example.
 764 *
 765 * If multiple CPUs are trying to access the HPET counter at the same time,
 766 * we don't actually need to read the counter multiple times. Instead, the
 767 * other CPUs can use the counter value read by the first CPU in the group.
 768 *
 769 * This special feature is only enabled on x86-64 systems. It is unlikely
 770 * that 32-bit x86 systems will have enough CPUs to require this feature
 771 * with its associated locking overhead. And we also need 64-bit atomic
 772 * read.
 773 *
 774 * The lock and the hpet value are stored together and can be read in a
 775 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 776 * is 32 bits in size.
 777 */
 778union hpet_lock {
 779        struct {
 780                arch_spinlock_t lock;
 781                u32 value;
 782        };
 783        u64 lockval;
 784};
 785
 786static union hpet_lock hpet __cacheline_aligned = {
 787        { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 788};
 789
 790static u64 read_hpet(struct clocksource *cs)
 791{
 792        unsigned long flags;
 793        union hpet_lock old, new;
 794
 795        BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 796
 797        /*
 798         * Read HPET directly if in NMI.
 799         */
 800        if (in_nmi())
 801                return (u64)hpet_readl(HPET_COUNTER);
 802
 803        /*
 804         * Read the current state of the lock and HPET value atomically.
 805         */
 806        old.lockval = READ_ONCE(hpet.lockval);
 807
 808        if (arch_spin_is_locked(&old.lock))
 809                goto contended;
 810
 811        local_irq_save(flags);
 812        if (arch_spin_trylock(&hpet.lock)) {
 813                new.value = hpet_readl(HPET_COUNTER);
 814                /*
 815                 * Use WRITE_ONCE() to prevent store tearing.
 816                 */
 817                WRITE_ONCE(hpet.value, new.value);
 818                arch_spin_unlock(&hpet.lock);
 819                local_irq_restore(flags);
 820                return (u64)new.value;
 821        }
 822        local_irq_restore(flags);
 823
 824contended:
 825        /*
 826         * Contended case
 827         * --------------
 828         * Wait until the HPET value change or the lock is free to indicate
 829         * its value is up-to-date.
 830         *
 831         * It is possible that old.value has already contained the latest
 832         * HPET value while the lock holder was in the process of releasing
 833         * the lock. Checking for lock state change will enable us to return
 834         * the value immediately instead of waiting for the next HPET reader
 835         * to come along.
 836         */
 837        do {
 838                cpu_relax();
 839                new.lockval = READ_ONCE(hpet.lockval);
 840        } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 841
 842        return (u64)new.value;
 843}
 844#else
 845/*
 846 * For UP or 32-bit.
 847 */
 848static u64 read_hpet(struct clocksource *cs)
 849{
 850        return (u64)hpet_readl(HPET_COUNTER);
 851}
 852#endif
 853
 854static struct clocksource clocksource_hpet = {
 855        .name           = "hpet",
 856        .rating         = 250,
 857        .read           = read_hpet,
 858        .mask           = HPET_MASK,
 859        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 860        .resume         = hpet_resume_counter,
 861};
 862
 863static int hpet_clocksource_register(void)
 864{
 865        u64 start, now;
 866        u64 t1;
 867
 868        /* Start the counter */
 869        hpet_restart_counter();
 870
 871        /* Verify whether hpet counter works */
 872        t1 = hpet_readl(HPET_COUNTER);
 873        start = rdtsc();
 874
 875        /*
 876         * We don't know the TSC frequency yet, but waiting for
 877         * 200000 TSC cycles is safe:
 878         * 4 GHz == 50us
 879         * 1 GHz == 200us
 880         */
 881        do {
 882                rep_nop();
 883                now = rdtsc();
 884        } while ((now - start) < 200000UL);
 885
 886        if (t1 == hpet_readl(HPET_COUNTER)) {
 887                printk(KERN_WARNING
 888                       "HPET counter not counting. HPET disabled\n");
 889                return -ENODEV;
 890        }
 891
 892        clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 893        return 0;
 894}
 895
 896static u32 *hpet_boot_cfg;
 897
 898/**
 899 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 900 */
 901int __init hpet_enable(void)
 902{
 903        u32 hpet_period, cfg, id;
 904        u64 freq;
 905        unsigned int i, last;
 906
 907        if (!is_hpet_capable())
 908                return 0;
 909
 910        hpet_set_mapping();
 911
 912        /*
 913         * Read the period and check for a sane value:
 914         */
 915        hpet_period = hpet_readl(HPET_PERIOD);
 916
 917        /*
 918         * AMD SB700 based systems with spread spectrum enabled use a
 919         * SMM based HPET emulation to provide proper frequency
 920         * setting. The SMM code is initialized with the first HPET
 921         * register access and takes some time to complete. During
 922         * this time the config register reads 0xffffffff. We check
 923         * for max. 1000 loops whether the config register reads a non
 924         * 0xffffffff value to make sure that HPET is up and running
 925         * before we go further. A counting loop is safe, as the HPET
 926         * access takes thousands of CPU cycles. On non SB700 based
 927         * machines this check is only done once and has no side
 928         * effects.
 929         */
 930        for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 931                if (i == 1000) {
 932                        printk(KERN_WARNING
 933                               "HPET config register value = 0xFFFFFFFF. "
 934                               "Disabling HPET\n");
 935                        goto out_nohpet;
 936                }
 937        }
 938
 939        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 940                goto out_nohpet;
 941
 942        /*
 943         * The period is a femto seconds value. Convert it to a
 944         * frequency.
 945         */
 946        freq = FSEC_PER_SEC;
 947        do_div(freq, hpet_period);
 948        hpet_freq = freq;
 949
 950        /*
 951         * Read the HPET ID register to retrieve the IRQ routing
 952         * information and the number of channels
 953         */
 954        id = hpet_readl(HPET_ID);
 955        hpet_print_config();
 956
 957        last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 958
 959#ifdef CONFIG_HPET_EMULATE_RTC
 960        /*
 961         * The legacy routing mode needs at least two channels, tick timer
 962         * and the rtc emulation channel.
 963         */
 964        if (!last)
 965                goto out_nohpet;
 966#endif
 967
 968        cfg = hpet_readl(HPET_CFG);
 969        hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 970                                GFP_KERNEL);
 971        if (hpet_boot_cfg)
 972                *hpet_boot_cfg = cfg;
 973        else
 974                pr_warn("HPET initial state will not be saved\n");
 975        cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 976        hpet_writel(cfg, HPET_CFG);
 977        if (cfg)
 978                pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 979                        cfg);
 980
 981        for (i = 0; i <= last; ++i) {
 982                cfg = hpet_readl(HPET_Tn_CFG(i));
 983                if (hpet_boot_cfg)
 984                        hpet_boot_cfg[i + 1] = cfg;
 985                cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 986                hpet_writel(cfg, HPET_Tn_CFG(i));
 987                cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 988                         | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 989                         | HPET_TN_FSB | HPET_TN_FSB_CAP);
 990                if (cfg)
 991                        pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 992                                cfg, i);
 993        }
 994        hpet_print_config();
 995
 996        if (hpet_clocksource_register())
 997                goto out_nohpet;
 998
 999        if (id & HPET_ID_LEGSUP) {
1000                hpet_legacy_clockevent_register();
1001                return 1;
1002        }
1003        return 0;
1004
1005out_nohpet:
1006        hpet_clear_mapping();
1007        hpet_address = 0;
1008        return 0;
1009}
1010
1011/*
1012 * Needs to be late, as the reserve_timer code calls kalloc !
1013 *
1014 * Not a problem on i386 as hpet_enable is called from late_time_init,
1015 * but on x86_64 it is necessary !
1016 */
1017static __init int hpet_late_init(void)
1018{
1019        int ret;
1020
1021        if (boot_hpet_disable)
1022                return -ENODEV;
1023
1024        if (!hpet_address) {
1025                if (!force_hpet_address)
1026                        return -ENODEV;
1027
1028                hpet_address = force_hpet_address;
1029                hpet_enable();
1030        }
1031
1032        if (!hpet_virt_address)
1033                return -ENODEV;
1034
1035        if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1036                hpet_msi_capability_lookup(2);
1037        else
1038                hpet_msi_capability_lookup(0);
1039
1040        hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1041        hpet_print_config();
1042
1043        if (hpet_msi_disable)
1044                return 0;
1045
1046        if (boot_cpu_has(X86_FEATURE_ARAT))
1047                return 0;
1048
1049        /* This notifier should be called after workqueue is ready */
1050        ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1051                                hpet_cpuhp_online, NULL);
1052        if (ret)
1053                return ret;
1054        ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1055                                hpet_cpuhp_dead);
1056        if (ret)
1057                goto err_cpuhp;
1058        return 0;
1059
1060err_cpuhp:
1061        cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1062        return ret;
1063}
1064fs_initcall(hpet_late_init);
1065
1066void hpet_disable(void)
1067{
1068        if (is_hpet_capable() && hpet_virt_address) {
1069                unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1070
1071                if (hpet_boot_cfg)
1072                        cfg = *hpet_boot_cfg;
1073                else if (hpet_legacy_int_enabled) {
1074                        cfg &= ~HPET_CFG_LEGACY;
1075                        hpet_legacy_int_enabled = false;
1076                }
1077                cfg &= ~HPET_CFG_ENABLE;
1078                hpet_writel(cfg, HPET_CFG);
1079
1080                if (!hpet_boot_cfg)
1081                        return;
1082
1083                id = hpet_readl(HPET_ID);
1084                last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1085
1086                for (id = 0; id <= last; ++id)
1087                        hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1088
1089                if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1090                        hpet_writel(*hpet_boot_cfg, HPET_CFG);
1091        }
1092}
1093
1094#ifdef CONFIG_HPET_EMULATE_RTC
1095
1096/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1097 * is enabled, we support RTC interrupt functionality in software.
1098 * RTC has 3 kinds of interrupts:
1099 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1100 *    is updated
1101 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1102 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1103 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1104 * (1) and (2) above are implemented using polling at a frequency of
1105 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1106 * overhead. (DEFAULT_RTC_INT_FREQ)
1107 * For (3), we use interrupts at 64Hz or user specified periodic
1108 * frequency, whichever is higher.
1109 */
1110#include <linux/mc146818rtc.h>
1111#include <linux/rtc.h>
1112
1113#define DEFAULT_RTC_INT_FREQ    64
1114#define DEFAULT_RTC_SHIFT       6
1115#define RTC_NUM_INTS            1
1116
1117static unsigned long hpet_rtc_flags;
1118static int hpet_prev_update_sec;
1119static struct rtc_time hpet_alarm_time;
1120static unsigned long hpet_pie_count;
1121static u32 hpet_t1_cmp;
1122static u32 hpet_default_delta;
1123static u32 hpet_pie_delta;
1124static unsigned long hpet_pie_limit;
1125
1126static rtc_irq_handler irq_handler;
1127
1128/*
1129 * Check that the hpet counter c1 is ahead of the c2
1130 */
1131static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1132{
1133        return (s32)(c2 - c1) < 0;
1134}
1135
1136/*
1137 * Registers a IRQ handler.
1138 */
1139int hpet_register_irq_handler(rtc_irq_handler handler)
1140{
1141        if (!is_hpet_enabled())
1142                return -ENODEV;
1143        if (irq_handler)
1144                return -EBUSY;
1145
1146        irq_handler = handler;
1147
1148        return 0;
1149}
1150EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1151
1152/*
1153 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1154 * and does cleanup.
1155 */
1156void hpet_unregister_irq_handler(rtc_irq_handler handler)
1157{
1158        if (!is_hpet_enabled())
1159                return;
1160
1161        irq_handler = NULL;
1162        hpet_rtc_flags = 0;
1163}
1164EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1165
1166/*
1167 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1168 * is not supported by all HPET implementations for timer 1.
1169 *
1170 * hpet_rtc_timer_init() is called when the rtc is initialized.
1171 */
1172int hpet_rtc_timer_init(void)
1173{
1174        unsigned int cfg, cnt, delta;
1175        unsigned long flags;
1176
1177        if (!is_hpet_enabled())
1178                return 0;
1179
1180        if (!hpet_default_delta) {
1181                uint64_t clc;
1182
1183                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1184                clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1185                hpet_default_delta = clc;
1186        }
1187
1188        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1189                delta = hpet_default_delta;
1190        else
1191                delta = hpet_pie_delta;
1192
1193        local_irq_save(flags);
1194
1195        cnt = delta + hpet_readl(HPET_COUNTER);
1196        hpet_writel(cnt, HPET_T1_CMP);
1197        hpet_t1_cmp = cnt;
1198
1199        cfg = hpet_readl(HPET_T1_CFG);
1200        cfg &= ~HPET_TN_PERIODIC;
1201        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1202        hpet_writel(cfg, HPET_T1_CFG);
1203
1204        local_irq_restore(flags);
1205
1206        return 1;
1207}
1208EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1209
1210static void hpet_disable_rtc_channel(void)
1211{
1212        u32 cfg = hpet_readl(HPET_T1_CFG);
1213        cfg &= ~HPET_TN_ENABLE;
1214        hpet_writel(cfg, HPET_T1_CFG);
1215}
1216
1217/*
1218 * The functions below are called from rtc driver.
1219 * Return 0 if HPET is not being used.
1220 * Otherwise do the necessary changes and return 1.
1221 */
1222int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1223{
1224        if (!is_hpet_enabled())
1225                return 0;
1226
1227        hpet_rtc_flags &= ~bit_mask;
1228        if (unlikely(!hpet_rtc_flags))
1229                hpet_disable_rtc_channel();
1230
1231        return 1;
1232}
1233EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1234
1235int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1236{
1237        unsigned long oldbits = hpet_rtc_flags;
1238
1239        if (!is_hpet_enabled())
1240                return 0;
1241
1242        hpet_rtc_flags |= bit_mask;
1243
1244        if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1245                hpet_prev_update_sec = -1;
1246
1247        if (!oldbits)
1248                hpet_rtc_timer_init();
1249
1250        return 1;
1251}
1252EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1253
1254int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1255                        unsigned char sec)
1256{
1257        if (!is_hpet_enabled())
1258                return 0;
1259
1260        hpet_alarm_time.tm_hour = hrs;
1261        hpet_alarm_time.tm_min = min;
1262        hpet_alarm_time.tm_sec = sec;
1263
1264        return 1;
1265}
1266EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1267
1268int hpet_set_periodic_freq(unsigned long freq)
1269{
1270        uint64_t clc;
1271
1272        if (!is_hpet_enabled())
1273                return 0;
1274
1275        if (freq <= DEFAULT_RTC_INT_FREQ)
1276                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1277        else {
1278                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1279                do_div(clc, freq);
1280                clc >>= hpet_clockevent.shift;
1281                hpet_pie_delta = clc;
1282                hpet_pie_limit = 0;
1283        }
1284        return 1;
1285}
1286EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1287
1288int hpet_rtc_dropped_irq(void)
1289{
1290        return is_hpet_enabled();
1291}
1292EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1293
1294static void hpet_rtc_timer_reinit(void)
1295{
1296        unsigned int delta;
1297        int lost_ints = -1;
1298
1299        if (unlikely(!hpet_rtc_flags))
1300                hpet_disable_rtc_channel();
1301
1302        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1303                delta = hpet_default_delta;
1304        else
1305                delta = hpet_pie_delta;
1306
1307        /*
1308         * Increment the comparator value until we are ahead of the
1309         * current count.
1310         */
1311        do {
1312                hpet_t1_cmp += delta;
1313                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1314                lost_ints++;
1315        } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1316
1317        if (lost_ints) {
1318                if (hpet_rtc_flags & RTC_PIE)
1319                        hpet_pie_count += lost_ints;
1320                if (printk_ratelimit())
1321                        printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1322                                lost_ints);
1323        }
1324}
1325
1326irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1327{
1328        struct rtc_time curr_time;
1329        unsigned long rtc_int_flag = 0;
1330
1331        hpet_rtc_timer_reinit();
1332        memset(&curr_time, 0, sizeof(struct rtc_time));
1333
1334        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1335                mc146818_get_time(&curr_time);
1336
1337        if (hpet_rtc_flags & RTC_UIE &&
1338            curr_time.tm_sec != hpet_prev_update_sec) {
1339                if (hpet_prev_update_sec >= 0)
1340                        rtc_int_flag = RTC_UF;
1341                hpet_prev_update_sec = curr_time.tm_sec;
1342        }
1343
1344        if (hpet_rtc_flags & RTC_PIE &&
1345            ++hpet_pie_count >= hpet_pie_limit) {
1346                rtc_int_flag |= RTC_PF;
1347                hpet_pie_count = 0;
1348        }
1349
1350        if (hpet_rtc_flags & RTC_AIE &&
1351            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1352            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1353            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1354                        rtc_int_flag |= RTC_AF;
1355
1356        if (rtc_int_flag) {
1357                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1358                if (irq_handler)
1359                        irq_handler(rtc_int_flag, dev_id);
1360        }
1361        return IRQ_HANDLED;
1362}
1363EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1364#endif
1365