linux/arch/x86/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/prctl.h>
   9#include <linux/slab.h>
  10#include <linux/sched.h>
  11#include <linux/sched/idle.h>
  12#include <linux/sched/debug.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/pm.h>
  18#include <linux/tick.h>
  19#include <linux/random.h>
  20#include <linux/user-return-notifier.h>
  21#include <linux/dmi.h>
  22#include <linux/utsname.h>
  23#include <linux/stackprotector.h>
  24#include <linux/cpuidle.h>
  25#include <trace/events/power.h>
  26#include <linux/hw_breakpoint.h>
  27#include <asm/cpu.h>
  28#include <asm/apic.h>
  29#include <asm/syscalls.h>
  30#include <linux/uaccess.h>
  31#include <asm/mwait.h>
  32#include <asm/fpu/internal.h>
  33#include <asm/debugreg.h>
  34#include <asm/nmi.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mce.h>
  37#include <asm/vm86.h>
  38#include <asm/switch_to.h>
  39#include <asm/desc.h>
  40#include <asm/prctl.h>
  41#include <asm/spec-ctrl.h>
  42
  43/*
  44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  46 * so they are allowed to end up in the .data..cacheline_aligned
  47 * section. Since TSS's are completely CPU-local, we want them
  48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  49 */
  50__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  51        .x86_tss = {
  52                /*
  53                 * .sp0 is only used when entering ring 0 from a lower
  54                 * privilege level.  Since the init task never runs anything
  55                 * but ring 0 code, there is no need for a valid value here.
  56                 * Poison it.
  57                 */
  58                .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  59
  60#ifdef CONFIG_X86_64
  61                /*
  62                 * .sp1 is cpu_current_top_of_stack.  The init task never
  63                 * runs user code, but cpu_current_top_of_stack should still
  64                 * be well defined before the first context switch.
  65                 */
  66                .sp1 = TOP_OF_INIT_STACK,
  67#endif
  68
  69#ifdef CONFIG_X86_32
  70                .ss0 = __KERNEL_DS,
  71                .ss1 = __KERNEL_CS,
  72                .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  73#endif
  74         },
  75#ifdef CONFIG_X86_32
  76         /*
  77          * Note that the .io_bitmap member must be extra-big. This is because
  78          * the CPU will access an additional byte beyond the end of the IO
  79          * permission bitmap. The extra byte must be all 1 bits, and must
  80          * be within the limit.
  81          */
  82        .io_bitmap              = { [0 ... IO_BITMAP_LONGS] = ~0 },
  83#endif
  84};
  85EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  86
  87DEFINE_PER_CPU(bool, __tss_limit_invalid);
  88EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  89
  90/*
  91 * this gets called so that we can store lazy state into memory and copy the
  92 * current task into the new thread.
  93 */
  94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  95{
  96        memcpy(dst, src, arch_task_struct_size);
  97#ifdef CONFIG_VM86
  98        dst->thread.vm86 = NULL;
  99#endif
 100
 101        return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 102}
 103
 104/*
 105 * Free current thread data structures etc..
 106 */
 107void exit_thread(struct task_struct *tsk)
 108{
 109        struct thread_struct *t = &tsk->thread;
 110        unsigned long *bp = t->io_bitmap_ptr;
 111        struct fpu *fpu = &t->fpu;
 112
 113        if (bp) {
 114                struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
 115
 116                t->io_bitmap_ptr = NULL;
 117                clear_thread_flag(TIF_IO_BITMAP);
 118                /*
 119                 * Careful, clear this in the TSS too:
 120                 */
 121                memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 122                t->io_bitmap_max = 0;
 123                put_cpu();
 124                kfree(bp);
 125        }
 126
 127        free_vm86(t);
 128
 129        fpu__drop(fpu);
 130}
 131
 132void flush_thread(void)
 133{
 134        struct task_struct *tsk = current;
 135
 136        flush_ptrace_hw_breakpoint(tsk);
 137        memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 138
 139        fpu__clear(&tsk->thread.fpu);
 140}
 141
 142void disable_TSC(void)
 143{
 144        preempt_disable();
 145        if (!test_and_set_thread_flag(TIF_NOTSC))
 146                /*
 147                 * Must flip the CPU state synchronously with
 148                 * TIF_NOTSC in the current running context.
 149                 */
 150                cr4_set_bits(X86_CR4_TSD);
 151        preempt_enable();
 152}
 153
 154static void enable_TSC(void)
 155{
 156        preempt_disable();
 157        if (test_and_clear_thread_flag(TIF_NOTSC))
 158                /*
 159                 * Must flip the CPU state synchronously with
 160                 * TIF_NOTSC in the current running context.
 161                 */
 162                cr4_clear_bits(X86_CR4_TSD);
 163        preempt_enable();
 164}
 165
 166int get_tsc_mode(unsigned long adr)
 167{
 168        unsigned int val;
 169
 170        if (test_thread_flag(TIF_NOTSC))
 171                val = PR_TSC_SIGSEGV;
 172        else
 173                val = PR_TSC_ENABLE;
 174
 175        return put_user(val, (unsigned int __user *)adr);
 176}
 177
 178int set_tsc_mode(unsigned int val)
 179{
 180        if (val == PR_TSC_SIGSEGV)
 181                disable_TSC();
 182        else if (val == PR_TSC_ENABLE)
 183                enable_TSC();
 184        else
 185                return -EINVAL;
 186
 187        return 0;
 188}
 189
 190DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 191
 192static void set_cpuid_faulting(bool on)
 193{
 194        u64 msrval;
 195
 196        msrval = this_cpu_read(msr_misc_features_shadow);
 197        msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 198        msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 199        this_cpu_write(msr_misc_features_shadow, msrval);
 200        wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 201}
 202
 203static void disable_cpuid(void)
 204{
 205        preempt_disable();
 206        if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 207                /*
 208                 * Must flip the CPU state synchronously with
 209                 * TIF_NOCPUID in the current running context.
 210                 */
 211                set_cpuid_faulting(true);
 212        }
 213        preempt_enable();
 214}
 215
 216static void enable_cpuid(void)
 217{
 218        preempt_disable();
 219        if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 220                /*
 221                 * Must flip the CPU state synchronously with
 222                 * TIF_NOCPUID in the current running context.
 223                 */
 224                set_cpuid_faulting(false);
 225        }
 226        preempt_enable();
 227}
 228
 229static int get_cpuid_mode(void)
 230{
 231        return !test_thread_flag(TIF_NOCPUID);
 232}
 233
 234static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
 235{
 236        if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
 237                return -ENODEV;
 238
 239        if (cpuid_enabled)
 240                enable_cpuid();
 241        else
 242                disable_cpuid();
 243
 244        return 0;
 245}
 246
 247/*
 248 * Called immediately after a successful exec.
 249 */
 250void arch_setup_new_exec(void)
 251{
 252        /* If cpuid was previously disabled for this task, re-enable it. */
 253        if (test_thread_flag(TIF_NOCPUID))
 254                enable_cpuid();
 255}
 256
 257static inline void switch_to_bitmap(struct tss_struct *tss,
 258                                    struct thread_struct *prev,
 259                                    struct thread_struct *next,
 260                                    unsigned long tifp, unsigned long tifn)
 261{
 262        if (tifn & _TIF_IO_BITMAP) {
 263                /*
 264                 * Copy the relevant range of the IO bitmap.
 265                 * Normally this is 128 bytes or less:
 266                 */
 267                memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 268                       max(prev->io_bitmap_max, next->io_bitmap_max));
 269                /*
 270                 * Make sure that the TSS limit is correct for the CPU
 271                 * to notice the IO bitmap.
 272                 */
 273                refresh_tss_limit();
 274        } else if (tifp & _TIF_IO_BITMAP) {
 275                /*
 276                 * Clear any possible leftover bits:
 277                 */
 278                memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 279        }
 280}
 281
 282#ifdef CONFIG_SMP
 283
 284struct ssb_state {
 285        struct ssb_state        *shared_state;
 286        raw_spinlock_t          lock;
 287        unsigned int            disable_state;
 288        unsigned long           local_state;
 289};
 290
 291#define LSTATE_SSB      0
 292
 293static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 294
 295void speculative_store_bypass_ht_init(void)
 296{
 297        struct ssb_state *st = this_cpu_ptr(&ssb_state);
 298        unsigned int this_cpu = smp_processor_id();
 299        unsigned int cpu;
 300
 301        st->local_state = 0;
 302
 303        /*
 304         * Shared state setup happens once on the first bringup
 305         * of the CPU. It's not destroyed on CPU hotunplug.
 306         */
 307        if (st->shared_state)
 308                return;
 309
 310        raw_spin_lock_init(&st->lock);
 311
 312        /*
 313         * Go over HT siblings and check whether one of them has set up the
 314         * shared state pointer already.
 315         */
 316        for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 317                if (cpu == this_cpu)
 318                        continue;
 319
 320                if (!per_cpu(ssb_state, cpu).shared_state)
 321                        continue;
 322
 323                /* Link it to the state of the sibling: */
 324                st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 325                return;
 326        }
 327
 328        /*
 329         * First HT sibling to come up on the core.  Link shared state of
 330         * the first HT sibling to itself. The siblings on the same core
 331         * which come up later will see the shared state pointer and link
 332         * themself to the state of this CPU.
 333         */
 334        st->shared_state = st;
 335}
 336
 337/*
 338 * Logic is: First HT sibling enables SSBD for both siblings in the core
 339 * and last sibling to disable it, disables it for the whole core. This how
 340 * MSR_SPEC_CTRL works in "hardware":
 341 *
 342 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 343 */
 344static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 345{
 346        struct ssb_state *st = this_cpu_ptr(&ssb_state);
 347        u64 msr = x86_amd_ls_cfg_base;
 348
 349        if (!static_cpu_has(X86_FEATURE_ZEN)) {
 350                msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 351                wrmsrl(MSR_AMD64_LS_CFG, msr);
 352                return;
 353        }
 354
 355        if (tifn & _TIF_SSBD) {
 356                /*
 357                 * Since this can race with prctl(), block reentry on the
 358                 * same CPU.
 359                 */
 360                if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 361                        return;
 362
 363                msr |= x86_amd_ls_cfg_ssbd_mask;
 364
 365                raw_spin_lock(&st->shared_state->lock);
 366                /* First sibling enables SSBD: */
 367                if (!st->shared_state->disable_state)
 368                        wrmsrl(MSR_AMD64_LS_CFG, msr);
 369                st->shared_state->disable_state++;
 370                raw_spin_unlock(&st->shared_state->lock);
 371        } else {
 372                if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 373                        return;
 374
 375                raw_spin_lock(&st->shared_state->lock);
 376                st->shared_state->disable_state--;
 377                if (!st->shared_state->disable_state)
 378                        wrmsrl(MSR_AMD64_LS_CFG, msr);
 379                raw_spin_unlock(&st->shared_state->lock);
 380        }
 381}
 382#else
 383static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 384{
 385        u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 386
 387        wrmsrl(MSR_AMD64_LS_CFG, msr);
 388}
 389#endif
 390
 391static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 392{
 393        /*
 394         * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 395         * so ssbd_tif_to_spec_ctrl() just works.
 396         */
 397        wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 398}
 399
 400static __always_inline void intel_set_ssb_state(unsigned long tifn)
 401{
 402        u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
 403
 404        wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 405}
 406
 407static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
 408{
 409        if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
 410                amd_set_ssb_virt_state(tifn);
 411        else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
 412                amd_set_core_ssb_state(tifn);
 413        else
 414                intel_set_ssb_state(tifn);
 415}
 416
 417void speculative_store_bypass_update(unsigned long tif)
 418{
 419        preempt_disable();
 420        __speculative_store_bypass_update(tif);
 421        preempt_enable();
 422}
 423
 424void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 425                      struct tss_struct *tss)
 426{
 427        struct thread_struct *prev, *next;
 428        unsigned long tifp, tifn;
 429
 430        prev = &prev_p->thread;
 431        next = &next_p->thread;
 432
 433        tifn = READ_ONCE(task_thread_info(next_p)->flags);
 434        tifp = READ_ONCE(task_thread_info(prev_p)->flags);
 435        switch_to_bitmap(tss, prev, next, tifp, tifn);
 436
 437        propagate_user_return_notify(prev_p, next_p);
 438
 439        if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 440            arch_has_block_step()) {
 441                unsigned long debugctl, msk;
 442
 443                rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 444                debugctl &= ~DEBUGCTLMSR_BTF;
 445                msk = tifn & _TIF_BLOCKSTEP;
 446                debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 447                wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 448        }
 449
 450        if ((tifp ^ tifn) & _TIF_NOTSC)
 451                cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 452
 453        if ((tifp ^ tifn) & _TIF_NOCPUID)
 454                set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 455
 456        if ((tifp ^ tifn) & _TIF_SSBD)
 457                __speculative_store_bypass_update(tifn);
 458}
 459
 460/*
 461 * Idle related variables and functions
 462 */
 463unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 464EXPORT_SYMBOL(boot_option_idle_override);
 465
 466static void (*x86_idle)(void);
 467
 468#ifndef CONFIG_SMP
 469static inline void play_dead(void)
 470{
 471        BUG();
 472}
 473#endif
 474
 475void arch_cpu_idle_enter(void)
 476{
 477        tsc_verify_tsc_adjust(false);
 478        local_touch_nmi();
 479}
 480
 481void arch_cpu_idle_dead(void)
 482{
 483        play_dead();
 484}
 485
 486/*
 487 * Called from the generic idle code.
 488 */
 489void arch_cpu_idle(void)
 490{
 491        x86_idle();
 492}
 493
 494/*
 495 * We use this if we don't have any better idle routine..
 496 */
 497void __cpuidle default_idle(void)
 498{
 499        trace_cpu_idle_rcuidle(1, smp_processor_id());
 500        safe_halt();
 501        trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 502}
 503#ifdef CONFIG_APM_MODULE
 504EXPORT_SYMBOL(default_idle);
 505#endif
 506
 507#ifdef CONFIG_XEN
 508bool xen_set_default_idle(void)
 509{
 510        bool ret = !!x86_idle;
 511
 512        x86_idle = default_idle;
 513
 514        return ret;
 515}
 516#endif
 517
 518void stop_this_cpu(void *dummy)
 519{
 520        local_irq_disable();
 521        /*
 522         * Remove this CPU:
 523         */
 524        set_cpu_online(smp_processor_id(), false);
 525        disable_local_APIC();
 526        mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 527
 528        /*
 529         * Use wbinvd on processors that support SME. This provides support
 530         * for performing a successful kexec when going from SME inactive
 531         * to SME active (or vice-versa). The cache must be cleared so that
 532         * if there are entries with the same physical address, both with and
 533         * without the encryption bit, they don't race each other when flushed
 534         * and potentially end up with the wrong entry being committed to
 535         * memory.
 536         */
 537        if (boot_cpu_has(X86_FEATURE_SME))
 538                native_wbinvd();
 539        for (;;) {
 540                /*
 541                 * Use native_halt() so that memory contents don't change
 542                 * (stack usage and variables) after possibly issuing the
 543                 * native_wbinvd() above.
 544                 */
 545                native_halt();
 546        }
 547}
 548
 549/*
 550 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 551 * states (local apic timer and TSC stop).
 552 */
 553static void amd_e400_idle(void)
 554{
 555        /*
 556         * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 557         * gets set after static_cpu_has() places have been converted via
 558         * alternatives.
 559         */
 560        if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 561                default_idle();
 562                return;
 563        }
 564
 565        tick_broadcast_enter();
 566
 567        default_idle();
 568
 569        /*
 570         * The switch back from broadcast mode needs to be called with
 571         * interrupts disabled.
 572         */
 573        local_irq_disable();
 574        tick_broadcast_exit();
 575        local_irq_enable();
 576}
 577
 578/*
 579 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 580 * We can't rely on cpuidle installing MWAIT, because it will not load
 581 * on systems that support only C1 -- so the boot default must be MWAIT.
 582 *
 583 * Some AMD machines are the opposite, they depend on using HALT.
 584 *
 585 * So for default C1, which is used during boot until cpuidle loads,
 586 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 587 */
 588static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 589{
 590        if (c->x86_vendor != X86_VENDOR_INTEL)
 591                return 0;
 592
 593        if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
 594                return 0;
 595
 596        return 1;
 597}
 598
 599/*
 600 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 601 * with interrupts enabled and no flags, which is backwards compatible with the
 602 * original MWAIT implementation.
 603 */
 604static __cpuidle void mwait_idle(void)
 605{
 606        if (!current_set_polling_and_test()) {
 607                trace_cpu_idle_rcuidle(1, smp_processor_id());
 608                if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 609                        mb(); /* quirk */
 610                        clflush((void *)&current_thread_info()->flags);
 611                        mb(); /* quirk */
 612                }
 613
 614                __monitor((void *)&current_thread_info()->flags, 0, 0);
 615                if (!need_resched())
 616                        __sti_mwait(0, 0);
 617                else
 618                        local_irq_enable();
 619                trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 620        } else {
 621                local_irq_enable();
 622        }
 623        __current_clr_polling();
 624}
 625
 626void select_idle_routine(const struct cpuinfo_x86 *c)
 627{
 628#ifdef CONFIG_SMP
 629        if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 630                pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 631#endif
 632        if (x86_idle || boot_option_idle_override == IDLE_POLL)
 633                return;
 634
 635        if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 636                pr_info("using AMD E400 aware idle routine\n");
 637                x86_idle = amd_e400_idle;
 638        } else if (prefer_mwait_c1_over_halt(c)) {
 639                pr_info("using mwait in idle threads\n");
 640                x86_idle = mwait_idle;
 641        } else
 642                x86_idle = default_idle;
 643}
 644
 645void amd_e400_c1e_apic_setup(void)
 646{
 647        if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 648                pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 649                local_irq_disable();
 650                tick_broadcast_force();
 651                local_irq_enable();
 652        }
 653}
 654
 655void __init arch_post_acpi_subsys_init(void)
 656{
 657        u32 lo, hi;
 658
 659        if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 660                return;
 661
 662        /*
 663         * AMD E400 detection needs to happen after ACPI has been enabled. If
 664         * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 665         * MSR_K8_INT_PENDING_MSG.
 666         */
 667        rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 668        if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 669                return;
 670
 671        boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 672
 673        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 674                mark_tsc_unstable("TSC halt in AMD C1E");
 675        pr_info("System has AMD C1E enabled\n");
 676}
 677
 678static int __init idle_setup(char *str)
 679{
 680        if (!str)
 681                return -EINVAL;
 682
 683        if (!strcmp(str, "poll")) {
 684                pr_info("using polling idle threads\n");
 685                boot_option_idle_override = IDLE_POLL;
 686                cpu_idle_poll_ctrl(true);
 687        } else if (!strcmp(str, "halt")) {
 688                /*
 689                 * When the boot option of idle=halt is added, halt is
 690                 * forced to be used for CPU idle. In such case CPU C2/C3
 691                 * won't be used again.
 692                 * To continue to load the CPU idle driver, don't touch
 693                 * the boot_option_idle_override.
 694                 */
 695                x86_idle = default_idle;
 696                boot_option_idle_override = IDLE_HALT;
 697        } else if (!strcmp(str, "nomwait")) {
 698                /*
 699                 * If the boot option of "idle=nomwait" is added,
 700                 * it means that mwait will be disabled for CPU C2/C3
 701                 * states. In such case it won't touch the variable
 702                 * of boot_option_idle_override.
 703                 */
 704                boot_option_idle_override = IDLE_NOMWAIT;
 705        } else
 706                return -1;
 707
 708        return 0;
 709}
 710early_param("idle", idle_setup);
 711
 712unsigned long arch_align_stack(unsigned long sp)
 713{
 714        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 715                sp -= get_random_int() % 8192;
 716        return sp & ~0xf;
 717}
 718
 719unsigned long arch_randomize_brk(struct mm_struct *mm)
 720{
 721        return randomize_page(mm->brk, 0x02000000);
 722}
 723
 724/*
 725 * Called from fs/proc with a reference on @p to find the function
 726 * which called into schedule(). This needs to be done carefully
 727 * because the task might wake up and we might look at a stack
 728 * changing under us.
 729 */
 730unsigned long get_wchan(struct task_struct *p)
 731{
 732        unsigned long start, bottom, top, sp, fp, ip, ret = 0;
 733        int count = 0;
 734
 735        if (!p || p == current || p->state == TASK_RUNNING)
 736                return 0;
 737
 738        if (!try_get_task_stack(p))
 739                return 0;
 740
 741        start = (unsigned long)task_stack_page(p);
 742        if (!start)
 743                goto out;
 744
 745        /*
 746         * Layout of the stack page:
 747         *
 748         * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 749         * PADDING
 750         * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 751         * stack
 752         * ----------- bottom = start
 753         *
 754         * The tasks stack pointer points at the location where the
 755         * framepointer is stored. The data on the stack is:
 756         * ... IP FP ... IP FP
 757         *
 758         * We need to read FP and IP, so we need to adjust the upper
 759         * bound by another unsigned long.
 760         */
 761        top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 762        top -= 2 * sizeof(unsigned long);
 763        bottom = start;
 764
 765        sp = READ_ONCE(p->thread.sp);
 766        if (sp < bottom || sp > top)
 767                goto out;
 768
 769        fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
 770        do {
 771                if (fp < bottom || fp > top)
 772                        goto out;
 773                ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 774                if (!in_sched_functions(ip)) {
 775                        ret = ip;
 776                        goto out;
 777                }
 778                fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 779        } while (count++ < 16 && p->state != TASK_RUNNING);
 780
 781out:
 782        put_task_stack(p);
 783        return ret;
 784}
 785
 786long do_arch_prctl_common(struct task_struct *task, int option,
 787                          unsigned long cpuid_enabled)
 788{
 789        switch (option) {
 790        case ARCH_GET_CPUID:
 791                return get_cpuid_mode();
 792        case ARCH_SET_CPUID:
 793                return set_cpuid_mode(task, cpuid_enabled);
 794        }
 795
 796        return -EINVAL;
 797}
 798