linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#define pr_fmt(fmt) "SVM: " fmt
  19
  20#include <linux/kvm_host.h>
  21
  22#include "irq.h"
  23#include "mmu.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28
  29#include <linux/module.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/kernel.h>
  32#include <linux/vmalloc.h>
  33#include <linux/highmem.h>
  34#include <linux/sched.h>
  35#include <linux/trace_events.h>
  36#include <linux/slab.h>
  37#include <linux/amd-iommu.h>
  38#include <linux/hashtable.h>
  39#include <linux/frame.h>
  40#include <linux/psp-sev.h>
  41#include <linux/file.h>
  42#include <linux/pagemap.h>
  43#include <linux/swap.h>
  44
  45#include <asm/apic.h>
  46#include <asm/perf_event.h>
  47#include <asm/tlbflush.h>
  48#include <asm/desc.h>
  49#include <asm/debugreg.h>
  50#include <asm/kvm_para.h>
  51#include <asm/irq_remapping.h>
  52#include <asm/spec-ctrl.h>
  53
  54#include <asm/virtext.h>
  55#include "trace.h"
  56
  57#define __ex(x) __kvm_handle_fault_on_reboot(x)
  58
  59MODULE_AUTHOR("Qumranet");
  60MODULE_LICENSE("GPL");
  61
  62static const struct x86_cpu_id svm_cpu_id[] = {
  63        X86_FEATURE_MATCH(X86_FEATURE_SVM),
  64        {}
  65};
  66MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  67
  68#define IOPM_ALLOC_ORDER 2
  69#define MSRPM_ALLOC_ORDER 1
  70
  71#define SEG_TYPE_LDT 2
  72#define SEG_TYPE_BUSY_TSS16 3
  73
  74#define SVM_FEATURE_NPT            (1 <<  0)
  75#define SVM_FEATURE_LBRV           (1 <<  1)
  76#define SVM_FEATURE_SVML           (1 <<  2)
  77#define SVM_FEATURE_NRIP           (1 <<  3)
  78#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  79#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  80#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  81#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  82#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  83
  84#define SVM_AVIC_DOORBELL       0xc001011b
  85
  86#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  87#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  88#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  89
  90#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  91
  92#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  93#define TSC_RATIO_MIN           0x0000000000000001ULL
  94#define TSC_RATIO_MAX           0x000000ffffffffffULL
  95
  96#define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
  97
  98/*
  99 * 0xff is broadcast, so the max index allowed for physical APIC ID
 100 * table is 0xfe.  APIC IDs above 0xff are reserved.
 101 */
 102#define AVIC_MAX_PHYSICAL_ID_COUNT      255
 103
 104#define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
 105#define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
 106#define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
 107
 108/* AVIC GATAG is encoded using VM and VCPU IDs */
 109#define AVIC_VCPU_ID_BITS               8
 110#define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
 111
 112#define AVIC_VM_ID_BITS                 24
 113#define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
 114#define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
 115
 116#define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 117                                                (y & AVIC_VCPU_ID_MASK))
 118#define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 119#define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
 120
 121static bool erratum_383_found __read_mostly;
 122
 123static const u32 host_save_user_msrs[] = {
 124#ifdef CONFIG_X86_64
 125        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 126        MSR_FS_BASE,
 127#endif
 128        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 129        MSR_TSC_AUX,
 130};
 131
 132#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 133
 134struct kvm_sev_info {
 135        bool active;            /* SEV enabled guest */
 136        unsigned int asid;      /* ASID used for this guest */
 137        unsigned int handle;    /* SEV firmware handle */
 138        int fd;                 /* SEV device fd */
 139        unsigned long pages_locked; /* Number of pages locked */
 140        struct list_head regions_list;  /* List of registered regions */
 141};
 142
 143struct kvm_svm {
 144        struct kvm kvm;
 145
 146        /* Struct members for AVIC */
 147        u32 avic_vm_id;
 148        u32 ldr_mode;
 149        struct page *avic_logical_id_table_page;
 150        struct page *avic_physical_id_table_page;
 151        struct hlist_node hnode;
 152
 153        struct kvm_sev_info sev_info;
 154};
 155
 156struct kvm_vcpu;
 157
 158struct nested_state {
 159        struct vmcb *hsave;
 160        u64 hsave_msr;
 161        u64 vm_cr_msr;
 162        u64 vmcb;
 163
 164        /* These are the merged vectors */
 165        u32 *msrpm;
 166
 167        /* gpa pointers to the real vectors */
 168        u64 vmcb_msrpm;
 169        u64 vmcb_iopm;
 170
 171        /* A VMEXIT is required but not yet emulated */
 172        bool exit_required;
 173
 174        /* cache for intercepts of the guest */
 175        u32 intercept_cr;
 176        u32 intercept_dr;
 177        u32 intercept_exceptions;
 178        u64 intercept;
 179
 180        /* Nested Paging related state */
 181        u64 nested_cr3;
 182};
 183
 184#define MSRPM_OFFSETS   16
 185static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 186
 187/*
 188 * Set osvw_len to higher value when updated Revision Guides
 189 * are published and we know what the new status bits are
 190 */
 191static uint64_t osvw_len = 4, osvw_status;
 192
 193struct vcpu_svm {
 194        struct kvm_vcpu vcpu;
 195        struct vmcb *vmcb;
 196        unsigned long vmcb_pa;
 197        struct svm_cpu_data *svm_data;
 198        uint64_t asid_generation;
 199        uint64_t sysenter_esp;
 200        uint64_t sysenter_eip;
 201        uint64_t tsc_aux;
 202
 203        u64 msr_decfg;
 204
 205        u64 next_rip;
 206
 207        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 208        struct {
 209                u16 fs;
 210                u16 gs;
 211                u16 ldt;
 212                u64 gs_base;
 213        } host;
 214
 215        u64 spec_ctrl;
 216        /*
 217         * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
 218         * translated into the appropriate L2_CFG bits on the host to
 219         * perform speculative control.
 220         */
 221        u64 virt_spec_ctrl;
 222
 223        u32 *msrpm;
 224
 225        ulong nmi_iret_rip;
 226
 227        struct nested_state nested;
 228
 229        bool nmi_singlestep;
 230        u64 nmi_singlestep_guest_rflags;
 231
 232        unsigned int3_injected;
 233        unsigned long int3_rip;
 234
 235        /* cached guest cpuid flags for faster access */
 236        bool nrips_enabled      : 1;
 237
 238        u32 ldr_reg;
 239        struct page *avic_backing_page;
 240        u64 *avic_physical_id_cache;
 241        bool avic_is_running;
 242
 243        /*
 244         * Per-vcpu list of struct amd_svm_iommu_ir:
 245         * This is used mainly to store interrupt remapping information used
 246         * when update the vcpu affinity. This avoids the need to scan for
 247         * IRTE and try to match ga_tag in the IOMMU driver.
 248         */
 249        struct list_head ir_list;
 250        spinlock_t ir_list_lock;
 251
 252        /* which host CPU was used for running this vcpu */
 253        unsigned int last_cpu;
 254};
 255
 256/*
 257 * This is a wrapper of struct amd_iommu_ir_data.
 258 */
 259struct amd_svm_iommu_ir {
 260        struct list_head node;  /* Used by SVM for per-vcpu ir_list */
 261        void *data;             /* Storing pointer to struct amd_ir_data */
 262};
 263
 264#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
 265#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
 266
 267#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
 268#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
 269#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
 270#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
 271
 272static DEFINE_PER_CPU(u64, current_tsc_ratio);
 273#define TSC_RATIO_DEFAULT       0x0100000000ULL
 274
 275#define MSR_INVALID                     0xffffffffU
 276
 277static const struct svm_direct_access_msrs {
 278        u32 index;   /* Index of the MSR */
 279        bool always; /* True if intercept is always on */
 280} direct_access_msrs[] = {
 281        { .index = MSR_STAR,                            .always = true  },
 282        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 283#ifdef CONFIG_X86_64
 284        { .index = MSR_GS_BASE,                         .always = true  },
 285        { .index = MSR_FS_BASE,                         .always = true  },
 286        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 287        { .index = MSR_LSTAR,                           .always = true  },
 288        { .index = MSR_CSTAR,                           .always = true  },
 289        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 290#endif
 291        { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
 292        { .index = MSR_IA32_PRED_CMD,                   .always = false },
 293        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 294        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 295        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 296        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 297        { .index = MSR_INVALID,                         .always = false },
 298};
 299
 300/* enable NPT for AMD64 and X86 with PAE */
 301#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 302static bool npt_enabled = true;
 303#else
 304static bool npt_enabled;
 305#endif
 306
 307/*
 308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 309 * pause_filter_count: On processors that support Pause filtering(indicated
 310 *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 311 *      count value. On VMRUN this value is loaded into an internal counter.
 312 *      Each time a pause instruction is executed, this counter is decremented
 313 *      until it reaches zero at which time a #VMEXIT is generated if pause
 314 *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 315 *      Intercept Filtering for more details.
 316 *      This also indicate if ple logic enabled.
 317 *
 318 * pause_filter_thresh: In addition, some processor families support advanced
 319 *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 320 *      the amount of time a guest is allowed to execute in a pause loop.
 321 *      In this mode, a 16-bit pause filter threshold field is added in the
 322 *      VMCB. The threshold value is a cycle count that is used to reset the
 323 *      pause counter. As with simple pause filtering, VMRUN loads the pause
 324 *      count value from VMCB into an internal counter. Then, on each pause
 325 *      instruction the hardware checks the elapsed number of cycles since
 326 *      the most recent pause instruction against the pause filter threshold.
 327 *      If the elapsed cycle count is greater than the pause filter threshold,
 328 *      then the internal pause count is reloaded from the VMCB and execution
 329 *      continues. If the elapsed cycle count is less than the pause filter
 330 *      threshold, then the internal pause count is decremented. If the count
 331 *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 332 *      triggered. If advanced pause filtering is supported and pause filter
 333 *      threshold field is set to zero, the filter will operate in the simpler,
 334 *      count only mode.
 335 */
 336
 337static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
 338module_param(pause_filter_thresh, ushort, 0444);
 339
 340static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
 341module_param(pause_filter_count, ushort, 0444);
 342
 343/* Default doubles per-vcpu window every exit. */
 344static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 345module_param(pause_filter_count_grow, ushort, 0444);
 346
 347/* Default resets per-vcpu window every exit to pause_filter_count. */
 348static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 349module_param(pause_filter_count_shrink, ushort, 0444);
 350
 351/* Default is to compute the maximum so we can never overflow. */
 352static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
 353module_param(pause_filter_count_max, ushort, 0444);
 354
 355/* allow nested paging (virtualized MMU) for all guests */
 356static int npt = true;
 357module_param(npt, int, S_IRUGO);
 358
 359/* allow nested virtualization in KVM/SVM */
 360static int nested = true;
 361module_param(nested, int, S_IRUGO);
 362
 363/* enable / disable AVIC */
 364static int avic;
 365#ifdef CONFIG_X86_LOCAL_APIC
 366module_param(avic, int, S_IRUGO);
 367#endif
 368
 369/* enable/disable Virtual VMLOAD VMSAVE */
 370static int vls = true;
 371module_param(vls, int, 0444);
 372
 373/* enable/disable Virtual GIF */
 374static int vgif = true;
 375module_param(vgif, int, 0444);
 376
 377/* enable/disable SEV support */
 378static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
 379module_param(sev, int, 0444);
 380
 381static u8 rsm_ins_bytes[] = "\x0f\xaa";
 382
 383static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 384static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
 385static void svm_complete_interrupts(struct vcpu_svm *svm);
 386
 387static int nested_svm_exit_handled(struct vcpu_svm *svm);
 388static int nested_svm_intercept(struct vcpu_svm *svm);
 389static int nested_svm_vmexit(struct vcpu_svm *svm);
 390static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 391                                      bool has_error_code, u32 error_code);
 392
 393enum {
 394        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 395                            pause filter count */
 396        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 397        VMCB_ASID,       /* ASID */
 398        VMCB_INTR,       /* int_ctl, int_vector */
 399        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 400        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 401        VMCB_DR,         /* DR6, DR7 */
 402        VMCB_DT,         /* GDT, IDT */
 403        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 404        VMCB_CR2,        /* CR2 only */
 405        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 406        VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 407                          * AVIC PHYSICAL_TABLE pointer,
 408                          * AVIC LOGICAL_TABLE pointer
 409                          */
 410        VMCB_DIRTY_MAX,
 411};
 412
 413/* TPR and CR2 are always written before VMRUN */
 414#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 415
 416#define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
 417
 418static unsigned int max_sev_asid;
 419static unsigned int min_sev_asid;
 420static unsigned long *sev_asid_bitmap;
 421#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
 422
 423struct enc_region {
 424        struct list_head list;
 425        unsigned long npages;
 426        struct page **pages;
 427        unsigned long uaddr;
 428        unsigned long size;
 429};
 430
 431
 432static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
 433{
 434        return container_of(kvm, struct kvm_svm, kvm);
 435}
 436
 437static inline bool svm_sev_enabled(void)
 438{
 439        return max_sev_asid;
 440}
 441
 442static inline bool sev_guest(struct kvm *kvm)
 443{
 444        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 445
 446        return sev->active;
 447}
 448
 449static inline int sev_get_asid(struct kvm *kvm)
 450{
 451        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 452
 453        return sev->asid;
 454}
 455
 456static inline void mark_all_dirty(struct vmcb *vmcb)
 457{
 458        vmcb->control.clean = 0;
 459}
 460
 461static inline void mark_all_clean(struct vmcb *vmcb)
 462{
 463        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 464                               & ~VMCB_ALWAYS_DIRTY_MASK;
 465}
 466
 467static inline void mark_dirty(struct vmcb *vmcb, int bit)
 468{
 469        vmcb->control.clean &= ~(1 << bit);
 470}
 471
 472static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 473{
 474        return container_of(vcpu, struct vcpu_svm, vcpu);
 475}
 476
 477static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 478{
 479        svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 480        mark_dirty(svm->vmcb, VMCB_AVIC);
 481}
 482
 483static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 484{
 485        struct vcpu_svm *svm = to_svm(vcpu);
 486        u64 *entry = svm->avic_physical_id_cache;
 487
 488        if (!entry)
 489                return false;
 490
 491        return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 492}
 493
 494static void recalc_intercepts(struct vcpu_svm *svm)
 495{
 496        struct vmcb_control_area *c, *h;
 497        struct nested_state *g;
 498
 499        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 500
 501        if (!is_guest_mode(&svm->vcpu))
 502                return;
 503
 504        c = &svm->vmcb->control;
 505        h = &svm->nested.hsave->control;
 506        g = &svm->nested;
 507
 508        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 509        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 510        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 511        c->intercept = h->intercept | g->intercept;
 512}
 513
 514static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 515{
 516        if (is_guest_mode(&svm->vcpu))
 517                return svm->nested.hsave;
 518        else
 519                return svm->vmcb;
 520}
 521
 522static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 523{
 524        struct vmcb *vmcb = get_host_vmcb(svm);
 525
 526        vmcb->control.intercept_cr |= (1U << bit);
 527
 528        recalc_intercepts(svm);
 529}
 530
 531static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 532{
 533        struct vmcb *vmcb = get_host_vmcb(svm);
 534
 535        vmcb->control.intercept_cr &= ~(1U << bit);
 536
 537        recalc_intercepts(svm);
 538}
 539
 540static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 541{
 542        struct vmcb *vmcb = get_host_vmcb(svm);
 543
 544        return vmcb->control.intercept_cr & (1U << bit);
 545}
 546
 547static inline void set_dr_intercepts(struct vcpu_svm *svm)
 548{
 549        struct vmcb *vmcb = get_host_vmcb(svm);
 550
 551        vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 552                | (1 << INTERCEPT_DR1_READ)
 553                | (1 << INTERCEPT_DR2_READ)
 554                | (1 << INTERCEPT_DR3_READ)
 555                | (1 << INTERCEPT_DR4_READ)
 556                | (1 << INTERCEPT_DR5_READ)
 557                | (1 << INTERCEPT_DR6_READ)
 558                | (1 << INTERCEPT_DR7_READ)
 559                | (1 << INTERCEPT_DR0_WRITE)
 560                | (1 << INTERCEPT_DR1_WRITE)
 561                | (1 << INTERCEPT_DR2_WRITE)
 562                | (1 << INTERCEPT_DR3_WRITE)
 563                | (1 << INTERCEPT_DR4_WRITE)
 564                | (1 << INTERCEPT_DR5_WRITE)
 565                | (1 << INTERCEPT_DR6_WRITE)
 566                | (1 << INTERCEPT_DR7_WRITE);
 567
 568        recalc_intercepts(svm);
 569}
 570
 571static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 572{
 573        struct vmcb *vmcb = get_host_vmcb(svm);
 574
 575        vmcb->control.intercept_dr = 0;
 576
 577        recalc_intercepts(svm);
 578}
 579
 580static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 581{
 582        struct vmcb *vmcb = get_host_vmcb(svm);
 583
 584        vmcb->control.intercept_exceptions |= (1U << bit);
 585
 586        recalc_intercepts(svm);
 587}
 588
 589static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 590{
 591        struct vmcb *vmcb = get_host_vmcb(svm);
 592
 593        vmcb->control.intercept_exceptions &= ~(1U << bit);
 594
 595        recalc_intercepts(svm);
 596}
 597
 598static inline void set_intercept(struct vcpu_svm *svm, int bit)
 599{
 600        struct vmcb *vmcb = get_host_vmcb(svm);
 601
 602        vmcb->control.intercept |= (1ULL << bit);
 603
 604        recalc_intercepts(svm);
 605}
 606
 607static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 608{
 609        struct vmcb *vmcb = get_host_vmcb(svm);
 610
 611        vmcb->control.intercept &= ~(1ULL << bit);
 612
 613        recalc_intercepts(svm);
 614}
 615
 616static inline bool vgif_enabled(struct vcpu_svm *svm)
 617{
 618        return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
 619}
 620
 621static inline void enable_gif(struct vcpu_svm *svm)
 622{
 623        if (vgif_enabled(svm))
 624                svm->vmcb->control.int_ctl |= V_GIF_MASK;
 625        else
 626                svm->vcpu.arch.hflags |= HF_GIF_MASK;
 627}
 628
 629static inline void disable_gif(struct vcpu_svm *svm)
 630{
 631        if (vgif_enabled(svm))
 632                svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
 633        else
 634                svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 635}
 636
 637static inline bool gif_set(struct vcpu_svm *svm)
 638{
 639        if (vgif_enabled(svm))
 640                return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
 641        else
 642                return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 643}
 644
 645static unsigned long iopm_base;
 646
 647struct kvm_ldttss_desc {
 648        u16 limit0;
 649        u16 base0;
 650        unsigned base1:8, type:5, dpl:2, p:1;
 651        unsigned limit1:4, zero0:3, g:1, base2:8;
 652        u32 base3;
 653        u32 zero1;
 654} __attribute__((packed));
 655
 656struct svm_cpu_data {
 657        int cpu;
 658
 659        u64 asid_generation;
 660        u32 max_asid;
 661        u32 next_asid;
 662        u32 min_asid;
 663        struct kvm_ldttss_desc *tss_desc;
 664
 665        struct page *save_area;
 666        struct vmcb *current_vmcb;
 667
 668        /* index = sev_asid, value = vmcb pointer */
 669        struct vmcb **sev_vmcbs;
 670};
 671
 672static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 673
 674struct svm_init_data {
 675        int cpu;
 676        int r;
 677};
 678
 679static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 680
 681#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 682#define MSRS_RANGE_SIZE 2048
 683#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 684
 685static u32 svm_msrpm_offset(u32 msr)
 686{
 687        u32 offset;
 688        int i;
 689
 690        for (i = 0; i < NUM_MSR_MAPS; i++) {
 691                if (msr < msrpm_ranges[i] ||
 692                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 693                        continue;
 694
 695                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 696                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 697
 698                /* Now we have the u8 offset - but need the u32 offset */
 699                return offset / 4;
 700        }
 701
 702        /* MSR not in any range */
 703        return MSR_INVALID;
 704}
 705
 706#define MAX_INST_SIZE 15
 707
 708static inline void clgi(void)
 709{
 710        asm volatile (__ex(SVM_CLGI));
 711}
 712
 713static inline void stgi(void)
 714{
 715        asm volatile (__ex(SVM_STGI));
 716}
 717
 718static inline void invlpga(unsigned long addr, u32 asid)
 719{
 720        asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 721}
 722
 723static int get_npt_level(struct kvm_vcpu *vcpu)
 724{
 725#ifdef CONFIG_X86_64
 726        return PT64_ROOT_4LEVEL;
 727#else
 728        return PT32E_ROOT_LEVEL;
 729#endif
 730}
 731
 732static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 733{
 734        vcpu->arch.efer = efer;
 735        if (!npt_enabled && !(efer & EFER_LMA))
 736                efer &= ~EFER_LME;
 737
 738        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 739        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 740}
 741
 742static int is_external_interrupt(u32 info)
 743{
 744        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 745        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 746}
 747
 748static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 749{
 750        struct vcpu_svm *svm = to_svm(vcpu);
 751        u32 ret = 0;
 752
 753        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 754                ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 755        return ret;
 756}
 757
 758static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 759{
 760        struct vcpu_svm *svm = to_svm(vcpu);
 761
 762        if (mask == 0)
 763                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 764        else
 765                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 766
 767}
 768
 769static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 770{
 771        struct vcpu_svm *svm = to_svm(vcpu);
 772
 773        if (svm->vmcb->control.next_rip != 0) {
 774                WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 775                svm->next_rip = svm->vmcb->control.next_rip;
 776        }
 777
 778        if (!svm->next_rip) {
 779                if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 780                                EMULATE_DONE)
 781                        printk(KERN_DEBUG "%s: NOP\n", __func__);
 782                return;
 783        }
 784        if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 785                printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 786                       __func__, kvm_rip_read(vcpu), svm->next_rip);
 787
 788        kvm_rip_write(vcpu, svm->next_rip);
 789        svm_set_interrupt_shadow(vcpu, 0);
 790}
 791
 792static void svm_queue_exception(struct kvm_vcpu *vcpu)
 793{
 794        struct vcpu_svm *svm = to_svm(vcpu);
 795        unsigned nr = vcpu->arch.exception.nr;
 796        bool has_error_code = vcpu->arch.exception.has_error_code;
 797        bool reinject = vcpu->arch.exception.injected;
 798        u32 error_code = vcpu->arch.exception.error_code;
 799
 800        /*
 801         * If we are within a nested VM we'd better #VMEXIT and let the guest
 802         * handle the exception
 803         */
 804        if (!reinject &&
 805            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 806                return;
 807
 808        if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 809                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 810
 811                /*
 812                 * For guest debugging where we have to reinject #BP if some
 813                 * INT3 is guest-owned:
 814                 * Emulate nRIP by moving RIP forward. Will fail if injection
 815                 * raises a fault that is not intercepted. Still better than
 816                 * failing in all cases.
 817                 */
 818                skip_emulated_instruction(&svm->vcpu);
 819                rip = kvm_rip_read(&svm->vcpu);
 820                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 821                svm->int3_injected = rip - old_rip;
 822        }
 823
 824        svm->vmcb->control.event_inj = nr
 825                | SVM_EVTINJ_VALID
 826                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 827                | SVM_EVTINJ_TYPE_EXEPT;
 828        svm->vmcb->control.event_inj_err = error_code;
 829}
 830
 831static void svm_init_erratum_383(void)
 832{
 833        u32 low, high;
 834        int err;
 835        u64 val;
 836
 837        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 838                return;
 839
 840        /* Use _safe variants to not break nested virtualization */
 841        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 842        if (err)
 843                return;
 844
 845        val |= (1ULL << 47);
 846
 847        low  = lower_32_bits(val);
 848        high = upper_32_bits(val);
 849
 850        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 851
 852        erratum_383_found = true;
 853}
 854
 855static void svm_init_osvw(struct kvm_vcpu *vcpu)
 856{
 857        /*
 858         * Guests should see errata 400 and 415 as fixed (assuming that
 859         * HLT and IO instructions are intercepted).
 860         */
 861        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 862        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 863
 864        /*
 865         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 866         * all osvw.status bits inside that length, including bit 0 (which is
 867         * reserved for erratum 298), are valid. However, if host processor's
 868         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 869         * be conservative here and therefore we tell the guest that erratum 298
 870         * is present (because we really don't know).
 871         */
 872        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 873                vcpu->arch.osvw.status |= 1;
 874}
 875
 876static int has_svm(void)
 877{
 878        const char *msg;
 879
 880        if (!cpu_has_svm(&msg)) {
 881                printk(KERN_INFO "has_svm: %s\n", msg);
 882                return 0;
 883        }
 884
 885        return 1;
 886}
 887
 888static void svm_hardware_disable(void)
 889{
 890        /* Make sure we clean up behind us */
 891        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 892                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 893
 894        cpu_svm_disable();
 895
 896        amd_pmu_disable_virt();
 897}
 898
 899static int svm_hardware_enable(void)
 900{
 901
 902        struct svm_cpu_data *sd;
 903        uint64_t efer;
 904        struct desc_struct *gdt;
 905        int me = raw_smp_processor_id();
 906
 907        rdmsrl(MSR_EFER, efer);
 908        if (efer & EFER_SVME)
 909                return -EBUSY;
 910
 911        if (!has_svm()) {
 912                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 913                return -EINVAL;
 914        }
 915        sd = per_cpu(svm_data, me);
 916        if (!sd) {
 917                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 918                return -EINVAL;
 919        }
 920
 921        sd->asid_generation = 1;
 922        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 923        sd->next_asid = sd->max_asid + 1;
 924        sd->min_asid = max_sev_asid + 1;
 925
 926        gdt = get_current_gdt_rw();
 927        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 928
 929        wrmsrl(MSR_EFER, efer | EFER_SVME);
 930
 931        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 932
 933        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 934                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 935                __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 936        }
 937
 938
 939        /*
 940         * Get OSVW bits.
 941         *
 942         * Note that it is possible to have a system with mixed processor
 943         * revisions and therefore different OSVW bits. If bits are not the same
 944         * on different processors then choose the worst case (i.e. if erratum
 945         * is present on one processor and not on another then assume that the
 946         * erratum is present everywhere).
 947         */
 948        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 949                uint64_t len, status = 0;
 950                int err;
 951
 952                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 953                if (!err)
 954                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 955                                                      &err);
 956
 957                if (err)
 958                        osvw_status = osvw_len = 0;
 959                else {
 960                        if (len < osvw_len)
 961                                osvw_len = len;
 962                        osvw_status |= status;
 963                        osvw_status &= (1ULL << osvw_len) - 1;
 964                }
 965        } else
 966                osvw_status = osvw_len = 0;
 967
 968        svm_init_erratum_383();
 969
 970        amd_pmu_enable_virt();
 971
 972        return 0;
 973}
 974
 975static void svm_cpu_uninit(int cpu)
 976{
 977        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 978
 979        if (!sd)
 980                return;
 981
 982        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 983        kfree(sd->sev_vmcbs);
 984        __free_page(sd->save_area);
 985        kfree(sd);
 986}
 987
 988static int svm_cpu_init(int cpu)
 989{
 990        struct svm_cpu_data *sd;
 991        int r;
 992
 993        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 994        if (!sd)
 995                return -ENOMEM;
 996        sd->cpu = cpu;
 997        r = -ENOMEM;
 998        sd->save_area = alloc_page(GFP_KERNEL);
 999        if (!sd->save_area)
1000                goto err_1;
1001
1002        if (svm_sev_enabled()) {
1003                r = -ENOMEM;
1004                sd->sev_vmcbs = kmalloc((max_sev_asid + 1) * sizeof(void *), GFP_KERNEL);
1005                if (!sd->sev_vmcbs)
1006                        goto err_1;
1007        }
1008
1009        per_cpu(svm_data, cpu) = sd;
1010
1011        return 0;
1012
1013err_1:
1014        kfree(sd);
1015        return r;
1016
1017}
1018
1019static bool valid_msr_intercept(u32 index)
1020{
1021        int i;
1022
1023        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1024                if (direct_access_msrs[i].index == index)
1025                        return true;
1026
1027        return false;
1028}
1029
1030static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1031{
1032        u8 bit_write;
1033        unsigned long tmp;
1034        u32 offset;
1035        u32 *msrpm;
1036
1037        msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1038                                      to_svm(vcpu)->msrpm;
1039
1040        offset    = svm_msrpm_offset(msr);
1041        bit_write = 2 * (msr & 0x0f) + 1;
1042        tmp       = msrpm[offset];
1043
1044        BUG_ON(offset == MSR_INVALID);
1045
1046        return !!test_bit(bit_write,  &tmp);
1047}
1048
1049static void set_msr_interception(u32 *msrpm, unsigned msr,
1050                                 int read, int write)
1051{
1052        u8 bit_read, bit_write;
1053        unsigned long tmp;
1054        u32 offset;
1055
1056        /*
1057         * If this warning triggers extend the direct_access_msrs list at the
1058         * beginning of the file
1059         */
1060        WARN_ON(!valid_msr_intercept(msr));
1061
1062        offset    = svm_msrpm_offset(msr);
1063        bit_read  = 2 * (msr & 0x0f);
1064        bit_write = 2 * (msr & 0x0f) + 1;
1065        tmp       = msrpm[offset];
1066
1067        BUG_ON(offset == MSR_INVALID);
1068
1069        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1070        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1071
1072        msrpm[offset] = tmp;
1073}
1074
1075static void svm_vcpu_init_msrpm(u32 *msrpm)
1076{
1077        int i;
1078
1079        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1080
1081        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1082                if (!direct_access_msrs[i].always)
1083                        continue;
1084
1085                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1086        }
1087}
1088
1089static void add_msr_offset(u32 offset)
1090{
1091        int i;
1092
1093        for (i = 0; i < MSRPM_OFFSETS; ++i) {
1094
1095                /* Offset already in list? */
1096                if (msrpm_offsets[i] == offset)
1097                        return;
1098
1099                /* Slot used by another offset? */
1100                if (msrpm_offsets[i] != MSR_INVALID)
1101                        continue;
1102
1103                /* Add offset to list */
1104                msrpm_offsets[i] = offset;
1105
1106                return;
1107        }
1108
1109        /*
1110         * If this BUG triggers the msrpm_offsets table has an overflow. Just
1111         * increase MSRPM_OFFSETS in this case.
1112         */
1113        BUG();
1114}
1115
1116static void init_msrpm_offsets(void)
1117{
1118        int i;
1119
1120        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1121
1122        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1123                u32 offset;
1124
1125                offset = svm_msrpm_offset(direct_access_msrs[i].index);
1126                BUG_ON(offset == MSR_INVALID);
1127
1128                add_msr_offset(offset);
1129        }
1130}
1131
1132static void svm_enable_lbrv(struct vcpu_svm *svm)
1133{
1134        u32 *msrpm = svm->msrpm;
1135
1136        svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1137        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1138        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1139        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1140        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1141}
1142
1143static void svm_disable_lbrv(struct vcpu_svm *svm)
1144{
1145        u32 *msrpm = svm->msrpm;
1146
1147        svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1148        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1149        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1150        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1151        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1152}
1153
1154static void disable_nmi_singlestep(struct vcpu_svm *svm)
1155{
1156        svm->nmi_singlestep = false;
1157
1158        if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1159                /* Clear our flags if they were not set by the guest */
1160                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1161                        svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1162                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1163                        svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1164        }
1165}
1166
1167/* Note:
1168 * This hash table is used to map VM_ID to a struct kvm_svm,
1169 * when handling AMD IOMMU GALOG notification to schedule in
1170 * a particular vCPU.
1171 */
1172#define SVM_VM_DATA_HASH_BITS   8
1173static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1174static u32 next_vm_id = 0;
1175static bool next_vm_id_wrapped = 0;
1176static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1177
1178/* Note:
1179 * This function is called from IOMMU driver to notify
1180 * SVM to schedule in a particular vCPU of a particular VM.
1181 */
1182static int avic_ga_log_notifier(u32 ga_tag)
1183{
1184        unsigned long flags;
1185        struct kvm_svm *kvm_svm;
1186        struct kvm_vcpu *vcpu = NULL;
1187        u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1188        u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1189
1190        pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1191
1192        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1193        hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1194                if (kvm_svm->avic_vm_id != vm_id)
1195                        continue;
1196                vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1197                break;
1198        }
1199        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1200
1201        /* Note:
1202         * At this point, the IOMMU should have already set the pending
1203         * bit in the vAPIC backing page. So, we just need to schedule
1204         * in the vcpu.
1205         */
1206        if (vcpu)
1207                kvm_vcpu_wake_up(vcpu);
1208
1209        return 0;
1210}
1211
1212static __init int sev_hardware_setup(void)
1213{
1214        struct sev_user_data_status *status;
1215        int rc;
1216
1217        /* Maximum number of encrypted guests supported simultaneously */
1218        max_sev_asid = cpuid_ecx(0x8000001F);
1219
1220        if (!max_sev_asid)
1221                return 1;
1222
1223        /* Minimum ASID value that should be used for SEV guest */
1224        min_sev_asid = cpuid_edx(0x8000001F);
1225
1226        /* Initialize SEV ASID bitmap */
1227        sev_asid_bitmap = kcalloc(BITS_TO_LONGS(max_sev_asid),
1228                                sizeof(unsigned long), GFP_KERNEL);
1229        if (!sev_asid_bitmap)
1230                return 1;
1231
1232        status = kmalloc(sizeof(*status), GFP_KERNEL);
1233        if (!status)
1234                return 1;
1235
1236        /*
1237         * Check SEV platform status.
1238         *
1239         * PLATFORM_STATUS can be called in any state, if we failed to query
1240         * the PLATFORM status then either PSP firmware does not support SEV
1241         * feature or SEV firmware is dead.
1242         */
1243        rc = sev_platform_status(status, NULL);
1244        if (rc)
1245                goto err;
1246
1247        pr_info("SEV supported\n");
1248
1249err:
1250        kfree(status);
1251        return rc;
1252}
1253
1254static void grow_ple_window(struct kvm_vcpu *vcpu)
1255{
1256        struct vcpu_svm *svm = to_svm(vcpu);
1257        struct vmcb_control_area *control = &svm->vmcb->control;
1258        int old = control->pause_filter_count;
1259
1260        control->pause_filter_count = __grow_ple_window(old,
1261                                                        pause_filter_count,
1262                                                        pause_filter_count_grow,
1263                                                        pause_filter_count_max);
1264
1265        if (control->pause_filter_count != old)
1266                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1267
1268        trace_kvm_ple_window_grow(vcpu->vcpu_id,
1269                                  control->pause_filter_count, old);
1270}
1271
1272static void shrink_ple_window(struct kvm_vcpu *vcpu)
1273{
1274        struct vcpu_svm *svm = to_svm(vcpu);
1275        struct vmcb_control_area *control = &svm->vmcb->control;
1276        int old = control->pause_filter_count;
1277
1278        control->pause_filter_count =
1279                                __shrink_ple_window(old,
1280                                                    pause_filter_count,
1281                                                    pause_filter_count_shrink,
1282                                                    pause_filter_count);
1283        if (control->pause_filter_count != old)
1284                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1285
1286        trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1287                                    control->pause_filter_count, old);
1288}
1289
1290static __init int svm_hardware_setup(void)
1291{
1292        int cpu;
1293        struct page *iopm_pages;
1294        void *iopm_va;
1295        int r;
1296
1297        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1298
1299        if (!iopm_pages)
1300                return -ENOMEM;
1301
1302        iopm_va = page_address(iopm_pages);
1303        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1304        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1305
1306        init_msrpm_offsets();
1307
1308        if (boot_cpu_has(X86_FEATURE_NX))
1309                kvm_enable_efer_bits(EFER_NX);
1310
1311        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1312                kvm_enable_efer_bits(EFER_FFXSR);
1313
1314        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1315                kvm_has_tsc_control = true;
1316                kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1317                kvm_tsc_scaling_ratio_frac_bits = 32;
1318        }
1319
1320        /* Check for pause filtering support */
1321        if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1322                pause_filter_count = 0;
1323                pause_filter_thresh = 0;
1324        } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1325                pause_filter_thresh = 0;
1326        }
1327
1328        if (nested) {
1329                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1330                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1331        }
1332
1333        if (sev) {
1334                if (boot_cpu_has(X86_FEATURE_SEV) &&
1335                    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1336                        r = sev_hardware_setup();
1337                        if (r)
1338                                sev = false;
1339                } else {
1340                        sev = false;
1341                }
1342        }
1343
1344        for_each_possible_cpu(cpu) {
1345                r = svm_cpu_init(cpu);
1346                if (r)
1347                        goto err;
1348        }
1349
1350        if (!boot_cpu_has(X86_FEATURE_NPT))
1351                npt_enabled = false;
1352
1353        if (npt_enabled && !npt) {
1354                printk(KERN_INFO "kvm: Nested Paging disabled\n");
1355                npt_enabled = false;
1356        }
1357
1358        if (npt_enabled) {
1359                printk(KERN_INFO "kvm: Nested Paging enabled\n");
1360                kvm_enable_tdp();
1361        } else
1362                kvm_disable_tdp();
1363
1364        if (avic) {
1365                if (!npt_enabled ||
1366                    !boot_cpu_has(X86_FEATURE_AVIC) ||
1367                    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1368                        avic = false;
1369                } else {
1370                        pr_info("AVIC enabled\n");
1371
1372                        amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1373                }
1374        }
1375
1376        if (vls) {
1377                if (!npt_enabled ||
1378                    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1379                    !IS_ENABLED(CONFIG_X86_64)) {
1380                        vls = false;
1381                } else {
1382                        pr_info("Virtual VMLOAD VMSAVE supported\n");
1383                }
1384        }
1385
1386        if (vgif) {
1387                if (!boot_cpu_has(X86_FEATURE_VGIF))
1388                        vgif = false;
1389                else
1390                        pr_info("Virtual GIF supported\n");
1391        }
1392
1393        return 0;
1394
1395err:
1396        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1397        iopm_base = 0;
1398        return r;
1399}
1400
1401static __exit void svm_hardware_unsetup(void)
1402{
1403        int cpu;
1404
1405        if (svm_sev_enabled())
1406                kfree(sev_asid_bitmap);
1407
1408        for_each_possible_cpu(cpu)
1409                svm_cpu_uninit(cpu);
1410
1411        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1412        iopm_base = 0;
1413}
1414
1415static void init_seg(struct vmcb_seg *seg)
1416{
1417        seg->selector = 0;
1418        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1419                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1420        seg->limit = 0xffff;
1421        seg->base = 0;
1422}
1423
1424static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1425{
1426        seg->selector = 0;
1427        seg->attrib = SVM_SELECTOR_P_MASK | type;
1428        seg->limit = 0xffff;
1429        seg->base = 0;
1430}
1431
1432static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1433{
1434        struct vcpu_svm *svm = to_svm(vcpu);
1435
1436        if (is_guest_mode(vcpu))
1437                return svm->nested.hsave->control.tsc_offset;
1438
1439        return vcpu->arch.tsc_offset;
1440}
1441
1442static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1443{
1444        struct vcpu_svm *svm = to_svm(vcpu);
1445        u64 g_tsc_offset = 0;
1446
1447        if (is_guest_mode(vcpu)) {
1448                /* Write L1's TSC offset.  */
1449                g_tsc_offset = svm->vmcb->control.tsc_offset -
1450                               svm->nested.hsave->control.tsc_offset;
1451                svm->nested.hsave->control.tsc_offset = offset;
1452        } else
1453                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1454                                           svm->vmcb->control.tsc_offset,
1455                                           offset);
1456
1457        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1458
1459        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1460}
1461
1462static void avic_init_vmcb(struct vcpu_svm *svm)
1463{
1464        struct vmcb *vmcb = svm->vmcb;
1465        struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1466        phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1467        phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1468        phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1469
1470        vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1471        vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1472        vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1473        vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1474        vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1475}
1476
1477static void init_vmcb(struct vcpu_svm *svm)
1478{
1479        struct vmcb_control_area *control = &svm->vmcb->control;
1480        struct vmcb_save_area *save = &svm->vmcb->save;
1481
1482        svm->vcpu.arch.hflags = 0;
1483
1484        set_cr_intercept(svm, INTERCEPT_CR0_READ);
1485        set_cr_intercept(svm, INTERCEPT_CR3_READ);
1486        set_cr_intercept(svm, INTERCEPT_CR4_READ);
1487        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1488        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1489        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1490        if (!kvm_vcpu_apicv_active(&svm->vcpu))
1491                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1492
1493        set_dr_intercepts(svm);
1494
1495        set_exception_intercept(svm, PF_VECTOR);
1496        set_exception_intercept(svm, UD_VECTOR);
1497        set_exception_intercept(svm, MC_VECTOR);
1498        set_exception_intercept(svm, AC_VECTOR);
1499        set_exception_intercept(svm, DB_VECTOR);
1500        /*
1501         * Guest access to VMware backdoor ports could legitimately
1502         * trigger #GP because of TSS I/O permission bitmap.
1503         * We intercept those #GP and allow access to them anyway
1504         * as VMware does.
1505         */
1506        if (enable_vmware_backdoor)
1507                set_exception_intercept(svm, GP_VECTOR);
1508
1509        set_intercept(svm, INTERCEPT_INTR);
1510        set_intercept(svm, INTERCEPT_NMI);
1511        set_intercept(svm, INTERCEPT_SMI);
1512        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1513        set_intercept(svm, INTERCEPT_RDPMC);
1514        set_intercept(svm, INTERCEPT_CPUID);
1515        set_intercept(svm, INTERCEPT_INVD);
1516        set_intercept(svm, INTERCEPT_INVLPG);
1517        set_intercept(svm, INTERCEPT_INVLPGA);
1518        set_intercept(svm, INTERCEPT_IOIO_PROT);
1519        set_intercept(svm, INTERCEPT_MSR_PROT);
1520        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1521        set_intercept(svm, INTERCEPT_SHUTDOWN);
1522        set_intercept(svm, INTERCEPT_VMRUN);
1523        set_intercept(svm, INTERCEPT_VMMCALL);
1524        set_intercept(svm, INTERCEPT_VMLOAD);
1525        set_intercept(svm, INTERCEPT_VMSAVE);
1526        set_intercept(svm, INTERCEPT_STGI);
1527        set_intercept(svm, INTERCEPT_CLGI);
1528        set_intercept(svm, INTERCEPT_SKINIT);
1529        set_intercept(svm, INTERCEPT_WBINVD);
1530        set_intercept(svm, INTERCEPT_XSETBV);
1531        set_intercept(svm, INTERCEPT_RSM);
1532
1533        if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1534                set_intercept(svm, INTERCEPT_MONITOR);
1535                set_intercept(svm, INTERCEPT_MWAIT);
1536        }
1537
1538        if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1539                set_intercept(svm, INTERCEPT_HLT);
1540
1541        control->iopm_base_pa = __sme_set(iopm_base);
1542        control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1543        control->int_ctl = V_INTR_MASKING_MASK;
1544
1545        init_seg(&save->es);
1546        init_seg(&save->ss);
1547        init_seg(&save->ds);
1548        init_seg(&save->fs);
1549        init_seg(&save->gs);
1550
1551        save->cs.selector = 0xf000;
1552        save->cs.base = 0xffff0000;
1553        /* Executable/Readable Code Segment */
1554        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1555                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1556        save->cs.limit = 0xffff;
1557
1558        save->gdtr.limit = 0xffff;
1559        save->idtr.limit = 0xffff;
1560
1561        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1562        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1563
1564        svm_set_efer(&svm->vcpu, 0);
1565        save->dr6 = 0xffff0ff0;
1566        kvm_set_rflags(&svm->vcpu, 2);
1567        save->rip = 0x0000fff0;
1568        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1569
1570        /*
1571         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1572         * It also updates the guest-visible cr0 value.
1573         */
1574        svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1575        kvm_mmu_reset_context(&svm->vcpu);
1576
1577        save->cr4 = X86_CR4_PAE;
1578        /* rdx = ?? */
1579
1580        if (npt_enabled) {
1581                /* Setup VMCB for Nested Paging */
1582                control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1583                clr_intercept(svm, INTERCEPT_INVLPG);
1584                clr_exception_intercept(svm, PF_VECTOR);
1585                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1586                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1587                save->g_pat = svm->vcpu.arch.pat;
1588                save->cr3 = 0;
1589                save->cr4 = 0;
1590        }
1591        svm->asid_generation = 0;
1592
1593        svm->nested.vmcb = 0;
1594        svm->vcpu.arch.hflags = 0;
1595
1596        if (pause_filter_count) {
1597                control->pause_filter_count = pause_filter_count;
1598                if (pause_filter_thresh)
1599                        control->pause_filter_thresh = pause_filter_thresh;
1600                set_intercept(svm, INTERCEPT_PAUSE);
1601        } else {
1602                clr_intercept(svm, INTERCEPT_PAUSE);
1603        }
1604
1605        if (kvm_vcpu_apicv_active(&svm->vcpu))
1606                avic_init_vmcb(svm);
1607
1608        /*
1609         * If hardware supports Virtual VMLOAD VMSAVE then enable it
1610         * in VMCB and clear intercepts to avoid #VMEXIT.
1611         */
1612        if (vls) {
1613                clr_intercept(svm, INTERCEPT_VMLOAD);
1614                clr_intercept(svm, INTERCEPT_VMSAVE);
1615                svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1616        }
1617
1618        if (vgif) {
1619                clr_intercept(svm, INTERCEPT_STGI);
1620                clr_intercept(svm, INTERCEPT_CLGI);
1621                svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1622        }
1623
1624        if (sev_guest(svm->vcpu.kvm)) {
1625                svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1626                clr_exception_intercept(svm, UD_VECTOR);
1627        }
1628
1629        mark_all_dirty(svm->vmcb);
1630
1631        enable_gif(svm);
1632
1633}
1634
1635static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1636                                       unsigned int index)
1637{
1638        u64 *avic_physical_id_table;
1639        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1640
1641        if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1642                return NULL;
1643
1644        avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1645
1646        return &avic_physical_id_table[index];
1647}
1648
1649/**
1650 * Note:
1651 * AVIC hardware walks the nested page table to check permissions,
1652 * but does not use the SPA address specified in the leaf page
1653 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1654 * field of the VMCB. Therefore, we set up the
1655 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1656 */
1657static int avic_init_access_page(struct kvm_vcpu *vcpu)
1658{
1659        struct kvm *kvm = vcpu->kvm;
1660        int ret;
1661
1662        if (kvm->arch.apic_access_page_done)
1663                return 0;
1664
1665        ret = x86_set_memory_region(kvm,
1666                                    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1667                                    APIC_DEFAULT_PHYS_BASE,
1668                                    PAGE_SIZE);
1669        if (ret)
1670                return ret;
1671
1672        kvm->arch.apic_access_page_done = true;
1673        return 0;
1674}
1675
1676static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1677{
1678        int ret;
1679        u64 *entry, new_entry;
1680        int id = vcpu->vcpu_id;
1681        struct vcpu_svm *svm = to_svm(vcpu);
1682
1683        ret = avic_init_access_page(vcpu);
1684        if (ret)
1685                return ret;
1686
1687        if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1688                return -EINVAL;
1689
1690        if (!svm->vcpu.arch.apic->regs)
1691                return -EINVAL;
1692
1693        svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1694
1695        /* Setting AVIC backing page address in the phy APIC ID table */
1696        entry = avic_get_physical_id_entry(vcpu, id);
1697        if (!entry)
1698                return -EINVAL;
1699
1700        new_entry = READ_ONCE(*entry);
1701        new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1702                              AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1703                              AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1704        WRITE_ONCE(*entry, new_entry);
1705
1706        svm->avic_physical_id_cache = entry;
1707
1708        return 0;
1709}
1710
1711static void __sev_asid_free(int asid)
1712{
1713        struct svm_cpu_data *sd;
1714        int cpu, pos;
1715
1716        pos = asid - 1;
1717        clear_bit(pos, sev_asid_bitmap);
1718
1719        for_each_possible_cpu(cpu) {
1720                sd = per_cpu(svm_data, cpu);
1721                sd->sev_vmcbs[pos] = NULL;
1722        }
1723}
1724
1725static void sev_asid_free(struct kvm *kvm)
1726{
1727        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1728
1729        __sev_asid_free(sev->asid);
1730}
1731
1732static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1733{
1734        struct sev_data_decommission *decommission;
1735        struct sev_data_deactivate *data;
1736
1737        if (!handle)
1738                return;
1739
1740        data = kzalloc(sizeof(*data), GFP_KERNEL);
1741        if (!data)
1742                return;
1743
1744        /* deactivate handle */
1745        data->handle = handle;
1746        sev_guest_deactivate(data, NULL);
1747
1748        wbinvd_on_all_cpus();
1749        sev_guest_df_flush(NULL);
1750        kfree(data);
1751
1752        decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1753        if (!decommission)
1754                return;
1755
1756        /* decommission handle */
1757        decommission->handle = handle;
1758        sev_guest_decommission(decommission, NULL);
1759
1760        kfree(decommission);
1761}
1762
1763static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1764                                    unsigned long ulen, unsigned long *n,
1765                                    int write)
1766{
1767        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1768        unsigned long npages, npinned, size;
1769        unsigned long locked, lock_limit;
1770        struct page **pages;
1771        int first, last;
1772
1773        /* Calculate number of pages. */
1774        first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1775        last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1776        npages = (last - first + 1);
1777
1778        locked = sev->pages_locked + npages;
1779        lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1780        if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1781                pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1782                return NULL;
1783        }
1784
1785        /* Avoid using vmalloc for smaller buffers. */
1786        size = npages * sizeof(struct page *);
1787        if (size > PAGE_SIZE)
1788                pages = vmalloc(size);
1789        else
1790                pages = kmalloc(size, GFP_KERNEL);
1791
1792        if (!pages)
1793                return NULL;
1794
1795        /* Pin the user virtual address. */
1796        npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1797        if (npinned != npages) {
1798                pr_err("SEV: Failure locking %lu pages.\n", npages);
1799                goto err;
1800        }
1801
1802        *n = npages;
1803        sev->pages_locked = locked;
1804
1805        return pages;
1806
1807err:
1808        if (npinned > 0)
1809                release_pages(pages, npinned);
1810
1811        kvfree(pages);
1812        return NULL;
1813}
1814
1815static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1816                             unsigned long npages)
1817{
1818        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1819
1820        release_pages(pages, npages);
1821        kvfree(pages);
1822        sev->pages_locked -= npages;
1823}
1824
1825static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1826{
1827        uint8_t *page_virtual;
1828        unsigned long i;
1829
1830        if (npages == 0 || pages == NULL)
1831                return;
1832
1833        for (i = 0; i < npages; i++) {
1834                page_virtual = kmap_atomic(pages[i]);
1835                clflush_cache_range(page_virtual, PAGE_SIZE);
1836                kunmap_atomic(page_virtual);
1837        }
1838}
1839
1840static void __unregister_enc_region_locked(struct kvm *kvm,
1841                                           struct enc_region *region)
1842{
1843        /*
1844         * The guest may change the memory encryption attribute from C=0 -> C=1
1845         * or vice versa for this memory range. Lets make sure caches are
1846         * flushed to ensure that guest data gets written into memory with
1847         * correct C-bit.
1848         */
1849        sev_clflush_pages(region->pages, region->npages);
1850
1851        sev_unpin_memory(kvm, region->pages, region->npages);
1852        list_del(&region->list);
1853        kfree(region);
1854}
1855
1856static struct kvm *svm_vm_alloc(void)
1857{
1858        struct kvm_svm *kvm_svm = kzalloc(sizeof(struct kvm_svm), GFP_KERNEL);
1859        return &kvm_svm->kvm;
1860}
1861
1862static void svm_vm_free(struct kvm *kvm)
1863{
1864        kfree(to_kvm_svm(kvm));
1865}
1866
1867static void sev_vm_destroy(struct kvm *kvm)
1868{
1869        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1870        struct list_head *head = &sev->regions_list;
1871        struct list_head *pos, *q;
1872
1873        if (!sev_guest(kvm))
1874                return;
1875
1876        mutex_lock(&kvm->lock);
1877
1878        /*
1879         * if userspace was terminated before unregistering the memory regions
1880         * then lets unpin all the registered memory.
1881         */
1882        if (!list_empty(head)) {
1883                list_for_each_safe(pos, q, head) {
1884                        __unregister_enc_region_locked(kvm,
1885                                list_entry(pos, struct enc_region, list));
1886                }
1887        }
1888
1889        mutex_unlock(&kvm->lock);
1890
1891        sev_unbind_asid(kvm, sev->handle);
1892        sev_asid_free(kvm);
1893}
1894
1895static void avic_vm_destroy(struct kvm *kvm)
1896{
1897        unsigned long flags;
1898        struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1899
1900        if (!avic)
1901                return;
1902
1903        if (kvm_svm->avic_logical_id_table_page)
1904                __free_page(kvm_svm->avic_logical_id_table_page);
1905        if (kvm_svm->avic_physical_id_table_page)
1906                __free_page(kvm_svm->avic_physical_id_table_page);
1907
1908        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1909        hash_del(&kvm_svm->hnode);
1910        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1911}
1912
1913static void svm_vm_destroy(struct kvm *kvm)
1914{
1915        avic_vm_destroy(kvm);
1916        sev_vm_destroy(kvm);
1917}
1918
1919static int avic_vm_init(struct kvm *kvm)
1920{
1921        unsigned long flags;
1922        int err = -ENOMEM;
1923        struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1924        struct kvm_svm *k2;
1925        struct page *p_page;
1926        struct page *l_page;
1927        u32 vm_id;
1928
1929        if (!avic)
1930                return 0;
1931
1932        /* Allocating physical APIC ID table (4KB) */
1933        p_page = alloc_page(GFP_KERNEL);
1934        if (!p_page)
1935                goto free_avic;
1936
1937        kvm_svm->avic_physical_id_table_page = p_page;
1938        clear_page(page_address(p_page));
1939
1940        /* Allocating logical APIC ID table (4KB) */
1941        l_page = alloc_page(GFP_KERNEL);
1942        if (!l_page)
1943                goto free_avic;
1944
1945        kvm_svm->avic_logical_id_table_page = l_page;
1946        clear_page(page_address(l_page));
1947
1948        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1949 again:
1950        vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1951        if (vm_id == 0) { /* id is 1-based, zero is not okay */
1952                next_vm_id_wrapped = 1;
1953                goto again;
1954        }
1955        /* Is it still in use? Only possible if wrapped at least once */
1956        if (next_vm_id_wrapped) {
1957                hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1958                        if (k2->avic_vm_id == vm_id)
1959                                goto again;
1960                }
1961        }
1962        kvm_svm->avic_vm_id = vm_id;
1963        hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1964        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1965
1966        return 0;
1967
1968free_avic:
1969        avic_vm_destroy(kvm);
1970        return err;
1971}
1972
1973static inline int
1974avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1975{
1976        int ret = 0;
1977        unsigned long flags;
1978        struct amd_svm_iommu_ir *ir;
1979        struct vcpu_svm *svm = to_svm(vcpu);
1980
1981        if (!kvm_arch_has_assigned_device(vcpu->kvm))
1982                return 0;
1983
1984        /*
1985         * Here, we go through the per-vcpu ir_list to update all existing
1986         * interrupt remapping table entry targeting this vcpu.
1987         */
1988        spin_lock_irqsave(&svm->ir_list_lock, flags);
1989
1990        if (list_empty(&svm->ir_list))
1991                goto out;
1992
1993        list_for_each_entry(ir, &svm->ir_list, node) {
1994                ret = amd_iommu_update_ga(cpu, r, ir->data);
1995                if (ret)
1996                        break;
1997        }
1998out:
1999        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2000        return ret;
2001}
2002
2003static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2004{
2005        u64 entry;
2006        /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2007        int h_physical_id = kvm_cpu_get_apicid(cpu);
2008        struct vcpu_svm *svm = to_svm(vcpu);
2009
2010        if (!kvm_vcpu_apicv_active(vcpu))
2011                return;
2012
2013        if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2014                return;
2015
2016        entry = READ_ONCE(*(svm->avic_physical_id_cache));
2017        WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2018
2019        entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2020        entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2021
2022        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2023        if (svm->avic_is_running)
2024                entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2025
2026        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2027        avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2028                                        svm->avic_is_running);
2029}
2030
2031static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2032{
2033        u64 entry;
2034        struct vcpu_svm *svm = to_svm(vcpu);
2035
2036        if (!kvm_vcpu_apicv_active(vcpu))
2037                return;
2038
2039        entry = READ_ONCE(*(svm->avic_physical_id_cache));
2040        if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2041                avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2042
2043        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2044        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2045}
2046
2047/**
2048 * This function is called during VCPU halt/unhalt.
2049 */
2050static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2051{
2052        struct vcpu_svm *svm = to_svm(vcpu);
2053
2054        svm->avic_is_running = is_run;
2055        if (is_run)
2056                avic_vcpu_load(vcpu, vcpu->cpu);
2057        else
2058                avic_vcpu_put(vcpu);
2059}
2060
2061static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2062{
2063        struct vcpu_svm *svm = to_svm(vcpu);
2064        u32 dummy;
2065        u32 eax = 1;
2066
2067        vcpu->arch.microcode_version = 0x01000065;
2068        svm->spec_ctrl = 0;
2069        svm->virt_spec_ctrl = 0;
2070
2071        if (!init_event) {
2072                svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2073                                           MSR_IA32_APICBASE_ENABLE;
2074                if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2075                        svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2076        }
2077        init_vmcb(svm);
2078
2079        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2080        kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2081
2082        if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2083                avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2084}
2085
2086static int avic_init_vcpu(struct vcpu_svm *svm)
2087{
2088        int ret;
2089
2090        if (!kvm_vcpu_apicv_active(&svm->vcpu))
2091                return 0;
2092
2093        ret = avic_init_backing_page(&svm->vcpu);
2094        if (ret)
2095                return ret;
2096
2097        INIT_LIST_HEAD(&svm->ir_list);
2098        spin_lock_init(&svm->ir_list_lock);
2099
2100        return ret;
2101}
2102
2103static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2104{
2105        struct vcpu_svm *svm;
2106        struct page *page;
2107        struct page *msrpm_pages;
2108        struct page *hsave_page;
2109        struct page *nested_msrpm_pages;
2110        int err;
2111
2112        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2113        if (!svm) {
2114                err = -ENOMEM;
2115                goto out;
2116        }
2117
2118        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2119        if (err)
2120                goto free_svm;
2121
2122        err = -ENOMEM;
2123        page = alloc_page(GFP_KERNEL);
2124        if (!page)
2125                goto uninit;
2126
2127        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2128        if (!msrpm_pages)
2129                goto free_page1;
2130
2131        nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2132        if (!nested_msrpm_pages)
2133                goto free_page2;
2134
2135        hsave_page = alloc_page(GFP_KERNEL);
2136        if (!hsave_page)
2137                goto free_page3;
2138
2139        err = avic_init_vcpu(svm);
2140        if (err)
2141                goto free_page4;
2142
2143        /* We initialize this flag to true to make sure that the is_running
2144         * bit would be set the first time the vcpu is loaded.
2145         */
2146        svm->avic_is_running = true;
2147
2148        svm->nested.hsave = page_address(hsave_page);
2149
2150        svm->msrpm = page_address(msrpm_pages);
2151        svm_vcpu_init_msrpm(svm->msrpm);
2152
2153        svm->nested.msrpm = page_address(nested_msrpm_pages);
2154        svm_vcpu_init_msrpm(svm->nested.msrpm);
2155
2156        svm->vmcb = page_address(page);
2157        clear_page(svm->vmcb);
2158        svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2159        svm->asid_generation = 0;
2160        init_vmcb(svm);
2161
2162        svm_init_osvw(&svm->vcpu);
2163
2164        return &svm->vcpu;
2165
2166free_page4:
2167        __free_page(hsave_page);
2168free_page3:
2169        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2170free_page2:
2171        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2172free_page1:
2173        __free_page(page);
2174uninit:
2175        kvm_vcpu_uninit(&svm->vcpu);
2176free_svm:
2177        kmem_cache_free(kvm_vcpu_cache, svm);
2178out:
2179        return ERR_PTR(err);
2180}
2181
2182static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2183{
2184        struct vcpu_svm *svm = to_svm(vcpu);
2185
2186        __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2187        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2188        __free_page(virt_to_page(svm->nested.hsave));
2189        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2190        kvm_vcpu_uninit(vcpu);
2191        kmem_cache_free(kvm_vcpu_cache, svm);
2192        /*
2193         * The vmcb page can be recycled, causing a false negative in
2194         * svm_vcpu_load(). So do a full IBPB now.
2195         */
2196        indirect_branch_prediction_barrier();
2197}
2198
2199static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2200{
2201        struct vcpu_svm *svm = to_svm(vcpu);
2202        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2203        int i;
2204
2205        if (unlikely(cpu != vcpu->cpu)) {
2206                svm->asid_generation = 0;
2207                mark_all_dirty(svm->vmcb);
2208        }
2209
2210#ifdef CONFIG_X86_64
2211        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2212#endif
2213        savesegment(fs, svm->host.fs);
2214        savesegment(gs, svm->host.gs);
2215        svm->host.ldt = kvm_read_ldt();
2216
2217        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2218                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2219
2220        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2221                u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2222                if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2223                        __this_cpu_write(current_tsc_ratio, tsc_ratio);
2224                        wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2225                }
2226        }
2227        /* This assumes that the kernel never uses MSR_TSC_AUX */
2228        if (static_cpu_has(X86_FEATURE_RDTSCP))
2229                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2230
2231        if (sd->current_vmcb != svm->vmcb) {
2232                sd->current_vmcb = svm->vmcb;
2233                indirect_branch_prediction_barrier();
2234        }
2235        avic_vcpu_load(vcpu, cpu);
2236}
2237
2238static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2239{
2240        struct vcpu_svm *svm = to_svm(vcpu);
2241        int i;
2242
2243        avic_vcpu_put(vcpu);
2244
2245        ++vcpu->stat.host_state_reload;
2246        kvm_load_ldt(svm->host.ldt);
2247#ifdef CONFIG_X86_64
2248        loadsegment(fs, svm->host.fs);
2249        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2250        load_gs_index(svm->host.gs);
2251#else
2252#ifdef CONFIG_X86_32_LAZY_GS
2253        loadsegment(gs, svm->host.gs);
2254#endif
2255#endif
2256        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2257                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2258}
2259
2260static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2261{
2262        avic_set_running(vcpu, false);
2263}
2264
2265static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2266{
2267        avic_set_running(vcpu, true);
2268}
2269
2270static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2271{
2272        struct vcpu_svm *svm = to_svm(vcpu);
2273        unsigned long rflags = svm->vmcb->save.rflags;
2274
2275        if (svm->nmi_singlestep) {
2276                /* Hide our flags if they were not set by the guest */
2277                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2278                        rflags &= ~X86_EFLAGS_TF;
2279                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2280                        rflags &= ~X86_EFLAGS_RF;
2281        }
2282        return rflags;
2283}
2284
2285static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2286{
2287        if (to_svm(vcpu)->nmi_singlestep)
2288                rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2289
2290       /*
2291        * Any change of EFLAGS.VM is accompanied by a reload of SS
2292        * (caused by either a task switch or an inter-privilege IRET),
2293        * so we do not need to update the CPL here.
2294        */
2295        to_svm(vcpu)->vmcb->save.rflags = rflags;
2296}
2297
2298static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2299{
2300        switch (reg) {
2301        case VCPU_EXREG_PDPTR:
2302                BUG_ON(!npt_enabled);
2303                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2304                break;
2305        default:
2306                BUG();
2307        }
2308}
2309
2310static void svm_set_vintr(struct vcpu_svm *svm)
2311{
2312        set_intercept(svm, INTERCEPT_VINTR);
2313}
2314
2315static void svm_clear_vintr(struct vcpu_svm *svm)
2316{
2317        clr_intercept(svm, INTERCEPT_VINTR);
2318}
2319
2320static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2321{
2322        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2323
2324        switch (seg) {
2325        case VCPU_SREG_CS: return &save->cs;
2326        case VCPU_SREG_DS: return &save->ds;
2327        case VCPU_SREG_ES: return &save->es;
2328        case VCPU_SREG_FS: return &save->fs;
2329        case VCPU_SREG_GS: return &save->gs;
2330        case VCPU_SREG_SS: return &save->ss;
2331        case VCPU_SREG_TR: return &save->tr;
2332        case VCPU_SREG_LDTR: return &save->ldtr;
2333        }
2334        BUG();
2335        return NULL;
2336}
2337
2338static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2339{
2340        struct vmcb_seg *s = svm_seg(vcpu, seg);
2341
2342        return s->base;
2343}
2344
2345static void svm_get_segment(struct kvm_vcpu *vcpu,
2346                            struct kvm_segment *var, int seg)
2347{
2348        struct vmcb_seg *s = svm_seg(vcpu, seg);
2349
2350        var->base = s->base;
2351        var->limit = s->limit;
2352        var->selector = s->selector;
2353        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2354        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2355        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2356        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2357        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2358        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2359        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2360
2361        /*
2362         * AMD CPUs circa 2014 track the G bit for all segments except CS.
2363         * However, the SVM spec states that the G bit is not observed by the
2364         * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2365         * So let's synthesize a legal G bit for all segments, this helps
2366         * running KVM nested. It also helps cross-vendor migration, because
2367         * Intel's vmentry has a check on the 'G' bit.
2368         */
2369        var->g = s->limit > 0xfffff;
2370
2371        /*
2372         * AMD's VMCB does not have an explicit unusable field, so emulate it
2373         * for cross vendor migration purposes by "not present"
2374         */
2375        var->unusable = !var->present;
2376
2377        switch (seg) {
2378        case VCPU_SREG_TR:
2379                /*
2380                 * Work around a bug where the busy flag in the tr selector
2381                 * isn't exposed
2382                 */
2383                var->type |= 0x2;
2384                break;
2385        case VCPU_SREG_DS:
2386        case VCPU_SREG_ES:
2387        case VCPU_SREG_FS:
2388        case VCPU_SREG_GS:
2389                /*
2390                 * The accessed bit must always be set in the segment
2391                 * descriptor cache, although it can be cleared in the
2392                 * descriptor, the cached bit always remains at 1. Since
2393                 * Intel has a check on this, set it here to support
2394                 * cross-vendor migration.
2395                 */
2396                if (!var->unusable)
2397                        var->type |= 0x1;
2398                break;
2399        case VCPU_SREG_SS:
2400                /*
2401                 * On AMD CPUs sometimes the DB bit in the segment
2402                 * descriptor is left as 1, although the whole segment has
2403                 * been made unusable. Clear it here to pass an Intel VMX
2404                 * entry check when cross vendor migrating.
2405                 */
2406                if (var->unusable)
2407                        var->db = 0;
2408                /* This is symmetric with svm_set_segment() */
2409                var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2410                break;
2411        }
2412}
2413
2414static int svm_get_cpl(struct kvm_vcpu *vcpu)
2415{
2416        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2417
2418        return save->cpl;
2419}
2420
2421static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2422{
2423        struct vcpu_svm *svm = to_svm(vcpu);
2424
2425        dt->size = svm->vmcb->save.idtr.limit;
2426        dt->address = svm->vmcb->save.idtr.base;
2427}
2428
2429static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2430{
2431        struct vcpu_svm *svm = to_svm(vcpu);
2432
2433        svm->vmcb->save.idtr.limit = dt->size;
2434        svm->vmcb->save.idtr.base = dt->address ;
2435        mark_dirty(svm->vmcb, VMCB_DT);
2436}
2437
2438static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2439{
2440        struct vcpu_svm *svm = to_svm(vcpu);
2441
2442        dt->size = svm->vmcb->save.gdtr.limit;
2443        dt->address = svm->vmcb->save.gdtr.base;
2444}
2445
2446static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2447{
2448        struct vcpu_svm *svm = to_svm(vcpu);
2449
2450        svm->vmcb->save.gdtr.limit = dt->size;
2451        svm->vmcb->save.gdtr.base = dt->address ;
2452        mark_dirty(svm->vmcb, VMCB_DT);
2453}
2454
2455static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2456{
2457}
2458
2459static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2460{
2461}
2462
2463static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2464{
2465}
2466
2467static void update_cr0_intercept(struct vcpu_svm *svm)
2468{
2469        ulong gcr0 = svm->vcpu.arch.cr0;
2470        u64 *hcr0 = &svm->vmcb->save.cr0;
2471
2472        *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2473                | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2474
2475        mark_dirty(svm->vmcb, VMCB_CR);
2476
2477        if (gcr0 == *hcr0) {
2478                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2479                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2480        } else {
2481                set_cr_intercept(svm, INTERCEPT_CR0_READ);
2482                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2483        }
2484}
2485
2486static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2487{
2488        struct vcpu_svm *svm = to_svm(vcpu);
2489
2490#ifdef CONFIG_X86_64
2491        if (vcpu->arch.efer & EFER_LME) {
2492                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2493                        vcpu->arch.efer |= EFER_LMA;
2494                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2495                }
2496
2497                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2498                        vcpu->arch.efer &= ~EFER_LMA;
2499                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2500                }
2501        }
2502#endif
2503        vcpu->arch.cr0 = cr0;
2504
2505        if (!npt_enabled)
2506                cr0 |= X86_CR0_PG | X86_CR0_WP;
2507
2508        /*
2509         * re-enable caching here because the QEMU bios
2510         * does not do it - this results in some delay at
2511         * reboot
2512         */
2513        if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2514                cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2515        svm->vmcb->save.cr0 = cr0;
2516        mark_dirty(svm->vmcb, VMCB_CR);
2517        update_cr0_intercept(svm);
2518}
2519
2520static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2521{
2522        unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2523        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2524
2525        if (cr4 & X86_CR4_VMXE)
2526                return 1;
2527
2528        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2529                svm_flush_tlb(vcpu, true);
2530
2531        vcpu->arch.cr4 = cr4;
2532        if (!npt_enabled)
2533                cr4 |= X86_CR4_PAE;
2534        cr4 |= host_cr4_mce;
2535        to_svm(vcpu)->vmcb->save.cr4 = cr4;
2536        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2537        return 0;
2538}
2539
2540static void svm_set_segment(struct kvm_vcpu *vcpu,
2541                            struct kvm_segment *var, int seg)
2542{
2543        struct vcpu_svm *svm = to_svm(vcpu);
2544        struct vmcb_seg *s = svm_seg(vcpu, seg);
2545
2546        s->base = var->base;
2547        s->limit = var->limit;
2548        s->selector = var->selector;
2549        s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2550        s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2551        s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2552        s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2553        s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2554        s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2555        s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2556        s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2557
2558        /*
2559         * This is always accurate, except if SYSRET returned to a segment
2560         * with SS.DPL != 3.  Intel does not have this quirk, and always
2561         * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2562         * would entail passing the CPL to userspace and back.
2563         */
2564        if (seg == VCPU_SREG_SS)
2565                /* This is symmetric with svm_get_segment() */
2566                svm->vmcb->save.cpl = (var->dpl & 3);
2567
2568        mark_dirty(svm->vmcb, VMCB_SEG);
2569}
2570
2571static void update_bp_intercept(struct kvm_vcpu *vcpu)
2572{
2573        struct vcpu_svm *svm = to_svm(vcpu);
2574
2575        clr_exception_intercept(svm, BP_VECTOR);
2576
2577        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2578                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2579                        set_exception_intercept(svm, BP_VECTOR);
2580        } else
2581                vcpu->guest_debug = 0;
2582}
2583
2584static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2585{
2586        if (sd->next_asid > sd->max_asid) {
2587                ++sd->asid_generation;
2588                sd->next_asid = sd->min_asid;
2589                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2590        }
2591
2592        svm->asid_generation = sd->asid_generation;
2593        svm->vmcb->control.asid = sd->next_asid++;
2594
2595        mark_dirty(svm->vmcb, VMCB_ASID);
2596}
2597
2598static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2599{
2600        return to_svm(vcpu)->vmcb->save.dr6;
2601}
2602
2603static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2604{
2605        struct vcpu_svm *svm = to_svm(vcpu);
2606
2607        svm->vmcb->save.dr6 = value;
2608        mark_dirty(svm->vmcb, VMCB_DR);
2609}
2610
2611static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2612{
2613        struct vcpu_svm *svm = to_svm(vcpu);
2614
2615        get_debugreg(vcpu->arch.db[0], 0);
2616        get_debugreg(vcpu->arch.db[1], 1);
2617        get_debugreg(vcpu->arch.db[2], 2);
2618        get_debugreg(vcpu->arch.db[3], 3);
2619        vcpu->arch.dr6 = svm_get_dr6(vcpu);
2620        vcpu->arch.dr7 = svm->vmcb->save.dr7;
2621
2622        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2623        set_dr_intercepts(svm);
2624}
2625
2626static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2627{
2628        struct vcpu_svm *svm = to_svm(vcpu);
2629
2630        svm->vmcb->save.dr7 = value;
2631        mark_dirty(svm->vmcb, VMCB_DR);
2632}
2633
2634static int pf_interception(struct vcpu_svm *svm)
2635{
2636        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2637        u64 error_code = svm->vmcb->control.exit_info_1;
2638
2639        return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2640                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2641                        svm->vmcb->control.insn_bytes : NULL,
2642                        svm->vmcb->control.insn_len);
2643}
2644
2645static int npf_interception(struct vcpu_svm *svm)
2646{
2647        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2648        u64 error_code = svm->vmcb->control.exit_info_1;
2649
2650        trace_kvm_page_fault(fault_address, error_code);
2651        return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2652                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2653                        svm->vmcb->control.insn_bytes : NULL,
2654                        svm->vmcb->control.insn_len);
2655}
2656
2657static int db_interception(struct vcpu_svm *svm)
2658{
2659        struct kvm_run *kvm_run = svm->vcpu.run;
2660
2661        if (!(svm->vcpu.guest_debug &
2662              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2663                !svm->nmi_singlestep) {
2664                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2665                return 1;
2666        }
2667
2668        if (svm->nmi_singlestep) {
2669                disable_nmi_singlestep(svm);
2670        }
2671
2672        if (svm->vcpu.guest_debug &
2673            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2674                kvm_run->exit_reason = KVM_EXIT_DEBUG;
2675                kvm_run->debug.arch.pc =
2676                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2677                kvm_run->debug.arch.exception = DB_VECTOR;
2678                return 0;
2679        }
2680
2681        return 1;
2682}
2683
2684static int bp_interception(struct vcpu_svm *svm)
2685{
2686        struct kvm_run *kvm_run = svm->vcpu.run;
2687
2688        kvm_run->exit_reason = KVM_EXIT_DEBUG;
2689        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2690        kvm_run->debug.arch.exception = BP_VECTOR;
2691        return 0;
2692}
2693
2694static int ud_interception(struct vcpu_svm *svm)
2695{
2696        return handle_ud(&svm->vcpu);
2697}
2698
2699static int ac_interception(struct vcpu_svm *svm)
2700{
2701        kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2702        return 1;
2703}
2704
2705static int gp_interception(struct vcpu_svm *svm)
2706{
2707        struct kvm_vcpu *vcpu = &svm->vcpu;
2708        u32 error_code = svm->vmcb->control.exit_info_1;
2709        int er;
2710
2711        WARN_ON_ONCE(!enable_vmware_backdoor);
2712
2713        er = emulate_instruction(vcpu,
2714                EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2715        if (er == EMULATE_USER_EXIT)
2716                return 0;
2717        else if (er != EMULATE_DONE)
2718                kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2719        return 1;
2720}
2721
2722static bool is_erratum_383(void)
2723{
2724        int err, i;
2725        u64 value;
2726
2727        if (!erratum_383_found)
2728                return false;
2729
2730        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2731        if (err)
2732                return false;
2733
2734        /* Bit 62 may or may not be set for this mce */
2735        value &= ~(1ULL << 62);
2736
2737        if (value != 0xb600000000010015ULL)
2738                return false;
2739
2740        /* Clear MCi_STATUS registers */
2741        for (i = 0; i < 6; ++i)
2742                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2743
2744        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2745        if (!err) {
2746                u32 low, high;
2747
2748                value &= ~(1ULL << 2);
2749                low    = lower_32_bits(value);
2750                high   = upper_32_bits(value);
2751
2752                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2753        }
2754
2755        /* Flush tlb to evict multi-match entries */
2756        __flush_tlb_all();
2757
2758        return true;
2759}
2760
2761static void svm_handle_mce(struct vcpu_svm *svm)
2762{
2763        if (is_erratum_383()) {
2764                /*
2765                 * Erratum 383 triggered. Guest state is corrupt so kill the
2766                 * guest.
2767                 */
2768                pr_err("KVM: Guest triggered AMD Erratum 383\n");
2769
2770                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2771
2772                return;
2773        }
2774
2775        /*
2776         * On an #MC intercept the MCE handler is not called automatically in
2777         * the host. So do it by hand here.
2778         */
2779        asm volatile (
2780                "int $0x12\n");
2781        /* not sure if we ever come back to this point */
2782
2783        return;
2784}
2785
2786static int mc_interception(struct vcpu_svm *svm)
2787{
2788        return 1;
2789}
2790
2791static int shutdown_interception(struct vcpu_svm *svm)
2792{
2793        struct kvm_run *kvm_run = svm->vcpu.run;
2794
2795        /*
2796         * VMCB is undefined after a SHUTDOWN intercept
2797         * so reinitialize it.
2798         */
2799        clear_page(svm->vmcb);
2800        init_vmcb(svm);
2801
2802        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2803        return 0;
2804}
2805
2806static int io_interception(struct vcpu_svm *svm)
2807{
2808        struct kvm_vcpu *vcpu = &svm->vcpu;
2809        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2810        int size, in, string;
2811        unsigned port;
2812
2813        ++svm->vcpu.stat.io_exits;
2814        string = (io_info & SVM_IOIO_STR_MASK) != 0;
2815        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2816        if (string)
2817                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2818
2819        port = io_info >> 16;
2820        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2821        svm->next_rip = svm->vmcb->control.exit_info_2;
2822
2823        return kvm_fast_pio(&svm->vcpu, size, port, in);
2824}
2825
2826static int nmi_interception(struct vcpu_svm *svm)
2827{
2828        return 1;
2829}
2830
2831static int intr_interception(struct vcpu_svm *svm)
2832{
2833        ++svm->vcpu.stat.irq_exits;
2834        return 1;
2835}
2836
2837static int nop_on_interception(struct vcpu_svm *svm)
2838{
2839        return 1;
2840}
2841
2842static int halt_interception(struct vcpu_svm *svm)
2843{
2844        svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2845        return kvm_emulate_halt(&svm->vcpu);
2846}
2847
2848static int vmmcall_interception(struct vcpu_svm *svm)
2849{
2850        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2851        return kvm_emulate_hypercall(&svm->vcpu);
2852}
2853
2854static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2855{
2856        struct vcpu_svm *svm = to_svm(vcpu);
2857
2858        return svm->nested.nested_cr3;
2859}
2860
2861static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2862{
2863        struct vcpu_svm *svm = to_svm(vcpu);
2864        u64 cr3 = svm->nested.nested_cr3;
2865        u64 pdpte;
2866        int ret;
2867
2868        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2869                                       offset_in_page(cr3) + index * 8, 8);
2870        if (ret)
2871                return 0;
2872        return pdpte;
2873}
2874
2875static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2876                                   unsigned long root)
2877{
2878        struct vcpu_svm *svm = to_svm(vcpu);
2879
2880        svm->vmcb->control.nested_cr3 = __sme_set(root);
2881        mark_dirty(svm->vmcb, VMCB_NPT);
2882        svm_flush_tlb(vcpu, true);
2883}
2884
2885static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2886                                       struct x86_exception *fault)
2887{
2888        struct vcpu_svm *svm = to_svm(vcpu);
2889
2890        if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2891                /*
2892                 * TODO: track the cause of the nested page fault, and
2893                 * correctly fill in the high bits of exit_info_1.
2894                 */
2895                svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2896                svm->vmcb->control.exit_code_hi = 0;
2897                svm->vmcb->control.exit_info_1 = (1ULL << 32);
2898                svm->vmcb->control.exit_info_2 = fault->address;
2899        }
2900
2901        svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2902        svm->vmcb->control.exit_info_1 |= fault->error_code;
2903
2904        /*
2905         * The present bit is always zero for page structure faults on real
2906         * hardware.
2907         */
2908        if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2909                svm->vmcb->control.exit_info_1 &= ~1;
2910
2911        nested_svm_vmexit(svm);
2912}
2913
2914static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2915{
2916        WARN_ON(mmu_is_nested(vcpu));
2917        kvm_init_shadow_mmu(vcpu);
2918        vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2919        vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2920        vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2921        vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2922        vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2923        reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2924        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2925}
2926
2927static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2928{
2929        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2930}
2931
2932static int nested_svm_check_permissions(struct vcpu_svm *svm)
2933{
2934        if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2935            !is_paging(&svm->vcpu)) {
2936                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2937                return 1;
2938        }
2939
2940        if (svm->vmcb->save.cpl) {
2941                kvm_inject_gp(&svm->vcpu, 0);
2942                return 1;
2943        }
2944
2945        return 0;
2946}
2947
2948static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2949                                      bool has_error_code, u32 error_code)
2950{
2951        int vmexit;
2952
2953        if (!is_guest_mode(&svm->vcpu))
2954                return 0;
2955
2956        vmexit = nested_svm_intercept(svm);
2957        if (vmexit != NESTED_EXIT_DONE)
2958                return 0;
2959
2960        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2961        svm->vmcb->control.exit_code_hi = 0;
2962        svm->vmcb->control.exit_info_1 = error_code;
2963
2964        /*
2965         * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2966         * The fix is to add the ancillary datum (CR2 or DR6) to structs
2967         * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2968         * written only when inject_pending_event runs (DR6 would written here
2969         * too).  This should be conditional on a new capability---if the
2970         * capability is disabled, kvm_multiple_exception would write the
2971         * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2972         */
2973        if (svm->vcpu.arch.exception.nested_apf)
2974                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2975        else
2976                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2977
2978        svm->nested.exit_required = true;
2979        return vmexit;
2980}
2981
2982/* This function returns true if it is save to enable the irq window */
2983static inline bool nested_svm_intr(struct vcpu_svm *svm)
2984{
2985        if (!is_guest_mode(&svm->vcpu))
2986                return true;
2987
2988        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2989                return true;
2990
2991        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2992                return false;
2993
2994        /*
2995         * if vmexit was already requested (by intercepted exception
2996         * for instance) do not overwrite it with "external interrupt"
2997         * vmexit.
2998         */
2999        if (svm->nested.exit_required)
3000                return false;
3001
3002        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3003        svm->vmcb->control.exit_info_1 = 0;
3004        svm->vmcb->control.exit_info_2 = 0;
3005
3006        if (svm->nested.intercept & 1ULL) {
3007                /*
3008                 * The #vmexit can't be emulated here directly because this
3009                 * code path runs with irqs and preemption disabled. A
3010                 * #vmexit emulation might sleep. Only signal request for
3011                 * the #vmexit here.
3012                 */
3013                svm->nested.exit_required = true;
3014                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3015                return false;
3016        }
3017
3018        return true;
3019}
3020
3021/* This function returns true if it is save to enable the nmi window */
3022static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3023{
3024        if (!is_guest_mode(&svm->vcpu))
3025                return true;
3026
3027        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3028                return true;
3029
3030        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3031        svm->nested.exit_required = true;
3032
3033        return false;
3034}
3035
3036static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3037{
3038        struct page *page;
3039
3040        might_sleep();
3041
3042        page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3043        if (is_error_page(page))
3044                goto error;
3045
3046        *_page = page;
3047
3048        return kmap(page);
3049
3050error:
3051        kvm_inject_gp(&svm->vcpu, 0);
3052
3053        return NULL;
3054}
3055
3056static void nested_svm_unmap(struct page *page)
3057{
3058        kunmap(page);
3059        kvm_release_page_dirty(page);
3060}
3061
3062static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3063{
3064        unsigned port, size, iopm_len;
3065        u16 val, mask;
3066        u8 start_bit;
3067        u64 gpa;
3068
3069        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3070                return NESTED_EXIT_HOST;
3071
3072        port = svm->vmcb->control.exit_info_1 >> 16;
3073        size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3074                SVM_IOIO_SIZE_SHIFT;
3075        gpa  = svm->nested.vmcb_iopm + (port / 8);
3076        start_bit = port % 8;
3077        iopm_len = (start_bit + size > 8) ? 2 : 1;
3078        mask = (0xf >> (4 - size)) << start_bit;
3079        val = 0;
3080
3081        if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3082                return NESTED_EXIT_DONE;
3083
3084        return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3085}
3086
3087static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3088{
3089        u32 offset, msr, value;
3090        int write, mask;
3091
3092        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3093                return NESTED_EXIT_HOST;
3094
3095        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3096        offset = svm_msrpm_offset(msr);
3097        write  = svm->vmcb->control.exit_info_1 & 1;
3098        mask   = 1 << ((2 * (msr & 0xf)) + write);
3099
3100        if (offset == MSR_INVALID)
3101                return NESTED_EXIT_DONE;
3102
3103        /* Offset is in 32 bit units but need in 8 bit units */
3104        offset *= 4;
3105
3106        if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3107                return NESTED_EXIT_DONE;
3108
3109        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3110}
3111
3112/* DB exceptions for our internal use must not cause vmexit */
3113static int nested_svm_intercept_db(struct vcpu_svm *svm)
3114{
3115        unsigned long dr6;
3116
3117        /* if we're not singlestepping, it's not ours */
3118        if (!svm->nmi_singlestep)
3119                return NESTED_EXIT_DONE;
3120
3121        /* if it's not a singlestep exception, it's not ours */
3122        if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3123                return NESTED_EXIT_DONE;
3124        if (!(dr6 & DR6_BS))
3125                return NESTED_EXIT_DONE;
3126
3127        /* if the guest is singlestepping, it should get the vmexit */
3128        if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3129                disable_nmi_singlestep(svm);
3130                return NESTED_EXIT_DONE;
3131        }
3132
3133        /* it's ours, the nested hypervisor must not see this one */
3134        return NESTED_EXIT_HOST;
3135}
3136
3137static int nested_svm_exit_special(struct vcpu_svm *svm)
3138{
3139        u32 exit_code = svm->vmcb->control.exit_code;
3140
3141        switch (exit_code) {
3142        case SVM_EXIT_INTR:
3143        case SVM_EXIT_NMI:
3144        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3145                return NESTED_EXIT_HOST;
3146        case SVM_EXIT_NPF:
3147                /* For now we are always handling NPFs when using them */
3148                if (npt_enabled)
3149                        return NESTED_EXIT_HOST;
3150                break;
3151        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3152                /* When we're shadowing, trap PFs, but not async PF */
3153                if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3154                        return NESTED_EXIT_HOST;
3155                break;
3156        default:
3157                break;
3158        }
3159
3160        return NESTED_EXIT_CONTINUE;
3161}
3162
3163/*
3164 * If this function returns true, this #vmexit was already handled
3165 */
3166static int nested_svm_intercept(struct vcpu_svm *svm)
3167{
3168        u32 exit_code = svm->vmcb->control.exit_code;
3169        int vmexit = NESTED_EXIT_HOST;
3170
3171        switch (exit_code) {
3172        case SVM_EXIT_MSR:
3173                vmexit = nested_svm_exit_handled_msr(svm);
3174                break;
3175        case SVM_EXIT_IOIO:
3176                vmexit = nested_svm_intercept_ioio(svm);
3177                break;
3178        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3179                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3180                if (svm->nested.intercept_cr & bit)
3181                        vmexit = NESTED_EXIT_DONE;
3182                break;
3183        }
3184        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3185                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3186                if (svm->nested.intercept_dr & bit)
3187                        vmexit = NESTED_EXIT_DONE;
3188                break;
3189        }
3190        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3191                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3192                if (svm->nested.intercept_exceptions & excp_bits) {
3193                        if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3194                                vmexit = nested_svm_intercept_db(svm);
3195                        else
3196                                vmexit = NESTED_EXIT_DONE;
3197                }
3198                /* async page fault always cause vmexit */
3199                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3200                         svm->vcpu.arch.exception.nested_apf != 0)
3201                        vmexit = NESTED_EXIT_DONE;
3202                break;
3203        }
3204        case SVM_EXIT_ERR: {
3205                vmexit = NESTED_EXIT_DONE;
3206                break;
3207        }
3208        default: {
3209                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3210                if (svm->nested.intercept & exit_bits)
3211                        vmexit = NESTED_EXIT_DONE;
3212        }
3213        }
3214
3215        return vmexit;
3216}
3217
3218static int nested_svm_exit_handled(struct vcpu_svm *svm)
3219{
3220        int vmexit;
3221
3222        vmexit = nested_svm_intercept(svm);
3223
3224        if (vmexit == NESTED_EXIT_DONE)
3225                nested_svm_vmexit(svm);
3226
3227        return vmexit;
3228}
3229
3230static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3231{
3232        struct vmcb_control_area *dst  = &dst_vmcb->control;
3233        struct vmcb_control_area *from = &from_vmcb->control;
3234
3235        dst->intercept_cr         = from->intercept_cr;
3236        dst->intercept_dr         = from->intercept_dr;
3237        dst->intercept_exceptions = from->intercept_exceptions;
3238        dst->intercept            = from->intercept;
3239        dst->iopm_base_pa         = from->iopm_base_pa;
3240        dst->msrpm_base_pa        = from->msrpm_base_pa;
3241        dst->tsc_offset           = from->tsc_offset;
3242        dst->asid                 = from->asid;
3243        dst->tlb_ctl              = from->tlb_ctl;
3244        dst->int_ctl              = from->int_ctl;
3245        dst->int_vector           = from->int_vector;
3246        dst->int_state            = from->int_state;
3247        dst->exit_code            = from->exit_code;
3248        dst->exit_code_hi         = from->exit_code_hi;
3249        dst->exit_info_1          = from->exit_info_1;
3250        dst->exit_info_2          = from->exit_info_2;
3251        dst->exit_int_info        = from->exit_int_info;
3252        dst->exit_int_info_err    = from->exit_int_info_err;
3253        dst->nested_ctl           = from->nested_ctl;
3254        dst->event_inj            = from->event_inj;
3255        dst->event_inj_err        = from->event_inj_err;
3256        dst->nested_cr3           = from->nested_cr3;
3257        dst->virt_ext              = from->virt_ext;
3258}
3259
3260static int nested_svm_vmexit(struct vcpu_svm *svm)
3261{
3262        struct vmcb *nested_vmcb;
3263        struct vmcb *hsave = svm->nested.hsave;
3264        struct vmcb *vmcb = svm->vmcb;
3265        struct page *page;
3266
3267        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3268                                       vmcb->control.exit_info_1,
3269                                       vmcb->control.exit_info_2,
3270                                       vmcb->control.exit_int_info,
3271                                       vmcb->control.exit_int_info_err,
3272                                       KVM_ISA_SVM);
3273
3274        nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3275        if (!nested_vmcb)
3276                return 1;
3277
3278        /* Exit Guest-Mode */
3279        leave_guest_mode(&svm->vcpu);
3280        svm->nested.vmcb = 0;
3281
3282        /* Give the current vmcb to the guest */
3283        disable_gif(svm);
3284
3285        nested_vmcb->save.es     = vmcb->save.es;
3286        nested_vmcb->save.cs     = vmcb->save.cs;
3287        nested_vmcb->save.ss     = vmcb->save.ss;
3288        nested_vmcb->save.ds     = vmcb->save.ds;
3289        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3290        nested_vmcb->save.idtr   = vmcb->save.idtr;
3291        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3292        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3293        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3294        nested_vmcb->save.cr2    = vmcb->save.cr2;
3295        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3296        nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3297        nested_vmcb->save.rip    = vmcb->save.rip;
3298        nested_vmcb->save.rsp    = vmcb->save.rsp;
3299        nested_vmcb->save.rax    = vmcb->save.rax;
3300        nested_vmcb->save.dr7    = vmcb->save.dr7;
3301        nested_vmcb->save.dr6    = vmcb->save.dr6;
3302        nested_vmcb->save.cpl    = vmcb->save.cpl;
3303
3304        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3305        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3306        nested_vmcb->control.int_state         = vmcb->control.int_state;
3307        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3308        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3309        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3310        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3311        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3312        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3313
3314        if (svm->nrips_enabled)
3315                nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3316
3317        /*
3318         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3319         * to make sure that we do not lose injected events. So check event_inj
3320         * here and copy it to exit_int_info if it is valid.
3321         * Exit_int_info and event_inj can't be both valid because the case
3322         * below only happens on a VMRUN instruction intercept which has
3323         * no valid exit_int_info set.
3324         */
3325        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3326                struct vmcb_control_area *nc = &nested_vmcb->control;
3327
3328                nc->exit_int_info     = vmcb->control.event_inj;
3329                nc->exit_int_info_err = vmcb->control.event_inj_err;
3330        }
3331
3332        nested_vmcb->control.tlb_ctl           = 0;
3333        nested_vmcb->control.event_inj         = 0;
3334        nested_vmcb->control.event_inj_err     = 0;
3335
3336        /* We always set V_INTR_MASKING and remember the old value in hflags */
3337        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3338                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3339
3340        /* Restore the original control entries */
3341        copy_vmcb_control_area(vmcb, hsave);
3342
3343        svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3344        kvm_clear_exception_queue(&svm->vcpu);
3345        kvm_clear_interrupt_queue(&svm->vcpu);
3346
3347        svm->nested.nested_cr3 = 0;
3348
3349        /* Restore selected save entries */
3350        svm->vmcb->save.es = hsave->save.es;
3351        svm->vmcb->save.cs = hsave->save.cs;
3352        svm->vmcb->save.ss = hsave->save.ss;
3353        svm->vmcb->save.ds = hsave->save.ds;
3354        svm->vmcb->save.gdtr = hsave->save.gdtr;
3355        svm->vmcb->save.idtr = hsave->save.idtr;
3356        kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3357        svm_set_efer(&svm->vcpu, hsave->save.efer);
3358        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3359        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3360        if (npt_enabled) {
3361                svm->vmcb->save.cr3 = hsave->save.cr3;
3362                svm->vcpu.arch.cr3 = hsave->save.cr3;
3363        } else {
3364                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3365        }
3366        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3367        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3368        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3369        svm->vmcb->save.dr7 = 0;
3370        svm->vmcb->save.cpl = 0;
3371        svm->vmcb->control.exit_int_info = 0;
3372
3373        mark_all_dirty(svm->vmcb);
3374
3375        nested_svm_unmap(page);
3376
3377        nested_svm_uninit_mmu_context(&svm->vcpu);
3378        kvm_mmu_reset_context(&svm->vcpu);
3379        kvm_mmu_load(&svm->vcpu);
3380
3381        return 0;
3382}
3383
3384static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3385{
3386        /*
3387         * This function merges the msr permission bitmaps of kvm and the
3388         * nested vmcb. It is optimized in that it only merges the parts where
3389         * the kvm msr permission bitmap may contain zero bits
3390         */
3391        int i;
3392
3393        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3394                return true;
3395
3396        for (i = 0; i < MSRPM_OFFSETS; i++) {
3397                u32 value, p;
3398                u64 offset;
3399
3400                if (msrpm_offsets[i] == 0xffffffff)
3401                        break;
3402
3403                p      = msrpm_offsets[i];
3404                offset = svm->nested.vmcb_msrpm + (p * 4);
3405
3406                if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3407                        return false;
3408
3409                svm->nested.msrpm[p] = svm->msrpm[p] | value;
3410        }
3411
3412        svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3413
3414        return true;
3415}
3416
3417static bool nested_vmcb_checks(struct vmcb *vmcb)
3418{
3419        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3420                return false;
3421
3422        if (vmcb->control.asid == 0)
3423                return false;
3424
3425        if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3426            !npt_enabled)
3427                return false;
3428
3429        return true;
3430}
3431
3432static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3433                                 struct vmcb *nested_vmcb, struct page *page)
3434{
3435        if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3436                svm->vcpu.arch.hflags |= HF_HIF_MASK;
3437        else
3438                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3439
3440        if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3441                kvm_mmu_unload(&svm->vcpu);
3442                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3443                nested_svm_init_mmu_context(&svm->vcpu);
3444        }
3445
3446        /* Load the nested guest state */
3447        svm->vmcb->save.es = nested_vmcb->save.es;
3448        svm->vmcb->save.cs = nested_vmcb->save.cs;
3449        svm->vmcb->save.ss = nested_vmcb->save.ss;
3450        svm->vmcb->save.ds = nested_vmcb->save.ds;
3451        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3452        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3453        kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3454        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3455        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3456        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3457        if (npt_enabled) {
3458                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3459                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3460        } else
3461                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3462
3463        /* Guest paging mode is active - reset mmu */
3464        kvm_mmu_reset_context(&svm->vcpu);
3465
3466        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3467        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3468        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3469        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3470
3471        /* In case we don't even reach vcpu_run, the fields are not updated */
3472        svm->vmcb->save.rax = nested_vmcb->save.rax;
3473        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3474        svm->vmcb->save.rip = nested_vmcb->save.rip;
3475        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3476        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3477        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3478
3479        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3480        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3481
3482        /* cache intercepts */
3483        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3484        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3485        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3486        svm->nested.intercept            = nested_vmcb->control.intercept;
3487
3488        svm_flush_tlb(&svm->vcpu, true);
3489        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3490        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3491                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3492        else
3493                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3494
3495        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3496                /* We only want the cr8 intercept bits of the guest */
3497                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3498                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3499        }
3500
3501        /* We don't want to see VMMCALLs from a nested guest */
3502        clr_intercept(svm, INTERCEPT_VMMCALL);
3503
3504        svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3505        svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3506
3507        svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3508        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3509        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3510        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3511        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3512
3513        nested_svm_unmap(page);
3514
3515        /* Enter Guest-Mode */
3516        enter_guest_mode(&svm->vcpu);
3517
3518        /*
3519         * Merge guest and host intercepts - must be called  with vcpu in
3520         * guest-mode to take affect here
3521         */
3522        recalc_intercepts(svm);
3523
3524        svm->nested.vmcb = vmcb_gpa;
3525
3526        enable_gif(svm);
3527
3528        mark_all_dirty(svm->vmcb);
3529}
3530
3531static bool nested_svm_vmrun(struct vcpu_svm *svm)
3532{
3533        struct vmcb *nested_vmcb;
3534        struct vmcb *hsave = svm->nested.hsave;
3535        struct vmcb *vmcb = svm->vmcb;
3536        struct page *page;
3537        u64 vmcb_gpa;
3538
3539        vmcb_gpa = svm->vmcb->save.rax;
3540
3541        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3542        if (!nested_vmcb)
3543                return false;
3544
3545        if (!nested_vmcb_checks(nested_vmcb)) {
3546                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3547                nested_vmcb->control.exit_code_hi = 0;
3548                nested_vmcb->control.exit_info_1  = 0;
3549                nested_vmcb->control.exit_info_2  = 0;
3550
3551                nested_svm_unmap(page);
3552
3553                return false;
3554        }
3555
3556        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3557                               nested_vmcb->save.rip,
3558                               nested_vmcb->control.int_ctl,
3559                               nested_vmcb->control.event_inj,
3560                               nested_vmcb->control.nested_ctl);
3561
3562        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3563                                    nested_vmcb->control.intercept_cr >> 16,
3564                                    nested_vmcb->control.intercept_exceptions,
3565                                    nested_vmcb->control.intercept);
3566
3567        /* Clear internal status */
3568        kvm_clear_exception_queue(&svm->vcpu);
3569        kvm_clear_interrupt_queue(&svm->vcpu);
3570
3571        /*
3572         * Save the old vmcb, so we don't need to pick what we save, but can
3573         * restore everything when a VMEXIT occurs
3574         */
3575        hsave->save.es     = vmcb->save.es;
3576        hsave->save.cs     = vmcb->save.cs;
3577        hsave->save.ss     = vmcb->save.ss;
3578        hsave->save.ds     = vmcb->save.ds;
3579        hsave->save.gdtr   = vmcb->save.gdtr;
3580        hsave->save.idtr   = vmcb->save.idtr;
3581        hsave->save.efer   = svm->vcpu.arch.efer;
3582        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3583        hsave->save.cr4    = svm->vcpu.arch.cr4;
3584        hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3585        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3586        hsave->save.rsp    = vmcb->save.rsp;
3587        hsave->save.rax    = vmcb->save.rax;
3588        if (npt_enabled)
3589                hsave->save.cr3    = vmcb->save.cr3;
3590        else
3591                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3592
3593        copy_vmcb_control_area(hsave, vmcb);
3594
3595        enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3596
3597        return true;
3598}
3599
3600static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3601{
3602        to_vmcb->save.fs = from_vmcb->save.fs;
3603        to_vmcb->save.gs = from_vmcb->save.gs;
3604        to_vmcb->save.tr = from_vmcb->save.tr;
3605        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3606        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3607        to_vmcb->save.star = from_vmcb->save.star;
3608        to_vmcb->save.lstar = from_vmcb->save.lstar;
3609        to_vmcb->save.cstar = from_vmcb->save.cstar;
3610        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3611        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3612        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3613        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3614}
3615
3616static int vmload_interception(struct vcpu_svm *svm)
3617{
3618        struct vmcb *nested_vmcb;
3619        struct page *page;
3620        int ret;
3621
3622        if (nested_svm_check_permissions(svm))
3623                return 1;
3624
3625        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3626        if (!nested_vmcb)
3627                return 1;
3628
3629        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3630        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3631
3632        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3633        nested_svm_unmap(page);
3634
3635        return ret;
3636}
3637
3638static int vmsave_interception(struct vcpu_svm *svm)
3639{
3640        struct vmcb *nested_vmcb;
3641        struct page *page;
3642        int ret;
3643
3644        if (nested_svm_check_permissions(svm))
3645                return 1;
3646
3647        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3648        if (!nested_vmcb)
3649                return 1;
3650
3651        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3652        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3653
3654        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3655        nested_svm_unmap(page);
3656
3657        return ret;
3658}
3659
3660static int vmrun_interception(struct vcpu_svm *svm)
3661{
3662        if (nested_svm_check_permissions(svm))
3663                return 1;
3664
3665        /* Save rip after vmrun instruction */
3666        kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3667
3668        if (!nested_svm_vmrun(svm))
3669                return 1;
3670
3671        if (!nested_svm_vmrun_msrpm(svm))
3672                goto failed;
3673
3674        return 1;
3675
3676failed:
3677
3678        svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3679        svm->vmcb->control.exit_code_hi = 0;
3680        svm->vmcb->control.exit_info_1  = 0;
3681        svm->vmcb->control.exit_info_2  = 0;
3682
3683        nested_svm_vmexit(svm);
3684
3685        return 1;
3686}
3687
3688static int stgi_interception(struct vcpu_svm *svm)
3689{
3690        int ret;
3691
3692        if (nested_svm_check_permissions(svm))
3693                return 1;
3694
3695        /*
3696         * If VGIF is enabled, the STGI intercept is only added to
3697         * detect the opening of the SMI/NMI window; remove it now.
3698         */
3699        if (vgif_enabled(svm))
3700                clr_intercept(svm, INTERCEPT_STGI);
3701
3702        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3703        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3704        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3705
3706        enable_gif(svm);
3707
3708        return ret;
3709}
3710
3711static int clgi_interception(struct vcpu_svm *svm)
3712{
3713        int ret;
3714
3715        if (nested_svm_check_permissions(svm))
3716                return 1;
3717
3718        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3719        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3720
3721        disable_gif(svm);
3722
3723        /* After a CLGI no interrupts should come */
3724        if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3725                svm_clear_vintr(svm);
3726                svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3727                mark_dirty(svm->vmcb, VMCB_INTR);
3728        }
3729
3730        return ret;
3731}
3732
3733static int invlpga_interception(struct vcpu_svm *svm)
3734{
3735        struct kvm_vcpu *vcpu = &svm->vcpu;
3736
3737        trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3738                          kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3739
3740        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3741        kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3742
3743        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3744        return kvm_skip_emulated_instruction(&svm->vcpu);
3745}
3746
3747static int skinit_interception(struct vcpu_svm *svm)
3748{
3749        trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3750
3751        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3752        return 1;
3753}
3754
3755static int wbinvd_interception(struct vcpu_svm *svm)
3756{
3757        return kvm_emulate_wbinvd(&svm->vcpu);
3758}
3759
3760static int xsetbv_interception(struct vcpu_svm *svm)
3761{
3762        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3763        u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3764
3765        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3766                svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3767                return kvm_skip_emulated_instruction(&svm->vcpu);
3768        }
3769
3770        return 1;
3771}
3772
3773static int task_switch_interception(struct vcpu_svm *svm)
3774{
3775        u16 tss_selector;
3776        int reason;
3777        int int_type = svm->vmcb->control.exit_int_info &
3778                SVM_EXITINTINFO_TYPE_MASK;
3779        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3780        uint32_t type =
3781                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3782        uint32_t idt_v =
3783                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3784        bool has_error_code = false;
3785        u32 error_code = 0;
3786
3787        tss_selector = (u16)svm->vmcb->control.exit_info_1;
3788
3789        if (svm->vmcb->control.exit_info_2 &
3790            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3791                reason = TASK_SWITCH_IRET;
3792        else if (svm->vmcb->control.exit_info_2 &
3793                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3794                reason = TASK_SWITCH_JMP;
3795        else if (idt_v)
3796                reason = TASK_SWITCH_GATE;
3797        else
3798                reason = TASK_SWITCH_CALL;
3799
3800        if (reason == TASK_SWITCH_GATE) {
3801                switch (type) {
3802                case SVM_EXITINTINFO_TYPE_NMI:
3803                        svm->vcpu.arch.nmi_injected = false;
3804                        break;
3805                case SVM_EXITINTINFO_TYPE_EXEPT:
3806                        if (svm->vmcb->control.exit_info_2 &
3807                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3808                                has_error_code = true;
3809                                error_code =
3810                                        (u32)svm->vmcb->control.exit_info_2;
3811                        }
3812                        kvm_clear_exception_queue(&svm->vcpu);
3813                        break;
3814                case SVM_EXITINTINFO_TYPE_INTR:
3815                        kvm_clear_interrupt_queue(&svm->vcpu);
3816                        break;
3817                default:
3818                        break;
3819                }
3820        }
3821
3822        if (reason != TASK_SWITCH_GATE ||
3823            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3824            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3825             (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3826                skip_emulated_instruction(&svm->vcpu);
3827
3828        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3829                int_vec = -1;
3830
3831        if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3832                                has_error_code, error_code) == EMULATE_FAIL) {
3833                svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3834                svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3835                svm->vcpu.run->internal.ndata = 0;
3836                return 0;
3837        }
3838        return 1;
3839}
3840
3841static int cpuid_interception(struct vcpu_svm *svm)
3842{
3843        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3844        return kvm_emulate_cpuid(&svm->vcpu);
3845}
3846
3847static int iret_interception(struct vcpu_svm *svm)
3848{
3849        ++svm->vcpu.stat.nmi_window_exits;
3850        clr_intercept(svm, INTERCEPT_IRET);
3851        svm->vcpu.arch.hflags |= HF_IRET_MASK;
3852        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3853        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3854        return 1;
3855}
3856
3857static int invlpg_interception(struct vcpu_svm *svm)
3858{
3859        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3860                return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3861
3862        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3863        return kvm_skip_emulated_instruction(&svm->vcpu);
3864}
3865
3866static int emulate_on_interception(struct vcpu_svm *svm)
3867{
3868        return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3869}
3870
3871static int rsm_interception(struct vcpu_svm *svm)
3872{
3873        return x86_emulate_instruction(&svm->vcpu, 0, 0,
3874                                       rsm_ins_bytes, 2) == EMULATE_DONE;
3875}
3876
3877static int rdpmc_interception(struct vcpu_svm *svm)
3878{
3879        int err;
3880
3881        if (!static_cpu_has(X86_FEATURE_NRIPS))
3882                return emulate_on_interception(svm);
3883
3884        err = kvm_rdpmc(&svm->vcpu);
3885        return kvm_complete_insn_gp(&svm->vcpu, err);
3886}
3887
3888static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3889                                            unsigned long val)
3890{
3891        unsigned long cr0 = svm->vcpu.arch.cr0;
3892        bool ret = false;
3893        u64 intercept;
3894
3895        intercept = svm->nested.intercept;
3896
3897        if (!is_guest_mode(&svm->vcpu) ||
3898            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3899                return false;
3900
3901        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3902        val &= ~SVM_CR0_SELECTIVE_MASK;
3903
3904        if (cr0 ^ val) {
3905                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3906                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3907        }
3908
3909        return ret;
3910}
3911
3912#define CR_VALID (1ULL << 63)
3913
3914static int cr_interception(struct vcpu_svm *svm)
3915{
3916        int reg, cr;
3917        unsigned long val;
3918        int err;
3919
3920        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3921                return emulate_on_interception(svm);
3922
3923        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3924                return emulate_on_interception(svm);
3925
3926        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3927        if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3928                cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3929        else
3930                cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3931
3932        err = 0;
3933        if (cr >= 16) { /* mov to cr */
3934                cr -= 16;
3935                val = kvm_register_read(&svm->vcpu, reg);
3936                switch (cr) {
3937                case 0:
3938                        if (!check_selective_cr0_intercepted(svm, val))
3939                                err = kvm_set_cr0(&svm->vcpu, val);
3940                        else
3941                                return 1;
3942
3943                        break;
3944                case 3:
3945                        err = kvm_set_cr3(&svm->vcpu, val);
3946                        break;
3947                case 4:
3948                        err = kvm_set_cr4(&svm->vcpu, val);
3949                        break;
3950                case 8:
3951                        err = kvm_set_cr8(&svm->vcpu, val);
3952                        break;
3953                default:
3954                        WARN(1, "unhandled write to CR%d", cr);
3955                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3956                        return 1;
3957                }
3958        } else { /* mov from cr */
3959                switch (cr) {
3960                case 0:
3961                        val = kvm_read_cr0(&svm->vcpu);
3962                        break;
3963                case 2:
3964                        val = svm->vcpu.arch.cr2;
3965                        break;
3966                case 3:
3967                        val = kvm_read_cr3(&svm->vcpu);
3968                        break;
3969                case 4:
3970                        val = kvm_read_cr4(&svm->vcpu);
3971                        break;
3972                case 8:
3973                        val = kvm_get_cr8(&svm->vcpu);
3974                        break;
3975                default:
3976                        WARN(1, "unhandled read from CR%d", cr);
3977                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3978                        return 1;
3979                }
3980                kvm_register_write(&svm->vcpu, reg, val);
3981        }
3982        return kvm_complete_insn_gp(&svm->vcpu, err);
3983}
3984
3985static int dr_interception(struct vcpu_svm *svm)
3986{
3987        int reg, dr;
3988        unsigned long val;
3989
3990        if (svm->vcpu.guest_debug == 0) {
3991                /*
3992                 * No more DR vmexits; force a reload of the debug registers
3993                 * and reenter on this instruction.  The next vmexit will
3994                 * retrieve the full state of the debug registers.
3995                 */
3996                clr_dr_intercepts(svm);
3997                svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3998                return 1;
3999        }
4000
4001        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4002                return emulate_on_interception(svm);
4003
4004        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4005        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4006
4007        if (dr >= 16) { /* mov to DRn */
4008                if (!kvm_require_dr(&svm->vcpu, dr - 16))
4009                        return 1;
4010                val = kvm_register_read(&svm->vcpu, reg);
4011                kvm_set_dr(&svm->vcpu, dr - 16, val);
4012        } else {
4013                if (!kvm_require_dr(&svm->vcpu, dr))
4014                        return 1;
4015                kvm_get_dr(&svm->vcpu, dr, &val);
4016                kvm_register_write(&svm->vcpu, reg, val);
4017        }
4018
4019        return kvm_skip_emulated_instruction(&svm->vcpu);
4020}
4021
4022static int cr8_write_interception(struct vcpu_svm *svm)
4023{
4024        struct kvm_run *kvm_run = svm->vcpu.run;
4025        int r;
4026
4027        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4028        /* instruction emulation calls kvm_set_cr8() */
4029        r = cr_interception(svm);
4030        if (lapic_in_kernel(&svm->vcpu))
4031                return r;
4032        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4033                return r;
4034        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4035        return 0;
4036}
4037
4038static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4039{
4040        msr->data = 0;
4041
4042        switch (msr->index) {
4043        case MSR_F10H_DECFG:
4044                if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4045                        msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4046                break;
4047        default:
4048                return 1;
4049        }
4050
4051        return 0;
4052}
4053
4054static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4055{
4056        struct vcpu_svm *svm = to_svm(vcpu);
4057
4058        switch (msr_info->index) {
4059        case MSR_STAR:
4060                msr_info->data = svm->vmcb->save.star;
4061                break;
4062#ifdef CONFIG_X86_64
4063        case MSR_LSTAR:
4064                msr_info->data = svm->vmcb->save.lstar;
4065                break;
4066        case MSR_CSTAR:
4067                msr_info->data = svm->vmcb->save.cstar;
4068                break;
4069        case MSR_KERNEL_GS_BASE:
4070                msr_info->data = svm->vmcb->save.kernel_gs_base;
4071                break;
4072        case MSR_SYSCALL_MASK:
4073                msr_info->data = svm->vmcb->save.sfmask;
4074                break;
4075#endif
4076        case MSR_IA32_SYSENTER_CS:
4077                msr_info->data = svm->vmcb->save.sysenter_cs;
4078                break;
4079        case MSR_IA32_SYSENTER_EIP:
4080                msr_info->data = svm->sysenter_eip;
4081                break;
4082        case MSR_IA32_SYSENTER_ESP:
4083                msr_info->data = svm->sysenter_esp;
4084                break;
4085        case MSR_TSC_AUX:
4086                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4087                        return 1;
4088                msr_info->data = svm->tsc_aux;
4089                break;
4090        /*
4091         * Nobody will change the following 5 values in the VMCB so we can
4092         * safely return them on rdmsr. They will always be 0 until LBRV is
4093         * implemented.
4094         */
4095        case MSR_IA32_DEBUGCTLMSR:
4096                msr_info->data = svm->vmcb->save.dbgctl;
4097                break;
4098        case MSR_IA32_LASTBRANCHFROMIP:
4099                msr_info->data = svm->vmcb->save.br_from;
4100                break;
4101        case MSR_IA32_LASTBRANCHTOIP:
4102                msr_info->data = svm->vmcb->save.br_to;
4103                break;
4104        case MSR_IA32_LASTINTFROMIP:
4105                msr_info->data = svm->vmcb->save.last_excp_from;
4106                break;
4107        case MSR_IA32_LASTINTTOIP:
4108                msr_info->data = svm->vmcb->save.last_excp_to;
4109                break;
4110        case MSR_VM_HSAVE_PA:
4111                msr_info->data = svm->nested.hsave_msr;
4112                break;
4113        case MSR_VM_CR:
4114                msr_info->data = svm->nested.vm_cr_msr;
4115                break;
4116        case MSR_IA32_SPEC_CTRL:
4117                if (!msr_info->host_initiated &&
4118                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
4119                        return 1;
4120
4121                msr_info->data = svm->spec_ctrl;
4122                break;
4123        case MSR_AMD64_VIRT_SPEC_CTRL:
4124                if (!msr_info->host_initiated &&
4125                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4126                        return 1;
4127
4128                msr_info->data = svm->virt_spec_ctrl;
4129                break;
4130        case MSR_F15H_IC_CFG: {
4131
4132                int family, model;
4133
4134                family = guest_cpuid_family(vcpu);
4135                model  = guest_cpuid_model(vcpu);
4136
4137                if (family < 0 || model < 0)
4138                        return kvm_get_msr_common(vcpu, msr_info);
4139
4140                msr_info->data = 0;
4141
4142                if (family == 0x15 &&
4143                    (model >= 0x2 && model < 0x20))
4144                        msr_info->data = 0x1E;
4145                }
4146                break;
4147        case MSR_F10H_DECFG:
4148                msr_info->data = svm->msr_decfg;
4149                break;
4150        default:
4151                return kvm_get_msr_common(vcpu, msr_info);
4152        }
4153        return 0;
4154}
4155
4156static int rdmsr_interception(struct vcpu_svm *svm)
4157{
4158        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4159        struct msr_data msr_info;
4160
4161        msr_info.index = ecx;
4162        msr_info.host_initiated = false;
4163        if (svm_get_msr(&svm->vcpu, &msr_info)) {
4164                trace_kvm_msr_read_ex(ecx);
4165                kvm_inject_gp(&svm->vcpu, 0);
4166                return 1;
4167        } else {
4168                trace_kvm_msr_read(ecx, msr_info.data);
4169
4170                kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4171                                   msr_info.data & 0xffffffff);
4172                kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4173                                   msr_info.data >> 32);
4174                svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4175                return kvm_skip_emulated_instruction(&svm->vcpu);
4176        }
4177}
4178
4179static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4180{
4181        struct vcpu_svm *svm = to_svm(vcpu);
4182        int svm_dis, chg_mask;
4183
4184        if (data & ~SVM_VM_CR_VALID_MASK)
4185                return 1;
4186
4187        chg_mask = SVM_VM_CR_VALID_MASK;
4188
4189        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4190                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4191
4192        svm->nested.vm_cr_msr &= ~chg_mask;
4193        svm->nested.vm_cr_msr |= (data & chg_mask);
4194
4195        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4196
4197        /* check for svm_disable while efer.svme is set */
4198        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4199                return 1;
4200
4201        return 0;
4202}
4203
4204static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4205{
4206        struct vcpu_svm *svm = to_svm(vcpu);
4207
4208        u32 ecx = msr->index;
4209        u64 data = msr->data;
4210        switch (ecx) {
4211        case MSR_IA32_CR_PAT:
4212                if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4213                        return 1;
4214                vcpu->arch.pat = data;
4215                svm->vmcb->save.g_pat = data;
4216                mark_dirty(svm->vmcb, VMCB_NPT);
4217                break;
4218        case MSR_IA32_SPEC_CTRL:
4219                if (!msr->host_initiated &&
4220                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
4221                        return 1;
4222
4223                /* The STIBP bit doesn't fault even if it's not advertised */
4224                if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP))
4225                        return 1;
4226
4227                svm->spec_ctrl = data;
4228
4229                if (!data)
4230                        break;
4231
4232                /*
4233                 * For non-nested:
4234                 * When it's written (to non-zero) for the first time, pass
4235                 * it through.
4236                 *
4237                 * For nested:
4238                 * The handling of the MSR bitmap for L2 guests is done in
4239                 * nested_svm_vmrun_msrpm.
4240                 * We update the L1 MSR bit as well since it will end up
4241                 * touching the MSR anyway now.
4242                 */
4243                set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4244                break;
4245        case MSR_IA32_PRED_CMD:
4246                if (!msr->host_initiated &&
4247                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4248                        return 1;
4249
4250                if (data & ~PRED_CMD_IBPB)
4251                        return 1;
4252
4253                if (!data)
4254                        break;
4255
4256                wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4257                if (is_guest_mode(vcpu))
4258                        break;
4259                set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4260                break;
4261        case MSR_AMD64_VIRT_SPEC_CTRL:
4262                if (!msr->host_initiated &&
4263                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4264                        return 1;
4265
4266                if (data & ~SPEC_CTRL_SSBD)
4267                        return 1;
4268
4269                svm->virt_spec_ctrl = data;
4270                break;
4271        case MSR_STAR:
4272                svm->vmcb->save.star = data;
4273                break;
4274#ifdef CONFIG_X86_64
4275        case MSR_LSTAR:
4276                svm->vmcb->save.lstar = data;
4277                break;
4278        case MSR_CSTAR:
4279                svm->vmcb->save.cstar = data;
4280                break;
4281        case MSR_KERNEL_GS_BASE:
4282                svm->vmcb->save.kernel_gs_base = data;
4283                break;
4284        case MSR_SYSCALL_MASK:
4285                svm->vmcb->save.sfmask = data;
4286                break;
4287#endif
4288        case MSR_IA32_SYSENTER_CS:
4289                svm->vmcb->save.sysenter_cs = data;
4290                break;
4291        case MSR_IA32_SYSENTER_EIP:
4292                svm->sysenter_eip = data;
4293                svm->vmcb->save.sysenter_eip = data;
4294                break;
4295        case MSR_IA32_SYSENTER_ESP:
4296                svm->sysenter_esp = data;
4297                svm->vmcb->save.sysenter_esp = data;
4298                break;
4299        case MSR_TSC_AUX:
4300                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4301                        return 1;
4302
4303                /*
4304                 * This is rare, so we update the MSR here instead of using
4305                 * direct_access_msrs.  Doing that would require a rdmsr in
4306                 * svm_vcpu_put.
4307                 */
4308                svm->tsc_aux = data;
4309                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4310                break;
4311        case MSR_IA32_DEBUGCTLMSR:
4312                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4313                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4314                                    __func__, data);
4315                        break;
4316                }
4317                if (data & DEBUGCTL_RESERVED_BITS)
4318                        return 1;
4319
4320                svm->vmcb->save.dbgctl = data;
4321                mark_dirty(svm->vmcb, VMCB_LBR);
4322                if (data & (1ULL<<0))
4323                        svm_enable_lbrv(svm);
4324                else
4325                        svm_disable_lbrv(svm);
4326                break;
4327        case MSR_VM_HSAVE_PA:
4328                svm->nested.hsave_msr = data;
4329                break;
4330        case MSR_VM_CR:
4331                return svm_set_vm_cr(vcpu, data);
4332        case MSR_VM_IGNNE:
4333                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4334                break;
4335        case MSR_F10H_DECFG: {
4336                struct kvm_msr_entry msr_entry;
4337
4338                msr_entry.index = msr->index;
4339                if (svm_get_msr_feature(&msr_entry))
4340                        return 1;
4341
4342                /* Check the supported bits */
4343                if (data & ~msr_entry.data)
4344                        return 1;
4345
4346                /* Don't allow the guest to change a bit, #GP */
4347                if (!msr->host_initiated && (data ^ msr_entry.data))
4348                        return 1;
4349
4350                svm->msr_decfg = data;
4351                break;
4352        }
4353        case MSR_IA32_APICBASE:
4354                if (kvm_vcpu_apicv_active(vcpu))
4355                        avic_update_vapic_bar(to_svm(vcpu), data);
4356                /* Follow through */
4357        default:
4358                return kvm_set_msr_common(vcpu, msr);
4359        }
4360        return 0;
4361}
4362
4363static int wrmsr_interception(struct vcpu_svm *svm)
4364{
4365        struct msr_data msr;
4366        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4367        u64 data = kvm_read_edx_eax(&svm->vcpu);
4368
4369        msr.data = data;
4370        msr.index = ecx;
4371        msr.host_initiated = false;
4372
4373        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4374        if (kvm_set_msr(&svm->vcpu, &msr)) {
4375                trace_kvm_msr_write_ex(ecx, data);
4376                kvm_inject_gp(&svm->vcpu, 0);
4377                return 1;
4378        } else {
4379                trace_kvm_msr_write(ecx, data);
4380                return kvm_skip_emulated_instruction(&svm->vcpu);
4381        }
4382}
4383
4384static int msr_interception(struct vcpu_svm *svm)
4385{
4386        if (svm->vmcb->control.exit_info_1)
4387                return wrmsr_interception(svm);
4388        else
4389                return rdmsr_interception(svm);
4390}
4391
4392static int interrupt_window_interception(struct vcpu_svm *svm)
4393{
4394        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4395        svm_clear_vintr(svm);
4396        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4397        mark_dirty(svm->vmcb, VMCB_INTR);
4398        ++svm->vcpu.stat.irq_window_exits;
4399        return 1;
4400}
4401
4402static int pause_interception(struct vcpu_svm *svm)
4403{
4404        struct kvm_vcpu *vcpu = &svm->vcpu;
4405        bool in_kernel = (svm_get_cpl(vcpu) == 0);
4406
4407        if (pause_filter_thresh)
4408                grow_ple_window(vcpu);
4409
4410        kvm_vcpu_on_spin(vcpu, in_kernel);
4411        return 1;
4412}
4413
4414static int nop_interception(struct vcpu_svm *svm)
4415{
4416        return kvm_skip_emulated_instruction(&(svm->vcpu));
4417}
4418
4419static int monitor_interception(struct vcpu_svm *svm)
4420{
4421        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4422        return nop_interception(svm);
4423}
4424
4425static int mwait_interception(struct vcpu_svm *svm)
4426{
4427        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4428        return nop_interception(svm);
4429}
4430
4431enum avic_ipi_failure_cause {
4432        AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4433        AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4434        AVIC_IPI_FAILURE_INVALID_TARGET,
4435        AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4436};
4437
4438static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4439{
4440        u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4441        u32 icrl = svm->vmcb->control.exit_info_1;
4442        u32 id = svm->vmcb->control.exit_info_2 >> 32;
4443        u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4444        struct kvm_lapic *apic = svm->vcpu.arch.apic;
4445
4446        trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4447
4448        switch (id) {
4449        case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4450                /*
4451                 * AVIC hardware handles the generation of
4452                 * IPIs when the specified Message Type is Fixed
4453                 * (also known as fixed delivery mode) and
4454                 * the Trigger Mode is edge-triggered. The hardware
4455                 * also supports self and broadcast delivery modes
4456                 * specified via the Destination Shorthand(DSH)
4457                 * field of the ICRL. Logical and physical APIC ID
4458                 * formats are supported. All other IPI types cause
4459                 * a #VMEXIT, which needs to emulated.
4460                 */
4461                kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4462                kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4463                break;
4464        case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4465                int i;
4466                struct kvm_vcpu *vcpu;
4467                struct kvm *kvm = svm->vcpu.kvm;
4468                struct kvm_lapic *apic = svm->vcpu.arch.apic;
4469
4470                /*
4471                 * At this point, we expect that the AVIC HW has already
4472                 * set the appropriate IRR bits on the valid target
4473                 * vcpus. So, we just need to kick the appropriate vcpu.
4474                 */
4475                kvm_for_each_vcpu(i, vcpu, kvm) {
4476                        bool m = kvm_apic_match_dest(vcpu, apic,
4477                                                     icrl & KVM_APIC_SHORT_MASK,
4478                                                     GET_APIC_DEST_FIELD(icrh),
4479                                                     icrl & KVM_APIC_DEST_MASK);
4480
4481                        if (m && !avic_vcpu_is_running(vcpu))
4482                                kvm_vcpu_wake_up(vcpu);
4483                }
4484                break;
4485        }
4486        case AVIC_IPI_FAILURE_INVALID_TARGET:
4487                break;
4488        case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4489                WARN_ONCE(1, "Invalid backing page\n");
4490                break;
4491        default:
4492                pr_err("Unknown IPI interception\n");
4493        }
4494
4495        return 1;
4496}
4497
4498static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4499{
4500        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4501        int index;
4502        u32 *logical_apic_id_table;
4503        int dlid = GET_APIC_LOGICAL_ID(ldr);
4504
4505        if (!dlid)
4506                return NULL;
4507
4508        if (flat) { /* flat */
4509                index = ffs(dlid) - 1;
4510                if (index > 7)
4511                        return NULL;
4512        } else { /* cluster */
4513                int cluster = (dlid & 0xf0) >> 4;
4514                int apic = ffs(dlid & 0x0f) - 1;
4515
4516                if ((apic < 0) || (apic > 7) ||
4517                    (cluster >= 0xf))
4518                        return NULL;
4519                index = (cluster << 2) + apic;
4520        }
4521
4522        logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4523
4524        return &logical_apic_id_table[index];
4525}
4526
4527static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4528                          bool valid)
4529{
4530        bool flat;
4531        u32 *entry, new_entry;
4532
4533        flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4534        entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4535        if (!entry)
4536                return -EINVAL;
4537
4538        new_entry = READ_ONCE(*entry);
4539        new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4540        new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4541        if (valid)
4542                new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4543        else
4544                new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4545        WRITE_ONCE(*entry, new_entry);
4546
4547        return 0;
4548}
4549
4550static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4551{
4552        int ret;
4553        struct vcpu_svm *svm = to_svm(vcpu);
4554        u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4555
4556        if (!ldr)
4557                return 1;
4558
4559        ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4560        if (ret && svm->ldr_reg) {
4561                avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4562                svm->ldr_reg = 0;
4563        } else {
4564                svm->ldr_reg = ldr;
4565        }
4566        return ret;
4567}
4568
4569static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4570{
4571        u64 *old, *new;
4572        struct vcpu_svm *svm = to_svm(vcpu);
4573        u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4574        u32 id = (apic_id_reg >> 24) & 0xff;
4575
4576        if (vcpu->vcpu_id == id)
4577                return 0;
4578
4579        old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4580        new = avic_get_physical_id_entry(vcpu, id);
4581        if (!new || !old)
4582                return 1;
4583
4584        /* We need to move physical_id_entry to new offset */
4585        *new = *old;
4586        *old = 0ULL;
4587        to_svm(vcpu)->avic_physical_id_cache = new;
4588
4589        /*
4590         * Also update the guest physical APIC ID in the logical
4591         * APIC ID table entry if already setup the LDR.
4592         */
4593        if (svm->ldr_reg)
4594                avic_handle_ldr_update(vcpu);
4595
4596        return 0;
4597}
4598
4599static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4600{
4601        struct vcpu_svm *svm = to_svm(vcpu);
4602        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4603        u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4604        u32 mod = (dfr >> 28) & 0xf;
4605
4606        /*
4607         * We assume that all local APICs are using the same type.
4608         * If this changes, we need to flush the AVIC logical
4609         * APID id table.
4610         */
4611        if (kvm_svm->ldr_mode == mod)
4612                return 0;
4613
4614        clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4615        kvm_svm->ldr_mode = mod;
4616
4617        if (svm->ldr_reg)
4618                avic_handle_ldr_update(vcpu);
4619        return 0;
4620}
4621
4622static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4623{
4624        struct kvm_lapic *apic = svm->vcpu.arch.apic;
4625        u32 offset = svm->vmcb->control.exit_info_1 &
4626                                AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4627
4628        switch (offset) {
4629        case APIC_ID:
4630                if (avic_handle_apic_id_update(&svm->vcpu))
4631                        return 0;
4632                break;
4633        case APIC_LDR:
4634                if (avic_handle_ldr_update(&svm->vcpu))
4635                        return 0;
4636                break;
4637        case APIC_DFR:
4638                avic_handle_dfr_update(&svm->vcpu);
4639                break;
4640        default:
4641                break;
4642        }
4643
4644        kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4645
4646        return 1;
4647}
4648
4649static bool is_avic_unaccelerated_access_trap(u32 offset)
4650{
4651        bool ret = false;
4652
4653        switch (offset) {
4654        case APIC_ID:
4655        case APIC_EOI:
4656        case APIC_RRR:
4657        case APIC_LDR:
4658        case APIC_DFR:
4659        case APIC_SPIV:
4660        case APIC_ESR:
4661        case APIC_ICR:
4662        case APIC_LVTT:
4663        case APIC_LVTTHMR:
4664        case APIC_LVTPC:
4665        case APIC_LVT0:
4666        case APIC_LVT1:
4667        case APIC_LVTERR:
4668        case APIC_TMICT:
4669        case APIC_TDCR:
4670                ret = true;
4671                break;
4672        default:
4673                break;
4674        }
4675        return ret;
4676}
4677
4678static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4679{
4680        int ret = 0;
4681        u32 offset = svm->vmcb->control.exit_info_1 &
4682                     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4683        u32 vector = svm->vmcb->control.exit_info_2 &
4684                     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4685        bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4686                     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4687        bool trap = is_avic_unaccelerated_access_trap(offset);
4688
4689        trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4690                                            trap, write, vector);
4691        if (trap) {
4692                /* Handling Trap */
4693                WARN_ONCE(!write, "svm: Handling trap read.\n");
4694                ret = avic_unaccel_trap_write(svm);
4695        } else {
4696                /* Handling Fault */
4697                ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4698        }
4699
4700        return ret;
4701}
4702
4703static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4704        [SVM_EXIT_READ_CR0]                     = cr_interception,
4705        [SVM_EXIT_READ_CR3]                     = cr_interception,
4706        [SVM_EXIT_READ_CR4]                     = cr_interception,
4707        [SVM_EXIT_READ_CR8]                     = cr_interception,
4708        [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4709        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4710        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4711        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4712        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4713        [SVM_EXIT_READ_DR0]                     = dr_interception,
4714        [SVM_EXIT_READ_DR1]                     = dr_interception,
4715        [SVM_EXIT_READ_DR2]                     = dr_interception,
4716        [SVM_EXIT_READ_DR3]                     = dr_interception,
4717        [SVM_EXIT_READ_DR4]                     = dr_interception,
4718        [SVM_EXIT_READ_DR5]                     = dr_interception,
4719        [SVM_EXIT_READ_DR6]                     = dr_interception,
4720        [SVM_EXIT_READ_DR7]                     = dr_interception,
4721        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4722        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4723        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4724        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4725        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4726        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4727        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4728        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4729        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4730        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4731        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4732        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4733        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4734        [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4735        [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
4736        [SVM_EXIT_INTR]                         = intr_interception,
4737        [SVM_EXIT_NMI]                          = nmi_interception,
4738        [SVM_EXIT_SMI]                          = nop_on_interception,
4739        [SVM_EXIT_INIT]                         = nop_on_interception,
4740        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4741        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4742        [SVM_EXIT_CPUID]                        = cpuid_interception,
4743        [SVM_EXIT_IRET]                         = iret_interception,
4744        [SVM_EXIT_INVD]                         = emulate_on_interception,
4745        [SVM_EXIT_PAUSE]                        = pause_interception,
4746        [SVM_EXIT_HLT]                          = halt_interception,
4747        [SVM_EXIT_INVLPG]                       = invlpg_interception,
4748        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4749        [SVM_EXIT_IOIO]                         = io_interception,
4750        [SVM_EXIT_MSR]                          = msr_interception,
4751        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4752        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4753        [SVM_EXIT_VMRUN]                        = vmrun_interception,
4754        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4755        [SVM_EXIT_VMLOAD]                       = vmload_interception,
4756        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4757        [SVM_EXIT_STGI]                         = stgi_interception,
4758        [SVM_EXIT_CLGI]                         = clgi_interception,
4759        [SVM_EXIT_SKINIT]                       = skinit_interception,
4760        [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4761        [SVM_EXIT_MONITOR]                      = monitor_interception,
4762        [SVM_EXIT_MWAIT]                        = mwait_interception,
4763        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4764        [SVM_EXIT_NPF]                          = npf_interception,
4765        [SVM_EXIT_RSM]                          = rsm_interception,
4766        [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4767        [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4768};
4769
4770static void dump_vmcb(struct kvm_vcpu *vcpu)
4771{
4772        struct vcpu_svm *svm = to_svm(vcpu);
4773        struct vmcb_control_area *control = &svm->vmcb->control;
4774        struct vmcb_save_area *save = &svm->vmcb->save;
4775
4776        pr_err("VMCB Control Area:\n");
4777        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4778        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4779        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4780        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4781        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4782        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4783        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4784        pr_err("%-20s%d\n", "pause filter threshold:",
4785               control->pause_filter_thresh);
4786        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4787        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4788        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4789        pr_err("%-20s%d\n", "asid:", control->asid);
4790        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4791        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4792        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4793        pr_err("%-20s%08x\n", "int_state:", control->int_state);
4794        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4795        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4796        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4797        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4798        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4799        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4800        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4801        pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4802        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4803        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4804        pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4805        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4806        pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4807        pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4808        pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4809        pr_err("VMCB State Save Area:\n");
4810        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4811               "es:",
4812               save->es.selector, save->es.attrib,
4813               save->es.limit, save->es.base);
4814        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4815               "cs:",
4816               save->cs.selector, save->cs.attrib,
4817               save->cs.limit, save->cs.base);
4818        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4819               "ss:",
4820               save->ss.selector, save->ss.attrib,
4821               save->ss.limit, save->ss.base);
4822        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4823               "ds:",
4824               save->ds.selector, save->ds.attrib,
4825               save->ds.limit, save->ds.base);
4826        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4827               "fs:",
4828               save->fs.selector, save->fs.attrib,
4829               save->fs.limit, save->fs.base);
4830        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4831               "gs:",
4832               save->gs.selector, save->gs.attrib,
4833               save->gs.limit, save->gs.base);
4834        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4835               "gdtr:",
4836               save->gdtr.selector, save->gdtr.attrib,
4837               save->gdtr.limit, save->gdtr.base);
4838        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4839               "ldtr:",
4840               save->ldtr.selector, save->ldtr.attrib,
4841               save->ldtr.limit, save->ldtr.base);
4842        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4843               "idtr:",
4844               save->idtr.selector, save->idtr.attrib,
4845               save->idtr.limit, save->idtr.base);
4846        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4847               "tr:",
4848               save->tr.selector, save->tr.attrib,
4849               save->tr.limit, save->tr.base);
4850        pr_err("cpl:            %d                efer:         %016llx\n",
4851                save->cpl, save->efer);
4852        pr_err("%-15s %016llx %-13s %016llx\n",
4853               "cr0:", save->cr0, "cr2:", save->cr2);
4854        pr_err("%-15s %016llx %-13s %016llx\n",
4855               "cr3:", save->cr3, "cr4:", save->cr4);
4856        pr_err("%-15s %016llx %-13s %016llx\n",
4857               "dr6:", save->dr6, "dr7:", save->dr7);
4858        pr_err("%-15s %016llx %-13s %016llx\n",
4859               "rip:", save->rip, "rflags:", save->rflags);
4860        pr_err("%-15s %016llx %-13s %016llx\n",
4861               "rsp:", save->rsp, "rax:", save->rax);
4862        pr_err("%-15s %016llx %-13s %016llx\n",
4863               "star:", save->star, "lstar:", save->lstar);
4864        pr_err("%-15s %016llx %-13s %016llx\n",
4865               "cstar:", save->cstar, "sfmask:", save->sfmask);
4866        pr_err("%-15s %016llx %-13s %016llx\n",
4867               "kernel_gs_base:", save->kernel_gs_base,
4868               "sysenter_cs:", save->sysenter_cs);
4869        pr_err("%-15s %016llx %-13s %016llx\n",
4870               "sysenter_esp:", save->sysenter_esp,
4871               "sysenter_eip:", save->sysenter_eip);
4872        pr_err("%-15s %016llx %-13s %016llx\n",
4873               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4874        pr_err("%-15s %016llx %-13s %016llx\n",
4875               "br_from:", save->br_from, "br_to:", save->br_to);
4876        pr_err("%-15s %016llx %-13s %016llx\n",
4877               "excp_from:", save->last_excp_from,
4878               "excp_to:", save->last_excp_to);
4879}
4880
4881static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4882{
4883        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4884
4885        *info1 = control->exit_info_1;
4886        *info2 = control->exit_info_2;
4887}
4888
4889static int handle_exit(struct kvm_vcpu *vcpu)
4890{
4891        struct vcpu_svm *svm = to_svm(vcpu);
4892        struct kvm_run *kvm_run = vcpu->run;
4893        u32 exit_code = svm->vmcb->control.exit_code;
4894
4895        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4896
4897        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4898                vcpu->arch.cr0 = svm->vmcb->save.cr0;
4899        if (npt_enabled)
4900                vcpu->arch.cr3 = svm->vmcb->save.cr3;
4901
4902        if (unlikely(svm->nested.exit_required)) {
4903                nested_svm_vmexit(svm);
4904                svm->nested.exit_required = false;
4905
4906                return 1;
4907        }
4908
4909        if (is_guest_mode(vcpu)) {
4910                int vmexit;
4911
4912                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4913                                        svm->vmcb->control.exit_info_1,
4914                                        svm->vmcb->control.exit_info_2,
4915                                        svm->vmcb->control.exit_int_info,
4916                                        svm->vmcb->control.exit_int_info_err,
4917                                        KVM_ISA_SVM);
4918
4919                vmexit = nested_svm_exit_special(svm);
4920
4921                if (vmexit == NESTED_EXIT_CONTINUE)
4922                        vmexit = nested_svm_exit_handled(svm);
4923
4924                if (vmexit == NESTED_EXIT_DONE)
4925                        return 1;
4926        }
4927
4928        svm_complete_interrupts(svm);
4929
4930        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4931                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4932                kvm_run->fail_entry.hardware_entry_failure_reason
4933                        = svm->vmcb->control.exit_code;
4934                pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4935                dump_vmcb(vcpu);
4936                return 0;
4937        }
4938
4939        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4940            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4941            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4942            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4943                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4944                       "exit_code 0x%x\n",
4945                       __func__, svm->vmcb->control.exit_int_info,
4946                       exit_code);
4947
4948        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4949            || !svm_exit_handlers[exit_code]) {
4950                WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4951                kvm_queue_exception(vcpu, UD_VECTOR);
4952                return 1;
4953        }
4954
4955        return svm_exit_handlers[exit_code](svm);
4956}
4957
4958static void reload_tss(struct kvm_vcpu *vcpu)
4959{
4960        int cpu = raw_smp_processor_id();
4961
4962        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4963        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4964        load_TR_desc();
4965}
4966
4967static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4968{
4969        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4970        int asid = sev_get_asid(svm->vcpu.kvm);
4971
4972        /* Assign the asid allocated with this SEV guest */
4973        svm->vmcb->control.asid = asid;
4974
4975        /*
4976         * Flush guest TLB:
4977         *
4978         * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4979         * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4980         */
4981        if (sd->sev_vmcbs[asid] == svm->vmcb &&
4982            svm->last_cpu == cpu)
4983                return;
4984
4985        svm->last_cpu = cpu;
4986        sd->sev_vmcbs[asid] = svm->vmcb;
4987        svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4988        mark_dirty(svm->vmcb, VMCB_ASID);
4989}
4990
4991static void pre_svm_run(struct vcpu_svm *svm)
4992{
4993        int cpu = raw_smp_processor_id();
4994
4995        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4996
4997        if (sev_guest(svm->vcpu.kvm))
4998                return pre_sev_run(svm, cpu);
4999
5000        /* FIXME: handle wraparound of asid_generation */
5001        if (svm->asid_generation != sd->asid_generation)
5002                new_asid(svm, sd);
5003}
5004
5005static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5006{
5007        struct vcpu_svm *svm = to_svm(vcpu);
5008
5009        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5010        vcpu->arch.hflags |= HF_NMI_MASK;
5011        set_intercept(svm, INTERCEPT_IRET);
5012        ++vcpu->stat.nmi_injections;
5013}
5014
5015static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5016{
5017        struct vmcb_control_area *control;
5018
5019        /* The following fields are ignored when AVIC is enabled */
5020        control = &svm->vmcb->control;
5021        control->int_vector = irq;
5022        control->int_ctl &= ~V_INTR_PRIO_MASK;
5023        control->int_ctl |= V_IRQ_MASK |
5024                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5025        mark_dirty(svm->vmcb, VMCB_INTR);
5026}
5027
5028static void svm_set_irq(struct kvm_vcpu *vcpu)
5029{
5030        struct vcpu_svm *svm = to_svm(vcpu);
5031
5032        BUG_ON(!(gif_set(svm)));
5033
5034        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5035        ++vcpu->stat.irq_injections;
5036
5037        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5038                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5039}
5040
5041static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5042{
5043        return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5044}
5045
5046static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5047{
5048        struct vcpu_svm *svm = to_svm(vcpu);
5049
5050        if (svm_nested_virtualize_tpr(vcpu) ||
5051            kvm_vcpu_apicv_active(vcpu))
5052                return;
5053
5054        clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5055
5056        if (irr == -1)
5057                return;
5058
5059        if (tpr >= irr)
5060                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5061}
5062
5063static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
5064{
5065        return;
5066}
5067
5068static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5069{
5070        return avic && irqchip_split(vcpu->kvm);
5071}
5072
5073static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5074{
5075}
5076
5077static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5078{
5079}
5080
5081/* Note: Currently only used by Hyper-V. */
5082static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5083{
5084        struct vcpu_svm *svm = to_svm(vcpu);
5085        struct vmcb *vmcb = svm->vmcb;
5086
5087        if (!kvm_vcpu_apicv_active(&svm->vcpu))
5088                return;
5089
5090        vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5091        mark_dirty(vmcb, VMCB_INTR);
5092}
5093
5094static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5095{
5096        return;
5097}
5098
5099static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5100{
5101        kvm_lapic_set_irr(vec, vcpu->arch.apic);
5102        smp_mb__after_atomic();
5103
5104        if (avic_vcpu_is_running(vcpu))
5105                wrmsrl(SVM_AVIC_DOORBELL,
5106                       kvm_cpu_get_apicid(vcpu->cpu));
5107        else
5108                kvm_vcpu_wake_up(vcpu);
5109}
5110
5111static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5112{
5113        unsigned long flags;
5114        struct amd_svm_iommu_ir *cur;
5115
5116        spin_lock_irqsave(&svm->ir_list_lock, flags);
5117        list_for_each_entry(cur, &svm->ir_list, node) {
5118                if (cur->data != pi->ir_data)
5119                        continue;
5120                list_del(&cur->node);
5121                kfree(cur);
5122                break;
5123        }
5124        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5125}
5126
5127static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5128{
5129        int ret = 0;
5130        unsigned long flags;
5131        struct amd_svm_iommu_ir *ir;
5132
5133        /**
5134         * In some cases, the existing irte is updaed and re-set,
5135         * so we need to check here if it's already been * added
5136         * to the ir_list.
5137         */
5138        if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5139                struct kvm *kvm = svm->vcpu.kvm;
5140                u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5141                struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5142                struct vcpu_svm *prev_svm;
5143
5144                if (!prev_vcpu) {
5145                        ret = -EINVAL;
5146                        goto out;
5147                }
5148
5149                prev_svm = to_svm(prev_vcpu);
5150                svm_ir_list_del(prev_svm, pi);
5151        }
5152
5153        /**
5154         * Allocating new amd_iommu_pi_data, which will get
5155         * add to the per-vcpu ir_list.
5156         */
5157        ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5158        if (!ir) {
5159                ret = -ENOMEM;
5160                goto out;
5161        }
5162        ir->data = pi->ir_data;
5163
5164        spin_lock_irqsave(&svm->ir_list_lock, flags);
5165        list_add(&ir->node, &svm->ir_list);
5166        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5167out:
5168        return ret;
5169}
5170
5171/**
5172 * Note:
5173 * The HW cannot support posting multicast/broadcast
5174 * interrupts to a vCPU. So, we still use legacy interrupt
5175 * remapping for these kind of interrupts.
5176 *
5177 * For lowest-priority interrupts, we only support
5178 * those with single CPU as the destination, e.g. user
5179 * configures the interrupts via /proc/irq or uses
5180 * irqbalance to make the interrupts single-CPU.
5181 */
5182static int
5183get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5184                 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5185{
5186        struct kvm_lapic_irq irq;
5187        struct kvm_vcpu *vcpu = NULL;
5188
5189        kvm_set_msi_irq(kvm, e, &irq);
5190
5191        if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5192                pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5193                         __func__, irq.vector);
5194                return -1;
5195        }
5196
5197        pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5198                 irq.vector);
5199        *svm = to_svm(vcpu);
5200        vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5201        vcpu_info->vector = irq.vector;
5202
5203        return 0;
5204}
5205
5206/*
5207 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5208 *
5209 * @kvm: kvm
5210 * @host_irq: host irq of the interrupt
5211 * @guest_irq: gsi of the interrupt
5212 * @set: set or unset PI
5213 * returns 0 on success, < 0 on failure
5214 */
5215static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5216                              uint32_t guest_irq, bool set)
5217{
5218        struct kvm_kernel_irq_routing_entry *e;
5219        struct kvm_irq_routing_table *irq_rt;
5220        int idx, ret = -EINVAL;
5221
5222        if (!kvm_arch_has_assigned_device(kvm) ||
5223            !irq_remapping_cap(IRQ_POSTING_CAP))
5224                return 0;
5225
5226        pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5227                 __func__, host_irq, guest_irq, set);
5228
5229        idx = srcu_read_lock(&kvm->irq_srcu);
5230        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5231        WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5232
5233        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5234                struct vcpu_data vcpu_info;
5235                struct vcpu_svm *svm = NULL;
5236
5237                if (e->type != KVM_IRQ_ROUTING_MSI)
5238                        continue;
5239
5240                /**
5241                 * Here, we setup with legacy mode in the following cases:
5242                 * 1. When cannot target interrupt to a specific vcpu.
5243                 * 2. Unsetting posted interrupt.
5244                 * 3. APIC virtialization is disabled for the vcpu.
5245                 */
5246                if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5247                    kvm_vcpu_apicv_active(&svm->vcpu)) {
5248                        struct amd_iommu_pi_data pi;
5249
5250                        /* Try to enable guest_mode in IRTE */
5251                        pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5252                                            AVIC_HPA_MASK);
5253                        pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5254                                                     svm->vcpu.vcpu_id);
5255                        pi.is_guest_mode = true;
5256                        pi.vcpu_data = &vcpu_info;
5257                        ret = irq_set_vcpu_affinity(host_irq, &pi);
5258
5259                        /**
5260                         * Here, we successfully setting up vcpu affinity in
5261                         * IOMMU guest mode. Now, we need to store the posted
5262                         * interrupt information in a per-vcpu ir_list so that
5263                         * we can reference to them directly when we update vcpu
5264                         * scheduling information in IOMMU irte.
5265                         */
5266                        if (!ret && pi.is_guest_mode)
5267                                svm_ir_list_add(svm, &pi);
5268                } else {
5269                        /* Use legacy mode in IRTE */
5270                        struct amd_iommu_pi_data pi;
5271
5272                        /**
5273                         * Here, pi is used to:
5274                         * - Tell IOMMU to use legacy mode for this interrupt.
5275                         * - Retrieve ga_tag of prior interrupt remapping data.
5276                         */
5277                        pi.is_guest_mode = false;
5278                        ret = irq_set_vcpu_affinity(host_irq, &pi);
5279
5280                        /**
5281                         * Check if the posted interrupt was previously
5282                         * setup with the guest_mode by checking if the ga_tag
5283                         * was cached. If so, we need to clean up the per-vcpu
5284                         * ir_list.
5285                         */
5286                        if (!ret && pi.prev_ga_tag) {
5287                                int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5288                                struct kvm_vcpu *vcpu;
5289
5290                                vcpu = kvm_get_vcpu_by_id(kvm, id);
5291                                if (vcpu)
5292                                        svm_ir_list_del(to_svm(vcpu), &pi);
5293                        }
5294                }
5295
5296                if (!ret && svm) {
5297                        trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5298                                                 e->gsi, vcpu_info.vector,
5299                                                 vcpu_info.pi_desc_addr, set);
5300                }
5301
5302                if (ret < 0) {
5303                        pr_err("%s: failed to update PI IRTE\n", __func__);
5304                        goto out;
5305                }
5306        }
5307
5308        ret = 0;
5309out:
5310        srcu_read_unlock(&kvm->irq_srcu, idx);
5311        return ret;
5312}
5313
5314static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5315{
5316        struct vcpu_svm *svm = to_svm(vcpu);
5317        struct vmcb *vmcb = svm->vmcb;
5318        int ret;
5319        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5320              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5321        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5322
5323        return ret;
5324}
5325
5326static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5327{
5328        struct vcpu_svm *svm = to_svm(vcpu);
5329
5330        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5331}
5332
5333static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5334{
5335        struct vcpu_svm *svm = to_svm(vcpu);
5336
5337        if (masked) {
5338                svm->vcpu.arch.hflags |= HF_NMI_MASK;
5339                set_intercept(svm, INTERCEPT_IRET);
5340        } else {
5341                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5342                clr_intercept(svm, INTERCEPT_IRET);
5343        }
5344}
5345
5346static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5347{
5348        struct vcpu_svm *svm = to_svm(vcpu);
5349        struct vmcb *vmcb = svm->vmcb;
5350        int ret;
5351
5352        if (!gif_set(svm) ||
5353             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5354                return 0;
5355
5356        ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5357
5358        if (is_guest_mode(vcpu))
5359                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5360
5361        return ret;
5362}
5363
5364static void enable_irq_window(struct kvm_vcpu *vcpu)
5365{
5366        struct vcpu_svm *svm = to_svm(vcpu);
5367
5368        if (kvm_vcpu_apicv_active(vcpu))
5369                return;
5370
5371        /*
5372         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5373         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5374         * get that intercept, this function will be called again though and
5375         * we'll get the vintr intercept. However, if the vGIF feature is
5376         * enabled, the STGI interception will not occur. Enable the irq
5377         * window under the assumption that the hardware will set the GIF.
5378         */
5379        if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5380                svm_set_vintr(svm);
5381                svm_inject_irq(svm, 0x0);
5382        }
5383}
5384
5385static void enable_nmi_window(struct kvm_vcpu *vcpu)
5386{
5387        struct vcpu_svm *svm = to_svm(vcpu);
5388
5389        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5390            == HF_NMI_MASK)
5391                return; /* IRET will cause a vm exit */
5392
5393        if (!gif_set(svm)) {
5394                if (vgif_enabled(svm))
5395                        set_intercept(svm, INTERCEPT_STGI);
5396                return; /* STGI will cause a vm exit */
5397        }
5398
5399        if (svm->nested.exit_required)
5400                return; /* we're not going to run the guest yet */
5401
5402        /*
5403         * Something prevents NMI from been injected. Single step over possible
5404         * problem (IRET or exception injection or interrupt shadow)
5405         */
5406        svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5407        svm->nmi_singlestep = true;
5408        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5409}
5410
5411static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5412{
5413        return 0;
5414}
5415
5416static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5417{
5418        return 0;
5419}
5420
5421static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5422{
5423        struct vcpu_svm *svm = to_svm(vcpu);
5424
5425        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5426                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5427        else
5428                svm->asid_generation--;
5429}
5430
5431static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5432{
5433}
5434
5435static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5436{
5437        struct vcpu_svm *svm = to_svm(vcpu);
5438
5439        if (svm_nested_virtualize_tpr(vcpu))
5440                return;
5441
5442        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5443                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5444                kvm_set_cr8(vcpu, cr8);
5445        }
5446}
5447
5448static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5449{
5450        struct vcpu_svm *svm = to_svm(vcpu);
5451        u64 cr8;
5452
5453        if (svm_nested_virtualize_tpr(vcpu) ||
5454            kvm_vcpu_apicv_active(vcpu))
5455                return;
5456
5457        cr8 = kvm_get_cr8(vcpu);
5458        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5459        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5460}
5461
5462static void svm_complete_interrupts(struct vcpu_svm *svm)
5463{
5464        u8 vector;
5465        int type;
5466        u32 exitintinfo = svm->vmcb->control.exit_int_info;
5467        unsigned int3_injected = svm->int3_injected;
5468
5469        svm->int3_injected = 0;
5470
5471        /*
5472         * If we've made progress since setting HF_IRET_MASK, we've
5473         * executed an IRET and can allow NMI injection.
5474         */
5475        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5476            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5477                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5478                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5479        }
5480
5481        svm->vcpu.arch.nmi_injected = false;
5482        kvm_clear_exception_queue(&svm->vcpu);
5483        kvm_clear_interrupt_queue(&svm->vcpu);
5484
5485        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5486                return;
5487
5488        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5489
5490        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5491        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5492
5493        switch (type) {
5494        case SVM_EXITINTINFO_TYPE_NMI:
5495                svm->vcpu.arch.nmi_injected = true;
5496                break;
5497        case SVM_EXITINTINFO_TYPE_EXEPT:
5498                /*
5499                 * In case of software exceptions, do not reinject the vector,
5500                 * but re-execute the instruction instead. Rewind RIP first
5501                 * if we emulated INT3 before.
5502                 */
5503                if (kvm_exception_is_soft(vector)) {
5504                        if (vector == BP_VECTOR && int3_injected &&
5505                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5506                                kvm_rip_write(&svm->vcpu,
5507                                              kvm_rip_read(&svm->vcpu) -
5508                                              int3_injected);
5509                        break;
5510                }
5511                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5512                        u32 err = svm->vmcb->control.exit_int_info_err;
5513                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
5514
5515                } else
5516                        kvm_requeue_exception(&svm->vcpu, vector);
5517                break;
5518        case SVM_EXITINTINFO_TYPE_INTR:
5519                kvm_queue_interrupt(&svm->vcpu, vector, false);
5520                break;
5521        default:
5522                break;
5523        }
5524}
5525
5526static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5527{
5528        struct vcpu_svm *svm = to_svm(vcpu);
5529        struct vmcb_control_area *control = &svm->vmcb->control;
5530
5531        control->exit_int_info = control->event_inj;
5532        control->exit_int_info_err = control->event_inj_err;
5533        control->event_inj = 0;
5534        svm_complete_interrupts(svm);
5535}
5536
5537static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5538{
5539        struct vcpu_svm *svm = to_svm(vcpu);
5540
5541        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5542        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5543        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5544
5545        /*
5546         * A vmexit emulation is required before the vcpu can be executed
5547         * again.
5548         */
5549        if (unlikely(svm->nested.exit_required))
5550                return;
5551
5552        /*
5553         * Disable singlestep if we're injecting an interrupt/exception.
5554         * We don't want our modified rflags to be pushed on the stack where
5555         * we might not be able to easily reset them if we disabled NMI
5556         * singlestep later.
5557         */
5558        if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5559                /*
5560                 * Event injection happens before external interrupts cause a
5561                 * vmexit and interrupts are disabled here, so smp_send_reschedule
5562                 * is enough to force an immediate vmexit.
5563                 */
5564                disable_nmi_singlestep(svm);
5565                smp_send_reschedule(vcpu->cpu);
5566        }
5567
5568        pre_svm_run(svm);
5569
5570        sync_lapic_to_cr8(vcpu);
5571
5572        svm->vmcb->save.cr2 = vcpu->arch.cr2;
5573
5574        clgi();
5575
5576        local_irq_enable();
5577
5578        /*
5579         * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5580         * it's non-zero. Since vmentry is serialising on affected CPUs, there
5581         * is no need to worry about the conditional branch over the wrmsr
5582         * being speculatively taken.
5583         */
5584        x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5585
5586        asm volatile (
5587                "push %%" _ASM_BP "; \n\t"
5588                "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5589                "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5590                "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5591                "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5592                "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5593                "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5594#ifdef CONFIG_X86_64
5595                "mov %c[r8](%[svm]),  %%r8  \n\t"
5596                "mov %c[r9](%[svm]),  %%r9  \n\t"
5597                "mov %c[r10](%[svm]), %%r10 \n\t"
5598                "mov %c[r11](%[svm]), %%r11 \n\t"
5599                "mov %c[r12](%[svm]), %%r12 \n\t"
5600                "mov %c[r13](%[svm]), %%r13 \n\t"
5601                "mov %c[r14](%[svm]), %%r14 \n\t"
5602                "mov %c[r15](%[svm]), %%r15 \n\t"
5603#endif
5604
5605                /* Enter guest mode */
5606                "push %%" _ASM_AX " \n\t"
5607                "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5608                __ex(SVM_VMLOAD) "\n\t"
5609                __ex(SVM_VMRUN) "\n\t"
5610                __ex(SVM_VMSAVE) "\n\t"
5611                "pop %%" _ASM_AX " \n\t"
5612
5613                /* Save guest registers, load host registers */
5614                "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5615                "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5616                "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5617                "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5618                "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5619                "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5620#ifdef CONFIG_X86_64
5621                "mov %%r8,  %c[r8](%[svm]) \n\t"
5622                "mov %%r9,  %c[r9](%[svm]) \n\t"
5623                "mov %%r10, %c[r10](%[svm]) \n\t"
5624                "mov %%r11, %c[r11](%[svm]) \n\t"
5625                "mov %%r12, %c[r12](%[svm]) \n\t"
5626                "mov %%r13, %c[r13](%[svm]) \n\t"
5627                "mov %%r14, %c[r14](%[svm]) \n\t"
5628                "mov %%r15, %c[r15](%[svm]) \n\t"
5629#endif
5630                /*
5631                * Clear host registers marked as clobbered to prevent
5632                * speculative use.
5633                */
5634                "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5635                "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5636                "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5637                "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5638                "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5639#ifdef CONFIG_X86_64
5640                "xor %%r8, %%r8 \n\t"
5641                "xor %%r9, %%r9 \n\t"
5642                "xor %%r10, %%r10 \n\t"
5643                "xor %%r11, %%r11 \n\t"
5644                "xor %%r12, %%r12 \n\t"
5645                "xor %%r13, %%r13 \n\t"
5646                "xor %%r14, %%r14 \n\t"
5647                "xor %%r15, %%r15 \n\t"
5648#endif
5649                "pop %%" _ASM_BP
5650                :
5651                : [svm]"a"(svm),
5652                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5653                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5654                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5655                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5656                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5657                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5658                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5659#ifdef CONFIG_X86_64
5660                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5661                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5662                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5663                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5664                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5665                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5666                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5667                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5668#endif
5669                : "cc", "memory"
5670#ifdef CONFIG_X86_64
5671                , "rbx", "rcx", "rdx", "rsi", "rdi"
5672                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5673#else
5674                , "ebx", "ecx", "edx", "esi", "edi"
5675#endif
5676                );
5677
5678        /* Eliminate branch target predictions from guest mode */
5679        vmexit_fill_RSB();
5680
5681#ifdef CONFIG_X86_64
5682        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5683#else
5684        loadsegment(fs, svm->host.fs);
5685#ifndef CONFIG_X86_32_LAZY_GS
5686        loadsegment(gs, svm->host.gs);
5687#endif
5688#endif
5689
5690        /*
5691         * We do not use IBRS in the kernel. If this vCPU has used the
5692         * SPEC_CTRL MSR it may have left it on; save the value and
5693         * turn it off. This is much more efficient than blindly adding
5694         * it to the atomic save/restore list. Especially as the former
5695         * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5696         *
5697         * For non-nested case:
5698         * If the L01 MSR bitmap does not intercept the MSR, then we need to
5699         * save it.
5700         *
5701         * For nested case:
5702         * If the L02 MSR bitmap does not intercept the MSR, then we need to
5703         * save it.
5704         */
5705        if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5706                svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5707
5708        x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5709
5710        reload_tss(vcpu);
5711
5712        local_irq_disable();
5713
5714        vcpu->arch.cr2 = svm->vmcb->save.cr2;
5715        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5716        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5717        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5718
5719        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5720                kvm_before_interrupt(&svm->vcpu);
5721
5722        stgi();
5723
5724        /* Any pending NMI will happen here */
5725
5726        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5727                kvm_after_interrupt(&svm->vcpu);
5728
5729        sync_cr8_to_lapic(vcpu);
5730
5731        svm->next_rip = 0;
5732
5733        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5734
5735        /* if exit due to PF check for async PF */
5736        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5737                svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5738
5739        if (npt_enabled) {
5740                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5741                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5742        }
5743
5744        /*
5745         * We need to handle MC intercepts here before the vcpu has a chance to
5746         * change the physical cpu
5747         */
5748        if (unlikely(svm->vmcb->control.exit_code ==
5749                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5750                svm_handle_mce(svm);
5751
5752        mark_all_clean(svm->vmcb);
5753}
5754STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5755
5756static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5757{
5758        struct vcpu_svm *svm = to_svm(vcpu);
5759
5760        svm->vmcb->save.cr3 = __sme_set(root);
5761        mark_dirty(svm->vmcb, VMCB_CR);
5762        svm_flush_tlb(vcpu, true);
5763}
5764
5765static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5766{
5767        struct vcpu_svm *svm = to_svm(vcpu);
5768
5769        svm->vmcb->control.nested_cr3 = __sme_set(root);
5770        mark_dirty(svm->vmcb, VMCB_NPT);
5771
5772        /* Also sync guest cr3 here in case we live migrate */
5773        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5774        mark_dirty(svm->vmcb, VMCB_CR);
5775
5776        svm_flush_tlb(vcpu, true);
5777}
5778
5779static int is_disabled(void)
5780{
5781        u64 vm_cr;
5782
5783        rdmsrl(MSR_VM_CR, vm_cr);
5784        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5785                return 1;
5786
5787        return 0;
5788}
5789
5790static void
5791svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5792{
5793        /*
5794         * Patch in the VMMCALL instruction:
5795         */
5796        hypercall[0] = 0x0f;
5797        hypercall[1] = 0x01;
5798        hypercall[2] = 0xd9;
5799}
5800
5801static void svm_check_processor_compat(void *rtn)
5802{
5803        *(int *)rtn = 0;
5804}
5805
5806static bool svm_cpu_has_accelerated_tpr(void)
5807{
5808        return false;
5809}
5810
5811static bool svm_has_emulated_msr(int index)
5812{
5813        return true;
5814}
5815
5816static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5817{
5818        return 0;
5819}
5820
5821static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5822{
5823        struct vcpu_svm *svm = to_svm(vcpu);
5824
5825        /* Update nrips enabled cache */
5826        svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5827
5828        if (!kvm_vcpu_apicv_active(vcpu))
5829                return;
5830
5831        guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5832}
5833
5834static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5835{
5836        switch (func) {
5837        case 0x1:
5838                if (avic)
5839                        entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5840                break;
5841        case 0x80000001:
5842                if (nested)
5843                        entry->ecx |= (1 << 2); /* Set SVM bit */
5844                break;
5845        case 0x8000000A:
5846                entry->eax = 1; /* SVM revision 1 */
5847                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5848                                   ASID emulation to nested SVM */
5849                entry->ecx = 0; /* Reserved */
5850                entry->edx = 0; /* Per default do not support any
5851                                   additional features */
5852
5853                /* Support next_rip if host supports it */
5854                if (boot_cpu_has(X86_FEATURE_NRIPS))
5855                        entry->edx |= SVM_FEATURE_NRIP;
5856
5857                /* Support NPT for the guest if enabled */
5858                if (npt_enabled)
5859                        entry->edx |= SVM_FEATURE_NPT;
5860
5861                break;
5862        case 0x8000001F:
5863                /* Support memory encryption cpuid if host supports it */
5864                if (boot_cpu_has(X86_FEATURE_SEV))
5865                        cpuid(0x8000001f, &entry->eax, &entry->ebx,
5866                                &entry->ecx, &entry->edx);
5867
5868        }
5869}
5870
5871static int svm_get_lpage_level(void)
5872{
5873        return PT_PDPE_LEVEL;
5874}
5875
5876static bool svm_rdtscp_supported(void)
5877{
5878        return boot_cpu_has(X86_FEATURE_RDTSCP);
5879}
5880
5881static bool svm_invpcid_supported(void)
5882{
5883        return false;
5884}
5885
5886static bool svm_mpx_supported(void)
5887{
5888        return false;
5889}
5890
5891static bool svm_xsaves_supported(void)
5892{
5893        return false;
5894}
5895
5896static bool svm_umip_emulated(void)
5897{
5898        return false;
5899}
5900
5901static bool svm_has_wbinvd_exit(void)
5902{
5903        return true;
5904}
5905
5906#define PRE_EX(exit)  { .exit_code = (exit), \
5907                        .stage = X86_ICPT_PRE_EXCEPT, }
5908#define POST_EX(exit) { .exit_code = (exit), \
5909                        .stage = X86_ICPT_POST_EXCEPT, }
5910#define POST_MEM(exit) { .exit_code = (exit), \
5911                        .stage = X86_ICPT_POST_MEMACCESS, }
5912
5913static const struct __x86_intercept {
5914        u32 exit_code;
5915        enum x86_intercept_stage stage;
5916} x86_intercept_map[] = {
5917        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5918        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5919        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5920        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5921        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5922        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5923        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5924        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5925        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5926        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5927        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5928        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5929        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5930        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5931        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5932        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5933        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5934        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5935        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5936        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5937        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5938        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5939        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5940        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5941        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5942        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5943        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5944        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5945        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5946        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5947        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5948        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5949        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5950        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5951        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5952        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5953        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5954        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5955        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5956        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5957        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5958        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5959        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5960        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5961        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5962        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5963};
5964
5965#undef PRE_EX
5966#undef POST_EX
5967#undef POST_MEM
5968
5969static int svm_check_intercept(struct kvm_vcpu *vcpu,
5970                               struct x86_instruction_info *info,
5971                               enum x86_intercept_stage stage)
5972{
5973        struct vcpu_svm *svm = to_svm(vcpu);
5974        int vmexit, ret = X86EMUL_CONTINUE;
5975        struct __x86_intercept icpt_info;
5976        struct vmcb *vmcb = svm->vmcb;
5977
5978        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5979                goto out;
5980
5981        icpt_info = x86_intercept_map[info->intercept];
5982
5983        if (stage != icpt_info.stage)
5984                goto out;
5985
5986        switch (icpt_info.exit_code) {
5987        case SVM_EXIT_READ_CR0:
5988                if (info->intercept == x86_intercept_cr_read)
5989                        icpt_info.exit_code += info->modrm_reg;
5990                break;
5991        case SVM_EXIT_WRITE_CR0: {
5992                unsigned long cr0, val;
5993                u64 intercept;
5994
5995                if (info->intercept == x86_intercept_cr_write)
5996                        icpt_info.exit_code += info->modrm_reg;
5997
5998                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5999                    info->intercept == x86_intercept_clts)
6000                        break;
6001
6002                intercept = svm->nested.intercept;
6003
6004                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6005                        break;
6006
6007                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6008                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6009
6010                if (info->intercept == x86_intercept_lmsw) {
6011                        cr0 &= 0xfUL;
6012                        val &= 0xfUL;
6013                        /* lmsw can't clear PE - catch this here */
6014                        if (cr0 & X86_CR0_PE)
6015                                val |= X86_CR0_PE;
6016                }
6017
6018                if (cr0 ^ val)
6019                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6020
6021                break;
6022        }
6023        case SVM_EXIT_READ_DR0:
6024        case SVM_EXIT_WRITE_DR0:
6025                icpt_info.exit_code += info->modrm_reg;
6026                break;
6027        case SVM_EXIT_MSR:
6028                if (info->intercept == x86_intercept_wrmsr)
6029                        vmcb->control.exit_info_1 = 1;
6030                else
6031                        vmcb->control.exit_info_1 = 0;
6032                break;
6033        case SVM_EXIT_PAUSE:
6034                /*
6035                 * We get this for NOP only, but pause
6036                 * is rep not, check this here
6037                 */
6038                if (info->rep_prefix != REPE_PREFIX)
6039                        goto out;
6040                break;
6041        case SVM_EXIT_IOIO: {
6042                u64 exit_info;
6043                u32 bytes;
6044
6045                if (info->intercept == x86_intercept_in ||
6046                    info->intercept == x86_intercept_ins) {
6047                        exit_info = ((info->src_val & 0xffff) << 16) |
6048                                SVM_IOIO_TYPE_MASK;
6049                        bytes = info->dst_bytes;
6050                } else {
6051                        exit_info = (info->dst_val & 0xffff) << 16;
6052                        bytes = info->src_bytes;
6053                }
6054
6055                if (info->intercept == x86_intercept_outs ||
6056                    info->intercept == x86_intercept_ins)
6057                        exit_info |= SVM_IOIO_STR_MASK;
6058
6059                if (info->rep_prefix)
6060                        exit_info |= SVM_IOIO_REP_MASK;
6061
6062                bytes = min(bytes, 4u);
6063
6064                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6065
6066                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6067
6068                vmcb->control.exit_info_1 = exit_info;
6069                vmcb->control.exit_info_2 = info->next_rip;
6070
6071                break;
6072        }
6073        default:
6074                break;
6075        }
6076
6077        /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6078        if (static_cpu_has(X86_FEATURE_NRIPS))
6079                vmcb->control.next_rip  = info->next_rip;
6080        vmcb->control.exit_code = icpt_info.exit_code;
6081        vmexit = nested_svm_exit_handled(svm);
6082
6083        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6084                                           : X86EMUL_CONTINUE;
6085
6086out:
6087        return ret;
6088}
6089
6090static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6091{
6092        local_irq_enable();
6093        /*
6094         * We must have an instruction with interrupts enabled, so
6095         * the timer interrupt isn't delayed by the interrupt shadow.
6096         */
6097        asm("nop");
6098        local_irq_disable();
6099}
6100
6101static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6102{
6103        if (pause_filter_thresh)
6104                shrink_ple_window(vcpu);
6105}
6106
6107static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6108{
6109        if (avic_handle_apic_id_update(vcpu) != 0)
6110                return;
6111        if (avic_handle_dfr_update(vcpu) != 0)
6112                return;
6113        avic_handle_ldr_update(vcpu);
6114}
6115
6116static void svm_setup_mce(struct kvm_vcpu *vcpu)
6117{
6118        /* [63:9] are reserved. */
6119        vcpu->arch.mcg_cap &= 0x1ff;
6120}
6121
6122static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6123{
6124        struct vcpu_svm *svm = to_svm(vcpu);
6125
6126        /* Per APM Vol.2 15.22.2 "Response to SMI" */
6127        if (!gif_set(svm))
6128                return 0;
6129
6130        if (is_guest_mode(&svm->vcpu) &&
6131            svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6132                /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6133                svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6134                svm->nested.exit_required = true;
6135                return 0;
6136        }
6137
6138        return 1;
6139}
6140
6141static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6142{
6143        struct vcpu_svm *svm = to_svm(vcpu);
6144        int ret;
6145
6146        if (is_guest_mode(vcpu)) {
6147                /* FED8h - SVM Guest */
6148                put_smstate(u64, smstate, 0x7ed8, 1);
6149                /* FEE0h - SVM Guest VMCB Physical Address */
6150                put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6151
6152                svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6153                svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6154                svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6155
6156                ret = nested_svm_vmexit(svm);
6157                if (ret)
6158                        return ret;
6159        }
6160        return 0;
6161}
6162
6163static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6164{
6165        struct vcpu_svm *svm = to_svm(vcpu);
6166        struct vmcb *nested_vmcb;
6167        struct page *page;
6168        struct {
6169                u64 guest;
6170                u64 vmcb;
6171        } svm_state_save;
6172        int ret;
6173
6174        ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6175                                  sizeof(svm_state_save));
6176        if (ret)
6177                return ret;
6178
6179        if (svm_state_save.guest) {
6180                vcpu->arch.hflags &= ~HF_SMM_MASK;
6181                nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6182                if (nested_vmcb)
6183                        enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6184                else
6185                        ret = 1;
6186                vcpu->arch.hflags |= HF_SMM_MASK;
6187        }
6188        return ret;
6189}
6190
6191static int enable_smi_window(struct kvm_vcpu *vcpu)
6192{
6193        struct vcpu_svm *svm = to_svm(vcpu);
6194
6195        if (!gif_set(svm)) {
6196                if (vgif_enabled(svm))
6197                        set_intercept(svm, INTERCEPT_STGI);
6198                /* STGI will cause a vm exit */
6199                return 1;
6200        }
6201        return 0;
6202}
6203
6204static int sev_asid_new(void)
6205{
6206        int pos;
6207
6208        /*
6209         * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6210         */
6211        pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6212        if (pos >= max_sev_asid)
6213                return -EBUSY;
6214
6215        set_bit(pos, sev_asid_bitmap);
6216        return pos + 1;
6217}
6218
6219static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6220{
6221        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6222        int asid, ret;
6223
6224        ret = -EBUSY;
6225        asid = sev_asid_new();
6226        if (asid < 0)
6227                return ret;
6228
6229        ret = sev_platform_init(&argp->error);
6230        if (ret)
6231                goto e_free;
6232
6233        sev->active = true;
6234        sev->asid = asid;
6235        INIT_LIST_HEAD(&sev->regions_list);
6236
6237        return 0;
6238
6239e_free:
6240        __sev_asid_free(asid);
6241        return ret;
6242}
6243
6244static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6245{
6246        struct sev_data_activate *data;
6247        int asid = sev_get_asid(kvm);
6248        int ret;
6249
6250        wbinvd_on_all_cpus();
6251
6252        ret = sev_guest_df_flush(error);
6253        if (ret)
6254                return ret;
6255
6256        data = kzalloc(sizeof(*data), GFP_KERNEL);
6257        if (!data)
6258                return -ENOMEM;
6259
6260        /* activate ASID on the given handle */
6261        data->handle = handle;
6262        data->asid   = asid;
6263        ret = sev_guest_activate(data, error);
6264        kfree(data);
6265
6266        return ret;
6267}
6268
6269static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6270{
6271        struct fd f;
6272        int ret;
6273
6274        f = fdget(fd);
6275        if (!f.file)
6276                return -EBADF;
6277
6278        ret = sev_issue_cmd_external_user(f.file, id, data, error);
6279
6280        fdput(f);
6281        return ret;
6282}
6283
6284static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6285{
6286        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6287
6288        return __sev_issue_cmd(sev->fd, id, data, error);
6289}
6290
6291static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6292{
6293        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6294        struct sev_data_launch_start *start;
6295        struct kvm_sev_launch_start params;
6296        void *dh_blob, *session_blob;
6297        int *error = &argp->error;
6298        int ret;
6299
6300        if (!sev_guest(kvm))
6301                return -ENOTTY;
6302
6303        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6304                return -EFAULT;
6305
6306        start = kzalloc(sizeof(*start), GFP_KERNEL);
6307        if (!start)
6308                return -ENOMEM;
6309
6310        dh_blob = NULL;
6311        if (params.dh_uaddr) {
6312                dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6313                if (IS_ERR(dh_blob)) {
6314                        ret = PTR_ERR(dh_blob);
6315                        goto e_free;
6316                }
6317
6318                start->dh_cert_address = __sme_set(__pa(dh_blob));
6319                start->dh_cert_len = params.dh_len;
6320        }
6321
6322        session_blob = NULL;
6323        if (params.session_uaddr) {
6324                session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6325                if (IS_ERR(session_blob)) {
6326                        ret = PTR_ERR(session_blob);
6327                        goto e_free_dh;
6328                }
6329
6330                start->session_address = __sme_set(__pa(session_blob));
6331                start->session_len = params.session_len;
6332        }
6333
6334        start->handle = params.handle;
6335        start->policy = params.policy;
6336
6337        /* create memory encryption context */
6338        ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6339        if (ret)
6340                goto e_free_session;
6341
6342        /* Bind ASID to this guest */
6343        ret = sev_bind_asid(kvm, start->handle, error);
6344        if (ret)
6345                goto e_free_session;
6346
6347        /* return handle to userspace */
6348        params.handle = start->handle;
6349        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6350                sev_unbind_asid(kvm, start->handle);
6351                ret = -EFAULT;
6352                goto e_free_session;
6353        }
6354
6355        sev->handle = start->handle;
6356        sev->fd = argp->sev_fd;
6357
6358e_free_session:
6359        kfree(session_blob);
6360e_free_dh:
6361        kfree(dh_blob);
6362e_free:
6363        kfree(start);
6364        return ret;
6365}
6366
6367static int get_num_contig_pages(int idx, struct page **inpages,
6368                                unsigned long npages)
6369{
6370        unsigned long paddr, next_paddr;
6371        int i = idx + 1, pages = 1;
6372
6373        /* find the number of contiguous pages starting from idx */
6374        paddr = __sme_page_pa(inpages[idx]);
6375        while (i < npages) {
6376                next_paddr = __sme_page_pa(inpages[i++]);
6377                if ((paddr + PAGE_SIZE) == next_paddr) {
6378                        pages++;
6379                        paddr = next_paddr;
6380                        continue;
6381                }
6382                break;
6383        }
6384
6385        return pages;
6386}
6387
6388static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6389{
6390        unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6391        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6392        struct kvm_sev_launch_update_data params;
6393        struct sev_data_launch_update_data *data;
6394        struct page **inpages;
6395        int i, ret, pages;
6396
6397        if (!sev_guest(kvm))
6398                return -ENOTTY;
6399
6400        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6401                return -EFAULT;
6402
6403        data = kzalloc(sizeof(*data), GFP_KERNEL);
6404        if (!data)
6405                return -ENOMEM;
6406
6407        vaddr = params.uaddr;
6408        size = params.len;
6409        vaddr_end = vaddr + size;
6410
6411        /* Lock the user memory. */
6412        inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6413        if (!inpages) {
6414                ret = -ENOMEM;
6415                goto e_free;
6416        }
6417
6418        /*
6419         * The LAUNCH_UPDATE command will perform in-place encryption of the
6420         * memory content (i.e it will write the same memory region with C=1).
6421         * It's possible that the cache may contain the data with C=0, i.e.,
6422         * unencrypted so invalidate it first.
6423         */
6424        sev_clflush_pages(inpages, npages);
6425
6426        for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6427                int offset, len;
6428
6429                /*
6430                 * If the user buffer is not page-aligned, calculate the offset
6431                 * within the page.
6432                 */
6433                offset = vaddr & (PAGE_SIZE - 1);
6434
6435                /* Calculate the number of pages that can be encrypted in one go. */
6436                pages = get_num_contig_pages(i, inpages, npages);
6437
6438                len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6439
6440                data->handle = sev->handle;
6441                data->len = len;
6442                data->address = __sme_page_pa(inpages[i]) + offset;
6443                ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6444                if (ret)
6445                        goto e_unpin;
6446
6447                size -= len;
6448                next_vaddr = vaddr + len;
6449        }
6450
6451e_unpin:
6452        /* content of memory is updated, mark pages dirty */
6453        for (i = 0; i < npages; i++) {
6454                set_page_dirty_lock(inpages[i]);
6455                mark_page_accessed(inpages[i]);
6456        }
6457        /* unlock the user pages */
6458        sev_unpin_memory(kvm, inpages, npages);
6459e_free:
6460        kfree(data);
6461        return ret;
6462}
6463
6464static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6465{
6466        void __user *measure = (void __user *)(uintptr_t)argp->data;
6467        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6468        struct sev_data_launch_measure *data;
6469        struct kvm_sev_launch_measure params;
6470        void __user *p = NULL;
6471        void *blob = NULL;
6472        int ret;
6473
6474        if (!sev_guest(kvm))
6475                return -ENOTTY;
6476
6477        if (copy_from_user(&params, measure, sizeof(params)))
6478                return -EFAULT;
6479
6480        data = kzalloc(sizeof(*data), GFP_KERNEL);
6481        if (!data)
6482                return -ENOMEM;
6483
6484        /* User wants to query the blob length */
6485        if (!params.len)
6486                goto cmd;
6487
6488        p = (void __user *)(uintptr_t)params.uaddr;
6489        if (p) {
6490                if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6491                        ret = -EINVAL;
6492                        goto e_free;
6493                }
6494
6495                ret = -ENOMEM;
6496                blob = kmalloc(params.len, GFP_KERNEL);
6497                if (!blob)
6498                        goto e_free;
6499
6500                data->address = __psp_pa(blob);
6501                data->len = params.len;
6502        }
6503
6504cmd:
6505        data->handle = sev->handle;
6506        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6507
6508        /*
6509         * If we query the session length, FW responded with expected data.
6510         */
6511        if (!params.len)
6512                goto done;
6513
6514        if (ret)
6515                goto e_free_blob;
6516
6517        if (blob) {
6518                if (copy_to_user(p, blob, params.len))
6519                        ret = -EFAULT;
6520        }
6521
6522done:
6523        params.len = data->len;
6524        if (copy_to_user(measure, &params, sizeof(params)))
6525                ret = -EFAULT;
6526e_free_blob:
6527        kfree(blob);
6528e_free:
6529        kfree(data);
6530        return ret;
6531}
6532
6533static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6534{
6535        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6536        struct sev_data_launch_finish *data;
6537        int ret;
6538
6539        if (!sev_guest(kvm))
6540                return -ENOTTY;
6541
6542        data = kzalloc(sizeof(*data), GFP_KERNEL);
6543        if (!data)
6544                return -ENOMEM;
6545
6546        data->handle = sev->handle;
6547        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6548
6549        kfree(data);
6550        return ret;
6551}
6552
6553static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6554{
6555        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6556        struct kvm_sev_guest_status params;
6557        struct sev_data_guest_status *data;
6558        int ret;
6559
6560        if (!sev_guest(kvm))
6561                return -ENOTTY;
6562
6563        data = kzalloc(sizeof(*data), GFP_KERNEL);
6564        if (!data)
6565                return -ENOMEM;
6566
6567        data->handle = sev->handle;
6568        ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6569        if (ret)
6570                goto e_free;
6571
6572        params.policy = data->policy;
6573        params.state = data->state;
6574        params.handle = data->handle;
6575
6576        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6577                ret = -EFAULT;
6578e_free:
6579        kfree(data);
6580        return ret;
6581}
6582
6583static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6584                               unsigned long dst, int size,
6585                               int *error, bool enc)
6586{
6587        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6588        struct sev_data_dbg *data;
6589        int ret;
6590
6591        data = kzalloc(sizeof(*data), GFP_KERNEL);
6592        if (!data)
6593                return -ENOMEM;
6594
6595        data->handle = sev->handle;
6596        data->dst_addr = dst;
6597        data->src_addr = src;
6598        data->len = size;
6599
6600        ret = sev_issue_cmd(kvm,
6601                            enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6602                            data, error);
6603        kfree(data);
6604        return ret;
6605}
6606
6607static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6608                             unsigned long dst_paddr, int sz, int *err)
6609{
6610        int offset;
6611
6612        /*
6613         * Its safe to read more than we are asked, caller should ensure that
6614         * destination has enough space.
6615         */
6616        src_paddr = round_down(src_paddr, 16);
6617        offset = src_paddr & 15;
6618        sz = round_up(sz + offset, 16);
6619
6620        return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6621}
6622
6623static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6624                                  unsigned long __user dst_uaddr,
6625                                  unsigned long dst_paddr,
6626                                  int size, int *err)
6627{
6628        struct page *tpage = NULL;
6629        int ret, offset;
6630
6631        /* if inputs are not 16-byte then use intermediate buffer */
6632        if (!IS_ALIGNED(dst_paddr, 16) ||
6633            !IS_ALIGNED(paddr,     16) ||
6634            !IS_ALIGNED(size,      16)) {
6635                tpage = (void *)alloc_page(GFP_KERNEL);
6636                if (!tpage)
6637                        return -ENOMEM;
6638
6639                dst_paddr = __sme_page_pa(tpage);
6640        }
6641
6642        ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6643        if (ret)
6644                goto e_free;
6645
6646        if (tpage) {
6647                offset = paddr & 15;
6648                if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6649                                 page_address(tpage) + offset, size))
6650                        ret = -EFAULT;
6651        }
6652
6653e_free:
6654        if (tpage)
6655                __free_page(tpage);
6656
6657        return ret;
6658}
6659
6660static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6661                                  unsigned long __user vaddr,
6662                                  unsigned long dst_paddr,
6663                                  unsigned long __user dst_vaddr,
6664                                  int size, int *error)
6665{
6666        struct page *src_tpage = NULL;
6667        struct page *dst_tpage = NULL;
6668        int ret, len = size;
6669
6670        /* If source buffer is not aligned then use an intermediate buffer */
6671        if (!IS_ALIGNED(vaddr, 16)) {
6672                src_tpage = alloc_page(GFP_KERNEL);
6673                if (!src_tpage)
6674                        return -ENOMEM;
6675
6676                if (copy_from_user(page_address(src_tpage),
6677                                (void __user *)(uintptr_t)vaddr, size)) {
6678                        __free_page(src_tpage);
6679                        return -EFAULT;
6680                }
6681
6682                paddr = __sme_page_pa(src_tpage);
6683        }
6684
6685        /*
6686         *  If destination buffer or length is not aligned then do read-modify-write:
6687         *   - decrypt destination in an intermediate buffer
6688         *   - copy the source buffer in an intermediate buffer
6689         *   - use the intermediate buffer as source buffer
6690         */
6691        if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6692                int dst_offset;
6693
6694                dst_tpage = alloc_page(GFP_KERNEL);
6695                if (!dst_tpage) {
6696                        ret = -ENOMEM;
6697                        goto e_free;
6698                }
6699
6700                ret = __sev_dbg_decrypt(kvm, dst_paddr,
6701                                        __sme_page_pa(dst_tpage), size, error);
6702                if (ret)
6703                        goto e_free;
6704
6705                /*
6706                 *  If source is kernel buffer then use memcpy() otherwise
6707                 *  copy_from_user().
6708                 */
6709                dst_offset = dst_paddr & 15;
6710
6711                if (src_tpage)
6712                        memcpy(page_address(dst_tpage) + dst_offset,
6713                               page_address(src_tpage), size);
6714                else {
6715                        if (copy_from_user(page_address(dst_tpage) + dst_offset,
6716                                           (void __user *)(uintptr_t)vaddr, size)) {
6717                                ret = -EFAULT;
6718                                goto e_free;
6719                        }
6720                }
6721
6722                paddr = __sme_page_pa(dst_tpage);
6723                dst_paddr = round_down(dst_paddr, 16);
6724                len = round_up(size, 16);
6725        }
6726
6727        ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6728
6729e_free:
6730        if (src_tpage)
6731                __free_page(src_tpage);
6732        if (dst_tpage)
6733                __free_page(dst_tpage);
6734        return ret;
6735}
6736
6737static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6738{
6739        unsigned long vaddr, vaddr_end, next_vaddr;
6740        unsigned long dst_vaddr, dst_vaddr_end;
6741        struct page **src_p, **dst_p;
6742        struct kvm_sev_dbg debug;
6743        unsigned long n;
6744        int ret, size;
6745
6746        if (!sev_guest(kvm))
6747                return -ENOTTY;
6748
6749        if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6750                return -EFAULT;
6751
6752        vaddr = debug.src_uaddr;
6753        size = debug.len;
6754        vaddr_end = vaddr + size;
6755        dst_vaddr = debug.dst_uaddr;
6756        dst_vaddr_end = dst_vaddr + size;
6757
6758        for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6759                int len, s_off, d_off;
6760
6761                /* lock userspace source and destination page */
6762                src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6763                if (!src_p)
6764                        return -EFAULT;
6765
6766                dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6767                if (!dst_p) {
6768                        sev_unpin_memory(kvm, src_p, n);
6769                        return -EFAULT;
6770                }
6771
6772                /*
6773                 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6774                 * memory content (i.e it will write the same memory region with C=1).
6775                 * It's possible that the cache may contain the data with C=0, i.e.,
6776                 * unencrypted so invalidate it first.
6777                 */
6778                sev_clflush_pages(src_p, 1);
6779                sev_clflush_pages(dst_p, 1);
6780
6781                /*
6782                 * Since user buffer may not be page aligned, calculate the
6783                 * offset within the page.
6784                 */
6785                s_off = vaddr & ~PAGE_MASK;
6786                d_off = dst_vaddr & ~PAGE_MASK;
6787                len = min_t(size_t, (PAGE_SIZE - s_off), size);
6788
6789                if (dec)
6790                        ret = __sev_dbg_decrypt_user(kvm,
6791                                                     __sme_page_pa(src_p[0]) + s_off,
6792                                                     dst_vaddr,
6793                                                     __sme_page_pa(dst_p[0]) + d_off,
6794                                                     len, &argp->error);
6795                else
6796                        ret = __sev_dbg_encrypt_user(kvm,
6797                                                     __sme_page_pa(src_p[0]) + s_off,
6798                                                     vaddr,
6799                                                     __sme_page_pa(dst_p[0]) + d_off,
6800                                                     dst_vaddr,
6801                                                     len, &argp->error);
6802
6803                sev_unpin_memory(kvm, src_p, 1);
6804                sev_unpin_memory(kvm, dst_p, 1);
6805
6806                if (ret)
6807                        goto err;
6808
6809                next_vaddr = vaddr + len;
6810                dst_vaddr = dst_vaddr + len;
6811                size -= len;
6812        }
6813err:
6814        return ret;
6815}
6816
6817static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6818{
6819        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6820        struct sev_data_launch_secret *data;
6821        struct kvm_sev_launch_secret params;
6822        struct page **pages;
6823        void *blob, *hdr;
6824        unsigned long n;
6825        int ret, offset;
6826
6827        if (!sev_guest(kvm))
6828                return -ENOTTY;
6829
6830        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6831                return -EFAULT;
6832
6833        pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6834        if (!pages)
6835                return -ENOMEM;
6836
6837        /*
6838         * The secret must be copied into contiguous memory region, lets verify
6839         * that userspace memory pages are contiguous before we issue command.
6840         */
6841        if (get_num_contig_pages(0, pages, n) != n) {
6842                ret = -EINVAL;
6843                goto e_unpin_memory;
6844        }
6845
6846        ret = -ENOMEM;
6847        data = kzalloc(sizeof(*data), GFP_KERNEL);
6848        if (!data)
6849                goto e_unpin_memory;
6850
6851        offset = params.guest_uaddr & (PAGE_SIZE - 1);
6852        data->guest_address = __sme_page_pa(pages[0]) + offset;
6853        data->guest_len = params.guest_len;
6854
6855        blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6856        if (IS_ERR(blob)) {
6857                ret = PTR_ERR(blob);
6858                goto e_free;
6859        }
6860
6861        data->trans_address = __psp_pa(blob);
6862        data->trans_len = params.trans_len;
6863
6864        hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6865        if (IS_ERR(hdr)) {
6866                ret = PTR_ERR(hdr);
6867                goto e_free_blob;
6868        }
6869        data->hdr_address = __psp_pa(hdr);
6870        data->hdr_len = params.hdr_len;
6871
6872        data->handle = sev->handle;
6873        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6874
6875        kfree(hdr);
6876
6877e_free_blob:
6878        kfree(blob);
6879e_free:
6880        kfree(data);
6881e_unpin_memory:
6882        sev_unpin_memory(kvm, pages, n);
6883        return ret;
6884}
6885
6886static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6887{
6888        struct kvm_sev_cmd sev_cmd;
6889        int r;
6890
6891        if (!svm_sev_enabled())
6892                return -ENOTTY;
6893
6894        if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6895                return -EFAULT;
6896
6897        mutex_lock(&kvm->lock);
6898
6899        switch (sev_cmd.id) {
6900        case KVM_SEV_INIT:
6901                r = sev_guest_init(kvm, &sev_cmd);
6902                break;
6903        case KVM_SEV_LAUNCH_START:
6904                r = sev_launch_start(kvm, &sev_cmd);
6905                break;
6906        case KVM_SEV_LAUNCH_UPDATE_DATA:
6907                r = sev_launch_update_data(kvm, &sev_cmd);
6908                break;
6909        case KVM_SEV_LAUNCH_MEASURE:
6910                r = sev_launch_measure(kvm, &sev_cmd);
6911                break;
6912        case KVM_SEV_LAUNCH_FINISH:
6913                r = sev_launch_finish(kvm, &sev_cmd);
6914                break;
6915        case KVM_SEV_GUEST_STATUS:
6916                r = sev_guest_status(kvm, &sev_cmd);
6917                break;
6918        case KVM_SEV_DBG_DECRYPT:
6919                r = sev_dbg_crypt(kvm, &sev_cmd, true);
6920                break;
6921        case KVM_SEV_DBG_ENCRYPT:
6922                r = sev_dbg_crypt(kvm, &sev_cmd, false);
6923                break;
6924        case KVM_SEV_LAUNCH_SECRET:
6925                r = sev_launch_secret(kvm, &sev_cmd);
6926                break;
6927        default:
6928                r = -EINVAL;
6929                goto out;
6930        }
6931
6932        if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6933                r = -EFAULT;
6934
6935out:
6936        mutex_unlock(&kvm->lock);
6937        return r;
6938}
6939
6940static int svm_register_enc_region(struct kvm *kvm,
6941                                   struct kvm_enc_region *range)
6942{
6943        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6944        struct enc_region *region;
6945        int ret = 0;
6946
6947        if (!sev_guest(kvm))
6948                return -ENOTTY;
6949
6950        region = kzalloc(sizeof(*region), GFP_KERNEL);
6951        if (!region)
6952                return -ENOMEM;
6953
6954        region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6955        if (!region->pages) {
6956                ret = -ENOMEM;
6957                goto e_free;
6958        }
6959
6960        /*
6961         * The guest may change the memory encryption attribute from C=0 -> C=1
6962         * or vice versa for this memory range. Lets make sure caches are
6963         * flushed to ensure that guest data gets written into memory with
6964         * correct C-bit.
6965         */
6966        sev_clflush_pages(region->pages, region->npages);
6967
6968        region->uaddr = range->addr;
6969        region->size = range->size;
6970
6971        mutex_lock(&kvm->lock);
6972        list_add_tail(&region->list, &sev->regions_list);
6973        mutex_unlock(&kvm->lock);
6974
6975        return ret;
6976
6977e_free:
6978        kfree(region);
6979        return ret;
6980}
6981
6982static struct enc_region *
6983find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6984{
6985        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6986        struct list_head *head = &sev->regions_list;
6987        struct enc_region *i;
6988
6989        list_for_each_entry(i, head, list) {
6990                if (i->uaddr == range->addr &&
6991                    i->size == range->size)
6992                        return i;
6993        }
6994
6995        return NULL;
6996}
6997
6998
6999static int svm_unregister_enc_region(struct kvm *kvm,
7000                                     struct kvm_enc_region *range)
7001{
7002        struct enc_region *region;
7003        int ret;
7004
7005        mutex_lock(&kvm->lock);
7006
7007        if (!sev_guest(kvm)) {
7008                ret = -ENOTTY;
7009                goto failed;
7010        }
7011
7012        region = find_enc_region(kvm, range);
7013        if (!region) {
7014                ret = -EINVAL;
7015                goto failed;
7016        }
7017
7018        __unregister_enc_region_locked(kvm, region);
7019
7020        mutex_unlock(&kvm->lock);
7021        return 0;
7022
7023failed:
7024        mutex_unlock(&kvm->lock);
7025        return ret;
7026}
7027
7028static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7029        .cpu_has_kvm_support = has_svm,
7030        .disabled_by_bios = is_disabled,
7031        .hardware_setup = svm_hardware_setup,
7032        .hardware_unsetup = svm_hardware_unsetup,
7033        .check_processor_compatibility = svm_check_processor_compat,
7034        .hardware_enable = svm_hardware_enable,
7035        .hardware_disable = svm_hardware_disable,
7036        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7037        .has_emulated_msr = svm_has_emulated_msr,
7038
7039        .vcpu_create = svm_create_vcpu,
7040        .vcpu_free = svm_free_vcpu,
7041        .vcpu_reset = svm_vcpu_reset,
7042
7043        .vm_alloc = svm_vm_alloc,
7044        .vm_free = svm_vm_free,
7045        .vm_init = avic_vm_init,
7046        .vm_destroy = svm_vm_destroy,
7047
7048        .prepare_guest_switch = svm_prepare_guest_switch,
7049        .vcpu_load = svm_vcpu_load,
7050        .vcpu_put = svm_vcpu_put,
7051        .vcpu_blocking = svm_vcpu_blocking,
7052        .vcpu_unblocking = svm_vcpu_unblocking,
7053
7054        .update_bp_intercept = update_bp_intercept,
7055        .get_msr_feature = svm_get_msr_feature,
7056        .get_msr = svm_get_msr,
7057        .set_msr = svm_set_msr,
7058        .get_segment_base = svm_get_segment_base,
7059        .get_segment = svm_get_segment,
7060        .set_segment = svm_set_segment,
7061        .get_cpl = svm_get_cpl,
7062        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7063        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7064        .decache_cr3 = svm_decache_cr3,
7065        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7066        .set_cr0 = svm_set_cr0,
7067        .set_cr3 = svm_set_cr3,
7068        .set_cr4 = svm_set_cr4,
7069        .set_efer = svm_set_efer,
7070        .get_idt = svm_get_idt,
7071        .set_idt = svm_set_idt,
7072        .get_gdt = svm_get_gdt,
7073        .set_gdt = svm_set_gdt,
7074        .get_dr6 = svm_get_dr6,
7075        .set_dr6 = svm_set_dr6,
7076        .set_dr7 = svm_set_dr7,
7077        .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7078        .cache_reg = svm_cache_reg,
7079        .get_rflags = svm_get_rflags,
7080        .set_rflags = svm_set_rflags,
7081
7082        .tlb_flush = svm_flush_tlb,
7083
7084        .run = svm_vcpu_run,
7085        .handle_exit = handle_exit,
7086        .skip_emulated_instruction = skip_emulated_instruction,
7087        .set_interrupt_shadow = svm_set_interrupt_shadow,
7088        .get_interrupt_shadow = svm_get_interrupt_shadow,
7089        .patch_hypercall = svm_patch_hypercall,
7090        .set_irq = svm_set_irq,
7091        .set_nmi = svm_inject_nmi,
7092        .queue_exception = svm_queue_exception,
7093        .cancel_injection = svm_cancel_injection,
7094        .interrupt_allowed = svm_interrupt_allowed,
7095        .nmi_allowed = svm_nmi_allowed,
7096        .get_nmi_mask = svm_get_nmi_mask,
7097        .set_nmi_mask = svm_set_nmi_mask,
7098        .enable_nmi_window = enable_nmi_window,
7099        .enable_irq_window = enable_irq_window,
7100        .update_cr8_intercept = update_cr8_intercept,
7101        .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
7102        .get_enable_apicv = svm_get_enable_apicv,
7103        .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7104        .load_eoi_exitmap = svm_load_eoi_exitmap,
7105        .hwapic_irr_update = svm_hwapic_irr_update,
7106        .hwapic_isr_update = svm_hwapic_isr_update,
7107        .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7108        .apicv_post_state_restore = avic_post_state_restore,
7109
7110        .set_tss_addr = svm_set_tss_addr,
7111        .set_identity_map_addr = svm_set_identity_map_addr,
7112        .get_tdp_level = get_npt_level,
7113        .get_mt_mask = svm_get_mt_mask,
7114
7115        .get_exit_info = svm_get_exit_info,
7116
7117        .get_lpage_level = svm_get_lpage_level,
7118
7119        .cpuid_update = svm_cpuid_update,
7120
7121        .rdtscp_supported = svm_rdtscp_supported,
7122        .invpcid_supported = svm_invpcid_supported,
7123        .mpx_supported = svm_mpx_supported,
7124        .xsaves_supported = svm_xsaves_supported,
7125        .umip_emulated = svm_umip_emulated,
7126
7127        .set_supported_cpuid = svm_set_supported_cpuid,
7128
7129        .has_wbinvd_exit = svm_has_wbinvd_exit,
7130
7131        .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7132        .write_tsc_offset = svm_write_tsc_offset,
7133
7134        .set_tdp_cr3 = set_tdp_cr3,
7135
7136        .check_intercept = svm_check_intercept,
7137        .handle_external_intr = svm_handle_external_intr,
7138
7139        .sched_in = svm_sched_in,
7140
7141        .pmu_ops = &amd_pmu_ops,
7142        .deliver_posted_interrupt = svm_deliver_avic_intr,
7143        .update_pi_irte = svm_update_pi_irte,
7144        .setup_mce = svm_setup_mce,
7145
7146        .smi_allowed = svm_smi_allowed,
7147        .pre_enter_smm = svm_pre_enter_smm,
7148        .pre_leave_smm = svm_pre_leave_smm,
7149        .enable_smi_window = enable_smi_window,
7150
7151        .mem_enc_op = svm_mem_enc_op,
7152        .mem_enc_reg_region = svm_register_enc_region,
7153        .mem_enc_unreg_region = svm_unregister_enc_region,
7154};
7155
7156static int __init svm_init(void)
7157{
7158        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7159                        __alignof__(struct vcpu_svm), THIS_MODULE);
7160}
7161
7162static void __exit svm_exit(void)
7163{
7164        kvm_exit();
7165}
7166
7167module_init(svm_init)
7168module_exit(svm_exit)
7169