linux/arch/x86/xen/enlighten_pv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Core of Xen paravirt_ops implementation.
   4 *
   5 * This file contains the xen_paravirt_ops structure itself, and the
   6 * implementations for:
   7 * - privileged instructions
   8 * - interrupt flags
   9 * - segment operations
  10 * - booting and setup
  11 *
  12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  13 */
  14
  15#include <linux/cpu.h>
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/smp.h>
  19#include <linux/preempt.h>
  20#include <linux/hardirq.h>
  21#include <linux/percpu.h>
  22#include <linux/delay.h>
  23#include <linux/start_kernel.h>
  24#include <linux/sched.h>
  25#include <linux/kprobes.h>
  26#include <linux/bootmem.h>
  27#include <linux/export.h>
  28#include <linux/mm.h>
  29#include <linux/page-flags.h>
  30#include <linux/highmem.h>
  31#include <linux/console.h>
  32#include <linux/pci.h>
  33#include <linux/gfp.h>
  34#include <linux/memblock.h>
  35#include <linux/edd.h>
  36#include <linux/frame.h>
  37
  38#include <xen/xen.h>
  39#include <xen/events.h>
  40#include <xen/interface/xen.h>
  41#include <xen/interface/version.h>
  42#include <xen/interface/physdev.h>
  43#include <xen/interface/vcpu.h>
  44#include <xen/interface/memory.h>
  45#include <xen/interface/nmi.h>
  46#include <xen/interface/xen-mca.h>
  47#include <xen/features.h>
  48#include <xen/page.h>
  49#include <xen/hvc-console.h>
  50#include <xen/acpi.h>
  51
  52#include <asm/paravirt.h>
  53#include <asm/apic.h>
  54#include <asm/page.h>
  55#include <asm/xen/pci.h>
  56#include <asm/xen/hypercall.h>
  57#include <asm/xen/hypervisor.h>
  58#include <asm/xen/cpuid.h>
  59#include <asm/fixmap.h>
  60#include <asm/processor.h>
  61#include <asm/proto.h>
  62#include <asm/msr-index.h>
  63#include <asm/traps.h>
  64#include <asm/setup.h>
  65#include <asm/desc.h>
  66#include <asm/pgalloc.h>
  67#include <asm/pgtable.h>
  68#include <asm/tlbflush.h>
  69#include <asm/reboot.h>
  70#include <asm/stackprotector.h>
  71#include <asm/hypervisor.h>
  72#include <asm/mach_traps.h>
  73#include <asm/mwait.h>
  74#include <asm/pci_x86.h>
  75#include <asm/cpu.h>
  76
  77#ifdef CONFIG_ACPI
  78#include <linux/acpi.h>
  79#include <asm/acpi.h>
  80#include <acpi/pdc_intel.h>
  81#include <acpi/processor.h>
  82#include <xen/interface/platform.h>
  83#endif
  84
  85#include "xen-ops.h"
  86#include "mmu.h"
  87#include "smp.h"
  88#include "multicalls.h"
  89#include "pmu.h"
  90
  91#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
  92
  93void *xen_initial_gdt;
  94
  95static int xen_cpu_up_prepare_pv(unsigned int cpu);
  96static int xen_cpu_dead_pv(unsigned int cpu);
  97
  98struct tls_descs {
  99        struct desc_struct desc[3];
 100};
 101
 102/*
 103 * Updating the 3 TLS descriptors in the GDT on every task switch is
 104 * surprisingly expensive so we avoid updating them if they haven't
 105 * changed.  Since Xen writes different descriptors than the one
 106 * passed in the update_descriptor hypercall we keep shadow copies to
 107 * compare against.
 108 */
 109static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 110
 111static void __init xen_banner(void)
 112{
 113        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 114        struct xen_extraversion extra;
 115        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 116
 117        pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
 118        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 119               version >> 16, version & 0xffff, extra.extraversion,
 120               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 121}
 122/* Check if running on Xen version (major, minor) or later */
 123bool
 124xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 125{
 126        unsigned int version;
 127
 128        if (!xen_domain())
 129                return false;
 130
 131        version = HYPERVISOR_xen_version(XENVER_version, NULL);
 132        if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 133                ((version >> 16) > major))
 134                return true;
 135        return false;
 136}
 137
 138static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 139static __read_mostly unsigned int cpuid_leaf5_edx_val;
 140
 141static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 142                      unsigned int *cx, unsigned int *dx)
 143{
 144        unsigned maskebx = ~0;
 145
 146        /*
 147         * Mask out inconvenient features, to try and disable as many
 148         * unsupported kernel subsystems as possible.
 149         */
 150        switch (*ax) {
 151        case CPUID_MWAIT_LEAF:
 152                /* Synthesize the values.. */
 153                *ax = 0;
 154                *bx = 0;
 155                *cx = cpuid_leaf5_ecx_val;
 156                *dx = cpuid_leaf5_edx_val;
 157                return;
 158
 159        case 0xb:
 160                /* Suppress extended topology stuff */
 161                maskebx = 0;
 162                break;
 163        }
 164
 165        asm(XEN_EMULATE_PREFIX "cpuid"
 166                : "=a" (*ax),
 167                  "=b" (*bx),
 168                  "=c" (*cx),
 169                  "=d" (*dx)
 170                : "0" (*ax), "2" (*cx));
 171
 172        *bx &= maskebx;
 173}
 174STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
 175
 176static bool __init xen_check_mwait(void)
 177{
 178#ifdef CONFIG_ACPI
 179        struct xen_platform_op op = {
 180                .cmd                    = XENPF_set_processor_pminfo,
 181                .u.set_pminfo.id        = -1,
 182                .u.set_pminfo.type      = XEN_PM_PDC,
 183        };
 184        uint32_t buf[3];
 185        unsigned int ax, bx, cx, dx;
 186        unsigned int mwait_mask;
 187
 188        /* We need to determine whether it is OK to expose the MWAIT
 189         * capability to the kernel to harvest deeper than C3 states from ACPI
 190         * _CST using the processor_harvest_xen.c module. For this to work, we
 191         * need to gather the MWAIT_LEAF values (which the cstate.c code
 192         * checks against). The hypervisor won't expose the MWAIT flag because
 193         * it would break backwards compatibility; so we will find out directly
 194         * from the hardware and hypercall.
 195         */
 196        if (!xen_initial_domain())
 197                return false;
 198
 199        /*
 200         * When running under platform earlier than Xen4.2, do not expose
 201         * mwait, to avoid the risk of loading native acpi pad driver
 202         */
 203        if (!xen_running_on_version_or_later(4, 2))
 204                return false;
 205
 206        ax = 1;
 207        cx = 0;
 208
 209        native_cpuid(&ax, &bx, &cx, &dx);
 210
 211        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 212                     (1 << (X86_FEATURE_MWAIT % 32));
 213
 214        if ((cx & mwait_mask) != mwait_mask)
 215                return false;
 216
 217        /* We need to emulate the MWAIT_LEAF and for that we need both
 218         * ecx and edx. The hypercall provides only partial information.
 219         */
 220
 221        ax = CPUID_MWAIT_LEAF;
 222        bx = 0;
 223        cx = 0;
 224        dx = 0;
 225
 226        native_cpuid(&ax, &bx, &cx, &dx);
 227
 228        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 229         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 230         */
 231        buf[0] = ACPI_PDC_REVISION_ID;
 232        buf[1] = 1;
 233        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 234
 235        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 236
 237        if ((HYPERVISOR_platform_op(&op) == 0) &&
 238            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 239                cpuid_leaf5_ecx_val = cx;
 240                cpuid_leaf5_edx_val = dx;
 241        }
 242        return true;
 243#else
 244        return false;
 245#endif
 246}
 247
 248static bool __init xen_check_xsave(void)
 249{
 250        unsigned int cx, xsave_mask;
 251
 252        cx = cpuid_ecx(1);
 253
 254        xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 255                     (1 << (X86_FEATURE_OSXSAVE % 32));
 256
 257        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 258        return (cx & xsave_mask) == xsave_mask;
 259}
 260
 261static void __init xen_init_capabilities(void)
 262{
 263        setup_force_cpu_cap(X86_FEATURE_XENPV);
 264        setup_clear_cpu_cap(X86_FEATURE_DCA);
 265        setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 266        setup_clear_cpu_cap(X86_FEATURE_MTRR);
 267        setup_clear_cpu_cap(X86_FEATURE_ACC);
 268        setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 269        setup_clear_cpu_cap(X86_FEATURE_SME);
 270
 271        /*
 272         * Xen PV would need some work to support PCID: CR3 handling as well
 273         * as xen_flush_tlb_others() would need updating.
 274         */
 275        setup_clear_cpu_cap(X86_FEATURE_PCID);
 276
 277        if (!xen_initial_domain())
 278                setup_clear_cpu_cap(X86_FEATURE_ACPI);
 279
 280        if (xen_check_mwait())
 281                setup_force_cpu_cap(X86_FEATURE_MWAIT);
 282        else
 283                setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 284
 285        if (!xen_check_xsave()) {
 286                setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 287                setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 288        }
 289}
 290
 291static void xen_set_debugreg(int reg, unsigned long val)
 292{
 293        HYPERVISOR_set_debugreg(reg, val);
 294}
 295
 296static unsigned long xen_get_debugreg(int reg)
 297{
 298        return HYPERVISOR_get_debugreg(reg);
 299}
 300
 301static void xen_end_context_switch(struct task_struct *next)
 302{
 303        xen_mc_flush();
 304        paravirt_end_context_switch(next);
 305}
 306
 307static unsigned long xen_store_tr(void)
 308{
 309        return 0;
 310}
 311
 312/*
 313 * Set the page permissions for a particular virtual address.  If the
 314 * address is a vmalloc mapping (or other non-linear mapping), then
 315 * find the linear mapping of the page and also set its protections to
 316 * match.
 317 */
 318static void set_aliased_prot(void *v, pgprot_t prot)
 319{
 320        int level;
 321        pte_t *ptep;
 322        pte_t pte;
 323        unsigned long pfn;
 324        struct page *page;
 325        unsigned char dummy;
 326
 327        ptep = lookup_address((unsigned long)v, &level);
 328        BUG_ON(ptep == NULL);
 329
 330        pfn = pte_pfn(*ptep);
 331        page = pfn_to_page(pfn);
 332
 333        pte = pfn_pte(pfn, prot);
 334
 335        /*
 336         * Careful: update_va_mapping() will fail if the virtual address
 337         * we're poking isn't populated in the page tables.  We don't
 338         * need to worry about the direct map (that's always in the page
 339         * tables), but we need to be careful about vmap space.  In
 340         * particular, the top level page table can lazily propagate
 341         * entries between processes, so if we've switched mms since we
 342         * vmapped the target in the first place, we might not have the
 343         * top-level page table entry populated.
 344         *
 345         * We disable preemption because we want the same mm active when
 346         * we probe the target and when we issue the hypercall.  We'll
 347         * have the same nominal mm, but if we're a kernel thread, lazy
 348         * mm dropping could change our pgd.
 349         *
 350         * Out of an abundance of caution, this uses __get_user() to fault
 351         * in the target address just in case there's some obscure case
 352         * in which the target address isn't readable.
 353         */
 354
 355        preempt_disable();
 356
 357        probe_kernel_read(&dummy, v, 1);
 358
 359        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 360                BUG();
 361
 362        if (!PageHighMem(page)) {
 363                void *av = __va(PFN_PHYS(pfn));
 364
 365                if (av != v)
 366                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 367                                BUG();
 368        } else
 369                kmap_flush_unused();
 370
 371        preempt_enable();
 372}
 373
 374static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 375{
 376        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 377        int i;
 378
 379        /*
 380         * We need to mark the all aliases of the LDT pages RO.  We
 381         * don't need to call vm_flush_aliases(), though, since that's
 382         * only responsible for flushing aliases out the TLBs, not the
 383         * page tables, and Xen will flush the TLB for us if needed.
 384         *
 385         * To avoid confusing future readers: none of this is necessary
 386         * to load the LDT.  The hypervisor only checks this when the
 387         * LDT is faulted in due to subsequent descriptor access.
 388         */
 389
 390        for (i = 0; i < entries; i += entries_per_page)
 391                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 392}
 393
 394static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 395{
 396        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 397        int i;
 398
 399        for (i = 0; i < entries; i += entries_per_page)
 400                set_aliased_prot(ldt + i, PAGE_KERNEL);
 401}
 402
 403static void xen_set_ldt(const void *addr, unsigned entries)
 404{
 405        struct mmuext_op *op;
 406        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 407
 408        trace_xen_cpu_set_ldt(addr, entries);
 409
 410        op = mcs.args;
 411        op->cmd = MMUEXT_SET_LDT;
 412        op->arg1.linear_addr = (unsigned long)addr;
 413        op->arg2.nr_ents = entries;
 414
 415        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 416
 417        xen_mc_issue(PARAVIRT_LAZY_CPU);
 418}
 419
 420static void xen_load_gdt(const struct desc_ptr *dtr)
 421{
 422        unsigned long va = dtr->address;
 423        unsigned int size = dtr->size + 1;
 424        unsigned long pfn, mfn;
 425        int level;
 426        pte_t *ptep;
 427        void *virt;
 428
 429        /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 430        BUG_ON(size > PAGE_SIZE);
 431        BUG_ON(va & ~PAGE_MASK);
 432
 433        /*
 434         * The GDT is per-cpu and is in the percpu data area.
 435         * That can be virtually mapped, so we need to do a
 436         * page-walk to get the underlying MFN for the
 437         * hypercall.  The page can also be in the kernel's
 438         * linear range, so we need to RO that mapping too.
 439         */
 440        ptep = lookup_address(va, &level);
 441        BUG_ON(ptep == NULL);
 442
 443        pfn = pte_pfn(*ptep);
 444        mfn = pfn_to_mfn(pfn);
 445        virt = __va(PFN_PHYS(pfn));
 446
 447        make_lowmem_page_readonly((void *)va);
 448        make_lowmem_page_readonly(virt);
 449
 450        if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 451                BUG();
 452}
 453
 454/*
 455 * load_gdt for early boot, when the gdt is only mapped once
 456 */
 457static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 458{
 459        unsigned long va = dtr->address;
 460        unsigned int size = dtr->size + 1;
 461        unsigned long pfn, mfn;
 462        pte_t pte;
 463
 464        /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 465        BUG_ON(size > PAGE_SIZE);
 466        BUG_ON(va & ~PAGE_MASK);
 467
 468        pfn = virt_to_pfn(va);
 469        mfn = pfn_to_mfn(pfn);
 470
 471        pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 472
 473        if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 474                BUG();
 475
 476        if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 477                BUG();
 478}
 479
 480static inline bool desc_equal(const struct desc_struct *d1,
 481                              const struct desc_struct *d2)
 482{
 483        return !memcmp(d1, d2, sizeof(*d1));
 484}
 485
 486static void load_TLS_descriptor(struct thread_struct *t,
 487                                unsigned int cpu, unsigned int i)
 488{
 489        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 490        struct desc_struct *gdt;
 491        xmaddr_t maddr;
 492        struct multicall_space mc;
 493
 494        if (desc_equal(shadow, &t->tls_array[i]))
 495                return;
 496
 497        *shadow = t->tls_array[i];
 498
 499        gdt = get_cpu_gdt_rw(cpu);
 500        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 501        mc = __xen_mc_entry(0);
 502
 503        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 504}
 505
 506static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 507{
 508        /*
 509         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 510         * and lazy gs handling is enabled, it means we're in a
 511         * context switch, and %gs has just been saved.  This means we
 512         * can zero it out to prevent faults on exit from the
 513         * hypervisor if the next process has no %gs.  Either way, it
 514         * has been saved, and the new value will get loaded properly.
 515         * This will go away as soon as Xen has been modified to not
 516         * save/restore %gs for normal hypercalls.
 517         *
 518         * On x86_64, this hack is not used for %gs, because gs points
 519         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 520         * must not zero %gs on x86_64
 521         *
 522         * For x86_64, we need to zero %fs, otherwise we may get an
 523         * exception between the new %fs descriptor being loaded and
 524         * %fs being effectively cleared at __switch_to().
 525         */
 526        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 527#ifdef CONFIG_X86_32
 528                lazy_load_gs(0);
 529#else
 530                loadsegment(fs, 0);
 531#endif
 532        }
 533
 534        xen_mc_batch();
 535
 536        load_TLS_descriptor(t, cpu, 0);
 537        load_TLS_descriptor(t, cpu, 1);
 538        load_TLS_descriptor(t, cpu, 2);
 539
 540        xen_mc_issue(PARAVIRT_LAZY_CPU);
 541}
 542
 543#ifdef CONFIG_X86_64
 544static void xen_load_gs_index(unsigned int idx)
 545{
 546        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 547                BUG();
 548}
 549#endif
 550
 551static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 552                                const void *ptr)
 553{
 554        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 555        u64 entry = *(u64 *)ptr;
 556
 557        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 558
 559        preempt_disable();
 560
 561        xen_mc_flush();
 562        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 563                BUG();
 564
 565        preempt_enable();
 566}
 567
 568#ifdef CONFIG_X86_64
 569struct trap_array_entry {
 570        void (*orig)(void);
 571        void (*xen)(void);
 572        bool ist_okay;
 573};
 574
 575static struct trap_array_entry trap_array[] = {
 576        { debug,                       xen_xendebug,                    true },
 577        { int3,                        xen_xenint3,                     true },
 578        { double_fault,                xen_double_fault,                true },
 579#ifdef CONFIG_X86_MCE
 580        { machine_check,               xen_machine_check,               true },
 581#endif
 582        { nmi,                         xen_xennmi,                      true },
 583        { overflow,                    xen_overflow,                    false },
 584#ifdef CONFIG_IA32_EMULATION
 585        { entry_INT80_compat,          xen_entry_INT80_compat,          false },
 586#endif
 587        { page_fault,                  xen_page_fault,                  false },
 588        { divide_error,                xen_divide_error,                false },
 589        { bounds,                      xen_bounds,                      false },
 590        { invalid_op,                  xen_invalid_op,                  false },
 591        { device_not_available,        xen_device_not_available,        false },
 592        { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
 593        { invalid_TSS,                 xen_invalid_TSS,                 false },
 594        { segment_not_present,         xen_segment_not_present,         false },
 595        { stack_segment,               xen_stack_segment,               false },
 596        { general_protection,          xen_general_protection,          false },
 597        { spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
 598        { coprocessor_error,           xen_coprocessor_error,           false },
 599        { alignment_check,             xen_alignment_check,             false },
 600        { simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
 601};
 602
 603static bool __ref get_trap_addr(void **addr, unsigned int ist)
 604{
 605        unsigned int nr;
 606        bool ist_okay = false;
 607
 608        /*
 609         * Replace trap handler addresses by Xen specific ones.
 610         * Check for known traps using IST and whitelist them.
 611         * The debugger ones are the only ones we care about.
 612         * Xen will handle faults like double_fault, * so we should never see
 613         * them.  Warn if there's an unexpected IST-using fault handler.
 614         */
 615        for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 616                struct trap_array_entry *entry = trap_array + nr;
 617
 618                if (*addr == entry->orig) {
 619                        *addr = entry->xen;
 620                        ist_okay = entry->ist_okay;
 621                        break;
 622                }
 623        }
 624
 625        if (nr == ARRAY_SIZE(trap_array) &&
 626            *addr >= (void *)early_idt_handler_array[0] &&
 627            *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 628                nr = (*addr - (void *)early_idt_handler_array[0]) /
 629                     EARLY_IDT_HANDLER_SIZE;
 630                *addr = (void *)xen_early_idt_handler_array[nr];
 631        }
 632
 633        if (WARN_ON(ist != 0 && !ist_okay))
 634                return false;
 635
 636        return true;
 637}
 638#endif
 639
 640static int cvt_gate_to_trap(int vector, const gate_desc *val,
 641                            struct trap_info *info)
 642{
 643        unsigned long addr;
 644
 645        if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 646                return 0;
 647
 648        info->vector = vector;
 649
 650        addr = gate_offset(val);
 651#ifdef CONFIG_X86_64
 652        if (!get_trap_addr((void **)&addr, val->bits.ist))
 653                return 0;
 654#endif  /* CONFIG_X86_64 */
 655        info->address = addr;
 656
 657        info->cs = gate_segment(val);
 658        info->flags = val->bits.dpl;
 659        /* interrupt gates clear IF */
 660        if (val->bits.type == GATE_INTERRUPT)
 661                info->flags |= 1 << 2;
 662
 663        return 1;
 664}
 665
 666/* Locations of each CPU's IDT */
 667static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 668
 669/* Set an IDT entry.  If the entry is part of the current IDT, then
 670   also update Xen. */
 671static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 672{
 673        unsigned long p = (unsigned long)&dt[entrynum];
 674        unsigned long start, end;
 675
 676        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 677
 678        preempt_disable();
 679
 680        start = __this_cpu_read(idt_desc.address);
 681        end = start + __this_cpu_read(idt_desc.size) + 1;
 682
 683        xen_mc_flush();
 684
 685        native_write_idt_entry(dt, entrynum, g);
 686
 687        if (p >= start && (p + 8) <= end) {
 688                struct trap_info info[2];
 689
 690                info[1].address = 0;
 691
 692                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 693                        if (HYPERVISOR_set_trap_table(info))
 694                                BUG();
 695        }
 696
 697        preempt_enable();
 698}
 699
 700static void xen_convert_trap_info(const struct desc_ptr *desc,
 701                                  struct trap_info *traps)
 702{
 703        unsigned in, out, count;
 704
 705        count = (desc->size+1) / sizeof(gate_desc);
 706        BUG_ON(count > 256);
 707
 708        for (in = out = 0; in < count; in++) {
 709                gate_desc *entry = (gate_desc *)(desc->address) + in;
 710
 711                if (cvt_gate_to_trap(in, entry, &traps[out]))
 712                        out++;
 713        }
 714        traps[out].address = 0;
 715}
 716
 717void xen_copy_trap_info(struct trap_info *traps)
 718{
 719        const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 720
 721        xen_convert_trap_info(desc, traps);
 722}
 723
 724/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 725   hold a spinlock to protect the static traps[] array (static because
 726   it avoids allocation, and saves stack space). */
 727static void xen_load_idt(const struct desc_ptr *desc)
 728{
 729        static DEFINE_SPINLOCK(lock);
 730        static struct trap_info traps[257];
 731
 732        trace_xen_cpu_load_idt(desc);
 733
 734        spin_lock(&lock);
 735
 736        memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 737
 738        xen_convert_trap_info(desc, traps);
 739
 740        xen_mc_flush();
 741        if (HYPERVISOR_set_trap_table(traps))
 742                BUG();
 743
 744        spin_unlock(&lock);
 745}
 746
 747/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 748   they're handled differently. */
 749static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 750                                const void *desc, int type)
 751{
 752        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 753
 754        preempt_disable();
 755
 756        switch (type) {
 757        case DESC_LDT:
 758        case DESC_TSS:
 759                /* ignore */
 760                break;
 761
 762        default: {
 763                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 764
 765                xen_mc_flush();
 766                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 767                        BUG();
 768        }
 769
 770        }
 771
 772        preempt_enable();
 773}
 774
 775/*
 776 * Version of write_gdt_entry for use at early boot-time needed to
 777 * update an entry as simply as possible.
 778 */
 779static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 780                                            const void *desc, int type)
 781{
 782        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 783
 784        switch (type) {
 785        case DESC_LDT:
 786        case DESC_TSS:
 787                /* ignore */
 788                break;
 789
 790        default: {
 791                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 792
 793                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 794                        dt[entry] = *(struct desc_struct *)desc;
 795        }
 796
 797        }
 798}
 799
 800static void xen_load_sp0(unsigned long sp0)
 801{
 802        struct multicall_space mcs;
 803
 804        mcs = xen_mc_entry(0);
 805        MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 806        xen_mc_issue(PARAVIRT_LAZY_CPU);
 807        this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 808}
 809
 810void xen_set_iopl_mask(unsigned mask)
 811{
 812        struct physdev_set_iopl set_iopl;
 813
 814        /* Force the change at ring 0. */
 815        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 816        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 817}
 818
 819static void xen_io_delay(void)
 820{
 821}
 822
 823static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 824
 825static unsigned long xen_read_cr0(void)
 826{
 827        unsigned long cr0 = this_cpu_read(xen_cr0_value);
 828
 829        if (unlikely(cr0 == 0)) {
 830                cr0 = native_read_cr0();
 831                this_cpu_write(xen_cr0_value, cr0);
 832        }
 833
 834        return cr0;
 835}
 836
 837static void xen_write_cr0(unsigned long cr0)
 838{
 839        struct multicall_space mcs;
 840
 841        this_cpu_write(xen_cr0_value, cr0);
 842
 843        /* Only pay attention to cr0.TS; everything else is
 844           ignored. */
 845        mcs = xen_mc_entry(0);
 846
 847        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 848
 849        xen_mc_issue(PARAVIRT_LAZY_CPU);
 850}
 851
 852static void xen_write_cr4(unsigned long cr4)
 853{
 854        cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
 855
 856        native_write_cr4(cr4);
 857}
 858#ifdef CONFIG_X86_64
 859static inline unsigned long xen_read_cr8(void)
 860{
 861        return 0;
 862}
 863static inline void xen_write_cr8(unsigned long val)
 864{
 865        BUG_ON(val);
 866}
 867#endif
 868
 869static u64 xen_read_msr_safe(unsigned int msr, int *err)
 870{
 871        u64 val;
 872
 873        if (pmu_msr_read(msr, &val, err))
 874                return val;
 875
 876        val = native_read_msr_safe(msr, err);
 877        switch (msr) {
 878        case MSR_IA32_APICBASE:
 879#ifdef CONFIG_X86_X2APIC
 880                if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
 881#endif
 882                        val &= ~X2APIC_ENABLE;
 883                break;
 884        }
 885        return val;
 886}
 887
 888static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
 889{
 890        int ret;
 891
 892        ret = 0;
 893
 894        switch (msr) {
 895#ifdef CONFIG_X86_64
 896                unsigned which;
 897                u64 base;
 898
 899        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
 900        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
 901        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
 902
 903        set:
 904                base = ((u64)high << 32) | low;
 905                if (HYPERVISOR_set_segment_base(which, base) != 0)
 906                        ret = -EIO;
 907                break;
 908#endif
 909
 910        case MSR_STAR:
 911        case MSR_CSTAR:
 912        case MSR_LSTAR:
 913        case MSR_SYSCALL_MASK:
 914        case MSR_IA32_SYSENTER_CS:
 915        case MSR_IA32_SYSENTER_ESP:
 916        case MSR_IA32_SYSENTER_EIP:
 917                /* Fast syscall setup is all done in hypercalls, so
 918                   these are all ignored.  Stub them out here to stop
 919                   Xen console noise. */
 920                break;
 921
 922        default:
 923                if (!pmu_msr_write(msr, low, high, &ret))
 924                        ret = native_write_msr_safe(msr, low, high);
 925        }
 926
 927        return ret;
 928}
 929
 930static u64 xen_read_msr(unsigned int msr)
 931{
 932        /*
 933         * This will silently swallow a #GP from RDMSR.  It may be worth
 934         * changing that.
 935         */
 936        int err;
 937
 938        return xen_read_msr_safe(msr, &err);
 939}
 940
 941static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
 942{
 943        /*
 944         * This will silently swallow a #GP from WRMSR.  It may be worth
 945         * changing that.
 946         */
 947        xen_write_msr_safe(msr, low, high);
 948}
 949
 950void xen_setup_shared_info(void)
 951{
 952        set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 953
 954        HYPERVISOR_shared_info =
 955                (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 956
 957        xen_setup_mfn_list_list();
 958
 959        if (system_state == SYSTEM_BOOTING) {
 960#ifndef CONFIG_SMP
 961                /*
 962                 * In UP this is as good a place as any to set up shared info.
 963                 * Limit this to boot only, at restore vcpu setup is done via
 964                 * xen_vcpu_restore().
 965                 */
 966                xen_setup_vcpu_info_placement();
 967#endif
 968                /*
 969                 * Now that shared info is set up we can start using routines
 970                 * that point to pvclock area.
 971                 */
 972                xen_init_time_ops();
 973        }
 974}
 975
 976/* This is called once we have the cpu_possible_mask */
 977void __ref xen_setup_vcpu_info_placement(void)
 978{
 979        int cpu;
 980
 981        for_each_possible_cpu(cpu) {
 982                /* Set up direct vCPU id mapping for PV guests. */
 983                per_cpu(xen_vcpu_id, cpu) = cpu;
 984
 985                /*
 986                 * xen_vcpu_setup(cpu) can fail  -- in which case it
 987                 * falls back to the shared_info version for cpus
 988                 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
 989                 *
 990                 * xen_cpu_up_prepare_pv() handles the rest by failing
 991                 * them in hotplug.
 992                 */
 993                (void) xen_vcpu_setup(cpu);
 994        }
 995
 996        /*
 997         * xen_vcpu_setup managed to place the vcpu_info within the
 998         * percpu area for all cpus, so make use of it.
 999         */
1000        if (xen_have_vcpu_info_placement) {
1001                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1002                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1003                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1004                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1005                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1006        }
1007}
1008
1009static const struct pv_info xen_info __initconst = {
1010        .shared_kernel_pmd = 0,
1011
1012#ifdef CONFIG_X86_64
1013        .extra_user_64bit_cs = FLAT_USER_CS64,
1014#endif
1015        .name = "Xen",
1016};
1017
1018static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1019        .cpuid = xen_cpuid,
1020
1021        .set_debugreg = xen_set_debugreg,
1022        .get_debugreg = xen_get_debugreg,
1023
1024        .read_cr0 = xen_read_cr0,
1025        .write_cr0 = xen_write_cr0,
1026
1027        .write_cr4 = xen_write_cr4,
1028
1029#ifdef CONFIG_X86_64
1030        .read_cr8 = xen_read_cr8,
1031        .write_cr8 = xen_write_cr8,
1032#endif
1033
1034        .wbinvd = native_wbinvd,
1035
1036        .read_msr = xen_read_msr,
1037        .write_msr = xen_write_msr,
1038
1039        .read_msr_safe = xen_read_msr_safe,
1040        .write_msr_safe = xen_write_msr_safe,
1041
1042        .read_pmc = xen_read_pmc,
1043
1044        .iret = xen_iret,
1045#ifdef CONFIG_X86_64
1046        .usergs_sysret64 = xen_sysret64,
1047#endif
1048
1049        .load_tr_desc = paravirt_nop,
1050        .set_ldt = xen_set_ldt,
1051        .load_gdt = xen_load_gdt,
1052        .load_idt = xen_load_idt,
1053        .load_tls = xen_load_tls,
1054#ifdef CONFIG_X86_64
1055        .load_gs_index = xen_load_gs_index,
1056#endif
1057
1058        .alloc_ldt = xen_alloc_ldt,
1059        .free_ldt = xen_free_ldt,
1060
1061        .store_tr = xen_store_tr,
1062
1063        .write_ldt_entry = xen_write_ldt_entry,
1064        .write_gdt_entry = xen_write_gdt_entry,
1065        .write_idt_entry = xen_write_idt_entry,
1066        .load_sp0 = xen_load_sp0,
1067
1068        .set_iopl_mask = xen_set_iopl_mask,
1069        .io_delay = xen_io_delay,
1070
1071        /* Xen takes care of %gs when switching to usermode for us */
1072        .swapgs = paravirt_nop,
1073
1074        .start_context_switch = paravirt_start_context_switch,
1075        .end_context_switch = xen_end_context_switch,
1076};
1077
1078static void xen_restart(char *msg)
1079{
1080        xen_reboot(SHUTDOWN_reboot);
1081}
1082
1083static void xen_machine_halt(void)
1084{
1085        xen_reboot(SHUTDOWN_poweroff);
1086}
1087
1088static void xen_machine_power_off(void)
1089{
1090        if (pm_power_off)
1091                pm_power_off();
1092        xen_reboot(SHUTDOWN_poweroff);
1093}
1094
1095static void xen_crash_shutdown(struct pt_regs *regs)
1096{
1097        xen_reboot(SHUTDOWN_crash);
1098}
1099
1100static const struct machine_ops xen_machine_ops __initconst = {
1101        .restart = xen_restart,
1102        .halt = xen_machine_halt,
1103        .power_off = xen_machine_power_off,
1104        .shutdown = xen_machine_halt,
1105        .crash_shutdown = xen_crash_shutdown,
1106        .emergency_restart = xen_emergency_restart,
1107};
1108
1109static unsigned char xen_get_nmi_reason(void)
1110{
1111        unsigned char reason = 0;
1112
1113        /* Construct a value which looks like it came from port 0x61. */
1114        if (test_bit(_XEN_NMIREASON_io_error,
1115                     &HYPERVISOR_shared_info->arch.nmi_reason))
1116                reason |= NMI_REASON_IOCHK;
1117        if (test_bit(_XEN_NMIREASON_pci_serr,
1118                     &HYPERVISOR_shared_info->arch.nmi_reason))
1119                reason |= NMI_REASON_SERR;
1120
1121        return reason;
1122}
1123
1124static void __init xen_boot_params_init_edd(void)
1125{
1126#if IS_ENABLED(CONFIG_EDD)
1127        struct xen_platform_op op;
1128        struct edd_info *edd_info;
1129        u32 *mbr_signature;
1130        unsigned nr;
1131        int ret;
1132
1133        edd_info = boot_params.eddbuf;
1134        mbr_signature = boot_params.edd_mbr_sig_buffer;
1135
1136        op.cmd = XENPF_firmware_info;
1137
1138        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1139        for (nr = 0; nr < EDDMAXNR; nr++) {
1140                struct edd_info *info = edd_info + nr;
1141
1142                op.u.firmware_info.index = nr;
1143                info->params.length = sizeof(info->params);
1144                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1145                                     &info->params);
1146                ret = HYPERVISOR_platform_op(&op);
1147                if (ret)
1148                        break;
1149
1150#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1151                C(device);
1152                C(version);
1153                C(interface_support);
1154                C(legacy_max_cylinder);
1155                C(legacy_max_head);
1156                C(legacy_sectors_per_track);
1157#undef C
1158        }
1159        boot_params.eddbuf_entries = nr;
1160
1161        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1162        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1163                op.u.firmware_info.index = nr;
1164                ret = HYPERVISOR_platform_op(&op);
1165                if (ret)
1166                        break;
1167                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1168        }
1169        boot_params.edd_mbr_sig_buf_entries = nr;
1170#endif
1171}
1172
1173/*
1174 * Set up the GDT and segment registers for -fstack-protector.  Until
1175 * we do this, we have to be careful not to call any stack-protected
1176 * function, which is most of the kernel.
1177 */
1178static void xen_setup_gdt(int cpu)
1179{
1180        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1181        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1182
1183        setup_stack_canary_segment(0);
1184        switch_to_new_gdt(0);
1185
1186        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1187        pv_cpu_ops.load_gdt = xen_load_gdt;
1188}
1189
1190static void __init xen_dom0_set_legacy_features(void)
1191{
1192        x86_platform.legacy.rtc = 1;
1193}
1194
1195/* First C function to be called on Xen boot */
1196asmlinkage __visible void __init xen_start_kernel(void)
1197{
1198        struct physdev_set_iopl set_iopl;
1199        unsigned long initrd_start = 0;
1200        int rc;
1201
1202        if (!xen_start_info)
1203                return;
1204
1205        xen_domain_type = XEN_PV_DOMAIN;
1206
1207        xen_setup_features();
1208
1209        xen_setup_machphys_mapping();
1210
1211        /* Install Xen paravirt ops */
1212        pv_info = xen_info;
1213        pv_init_ops.patch = paravirt_patch_default;
1214        pv_cpu_ops = xen_cpu_ops;
1215
1216        x86_platform.get_nmi_reason = xen_get_nmi_reason;
1217
1218        x86_init.resources.memory_setup = xen_memory_setup;
1219        x86_init.irqs.intr_mode_init    = x86_init_noop;
1220        x86_init.oem.arch_setup = xen_arch_setup;
1221        x86_init.oem.banner = xen_banner;
1222
1223        /*
1224         * Set up some pagetable state before starting to set any ptes.
1225         */
1226
1227        xen_init_mmu_ops();
1228
1229        /* Prevent unwanted bits from being set in PTEs. */
1230        __supported_pte_mask &= ~_PAGE_GLOBAL;
1231
1232        /*
1233         * Prevent page tables from being allocated in highmem, even
1234         * if CONFIG_HIGHPTE is enabled.
1235         */
1236        __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1237
1238        /* Get mfn list */
1239        xen_build_dynamic_phys_to_machine();
1240
1241        /*
1242         * Set up kernel GDT and segment registers, mainly so that
1243         * -fstack-protector code can be executed.
1244         */
1245        xen_setup_gdt(0);
1246
1247        /* Work out if we support NX */
1248        get_cpu_cap(&boot_cpu_data);
1249        x86_configure_nx();
1250
1251        xen_init_irq_ops();
1252
1253        /* Let's presume PV guests always boot on vCPU with id 0. */
1254        per_cpu(xen_vcpu_id, 0) = 0;
1255
1256        /*
1257         * Setup xen_vcpu early because idt_setup_early_handler needs it for
1258         * local_irq_disable(), irqs_disabled().
1259         *
1260         * Don't do the full vcpu_info placement stuff until we have
1261         * the cpu_possible_mask and a non-dummy shared_info.
1262         */
1263        xen_vcpu_info_reset(0);
1264
1265        idt_setup_early_handler();
1266
1267        xen_init_capabilities();
1268
1269#ifdef CONFIG_X86_LOCAL_APIC
1270        /*
1271         * set up the basic apic ops.
1272         */
1273        xen_init_apic();
1274#endif
1275
1276        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1277                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1278                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1279        }
1280
1281        machine_ops = xen_machine_ops;
1282
1283        /*
1284         * The only reliable way to retain the initial address of the
1285         * percpu gdt_page is to remember it here, so we can go and
1286         * mark it RW later, when the initial percpu area is freed.
1287         */
1288        xen_initial_gdt = &per_cpu(gdt_page, 0);
1289
1290        xen_smp_init();
1291
1292#ifdef CONFIG_ACPI_NUMA
1293        /*
1294         * The pages we from Xen are not related to machine pages, so
1295         * any NUMA information the kernel tries to get from ACPI will
1296         * be meaningless.  Prevent it from trying.
1297         */
1298        acpi_numa = -1;
1299#endif
1300        WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1301
1302        local_irq_disable();
1303        early_boot_irqs_disabled = true;
1304
1305        xen_raw_console_write("mapping kernel into physical memory\n");
1306        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1307                                   xen_start_info->nr_pages);
1308        xen_reserve_special_pages();
1309
1310        /* keep using Xen gdt for now; no urgent need to change it */
1311
1312#ifdef CONFIG_X86_32
1313        pv_info.kernel_rpl = 1;
1314        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1315                pv_info.kernel_rpl = 0;
1316#else
1317        pv_info.kernel_rpl = 0;
1318#endif
1319        /* set the limit of our address space */
1320        xen_reserve_top();
1321
1322        /*
1323         * We used to do this in xen_arch_setup, but that is too late
1324         * on AMD were early_cpu_init (run before ->arch_setup()) calls
1325         * early_amd_init which pokes 0xcf8 port.
1326         */
1327        set_iopl.iopl = 1;
1328        rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1329        if (rc != 0)
1330                xen_raw_printk("physdev_op failed %d\n", rc);
1331
1332#ifdef CONFIG_X86_32
1333        /* set up basic CPUID stuff */
1334        cpu_detect(&new_cpu_data);
1335        set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1336        new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1337#endif
1338
1339        if (xen_start_info->mod_start) {
1340            if (xen_start_info->flags & SIF_MOD_START_PFN)
1341                initrd_start = PFN_PHYS(xen_start_info->mod_start);
1342            else
1343                initrd_start = __pa(xen_start_info->mod_start);
1344        }
1345
1346        /* Poke various useful things into boot_params */
1347        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1348        boot_params.hdr.ramdisk_image = initrd_start;
1349        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1350        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1351        boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1352
1353        if (!xen_initial_domain()) {
1354                add_preferred_console("xenboot", 0, NULL);
1355                if (pci_xen)
1356                        x86_init.pci.arch_init = pci_xen_init;
1357        } else {
1358                const struct dom0_vga_console_info *info =
1359                        (void *)((char *)xen_start_info +
1360                                 xen_start_info->console.dom0.info_off);
1361                struct xen_platform_op op = {
1362                        .cmd = XENPF_firmware_info,
1363                        .interface_version = XENPF_INTERFACE_VERSION,
1364                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1365                };
1366
1367                x86_platform.set_legacy_features =
1368                                xen_dom0_set_legacy_features;
1369                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1370                xen_start_info->console.domU.mfn = 0;
1371                xen_start_info->console.domU.evtchn = 0;
1372
1373                if (HYPERVISOR_platform_op(&op) == 0)
1374                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1375
1376                /* Make sure ACS will be enabled */
1377                pci_request_acs();
1378
1379                xen_acpi_sleep_register();
1380
1381                /* Avoid searching for BIOS MP tables */
1382                x86_init.mpparse.find_smp_config = x86_init_noop;
1383                x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1384
1385                xen_boot_params_init_edd();
1386        }
1387
1388        add_preferred_console("tty", 0, NULL);
1389        add_preferred_console("hvc", 0, NULL);
1390
1391#ifdef CONFIG_PCI
1392        /* PCI BIOS service won't work from a PV guest. */
1393        pci_probe &= ~PCI_PROBE_BIOS;
1394#endif
1395        xen_raw_console_write("about to get started...\n");
1396
1397        /* We need this for printk timestamps */
1398        xen_setup_runstate_info(0);
1399
1400        xen_efi_init();
1401
1402        /* Start the world */
1403#ifdef CONFIG_X86_32
1404        i386_start_kernel();
1405#else
1406        cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1407        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1408#endif
1409}
1410
1411static int xen_cpu_up_prepare_pv(unsigned int cpu)
1412{
1413        int rc;
1414
1415        if (per_cpu(xen_vcpu, cpu) == NULL)
1416                return -ENODEV;
1417
1418        xen_setup_timer(cpu);
1419
1420        rc = xen_smp_intr_init(cpu);
1421        if (rc) {
1422                WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1423                     cpu, rc);
1424                return rc;
1425        }
1426
1427        rc = xen_smp_intr_init_pv(cpu);
1428        if (rc) {
1429                WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1430                     cpu, rc);
1431                return rc;
1432        }
1433
1434        return 0;
1435}
1436
1437static int xen_cpu_dead_pv(unsigned int cpu)
1438{
1439        xen_smp_intr_free(cpu);
1440        xen_smp_intr_free_pv(cpu);
1441
1442        xen_teardown_timer(cpu);
1443
1444        return 0;
1445}
1446
1447static uint32_t __init xen_platform_pv(void)
1448{
1449        if (xen_pv_domain())
1450                return xen_cpuid_base();
1451
1452        return 0;
1453}
1454
1455const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1456        .name                   = "Xen PV",
1457        .detect                 = xen_platform_pv,
1458        .type                   = X86_HYPER_XEN_PV,
1459        .runtime.pin_vcpu       = xen_pin_vcpu,
1460};
1461