linux/arch/x86/power/cpu.c
<<
>>
Prefs
   1/*
   2 * Suspend support specific for i386/x86-64.
   3 *
   4 * Distribute under GPLv2
   5 *
   6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
   7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
   9 */
  10
  11#include <linux/suspend.h>
  12#include <linux/export.h>
  13#include <linux/smp.h>
  14#include <linux/perf_event.h>
  15#include <linux/tboot.h>
  16
  17#include <asm/pgtable.h>
  18#include <asm/proto.h>
  19#include <asm/mtrr.h>
  20#include <asm/page.h>
  21#include <asm/mce.h>
  22#include <asm/suspend.h>
  23#include <asm/fpu/internal.h>
  24#include <asm/debugreg.h>
  25#include <asm/cpu.h>
  26#include <asm/mmu_context.h>
  27#include <linux/dmi.h>
  28
  29#ifdef CONFIG_X86_32
  30__visible unsigned long saved_context_ebx;
  31__visible unsigned long saved_context_esp, saved_context_ebp;
  32__visible unsigned long saved_context_esi, saved_context_edi;
  33__visible unsigned long saved_context_eflags;
  34#endif
  35struct saved_context saved_context;
  36
  37static void msr_save_context(struct saved_context *ctxt)
  38{
  39        struct saved_msr *msr = ctxt->saved_msrs.array;
  40        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  41
  42        while (msr < end) {
  43                msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
  44                msr++;
  45        }
  46}
  47
  48static void msr_restore_context(struct saved_context *ctxt)
  49{
  50        struct saved_msr *msr = ctxt->saved_msrs.array;
  51        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  52
  53        while (msr < end) {
  54                if (msr->valid)
  55                        wrmsrl(msr->info.msr_no, msr->info.reg.q);
  56                msr++;
  57        }
  58}
  59
  60/**
  61 *      __save_processor_state - save CPU registers before creating a
  62 *              hibernation image and before restoring the memory state from it
  63 *      @ctxt - structure to store the registers contents in
  64 *
  65 *      NOTE: If there is a CPU register the modification of which by the
  66 *      boot kernel (ie. the kernel used for loading the hibernation image)
  67 *      might affect the operations of the restored target kernel (ie. the one
  68 *      saved in the hibernation image), then its contents must be saved by this
  69 *      function.  In other words, if kernel A is hibernated and different
  70 *      kernel B is used for loading the hibernation image into memory, the
  71 *      kernel A's __save_processor_state() function must save all registers
  72 *      needed by kernel A, so that it can operate correctly after the resume
  73 *      regardless of what kernel B does in the meantime.
  74 */
  75static void __save_processor_state(struct saved_context *ctxt)
  76{
  77#ifdef CONFIG_X86_32
  78        mtrr_save_fixed_ranges(NULL);
  79#endif
  80        kernel_fpu_begin();
  81
  82        /*
  83         * descriptor tables
  84         */
  85        store_idt(&ctxt->idt);
  86
  87        /*
  88         * We save it here, but restore it only in the hibernate case.
  89         * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
  90         * mode in "secondary_startup_64". In 32-bit mode it is done via
  91         * 'pmode_gdt' in wakeup_start.
  92         */
  93        ctxt->gdt_desc.size = GDT_SIZE - 1;
  94        ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
  95
  96        store_tr(ctxt->tr);
  97
  98        /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
  99        /*
 100         * segment registers
 101         */
 102#ifdef CONFIG_X86_32_LAZY_GS
 103        savesegment(gs, ctxt->gs);
 104#endif
 105#ifdef CONFIG_X86_64
 106        savesegment(gs, ctxt->gs);
 107        savesegment(fs, ctxt->fs);
 108        savesegment(ds, ctxt->ds);
 109        savesegment(es, ctxt->es);
 110
 111        rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 112        rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 113        rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 114        mtrr_save_fixed_ranges(NULL);
 115
 116        rdmsrl(MSR_EFER, ctxt->efer);
 117#endif
 118
 119        /*
 120         * control registers
 121         */
 122        ctxt->cr0 = read_cr0();
 123        ctxt->cr2 = read_cr2();
 124        ctxt->cr3 = __read_cr3();
 125        ctxt->cr4 = __read_cr4();
 126#ifdef CONFIG_X86_64
 127        ctxt->cr8 = read_cr8();
 128#endif
 129        ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
 130                                               &ctxt->misc_enable);
 131        msr_save_context(ctxt);
 132}
 133
 134/* Needed by apm.c */
 135void save_processor_state(void)
 136{
 137        __save_processor_state(&saved_context);
 138        x86_platform.save_sched_clock_state();
 139}
 140#ifdef CONFIG_X86_32
 141EXPORT_SYMBOL(save_processor_state);
 142#endif
 143
 144static void do_fpu_end(void)
 145{
 146        /*
 147         * Restore FPU regs if necessary.
 148         */
 149        kernel_fpu_end();
 150}
 151
 152static void fix_processor_context(void)
 153{
 154        int cpu = smp_processor_id();
 155#ifdef CONFIG_X86_64
 156        struct desc_struct *desc = get_cpu_gdt_rw(cpu);
 157        tss_desc tss;
 158#endif
 159
 160        /*
 161         * We need to reload TR, which requires that we change the
 162         * GDT entry to indicate "available" first.
 163         *
 164         * XXX: This could probably all be replaced by a call to
 165         * force_reload_TR().
 166         */
 167        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
 168
 169#ifdef CONFIG_X86_64
 170        memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
 171        tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
 172        write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
 173
 174        syscall_init();                         /* This sets MSR_*STAR and related */
 175#else
 176        if (boot_cpu_has(X86_FEATURE_SEP))
 177                enable_sep_cpu();
 178#endif
 179        load_TR_desc();                         /* This does ltr */
 180        load_mm_ldt(current->active_mm);        /* This does lldt */
 181        initialize_tlbstate_and_flush();
 182
 183        fpu__resume_cpu();
 184
 185        /* The processor is back on the direct GDT, load back the fixmap */
 186        load_fixmap_gdt(cpu);
 187}
 188
 189/**
 190 * __restore_processor_state - restore the contents of CPU registers saved
 191 *                             by __save_processor_state()
 192 * @ctxt - structure to load the registers contents from
 193 *
 194 * The asm code that gets us here will have restored a usable GDT, although
 195 * it will be pointing to the wrong alias.
 196 */
 197static void notrace __restore_processor_state(struct saved_context *ctxt)
 198{
 199        if (ctxt->misc_enable_saved)
 200                wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
 201        /*
 202         * control registers
 203         */
 204        /* cr4 was introduced in the Pentium CPU */
 205#ifdef CONFIG_X86_32
 206        if (ctxt->cr4)
 207                __write_cr4(ctxt->cr4);
 208#else
 209/* CONFIG X86_64 */
 210        wrmsrl(MSR_EFER, ctxt->efer);
 211        write_cr8(ctxt->cr8);
 212        __write_cr4(ctxt->cr4);
 213#endif
 214        write_cr3(ctxt->cr3);
 215        write_cr2(ctxt->cr2);
 216        write_cr0(ctxt->cr0);
 217
 218        /* Restore the IDT. */
 219        load_idt(&ctxt->idt);
 220
 221        /*
 222         * Just in case the asm code got us here with the SS, DS, or ES
 223         * out of sync with the GDT, update them.
 224         */
 225        loadsegment(ss, __KERNEL_DS);
 226        loadsegment(ds, __USER_DS);
 227        loadsegment(es, __USER_DS);
 228
 229        /*
 230         * Restore percpu access.  Percpu access can happen in exception
 231         * handlers or in complicated helpers like load_gs_index().
 232         */
 233#ifdef CONFIG_X86_64
 234        wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 235#else
 236        loadsegment(fs, __KERNEL_PERCPU);
 237        loadsegment(gs, __KERNEL_STACK_CANARY);
 238#endif
 239
 240        /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
 241        fix_processor_context();
 242
 243        /*
 244         * Now that we have descriptor tables fully restored and working
 245         * exception handling, restore the usermode segments.
 246         */
 247#ifdef CONFIG_X86_64
 248        loadsegment(ds, ctxt->es);
 249        loadsegment(es, ctxt->es);
 250        loadsegment(fs, ctxt->fs);
 251        load_gs_index(ctxt->gs);
 252
 253        /*
 254         * Restore FSBASE and GSBASE after restoring the selectors, since
 255         * restoring the selectors clobbers the bases.  Keep in mind
 256         * that MSR_KERNEL_GS_BASE is horribly misnamed.
 257         */
 258        wrmsrl(MSR_FS_BASE, ctxt->fs_base);
 259        wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 260#elif defined(CONFIG_X86_32_LAZY_GS)
 261        loadsegment(gs, ctxt->gs);
 262#endif
 263
 264        do_fpu_end();
 265        tsc_verify_tsc_adjust(true);
 266        x86_platform.restore_sched_clock_state();
 267        mtrr_bp_restore();
 268        perf_restore_debug_store();
 269        msr_restore_context(ctxt);
 270}
 271
 272/* Needed by apm.c */
 273void notrace restore_processor_state(void)
 274{
 275        __restore_processor_state(&saved_context);
 276}
 277#ifdef CONFIG_X86_32
 278EXPORT_SYMBOL(restore_processor_state);
 279#endif
 280
 281#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
 282static void resume_play_dead(void)
 283{
 284        play_dead_common();
 285        tboot_shutdown(TB_SHUTDOWN_WFS);
 286        hlt_play_dead();
 287}
 288
 289int hibernate_resume_nonboot_cpu_disable(void)
 290{
 291        void (*play_dead)(void) = smp_ops.play_dead;
 292        int ret;
 293
 294        /*
 295         * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
 296         * during hibernate image restoration, because it is likely that the
 297         * monitored address will be actually written to at that time and then
 298         * the "dead" CPU will attempt to execute instructions again, but the
 299         * address in its instruction pointer may not be possible to resolve
 300         * any more at that point (the page tables used by it previously may
 301         * have been overwritten by hibernate image data).
 302         */
 303        smp_ops.play_dead = resume_play_dead;
 304        ret = disable_nonboot_cpus();
 305        smp_ops.play_dead = play_dead;
 306        return ret;
 307}
 308#endif
 309
 310/*
 311 * When bsp_check() is called in hibernate and suspend, cpu hotplug
 312 * is disabled already. So it's unnessary to handle race condition between
 313 * cpumask query and cpu hotplug.
 314 */
 315static int bsp_check(void)
 316{
 317        if (cpumask_first(cpu_online_mask) != 0) {
 318                pr_warn("CPU0 is offline.\n");
 319                return -ENODEV;
 320        }
 321
 322        return 0;
 323}
 324
 325static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
 326                           void *ptr)
 327{
 328        int ret = 0;
 329
 330        switch (action) {
 331        case PM_SUSPEND_PREPARE:
 332        case PM_HIBERNATION_PREPARE:
 333                ret = bsp_check();
 334                break;
 335#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
 336        case PM_RESTORE_PREPARE:
 337                /*
 338                 * When system resumes from hibernation, online CPU0 because
 339                 * 1. it's required for resume and
 340                 * 2. the CPU was online before hibernation
 341                 */
 342                if (!cpu_online(0))
 343                        _debug_hotplug_cpu(0, 1);
 344                break;
 345        case PM_POST_RESTORE:
 346                /*
 347                 * When a resume really happens, this code won't be called.
 348                 *
 349                 * This code is called only when user space hibernation software
 350                 * prepares for snapshot device during boot time. So we just
 351                 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
 352                 * preparing the snapshot device.
 353                 *
 354                 * This works for normal boot case in our CPU0 hotplug debug
 355                 * mode, i.e. CPU0 is offline and user mode hibernation
 356                 * software initializes during boot time.
 357                 *
 358                 * If CPU0 is online and user application accesses snapshot
 359                 * device after boot time, this will offline CPU0 and user may
 360                 * see different CPU0 state before and after accessing
 361                 * the snapshot device. But hopefully this is not a case when
 362                 * user debugging CPU0 hotplug. Even if users hit this case,
 363                 * they can easily online CPU0 back.
 364                 *
 365                 * To simplify this debug code, we only consider normal boot
 366                 * case. Otherwise we need to remember CPU0's state and restore
 367                 * to that state and resolve racy conditions etc.
 368                 */
 369                _debug_hotplug_cpu(0, 0);
 370                break;
 371#endif
 372        default:
 373                break;
 374        }
 375        return notifier_from_errno(ret);
 376}
 377
 378static int __init bsp_pm_check_init(void)
 379{
 380        /*
 381         * Set this bsp_pm_callback as lower priority than
 382         * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
 383         * earlier to disable cpu hotplug before bsp online check.
 384         */
 385        pm_notifier(bsp_pm_callback, -INT_MAX);
 386        return 0;
 387}
 388
 389core_initcall(bsp_pm_check_init);
 390
 391static int msr_init_context(const u32 *msr_id, const int total_num)
 392{
 393        int i = 0;
 394        struct saved_msr *msr_array;
 395
 396        if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
 397                pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
 398                return -EINVAL;
 399        }
 400
 401        msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
 402        if (!msr_array) {
 403                pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
 404                return -ENOMEM;
 405        }
 406
 407        for (i = 0; i < total_num; i++) {
 408                msr_array[i].info.msr_no        = msr_id[i];
 409                msr_array[i].valid              = false;
 410                msr_array[i].info.reg.q         = 0;
 411        }
 412        saved_context.saved_msrs.num    = total_num;
 413        saved_context.saved_msrs.array  = msr_array;
 414
 415        return 0;
 416}
 417
 418/*
 419 * The following section is a quirk framework for problematic BIOSen:
 420 * Sometimes MSRs are modified by the BIOSen after suspended to
 421 * RAM, this might cause unexpected behavior after wakeup.
 422 * Thus we save/restore these specified MSRs across suspend/resume
 423 * in order to work around it.
 424 *
 425 * For any further problematic BIOSen/platforms,
 426 * please add your own function similar to msr_initialize_bdw.
 427 */
 428static int msr_initialize_bdw(const struct dmi_system_id *d)
 429{
 430        /* Add any extra MSR ids into this array. */
 431        u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
 432
 433        pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
 434        return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
 435}
 436
 437static const struct dmi_system_id msr_save_dmi_table[] = {
 438        {
 439         .callback = msr_initialize_bdw,
 440         .ident = "BROADWELL BDX_EP",
 441         .matches = {
 442                DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
 443                DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
 444                },
 445        },
 446        {}
 447};
 448
 449static int pm_check_save_msr(void)
 450{
 451        dmi_check_system(msr_save_dmi_table);
 452        return 0;
 453}
 454
 455device_initcall(pm_check_save_msr);
 456