linux/block/blk-core.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *      -  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
  36#include <linux/debugfs.h>
  37#include <linux/bpf.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/block.h>
  41
  42#include "blk.h"
  43#include "blk-mq.h"
  44#include "blk-mq-sched.h"
  45#include "blk-wbt.h"
  46
  47#ifdef CONFIG_DEBUG_FS
  48struct dentry *blk_debugfs_root;
  49#endif
  50
  51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  56
  57DEFINE_IDA(blk_queue_ida);
  58
  59/*
  60 * For the allocated request tables
  61 */
  62struct kmem_cache *request_cachep;
  63
  64/*
  65 * For queue allocation
  66 */
  67struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  80{
  81        unsigned long flags;
  82
  83        spin_lock_irqsave(q->queue_lock, flags);
  84        queue_flag_set(flag, q);
  85        spin_unlock_irqrestore(q->queue_lock, flags);
  86}
  87EXPORT_SYMBOL(blk_queue_flag_set);
  88
  89/**
  90 * blk_queue_flag_clear - atomically clear a queue flag
  91 * @flag: flag to be cleared
  92 * @q: request queue
  93 */
  94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  95{
  96        unsigned long flags;
  97
  98        spin_lock_irqsave(q->queue_lock, flags);
  99        queue_flag_clear(flag, q);
 100        spin_unlock_irqrestore(q->queue_lock, flags);
 101}
 102EXPORT_SYMBOL(blk_queue_flag_clear);
 103
 104/**
 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 106 * @flag: flag to be set
 107 * @q: request queue
 108 *
 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 110 * the flag was already set.
 111 */
 112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 113{
 114        unsigned long flags;
 115        bool res;
 116
 117        spin_lock_irqsave(q->queue_lock, flags);
 118        res = queue_flag_test_and_set(flag, q);
 119        spin_unlock_irqrestore(q->queue_lock, flags);
 120
 121        return res;
 122}
 123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 124
 125/**
 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
 127 * @flag: flag to be cleared
 128 * @q: request queue
 129 *
 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 131 * the flag was set.
 132 */
 133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
 134{
 135        unsigned long flags;
 136        bool res;
 137
 138        spin_lock_irqsave(q->queue_lock, flags);
 139        res = queue_flag_test_and_clear(flag, q);
 140        spin_unlock_irqrestore(q->queue_lock, flags);
 141
 142        return res;
 143}
 144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
 145
 146static void blk_clear_congested(struct request_list *rl, int sync)
 147{
 148#ifdef CONFIG_CGROUP_WRITEBACK
 149        clear_wb_congested(rl->blkg->wb_congested, sync);
 150#else
 151        /*
 152         * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
 153         * flip its congestion state for events on other blkcgs.
 154         */
 155        if (rl == &rl->q->root_rl)
 156                clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
 157#endif
 158}
 159
 160static void blk_set_congested(struct request_list *rl, int sync)
 161{
 162#ifdef CONFIG_CGROUP_WRITEBACK
 163        set_wb_congested(rl->blkg->wb_congested, sync);
 164#else
 165        /* see blk_clear_congested() */
 166        if (rl == &rl->q->root_rl)
 167                set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
 168#endif
 169}
 170
 171void blk_queue_congestion_threshold(struct request_queue *q)
 172{
 173        int nr;
 174
 175        nr = q->nr_requests - (q->nr_requests / 8) + 1;
 176        if (nr > q->nr_requests)
 177                nr = q->nr_requests;
 178        q->nr_congestion_on = nr;
 179
 180        nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 181        if (nr < 1)
 182                nr = 1;
 183        q->nr_congestion_off = nr;
 184}
 185
 186void blk_rq_init(struct request_queue *q, struct request *rq)
 187{
 188        memset(rq, 0, sizeof(*rq));
 189
 190        INIT_LIST_HEAD(&rq->queuelist);
 191        INIT_LIST_HEAD(&rq->timeout_list);
 192        rq->cpu = -1;
 193        rq->q = q;
 194        rq->__sector = (sector_t) -1;
 195        INIT_HLIST_NODE(&rq->hash);
 196        RB_CLEAR_NODE(&rq->rb_node);
 197        rq->tag = -1;
 198        rq->internal_tag = -1;
 199        rq->start_time = jiffies;
 200        set_start_time_ns(rq);
 201        rq->part = NULL;
 202        seqcount_init(&rq->gstate_seq);
 203        u64_stats_init(&rq->aborted_gstate_sync);
 204        /*
 205         * See comment of blk_mq_init_request
 206         */
 207        WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
 208}
 209EXPORT_SYMBOL(blk_rq_init);
 210
 211static const struct {
 212        int             errno;
 213        const char      *name;
 214} blk_errors[] = {
 215        [BLK_STS_OK]            = { 0,          "" },
 216        [BLK_STS_NOTSUPP]       = { -EOPNOTSUPP, "operation not supported" },
 217        [BLK_STS_TIMEOUT]       = { -ETIMEDOUT, "timeout" },
 218        [BLK_STS_NOSPC]         = { -ENOSPC,    "critical space allocation" },
 219        [BLK_STS_TRANSPORT]     = { -ENOLINK,   "recoverable transport" },
 220        [BLK_STS_TARGET]        = { -EREMOTEIO, "critical target" },
 221        [BLK_STS_NEXUS]         = { -EBADE,     "critical nexus" },
 222        [BLK_STS_MEDIUM]        = { -ENODATA,   "critical medium" },
 223        [BLK_STS_PROTECTION]    = { -EILSEQ,    "protection" },
 224        [BLK_STS_RESOURCE]      = { -ENOMEM,    "kernel resource" },
 225        [BLK_STS_DEV_RESOURCE]  = { -EBUSY,     "device resource" },
 226        [BLK_STS_AGAIN]         = { -EAGAIN,    "nonblocking retry" },
 227
 228        /* device mapper special case, should not leak out: */
 229        [BLK_STS_DM_REQUEUE]    = { -EREMCHG, "dm internal retry" },
 230
 231        /* everything else not covered above: */
 232        [BLK_STS_IOERR]         = { -EIO,       "I/O" },
 233};
 234
 235blk_status_t errno_to_blk_status(int errno)
 236{
 237        int i;
 238
 239        for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 240                if (blk_errors[i].errno == errno)
 241                        return (__force blk_status_t)i;
 242        }
 243
 244        return BLK_STS_IOERR;
 245}
 246EXPORT_SYMBOL_GPL(errno_to_blk_status);
 247
 248int blk_status_to_errno(blk_status_t status)
 249{
 250        int idx = (__force int)status;
 251
 252        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 253                return -EIO;
 254        return blk_errors[idx].errno;
 255}
 256EXPORT_SYMBOL_GPL(blk_status_to_errno);
 257
 258static void print_req_error(struct request *req, blk_status_t status)
 259{
 260        int idx = (__force int)status;
 261
 262        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 263                return;
 264
 265        printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
 266                           __func__, blk_errors[idx].name, req->rq_disk ?
 267                           req->rq_disk->disk_name : "?",
 268                           (unsigned long long)blk_rq_pos(req));
 269}
 270
 271static void req_bio_endio(struct request *rq, struct bio *bio,
 272                          unsigned int nbytes, blk_status_t error)
 273{
 274        if (error)
 275                bio->bi_status = error;
 276
 277        if (unlikely(rq->rq_flags & RQF_QUIET))
 278                bio_set_flag(bio, BIO_QUIET);
 279
 280        bio_advance(bio, nbytes);
 281
 282        /* don't actually finish bio if it's part of flush sequence */
 283        if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 284                bio_endio(bio);
 285}
 286
 287void blk_dump_rq_flags(struct request *rq, char *msg)
 288{
 289        printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 290                rq->rq_disk ? rq->rq_disk->disk_name : "?",
 291                (unsigned long long) rq->cmd_flags);
 292
 293        printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 294               (unsigned long long)blk_rq_pos(rq),
 295               blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 296        printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 297               rq->bio, rq->biotail, blk_rq_bytes(rq));
 298}
 299EXPORT_SYMBOL(blk_dump_rq_flags);
 300
 301static void blk_delay_work(struct work_struct *work)
 302{
 303        struct request_queue *q;
 304
 305        q = container_of(work, struct request_queue, delay_work.work);
 306        spin_lock_irq(q->queue_lock);
 307        __blk_run_queue(q);
 308        spin_unlock_irq(q->queue_lock);
 309}
 310
 311/**
 312 * blk_delay_queue - restart queueing after defined interval
 313 * @q:          The &struct request_queue in question
 314 * @msecs:      Delay in msecs
 315 *
 316 * Description:
 317 *   Sometimes queueing needs to be postponed for a little while, to allow
 318 *   resources to come back. This function will make sure that queueing is
 319 *   restarted around the specified time.
 320 */
 321void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 322{
 323        lockdep_assert_held(q->queue_lock);
 324        WARN_ON_ONCE(q->mq_ops);
 325
 326        if (likely(!blk_queue_dead(q)))
 327                queue_delayed_work(kblockd_workqueue, &q->delay_work,
 328                                   msecs_to_jiffies(msecs));
 329}
 330EXPORT_SYMBOL(blk_delay_queue);
 331
 332/**
 333 * blk_start_queue_async - asynchronously restart a previously stopped queue
 334 * @q:    The &struct request_queue in question
 335 *
 336 * Description:
 337 *   blk_start_queue_async() will clear the stop flag on the queue, and
 338 *   ensure that the request_fn for the queue is run from an async
 339 *   context.
 340 **/
 341void blk_start_queue_async(struct request_queue *q)
 342{
 343        lockdep_assert_held(q->queue_lock);
 344        WARN_ON_ONCE(q->mq_ops);
 345
 346        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 347        blk_run_queue_async(q);
 348}
 349EXPORT_SYMBOL(blk_start_queue_async);
 350
 351/**
 352 * blk_start_queue - restart a previously stopped queue
 353 * @q:    The &struct request_queue in question
 354 *
 355 * Description:
 356 *   blk_start_queue() will clear the stop flag on the queue, and call
 357 *   the request_fn for the queue if it was in a stopped state when
 358 *   entered. Also see blk_stop_queue().
 359 **/
 360void blk_start_queue(struct request_queue *q)
 361{
 362        lockdep_assert_held(q->queue_lock);
 363        WARN_ON(!in_interrupt() && !irqs_disabled());
 364        WARN_ON_ONCE(q->mq_ops);
 365
 366        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 367        __blk_run_queue(q);
 368}
 369EXPORT_SYMBOL(blk_start_queue);
 370
 371/**
 372 * blk_stop_queue - stop a queue
 373 * @q:    The &struct request_queue in question
 374 *
 375 * Description:
 376 *   The Linux block layer assumes that a block driver will consume all
 377 *   entries on the request queue when the request_fn strategy is called.
 378 *   Often this will not happen, because of hardware limitations (queue
 379 *   depth settings). If a device driver gets a 'queue full' response,
 380 *   or if it simply chooses not to queue more I/O at one point, it can
 381 *   call this function to prevent the request_fn from being called until
 382 *   the driver has signalled it's ready to go again. This happens by calling
 383 *   blk_start_queue() to restart queue operations.
 384 **/
 385void blk_stop_queue(struct request_queue *q)
 386{
 387        lockdep_assert_held(q->queue_lock);
 388        WARN_ON_ONCE(q->mq_ops);
 389
 390        cancel_delayed_work(&q->delay_work);
 391        queue_flag_set(QUEUE_FLAG_STOPPED, q);
 392}
 393EXPORT_SYMBOL(blk_stop_queue);
 394
 395/**
 396 * blk_sync_queue - cancel any pending callbacks on a queue
 397 * @q: the queue
 398 *
 399 * Description:
 400 *     The block layer may perform asynchronous callback activity
 401 *     on a queue, such as calling the unplug function after a timeout.
 402 *     A block device may call blk_sync_queue to ensure that any
 403 *     such activity is cancelled, thus allowing it to release resources
 404 *     that the callbacks might use. The caller must already have made sure
 405 *     that its ->make_request_fn will not re-add plugging prior to calling
 406 *     this function.
 407 *
 408 *     This function does not cancel any asynchronous activity arising
 409 *     out of elevator or throttling code. That would require elevator_exit()
 410 *     and blkcg_exit_queue() to be called with queue lock initialized.
 411 *
 412 */
 413void blk_sync_queue(struct request_queue *q)
 414{
 415        del_timer_sync(&q->timeout);
 416        cancel_work_sync(&q->timeout_work);
 417
 418        if (q->mq_ops) {
 419                struct blk_mq_hw_ctx *hctx;
 420                int i;
 421
 422                cancel_delayed_work_sync(&q->requeue_work);
 423                queue_for_each_hw_ctx(q, hctx, i)
 424                        cancel_delayed_work_sync(&hctx->run_work);
 425        } else {
 426                cancel_delayed_work_sync(&q->delay_work);
 427        }
 428}
 429EXPORT_SYMBOL(blk_sync_queue);
 430
 431/**
 432 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
 433 * @q: request queue pointer
 434 *
 435 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
 436 * set and 1 if the flag was already set.
 437 */
 438int blk_set_preempt_only(struct request_queue *q)
 439{
 440        return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
 441}
 442EXPORT_SYMBOL_GPL(blk_set_preempt_only);
 443
 444void blk_clear_preempt_only(struct request_queue *q)
 445{
 446        blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
 447        wake_up_all(&q->mq_freeze_wq);
 448}
 449EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
 450
 451/**
 452 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 453 * @q:  The queue to run
 454 *
 455 * Description:
 456 *    Invoke request handling on a queue if there are any pending requests.
 457 *    May be used to restart request handling after a request has completed.
 458 *    This variant runs the queue whether or not the queue has been
 459 *    stopped. Must be called with the queue lock held and interrupts
 460 *    disabled. See also @blk_run_queue.
 461 */
 462inline void __blk_run_queue_uncond(struct request_queue *q)
 463{
 464        lockdep_assert_held(q->queue_lock);
 465        WARN_ON_ONCE(q->mq_ops);
 466
 467        if (unlikely(blk_queue_dead(q)))
 468                return;
 469
 470        /*
 471         * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 472         * the queue lock internally. As a result multiple threads may be
 473         * running such a request function concurrently. Keep track of the
 474         * number of active request_fn invocations such that blk_drain_queue()
 475         * can wait until all these request_fn calls have finished.
 476         */
 477        q->request_fn_active++;
 478        q->request_fn(q);
 479        q->request_fn_active--;
 480}
 481EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 482
 483/**
 484 * __blk_run_queue - run a single device queue
 485 * @q:  The queue to run
 486 *
 487 * Description:
 488 *    See @blk_run_queue.
 489 */
 490void __blk_run_queue(struct request_queue *q)
 491{
 492        lockdep_assert_held(q->queue_lock);
 493        WARN_ON_ONCE(q->mq_ops);
 494
 495        if (unlikely(blk_queue_stopped(q)))
 496                return;
 497
 498        __blk_run_queue_uncond(q);
 499}
 500EXPORT_SYMBOL(__blk_run_queue);
 501
 502/**
 503 * blk_run_queue_async - run a single device queue in workqueue context
 504 * @q:  The queue to run
 505 *
 506 * Description:
 507 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 508 *    of us.
 509 *
 510 * Note:
 511 *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
 512 *    has canceled q->delay_work, callers must hold the queue lock to avoid
 513 *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
 514 */
 515void blk_run_queue_async(struct request_queue *q)
 516{
 517        lockdep_assert_held(q->queue_lock);
 518        WARN_ON_ONCE(q->mq_ops);
 519
 520        if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 521                mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 522}
 523EXPORT_SYMBOL(blk_run_queue_async);
 524
 525/**
 526 * blk_run_queue - run a single device queue
 527 * @q: The queue to run
 528 *
 529 * Description:
 530 *    Invoke request handling on this queue, if it has pending work to do.
 531 *    May be used to restart queueing when a request has completed.
 532 */
 533void blk_run_queue(struct request_queue *q)
 534{
 535        unsigned long flags;
 536
 537        WARN_ON_ONCE(q->mq_ops);
 538
 539        spin_lock_irqsave(q->queue_lock, flags);
 540        __blk_run_queue(q);
 541        spin_unlock_irqrestore(q->queue_lock, flags);
 542}
 543EXPORT_SYMBOL(blk_run_queue);
 544
 545void blk_put_queue(struct request_queue *q)
 546{
 547        kobject_put(&q->kobj);
 548}
 549EXPORT_SYMBOL(blk_put_queue);
 550
 551/**
 552 * __blk_drain_queue - drain requests from request_queue
 553 * @q: queue to drain
 554 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 555 *
 556 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 557 * If not, only ELVPRIV requests are drained.  The caller is responsible
 558 * for ensuring that no new requests which need to be drained are queued.
 559 */
 560static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 561        __releases(q->queue_lock)
 562        __acquires(q->queue_lock)
 563{
 564        int i;
 565
 566        lockdep_assert_held(q->queue_lock);
 567        WARN_ON_ONCE(q->mq_ops);
 568
 569        while (true) {
 570                bool drain = false;
 571
 572                /*
 573                 * The caller might be trying to drain @q before its
 574                 * elevator is initialized.
 575                 */
 576                if (q->elevator)
 577                        elv_drain_elevator(q);
 578
 579                blkcg_drain_queue(q);
 580
 581                /*
 582                 * This function might be called on a queue which failed
 583                 * driver init after queue creation or is not yet fully
 584                 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 585                 * in such cases.  Kick queue iff dispatch queue has
 586                 * something on it and @q has request_fn set.
 587                 */
 588                if (!list_empty(&q->queue_head) && q->request_fn)
 589                        __blk_run_queue(q);
 590
 591                drain |= q->nr_rqs_elvpriv;
 592                drain |= q->request_fn_active;
 593
 594                /*
 595                 * Unfortunately, requests are queued at and tracked from
 596                 * multiple places and there's no single counter which can
 597                 * be drained.  Check all the queues and counters.
 598                 */
 599                if (drain_all) {
 600                        struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 601                        drain |= !list_empty(&q->queue_head);
 602                        for (i = 0; i < 2; i++) {
 603                                drain |= q->nr_rqs[i];
 604                                drain |= q->in_flight[i];
 605                                if (fq)
 606                                    drain |= !list_empty(&fq->flush_queue[i]);
 607                        }
 608                }
 609
 610                if (!drain)
 611                        break;
 612
 613                spin_unlock_irq(q->queue_lock);
 614
 615                msleep(10);
 616
 617                spin_lock_irq(q->queue_lock);
 618        }
 619
 620        /*
 621         * With queue marked dead, any woken up waiter will fail the
 622         * allocation path, so the wakeup chaining is lost and we're
 623         * left with hung waiters. We need to wake up those waiters.
 624         */
 625        if (q->request_fn) {
 626                struct request_list *rl;
 627
 628                blk_queue_for_each_rl(rl, q)
 629                        for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 630                                wake_up_all(&rl->wait[i]);
 631        }
 632}
 633
 634void blk_drain_queue(struct request_queue *q)
 635{
 636        spin_lock_irq(q->queue_lock);
 637        __blk_drain_queue(q, true);
 638        spin_unlock_irq(q->queue_lock);
 639}
 640
 641/**
 642 * blk_queue_bypass_start - enter queue bypass mode
 643 * @q: queue of interest
 644 *
 645 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 646 * function makes @q enter bypass mode and drains all requests which were
 647 * throttled or issued before.  On return, it's guaranteed that no request
 648 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 649 * inside queue or RCU read lock.
 650 */
 651void blk_queue_bypass_start(struct request_queue *q)
 652{
 653        WARN_ON_ONCE(q->mq_ops);
 654
 655        spin_lock_irq(q->queue_lock);
 656        q->bypass_depth++;
 657        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 658        spin_unlock_irq(q->queue_lock);
 659
 660        /*
 661         * Queues start drained.  Skip actual draining till init is
 662         * complete.  This avoids lenghty delays during queue init which
 663         * can happen many times during boot.
 664         */
 665        if (blk_queue_init_done(q)) {
 666                spin_lock_irq(q->queue_lock);
 667                __blk_drain_queue(q, false);
 668                spin_unlock_irq(q->queue_lock);
 669
 670                /* ensure blk_queue_bypass() is %true inside RCU read lock */
 671                synchronize_rcu();
 672        }
 673}
 674EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 675
 676/**
 677 * blk_queue_bypass_end - leave queue bypass mode
 678 * @q: queue of interest
 679 *
 680 * Leave bypass mode and restore the normal queueing behavior.
 681 *
 682 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
 683 * this function is called for both blk-sq and blk-mq queues.
 684 */
 685void blk_queue_bypass_end(struct request_queue *q)
 686{
 687        spin_lock_irq(q->queue_lock);
 688        if (!--q->bypass_depth)
 689                queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 690        WARN_ON_ONCE(q->bypass_depth < 0);
 691        spin_unlock_irq(q->queue_lock);
 692}
 693EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 694
 695void blk_set_queue_dying(struct request_queue *q)
 696{
 697        blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 698
 699        /*
 700         * When queue DYING flag is set, we need to block new req
 701         * entering queue, so we call blk_freeze_queue_start() to
 702         * prevent I/O from crossing blk_queue_enter().
 703         */
 704        blk_freeze_queue_start(q);
 705
 706        if (q->mq_ops)
 707                blk_mq_wake_waiters(q);
 708        else {
 709                struct request_list *rl;
 710
 711                spin_lock_irq(q->queue_lock);
 712                blk_queue_for_each_rl(rl, q) {
 713                        if (rl->rq_pool) {
 714                                wake_up_all(&rl->wait[BLK_RW_SYNC]);
 715                                wake_up_all(&rl->wait[BLK_RW_ASYNC]);
 716                        }
 717                }
 718                spin_unlock_irq(q->queue_lock);
 719        }
 720
 721        /* Make blk_queue_enter() reexamine the DYING flag. */
 722        wake_up_all(&q->mq_freeze_wq);
 723}
 724EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 725
 726/**
 727 * blk_cleanup_queue - shutdown a request queue
 728 * @q: request queue to shutdown
 729 *
 730 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 731 * put it.  All future requests will be failed immediately with -ENODEV.
 732 */
 733void blk_cleanup_queue(struct request_queue *q)
 734{
 735        spinlock_t *lock = q->queue_lock;
 736
 737        /* mark @q DYING, no new request or merges will be allowed afterwards */
 738        mutex_lock(&q->sysfs_lock);
 739        blk_set_queue_dying(q);
 740        spin_lock_irq(lock);
 741
 742        /*
 743         * A dying queue is permanently in bypass mode till released.  Note
 744         * that, unlike blk_queue_bypass_start(), we aren't performing
 745         * synchronize_rcu() after entering bypass mode to avoid the delay
 746         * as some drivers create and destroy a lot of queues while
 747         * probing.  This is still safe because blk_release_queue() will be
 748         * called only after the queue refcnt drops to zero and nothing,
 749         * RCU or not, would be traversing the queue by then.
 750         */
 751        q->bypass_depth++;
 752        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 753
 754        queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 755        queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 756        queue_flag_set(QUEUE_FLAG_DYING, q);
 757        spin_unlock_irq(lock);
 758        mutex_unlock(&q->sysfs_lock);
 759
 760        /*
 761         * Drain all requests queued before DYING marking. Set DEAD flag to
 762         * prevent that q->request_fn() gets invoked after draining finished.
 763         */
 764        blk_freeze_queue(q);
 765        spin_lock_irq(lock);
 766        queue_flag_set(QUEUE_FLAG_DEAD, q);
 767        spin_unlock_irq(lock);
 768
 769        /*
 770         * make sure all in-progress dispatch are completed because
 771         * blk_freeze_queue() can only complete all requests, and
 772         * dispatch may still be in-progress since we dispatch requests
 773         * from more than one contexts
 774         */
 775        if (q->mq_ops)
 776                blk_mq_quiesce_queue(q);
 777
 778        /* for synchronous bio-based driver finish in-flight integrity i/o */
 779        blk_flush_integrity();
 780
 781        /* @q won't process any more request, flush async actions */
 782        del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
 783        blk_sync_queue(q);
 784
 785        /*
 786         * I/O scheduler exit is only safe after the sysfs scheduler attribute
 787         * has been removed.
 788         */
 789        WARN_ON_ONCE(q->kobj.state_in_sysfs);
 790
 791        /*
 792         * Since the I/O scheduler exit code may access cgroup information,
 793         * perform I/O scheduler exit before disassociating from the block
 794         * cgroup controller.
 795         */
 796        if (q->elevator) {
 797                ioc_clear_queue(q);
 798                elevator_exit(q, q->elevator);
 799                q->elevator = NULL;
 800        }
 801
 802        /*
 803         * Remove all references to @q from the block cgroup controller before
 804         * restoring @q->queue_lock to avoid that restoring this pointer causes
 805         * e.g. blkcg_print_blkgs() to crash.
 806         */
 807        blkcg_exit_queue(q);
 808
 809        /*
 810         * Since the cgroup code may dereference the @q->backing_dev_info
 811         * pointer, only decrease its reference count after having removed the
 812         * association with the block cgroup controller.
 813         */
 814        bdi_put(q->backing_dev_info);
 815
 816        if (q->mq_ops)
 817                blk_mq_free_queue(q);
 818        percpu_ref_exit(&q->q_usage_counter);
 819
 820        spin_lock_irq(lock);
 821        if (q->queue_lock != &q->__queue_lock)
 822                q->queue_lock = &q->__queue_lock;
 823        spin_unlock_irq(lock);
 824
 825        /* @q is and will stay empty, shutdown and put */
 826        blk_put_queue(q);
 827}
 828EXPORT_SYMBOL(blk_cleanup_queue);
 829
 830/* Allocate memory local to the request queue */
 831static void *alloc_request_simple(gfp_t gfp_mask, void *data)
 832{
 833        struct request_queue *q = data;
 834
 835        return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
 836}
 837
 838static void free_request_simple(void *element, void *data)
 839{
 840        kmem_cache_free(request_cachep, element);
 841}
 842
 843static void *alloc_request_size(gfp_t gfp_mask, void *data)
 844{
 845        struct request_queue *q = data;
 846        struct request *rq;
 847
 848        rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
 849                        q->node);
 850        if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
 851                kfree(rq);
 852                rq = NULL;
 853        }
 854        return rq;
 855}
 856
 857static void free_request_size(void *element, void *data)
 858{
 859        struct request_queue *q = data;
 860
 861        if (q->exit_rq_fn)
 862                q->exit_rq_fn(q, element);
 863        kfree(element);
 864}
 865
 866int blk_init_rl(struct request_list *rl, struct request_queue *q,
 867                gfp_t gfp_mask)
 868{
 869        if (unlikely(rl->rq_pool) || q->mq_ops)
 870                return 0;
 871
 872        rl->q = q;
 873        rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 874        rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 875        init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 876        init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 877
 878        if (q->cmd_size) {
 879                rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
 880                                alloc_request_size, free_request_size,
 881                                q, gfp_mask, q->node);
 882        } else {
 883                rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
 884                                alloc_request_simple, free_request_simple,
 885                                q, gfp_mask, q->node);
 886        }
 887        if (!rl->rq_pool)
 888                return -ENOMEM;
 889
 890        if (rl != &q->root_rl)
 891                WARN_ON_ONCE(!blk_get_queue(q));
 892
 893        return 0;
 894}
 895
 896void blk_exit_rl(struct request_queue *q, struct request_list *rl)
 897{
 898        if (rl->rq_pool) {
 899                mempool_destroy(rl->rq_pool);
 900                if (rl != &q->root_rl)
 901                        blk_put_queue(q);
 902        }
 903}
 904
 905struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 906{
 907        return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
 908}
 909EXPORT_SYMBOL(blk_alloc_queue);
 910
 911/**
 912 * blk_queue_enter() - try to increase q->q_usage_counter
 913 * @q: request queue pointer
 914 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
 915 */
 916int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 917{
 918        const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
 919
 920        while (true) {
 921                bool success = false;
 922
 923                rcu_read_lock();
 924                if (percpu_ref_tryget_live(&q->q_usage_counter)) {
 925                        /*
 926                         * The code that sets the PREEMPT_ONLY flag is
 927                         * responsible for ensuring that that flag is globally
 928                         * visible before the queue is unfrozen.
 929                         */
 930                        if (preempt || !blk_queue_preempt_only(q)) {
 931                                success = true;
 932                        } else {
 933                                percpu_ref_put(&q->q_usage_counter);
 934                        }
 935                }
 936                rcu_read_unlock();
 937
 938                if (success)
 939                        return 0;
 940
 941                if (flags & BLK_MQ_REQ_NOWAIT)
 942                        return -EBUSY;
 943
 944                /*
 945                 * read pair of barrier in blk_freeze_queue_start(),
 946                 * we need to order reading __PERCPU_REF_DEAD flag of
 947                 * .q_usage_counter and reading .mq_freeze_depth or
 948                 * queue dying flag, otherwise the following wait may
 949                 * never return if the two reads are reordered.
 950                 */
 951                smp_rmb();
 952
 953                wait_event(q->mq_freeze_wq,
 954                           (atomic_read(&q->mq_freeze_depth) == 0 &&
 955                            (preempt || !blk_queue_preempt_only(q))) ||
 956                           blk_queue_dying(q));
 957                if (blk_queue_dying(q))
 958                        return -ENODEV;
 959        }
 960}
 961
 962void blk_queue_exit(struct request_queue *q)
 963{
 964        percpu_ref_put(&q->q_usage_counter);
 965}
 966
 967static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 968{
 969        struct request_queue *q =
 970                container_of(ref, struct request_queue, q_usage_counter);
 971
 972        wake_up_all(&q->mq_freeze_wq);
 973}
 974
 975static void blk_rq_timed_out_timer(struct timer_list *t)
 976{
 977        struct request_queue *q = from_timer(q, t, timeout);
 978
 979        kblockd_schedule_work(&q->timeout_work);
 980}
 981
 982/**
 983 * blk_alloc_queue_node - allocate a request queue
 984 * @gfp_mask: memory allocation flags
 985 * @node_id: NUMA node to allocate memory from
 986 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
 987 *        serialize calls to the legacy .request_fn() callback. Ignored for
 988 *        blk-mq request queues.
 989 *
 990 * Note: pass the queue lock as the third argument to this function instead of
 991 * setting the queue lock pointer explicitly to avoid triggering a sporadic
 992 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
 993 * the queue lock pointer must be set before blkcg_init_queue() is called.
 994 */
 995struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
 996                                           spinlock_t *lock)
 997{
 998        struct request_queue *q;
 999
1000        q = kmem_cache_alloc_node(blk_requestq_cachep,
1001                                gfp_mask | __GFP_ZERO, node_id);
1002        if (!q)
1003                return NULL;
1004
1005        q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1006        if (q->id < 0)
1007                goto fail_q;
1008
1009        q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1010        if (!q->bio_split)
1011                goto fail_id;
1012
1013        q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1014        if (!q->backing_dev_info)
1015                goto fail_split;
1016
1017        q->stats = blk_alloc_queue_stats();
1018        if (!q->stats)
1019                goto fail_stats;
1020
1021        q->backing_dev_info->ra_pages =
1022                        (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1023        q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1024        q->backing_dev_info->name = "block";
1025        q->node = node_id;
1026
1027        timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1028                    laptop_mode_timer_fn, 0);
1029        timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1030        INIT_WORK(&q->timeout_work, NULL);
1031        INIT_LIST_HEAD(&q->queue_head);
1032        INIT_LIST_HEAD(&q->timeout_list);
1033        INIT_LIST_HEAD(&q->icq_list);
1034#ifdef CONFIG_BLK_CGROUP
1035        INIT_LIST_HEAD(&q->blkg_list);
1036#endif
1037        INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1038
1039        kobject_init(&q->kobj, &blk_queue_ktype);
1040
1041#ifdef CONFIG_BLK_DEV_IO_TRACE
1042        mutex_init(&q->blk_trace_mutex);
1043#endif
1044        mutex_init(&q->sysfs_lock);
1045        spin_lock_init(&q->__queue_lock);
1046
1047        if (!q->mq_ops)
1048                q->queue_lock = lock ? : &q->__queue_lock;
1049
1050        /*
1051         * A queue starts its life with bypass turned on to avoid
1052         * unnecessary bypass on/off overhead and nasty surprises during
1053         * init.  The initial bypass will be finished when the queue is
1054         * registered by blk_register_queue().
1055         */
1056        q->bypass_depth = 1;
1057        queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1058
1059        init_waitqueue_head(&q->mq_freeze_wq);
1060
1061        /*
1062         * Init percpu_ref in atomic mode so that it's faster to shutdown.
1063         * See blk_register_queue() for details.
1064         */
1065        if (percpu_ref_init(&q->q_usage_counter,
1066                                blk_queue_usage_counter_release,
1067                                PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1068                goto fail_bdi;
1069
1070        if (blkcg_init_queue(q))
1071                goto fail_ref;
1072
1073        return q;
1074
1075fail_ref:
1076        percpu_ref_exit(&q->q_usage_counter);
1077fail_bdi:
1078        blk_free_queue_stats(q->stats);
1079fail_stats:
1080        bdi_put(q->backing_dev_info);
1081fail_split:
1082        bioset_free(q->bio_split);
1083fail_id:
1084        ida_simple_remove(&blk_queue_ida, q->id);
1085fail_q:
1086        kmem_cache_free(blk_requestq_cachep, q);
1087        return NULL;
1088}
1089EXPORT_SYMBOL(blk_alloc_queue_node);
1090
1091/**
1092 * blk_init_queue  - prepare a request queue for use with a block device
1093 * @rfn:  The function to be called to process requests that have been
1094 *        placed on the queue.
1095 * @lock: Request queue spin lock
1096 *
1097 * Description:
1098 *    If a block device wishes to use the standard request handling procedures,
1099 *    which sorts requests and coalesces adjacent requests, then it must
1100 *    call blk_init_queue().  The function @rfn will be called when there
1101 *    are requests on the queue that need to be processed.  If the device
1102 *    supports plugging, then @rfn may not be called immediately when requests
1103 *    are available on the queue, but may be called at some time later instead.
1104 *    Plugged queues are generally unplugged when a buffer belonging to one
1105 *    of the requests on the queue is needed, or due to memory pressure.
1106 *
1107 *    @rfn is not required, or even expected, to remove all requests off the
1108 *    queue, but only as many as it can handle at a time.  If it does leave
1109 *    requests on the queue, it is responsible for arranging that the requests
1110 *    get dealt with eventually.
1111 *
1112 *    The queue spin lock must be held while manipulating the requests on the
1113 *    request queue; this lock will be taken also from interrupt context, so irq
1114 *    disabling is needed for it.
1115 *
1116 *    Function returns a pointer to the initialized request queue, or %NULL if
1117 *    it didn't succeed.
1118 *
1119 * Note:
1120 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1121 *    when the block device is deactivated (such as at module unload).
1122 **/
1123
1124struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1125{
1126        return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1127}
1128EXPORT_SYMBOL(blk_init_queue);
1129
1130struct request_queue *
1131blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1132{
1133        struct request_queue *q;
1134
1135        q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1136        if (!q)
1137                return NULL;
1138
1139        q->request_fn = rfn;
1140        if (blk_init_allocated_queue(q) < 0) {
1141                blk_cleanup_queue(q);
1142                return NULL;
1143        }
1144
1145        return q;
1146}
1147EXPORT_SYMBOL(blk_init_queue_node);
1148
1149static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1150
1151
1152int blk_init_allocated_queue(struct request_queue *q)
1153{
1154        WARN_ON_ONCE(q->mq_ops);
1155
1156        q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1157        if (!q->fq)
1158                return -ENOMEM;
1159
1160        if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1161                goto out_free_flush_queue;
1162
1163        if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1164                goto out_exit_flush_rq;
1165
1166        INIT_WORK(&q->timeout_work, blk_timeout_work);
1167        q->queue_flags          |= QUEUE_FLAG_DEFAULT;
1168
1169        /*
1170         * This also sets hw/phys segments, boundary and size
1171         */
1172        blk_queue_make_request(q, blk_queue_bio);
1173
1174        q->sg_reserved_size = INT_MAX;
1175
1176        /* Protect q->elevator from elevator_change */
1177        mutex_lock(&q->sysfs_lock);
1178
1179        /* init elevator */
1180        if (elevator_init(q, NULL)) {
1181                mutex_unlock(&q->sysfs_lock);
1182                goto out_exit_flush_rq;
1183        }
1184
1185        mutex_unlock(&q->sysfs_lock);
1186        return 0;
1187
1188out_exit_flush_rq:
1189        if (q->exit_rq_fn)
1190                q->exit_rq_fn(q, q->fq->flush_rq);
1191out_free_flush_queue:
1192        blk_free_flush_queue(q->fq);
1193        return -ENOMEM;
1194}
1195EXPORT_SYMBOL(blk_init_allocated_queue);
1196
1197bool blk_get_queue(struct request_queue *q)
1198{
1199        if (likely(!blk_queue_dying(q))) {
1200                __blk_get_queue(q);
1201                return true;
1202        }
1203
1204        return false;
1205}
1206EXPORT_SYMBOL(blk_get_queue);
1207
1208static inline void blk_free_request(struct request_list *rl, struct request *rq)
1209{
1210        if (rq->rq_flags & RQF_ELVPRIV) {
1211                elv_put_request(rl->q, rq);
1212                if (rq->elv.icq)
1213                        put_io_context(rq->elv.icq->ioc);
1214        }
1215
1216        mempool_free(rq, rl->rq_pool);
1217}
1218
1219/*
1220 * ioc_batching returns true if the ioc is a valid batching request and
1221 * should be given priority access to a request.
1222 */
1223static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1224{
1225        if (!ioc)
1226                return 0;
1227
1228        /*
1229         * Make sure the process is able to allocate at least 1 request
1230         * even if the batch times out, otherwise we could theoretically
1231         * lose wakeups.
1232         */
1233        return ioc->nr_batch_requests == q->nr_batching ||
1234                (ioc->nr_batch_requests > 0
1235                && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1236}
1237
1238/*
1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240 * will cause the process to be a "batcher" on all queues in the system. This
1241 * is the behaviour we want though - once it gets a wakeup it should be given
1242 * a nice run.
1243 */
1244static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1245{
1246        if (!ioc || ioc_batching(q, ioc))
1247                return;
1248
1249        ioc->nr_batch_requests = q->nr_batching;
1250        ioc->last_waited = jiffies;
1251}
1252
1253static void __freed_request(struct request_list *rl, int sync)
1254{
1255        struct request_queue *q = rl->q;
1256
1257        if (rl->count[sync] < queue_congestion_off_threshold(q))
1258                blk_clear_congested(rl, sync);
1259
1260        if (rl->count[sync] + 1 <= q->nr_requests) {
1261                if (waitqueue_active(&rl->wait[sync]))
1262                        wake_up(&rl->wait[sync]);
1263
1264                blk_clear_rl_full(rl, sync);
1265        }
1266}
1267
1268/*
1269 * A request has just been released.  Account for it, update the full and
1270 * congestion status, wake up any waiters.   Called under q->queue_lock.
1271 */
1272static void freed_request(struct request_list *rl, bool sync,
1273                req_flags_t rq_flags)
1274{
1275        struct request_queue *q = rl->q;
1276
1277        q->nr_rqs[sync]--;
1278        rl->count[sync]--;
1279        if (rq_flags & RQF_ELVPRIV)
1280                q->nr_rqs_elvpriv--;
1281
1282        __freed_request(rl, sync);
1283
1284        if (unlikely(rl->starved[sync ^ 1]))
1285                __freed_request(rl, sync ^ 1);
1286}
1287
1288int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1289{
1290        struct request_list *rl;
1291        int on_thresh, off_thresh;
1292
1293        WARN_ON_ONCE(q->mq_ops);
1294
1295        spin_lock_irq(q->queue_lock);
1296        q->nr_requests = nr;
1297        blk_queue_congestion_threshold(q);
1298        on_thresh = queue_congestion_on_threshold(q);
1299        off_thresh = queue_congestion_off_threshold(q);
1300
1301        blk_queue_for_each_rl(rl, q) {
1302                if (rl->count[BLK_RW_SYNC] >= on_thresh)
1303                        blk_set_congested(rl, BLK_RW_SYNC);
1304                else if (rl->count[BLK_RW_SYNC] < off_thresh)
1305                        blk_clear_congested(rl, BLK_RW_SYNC);
1306
1307                if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1308                        blk_set_congested(rl, BLK_RW_ASYNC);
1309                else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1310                        blk_clear_congested(rl, BLK_RW_ASYNC);
1311
1312                if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1313                        blk_set_rl_full(rl, BLK_RW_SYNC);
1314                } else {
1315                        blk_clear_rl_full(rl, BLK_RW_SYNC);
1316                        wake_up(&rl->wait[BLK_RW_SYNC]);
1317                }
1318
1319                if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1320                        blk_set_rl_full(rl, BLK_RW_ASYNC);
1321                } else {
1322                        blk_clear_rl_full(rl, BLK_RW_ASYNC);
1323                        wake_up(&rl->wait[BLK_RW_ASYNC]);
1324                }
1325        }
1326
1327        spin_unlock_irq(q->queue_lock);
1328        return 0;
1329}
1330
1331/**
1332 * __get_request - get a free request
1333 * @rl: request list to allocate from
1334 * @op: operation and flags
1335 * @bio: bio to allocate request for (can be %NULL)
1336 * @flags: BLQ_MQ_REQ_* flags
1337 *
1338 * Get a free request from @q.  This function may fail under memory
1339 * pressure or if @q is dead.
1340 *
1341 * Must be called with @q->queue_lock held and,
1342 * Returns ERR_PTR on failure, with @q->queue_lock held.
1343 * Returns request pointer on success, with @q->queue_lock *not held*.
1344 */
1345static struct request *__get_request(struct request_list *rl, unsigned int op,
1346                                     struct bio *bio, blk_mq_req_flags_t flags)
1347{
1348        struct request_queue *q = rl->q;
1349        struct request *rq;
1350        struct elevator_type *et = q->elevator->type;
1351        struct io_context *ioc = rq_ioc(bio);
1352        struct io_cq *icq = NULL;
1353        const bool is_sync = op_is_sync(op);
1354        int may_queue;
1355        gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1356                         __GFP_DIRECT_RECLAIM;
1357        req_flags_t rq_flags = RQF_ALLOCED;
1358
1359        lockdep_assert_held(q->queue_lock);
1360
1361        if (unlikely(blk_queue_dying(q)))
1362                return ERR_PTR(-ENODEV);
1363
1364        may_queue = elv_may_queue(q, op);
1365        if (may_queue == ELV_MQUEUE_NO)
1366                goto rq_starved;
1367
1368        if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1369                if (rl->count[is_sync]+1 >= q->nr_requests) {
1370                        /*
1371                         * The queue will fill after this allocation, so set
1372                         * it as full, and mark this process as "batching".
1373                         * This process will be allowed to complete a batch of
1374                         * requests, others will be blocked.
1375                         */
1376                        if (!blk_rl_full(rl, is_sync)) {
1377                                ioc_set_batching(q, ioc);
1378                                blk_set_rl_full(rl, is_sync);
1379                        } else {
1380                                if (may_queue != ELV_MQUEUE_MUST
1381                                                && !ioc_batching(q, ioc)) {
1382                                        /*
1383                                         * The queue is full and the allocating
1384                                         * process is not a "batcher", and not
1385                                         * exempted by the IO scheduler
1386                                         */
1387                                        return ERR_PTR(-ENOMEM);
1388                                }
1389                        }
1390                }
1391                blk_set_congested(rl, is_sync);
1392        }
1393
1394        /*
1395         * Only allow batching queuers to allocate up to 50% over the defined
1396         * limit of requests, otherwise we could have thousands of requests
1397         * allocated with any setting of ->nr_requests
1398         */
1399        if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1400                return ERR_PTR(-ENOMEM);
1401
1402        q->nr_rqs[is_sync]++;
1403        rl->count[is_sync]++;
1404        rl->starved[is_sync] = 0;
1405
1406        /*
1407         * Decide whether the new request will be managed by elevator.  If
1408         * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1409         * prevent the current elevator from being destroyed until the new
1410         * request is freed.  This guarantees icq's won't be destroyed and
1411         * makes creating new ones safe.
1412         *
1413         * Flush requests do not use the elevator so skip initialization.
1414         * This allows a request to share the flush and elevator data.
1415         *
1416         * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1417         * it will be created after releasing queue_lock.
1418         */
1419        if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1420                rq_flags |= RQF_ELVPRIV;
1421                q->nr_rqs_elvpriv++;
1422                if (et->icq_cache && ioc)
1423                        icq = ioc_lookup_icq(ioc, q);
1424        }
1425
1426        if (blk_queue_io_stat(q))
1427                rq_flags |= RQF_IO_STAT;
1428        spin_unlock_irq(q->queue_lock);
1429
1430        /* allocate and init request */
1431        rq = mempool_alloc(rl->rq_pool, gfp_mask);
1432        if (!rq)
1433                goto fail_alloc;
1434
1435        blk_rq_init(q, rq);
1436        blk_rq_set_rl(rq, rl);
1437        rq->cmd_flags = op;
1438        rq->rq_flags = rq_flags;
1439        if (flags & BLK_MQ_REQ_PREEMPT)
1440                rq->rq_flags |= RQF_PREEMPT;
1441
1442        /* init elvpriv */
1443        if (rq_flags & RQF_ELVPRIV) {
1444                if (unlikely(et->icq_cache && !icq)) {
1445                        if (ioc)
1446                                icq = ioc_create_icq(ioc, q, gfp_mask);
1447                        if (!icq)
1448                                goto fail_elvpriv;
1449                }
1450
1451                rq->elv.icq = icq;
1452                if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1453                        goto fail_elvpriv;
1454
1455                /* @rq->elv.icq holds io_context until @rq is freed */
1456                if (icq)
1457                        get_io_context(icq->ioc);
1458        }
1459out:
1460        /*
1461         * ioc may be NULL here, and ioc_batching will be false. That's
1462         * OK, if the queue is under the request limit then requests need
1463         * not count toward the nr_batch_requests limit. There will always
1464         * be some limit enforced by BLK_BATCH_TIME.
1465         */
1466        if (ioc_batching(q, ioc))
1467                ioc->nr_batch_requests--;
1468
1469        trace_block_getrq(q, bio, op);
1470        return rq;
1471
1472fail_elvpriv:
1473        /*
1474         * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1475         * and may fail indefinitely under memory pressure and thus
1476         * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1477         * disturb iosched and blkcg but weird is bettern than dead.
1478         */
1479        printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1480                           __func__, dev_name(q->backing_dev_info->dev));
1481
1482        rq->rq_flags &= ~RQF_ELVPRIV;
1483        rq->elv.icq = NULL;
1484
1485        spin_lock_irq(q->queue_lock);
1486        q->nr_rqs_elvpriv--;
1487        spin_unlock_irq(q->queue_lock);
1488        goto out;
1489
1490fail_alloc:
1491        /*
1492         * Allocation failed presumably due to memory. Undo anything we
1493         * might have messed up.
1494         *
1495         * Allocating task should really be put onto the front of the wait
1496         * queue, but this is pretty rare.
1497         */
1498        spin_lock_irq(q->queue_lock);
1499        freed_request(rl, is_sync, rq_flags);
1500
1501        /*
1502         * in the very unlikely event that allocation failed and no
1503         * requests for this direction was pending, mark us starved so that
1504         * freeing of a request in the other direction will notice
1505         * us. another possible fix would be to split the rq mempool into
1506         * READ and WRITE
1507         */
1508rq_starved:
1509        if (unlikely(rl->count[is_sync] == 0))
1510                rl->starved[is_sync] = 1;
1511        return ERR_PTR(-ENOMEM);
1512}
1513
1514/**
1515 * get_request - get a free request
1516 * @q: request_queue to allocate request from
1517 * @op: operation and flags
1518 * @bio: bio to allocate request for (can be %NULL)
1519 * @flags: BLK_MQ_REQ_* flags.
1520 *
1521 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1522 * this function keeps retrying under memory pressure and fails iff @q is dead.
1523 *
1524 * Must be called with @q->queue_lock held and,
1525 * Returns ERR_PTR on failure, with @q->queue_lock held.
1526 * Returns request pointer on success, with @q->queue_lock *not held*.
1527 */
1528static struct request *get_request(struct request_queue *q, unsigned int op,
1529                                   struct bio *bio, blk_mq_req_flags_t flags)
1530{
1531        const bool is_sync = op_is_sync(op);
1532        DEFINE_WAIT(wait);
1533        struct request_list *rl;
1534        struct request *rq;
1535
1536        lockdep_assert_held(q->queue_lock);
1537        WARN_ON_ONCE(q->mq_ops);
1538
1539        rl = blk_get_rl(q, bio);        /* transferred to @rq on success */
1540retry:
1541        rq = __get_request(rl, op, bio, flags);
1542        if (!IS_ERR(rq))
1543                return rq;
1544
1545        if (op & REQ_NOWAIT) {
1546                blk_put_rl(rl);
1547                return ERR_PTR(-EAGAIN);
1548        }
1549
1550        if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1551                blk_put_rl(rl);
1552                return rq;
1553        }
1554
1555        /* wait on @rl and retry */
1556        prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1557                                  TASK_UNINTERRUPTIBLE);
1558
1559        trace_block_sleeprq(q, bio, op);
1560
1561        spin_unlock_irq(q->queue_lock);
1562        io_schedule();
1563
1564        /*
1565         * After sleeping, we become a "batching" process and will be able
1566         * to allocate at least one request, and up to a big batch of them
1567         * for a small period time.  See ioc_batching, ioc_set_batching
1568         */
1569        ioc_set_batching(q, current->io_context);
1570
1571        spin_lock_irq(q->queue_lock);
1572        finish_wait(&rl->wait[is_sync], &wait);
1573
1574        goto retry;
1575}
1576
1577/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1578static struct request *blk_old_get_request(struct request_queue *q,
1579                                unsigned int op, blk_mq_req_flags_t flags)
1580{
1581        struct request *rq;
1582        gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1583                         __GFP_DIRECT_RECLAIM;
1584        int ret = 0;
1585
1586        WARN_ON_ONCE(q->mq_ops);
1587
1588        /* create ioc upfront */
1589        create_io_context(gfp_mask, q->node);
1590
1591        ret = blk_queue_enter(q, flags);
1592        if (ret)
1593                return ERR_PTR(ret);
1594        spin_lock_irq(q->queue_lock);
1595        rq = get_request(q, op, NULL, flags);
1596        if (IS_ERR(rq)) {
1597                spin_unlock_irq(q->queue_lock);
1598                blk_queue_exit(q);
1599                return rq;
1600        }
1601
1602        /* q->queue_lock is unlocked at this point */
1603        rq->__data_len = 0;
1604        rq->__sector = (sector_t) -1;
1605        rq->bio = rq->biotail = NULL;
1606        return rq;
1607}
1608
1609/**
1610 * blk_get_request_flags - allocate a request
1611 * @q: request queue to allocate a request for
1612 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1613 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1614 */
1615struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1616                                      blk_mq_req_flags_t flags)
1617{
1618        struct request *req;
1619
1620        WARN_ON_ONCE(op & REQ_NOWAIT);
1621        WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1622
1623        if (q->mq_ops) {
1624                req = blk_mq_alloc_request(q, op, flags);
1625                if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1626                        q->mq_ops->initialize_rq_fn(req);
1627        } else {
1628                req = blk_old_get_request(q, op, flags);
1629                if (!IS_ERR(req) && q->initialize_rq_fn)
1630                        q->initialize_rq_fn(req);
1631        }
1632
1633        return req;
1634}
1635EXPORT_SYMBOL(blk_get_request_flags);
1636
1637struct request *blk_get_request(struct request_queue *q, unsigned int op,
1638                                gfp_t gfp_mask)
1639{
1640        return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1641                                     0 : BLK_MQ_REQ_NOWAIT);
1642}
1643EXPORT_SYMBOL(blk_get_request);
1644
1645/**
1646 * blk_requeue_request - put a request back on queue
1647 * @q:          request queue where request should be inserted
1648 * @rq:         request to be inserted
1649 *
1650 * Description:
1651 *    Drivers often keep queueing requests until the hardware cannot accept
1652 *    more, when that condition happens we need to put the request back
1653 *    on the queue. Must be called with queue lock held.
1654 */
1655void blk_requeue_request(struct request_queue *q, struct request *rq)
1656{
1657        lockdep_assert_held(q->queue_lock);
1658        WARN_ON_ONCE(q->mq_ops);
1659
1660        blk_delete_timer(rq);
1661        blk_clear_rq_complete(rq);
1662        trace_block_rq_requeue(q, rq);
1663        wbt_requeue(q->rq_wb, &rq->issue_stat);
1664
1665        if (rq->rq_flags & RQF_QUEUED)
1666                blk_queue_end_tag(q, rq);
1667
1668        BUG_ON(blk_queued_rq(rq));
1669
1670        elv_requeue_request(q, rq);
1671}
1672EXPORT_SYMBOL(blk_requeue_request);
1673
1674static void add_acct_request(struct request_queue *q, struct request *rq,
1675                             int where)
1676{
1677        blk_account_io_start(rq, true);
1678        __elv_add_request(q, rq, where);
1679}
1680
1681static void part_round_stats_single(struct request_queue *q, int cpu,
1682                                    struct hd_struct *part, unsigned long now,
1683                                    unsigned int inflight)
1684{
1685        if (inflight) {
1686                __part_stat_add(cpu, part, time_in_queue,
1687                                inflight * (now - part->stamp));
1688                __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1689        }
1690        part->stamp = now;
1691}
1692
1693/**
1694 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1695 * @q: target block queue
1696 * @cpu: cpu number for stats access
1697 * @part: target partition
1698 *
1699 * The average IO queue length and utilisation statistics are maintained
1700 * by observing the current state of the queue length and the amount of
1701 * time it has been in this state for.
1702 *
1703 * Normally, that accounting is done on IO completion, but that can result
1704 * in more than a second's worth of IO being accounted for within any one
1705 * second, leading to >100% utilisation.  To deal with that, we call this
1706 * function to do a round-off before returning the results when reading
1707 * /proc/diskstats.  This accounts immediately for all queue usage up to
1708 * the current jiffies and restarts the counters again.
1709 */
1710void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1711{
1712        struct hd_struct *part2 = NULL;
1713        unsigned long now = jiffies;
1714        unsigned int inflight[2];
1715        int stats = 0;
1716
1717        if (part->stamp != now)
1718                stats |= 1;
1719
1720        if (part->partno) {
1721                part2 = &part_to_disk(part)->part0;
1722                if (part2->stamp != now)
1723                        stats |= 2;
1724        }
1725
1726        if (!stats)
1727                return;
1728
1729        part_in_flight(q, part, inflight);
1730
1731        if (stats & 2)
1732                part_round_stats_single(q, cpu, part2, now, inflight[1]);
1733        if (stats & 1)
1734                part_round_stats_single(q, cpu, part, now, inflight[0]);
1735}
1736EXPORT_SYMBOL_GPL(part_round_stats);
1737
1738#ifdef CONFIG_PM
1739static void blk_pm_put_request(struct request *rq)
1740{
1741        if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1742                pm_runtime_mark_last_busy(rq->q->dev);
1743}
1744#else
1745static inline void blk_pm_put_request(struct request *rq) {}
1746#endif
1747
1748void __blk_put_request(struct request_queue *q, struct request *req)
1749{
1750        req_flags_t rq_flags = req->rq_flags;
1751
1752        if (unlikely(!q))
1753                return;
1754
1755        if (q->mq_ops) {
1756                blk_mq_free_request(req);
1757                return;
1758        }
1759
1760        lockdep_assert_held(q->queue_lock);
1761
1762        blk_req_zone_write_unlock(req);
1763        blk_pm_put_request(req);
1764
1765        elv_completed_request(q, req);
1766
1767        /* this is a bio leak */
1768        WARN_ON(req->bio != NULL);
1769
1770        wbt_done(q->rq_wb, &req->issue_stat);
1771
1772        /*
1773         * Request may not have originated from ll_rw_blk. if not,
1774         * it didn't come out of our reserved rq pools
1775         */
1776        if (rq_flags & RQF_ALLOCED) {
1777                struct request_list *rl = blk_rq_rl(req);
1778                bool sync = op_is_sync(req->cmd_flags);
1779
1780                BUG_ON(!list_empty(&req->queuelist));
1781                BUG_ON(ELV_ON_HASH(req));
1782
1783                blk_free_request(rl, req);
1784                freed_request(rl, sync, rq_flags);
1785                blk_put_rl(rl);
1786                blk_queue_exit(q);
1787        }
1788}
1789EXPORT_SYMBOL_GPL(__blk_put_request);
1790
1791void blk_put_request(struct request *req)
1792{
1793        struct request_queue *q = req->q;
1794
1795        if (q->mq_ops)
1796                blk_mq_free_request(req);
1797        else {
1798                unsigned long flags;
1799
1800                spin_lock_irqsave(q->queue_lock, flags);
1801                __blk_put_request(q, req);
1802                spin_unlock_irqrestore(q->queue_lock, flags);
1803        }
1804}
1805EXPORT_SYMBOL(blk_put_request);
1806
1807bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1808                            struct bio *bio)
1809{
1810        const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1811
1812        if (!ll_back_merge_fn(q, req, bio))
1813                return false;
1814
1815        trace_block_bio_backmerge(q, req, bio);
1816
1817        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1818                blk_rq_set_mixed_merge(req);
1819
1820        req->biotail->bi_next = bio;
1821        req->biotail = bio;
1822        req->__data_len += bio->bi_iter.bi_size;
1823        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1824
1825        blk_account_io_start(req, false);
1826        return true;
1827}
1828
1829bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1830                             struct bio *bio)
1831{
1832        const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1833
1834        if (!ll_front_merge_fn(q, req, bio))
1835                return false;
1836
1837        trace_block_bio_frontmerge(q, req, bio);
1838
1839        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1840                blk_rq_set_mixed_merge(req);
1841
1842        bio->bi_next = req->bio;
1843        req->bio = bio;
1844
1845        req->__sector = bio->bi_iter.bi_sector;
1846        req->__data_len += bio->bi_iter.bi_size;
1847        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1848
1849        blk_account_io_start(req, false);
1850        return true;
1851}
1852
1853bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1854                struct bio *bio)
1855{
1856        unsigned short segments = blk_rq_nr_discard_segments(req);
1857
1858        if (segments >= queue_max_discard_segments(q))
1859                goto no_merge;
1860        if (blk_rq_sectors(req) + bio_sectors(bio) >
1861            blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1862                goto no_merge;
1863
1864        req->biotail->bi_next = bio;
1865        req->biotail = bio;
1866        req->__data_len += bio->bi_iter.bi_size;
1867        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1868        req->nr_phys_segments = segments + 1;
1869
1870        blk_account_io_start(req, false);
1871        return true;
1872no_merge:
1873        req_set_nomerge(q, req);
1874        return false;
1875}
1876
1877/**
1878 * blk_attempt_plug_merge - try to merge with %current's plugged list
1879 * @q: request_queue new bio is being queued at
1880 * @bio: new bio being queued
1881 * @request_count: out parameter for number of traversed plugged requests
1882 * @same_queue_rq: pointer to &struct request that gets filled in when
1883 * another request associated with @q is found on the plug list
1884 * (optional, may be %NULL)
1885 *
1886 * Determine whether @bio being queued on @q can be merged with a request
1887 * on %current's plugged list.  Returns %true if merge was successful,
1888 * otherwise %false.
1889 *
1890 * Plugging coalesces IOs from the same issuer for the same purpose without
1891 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1892 * than scheduling, and the request, while may have elvpriv data, is not
1893 * added on the elevator at this point.  In addition, we don't have
1894 * reliable access to the elevator outside queue lock.  Only check basic
1895 * merging parameters without querying the elevator.
1896 *
1897 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1898 */
1899bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1900                            unsigned int *request_count,
1901                            struct request **same_queue_rq)
1902{
1903        struct blk_plug *plug;
1904        struct request *rq;
1905        struct list_head *plug_list;
1906
1907        plug = current->plug;
1908        if (!plug)
1909                return false;
1910        *request_count = 0;
1911
1912        if (q->mq_ops)
1913                plug_list = &plug->mq_list;
1914        else
1915                plug_list = &plug->list;
1916
1917        list_for_each_entry_reverse(rq, plug_list, queuelist) {
1918                bool merged = false;
1919
1920                if (rq->q == q) {
1921                        (*request_count)++;
1922                        /*
1923                         * Only blk-mq multiple hardware queues case checks the
1924                         * rq in the same queue, there should be only one such
1925                         * rq in a queue
1926                         **/
1927                        if (same_queue_rq)
1928                                *same_queue_rq = rq;
1929                }
1930
1931                if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1932                        continue;
1933
1934                switch (blk_try_merge(rq, bio)) {
1935                case ELEVATOR_BACK_MERGE:
1936                        merged = bio_attempt_back_merge(q, rq, bio);
1937                        break;
1938                case ELEVATOR_FRONT_MERGE:
1939                        merged = bio_attempt_front_merge(q, rq, bio);
1940                        break;
1941                case ELEVATOR_DISCARD_MERGE:
1942                        merged = bio_attempt_discard_merge(q, rq, bio);
1943                        break;
1944                default:
1945                        break;
1946                }
1947
1948                if (merged)
1949                        return true;
1950        }
1951
1952        return false;
1953}
1954
1955unsigned int blk_plug_queued_count(struct request_queue *q)
1956{
1957        struct blk_plug *plug;
1958        struct request *rq;
1959        struct list_head *plug_list;
1960        unsigned int ret = 0;
1961
1962        plug = current->plug;
1963        if (!plug)
1964                goto out;
1965
1966        if (q->mq_ops)
1967                plug_list = &plug->mq_list;
1968        else
1969                plug_list = &plug->list;
1970
1971        list_for_each_entry(rq, plug_list, queuelist) {
1972                if (rq->q == q)
1973                        ret++;
1974        }
1975out:
1976        return ret;
1977}
1978
1979void blk_init_request_from_bio(struct request *req, struct bio *bio)
1980{
1981        struct io_context *ioc = rq_ioc(bio);
1982
1983        if (bio->bi_opf & REQ_RAHEAD)
1984                req->cmd_flags |= REQ_FAILFAST_MASK;
1985
1986        req->__sector = bio->bi_iter.bi_sector;
1987        if (ioprio_valid(bio_prio(bio)))
1988                req->ioprio = bio_prio(bio);
1989        else if (ioc)
1990                req->ioprio = ioc->ioprio;
1991        else
1992                req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1993        req->write_hint = bio->bi_write_hint;
1994        blk_rq_bio_prep(req->q, req, bio);
1995}
1996EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1997
1998static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1999{
2000        struct blk_plug *plug;
2001        int where = ELEVATOR_INSERT_SORT;
2002        struct request *req, *free;
2003        unsigned int request_count = 0;
2004        unsigned int wb_acct;
2005
2006        /*
2007         * low level driver can indicate that it wants pages above a
2008         * certain limit bounced to low memory (ie for highmem, or even
2009         * ISA dma in theory)
2010         */
2011        blk_queue_bounce(q, &bio);
2012
2013        blk_queue_split(q, &bio);
2014
2015        if (!bio_integrity_prep(bio))
2016                return BLK_QC_T_NONE;
2017
2018        if (op_is_flush(bio->bi_opf)) {
2019                spin_lock_irq(q->queue_lock);
2020                where = ELEVATOR_INSERT_FLUSH;
2021                goto get_rq;
2022        }
2023
2024        /*
2025         * Check if we can merge with the plugged list before grabbing
2026         * any locks.
2027         */
2028        if (!blk_queue_nomerges(q)) {
2029                if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2030                        return BLK_QC_T_NONE;
2031        } else
2032                request_count = blk_plug_queued_count(q);
2033
2034        spin_lock_irq(q->queue_lock);
2035
2036        switch (elv_merge(q, &req, bio)) {
2037        case ELEVATOR_BACK_MERGE:
2038                if (!bio_attempt_back_merge(q, req, bio))
2039                        break;
2040                elv_bio_merged(q, req, bio);
2041                free = attempt_back_merge(q, req);
2042                if (free)
2043                        __blk_put_request(q, free);
2044                else
2045                        elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2046                goto out_unlock;
2047        case ELEVATOR_FRONT_MERGE:
2048                if (!bio_attempt_front_merge(q, req, bio))
2049                        break;
2050                elv_bio_merged(q, req, bio);
2051                free = attempt_front_merge(q, req);
2052                if (free)
2053                        __blk_put_request(q, free);
2054                else
2055                        elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2056                goto out_unlock;
2057        default:
2058                break;
2059        }
2060
2061get_rq:
2062        wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2063
2064        /*
2065         * Grab a free request. This is might sleep but can not fail.
2066         * Returns with the queue unlocked.
2067         */
2068        blk_queue_enter_live(q);
2069        req = get_request(q, bio->bi_opf, bio, 0);
2070        if (IS_ERR(req)) {
2071                blk_queue_exit(q);
2072                __wbt_done(q->rq_wb, wb_acct);
2073                if (PTR_ERR(req) == -ENOMEM)
2074                        bio->bi_status = BLK_STS_RESOURCE;
2075                else
2076                        bio->bi_status = BLK_STS_IOERR;
2077                bio_endio(bio);
2078                goto out_unlock;
2079        }
2080
2081        wbt_track(&req->issue_stat, wb_acct);
2082
2083        /*
2084         * After dropping the lock and possibly sleeping here, our request
2085         * may now be mergeable after it had proven unmergeable (above).
2086         * We don't worry about that case for efficiency. It won't happen
2087         * often, and the elevators are able to handle it.
2088         */
2089        blk_init_request_from_bio(req, bio);
2090
2091        if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2092                req->cpu = raw_smp_processor_id();
2093
2094        plug = current->plug;
2095        if (plug) {
2096                /*
2097                 * If this is the first request added after a plug, fire
2098                 * of a plug trace.
2099                 *
2100                 * @request_count may become stale because of schedule
2101                 * out, so check plug list again.
2102                 */
2103                if (!request_count || list_empty(&plug->list))
2104                        trace_block_plug(q);
2105                else {
2106                        struct request *last = list_entry_rq(plug->list.prev);
2107                        if (request_count >= BLK_MAX_REQUEST_COUNT ||
2108                            blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2109                                blk_flush_plug_list(plug, false);
2110                                trace_block_plug(q);
2111                        }
2112                }
2113                list_add_tail(&req->queuelist, &plug->list);
2114                blk_account_io_start(req, true);
2115        } else {
2116                spin_lock_irq(q->queue_lock);
2117                add_acct_request(q, req, where);
2118                __blk_run_queue(q);
2119out_unlock:
2120                spin_unlock_irq(q->queue_lock);
2121        }
2122
2123        return BLK_QC_T_NONE;
2124}
2125
2126static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2127{
2128        char b[BDEVNAME_SIZE];
2129
2130        printk(KERN_INFO "attempt to access beyond end of device\n");
2131        printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2132                        bio_devname(bio, b), bio->bi_opf,
2133                        (unsigned long long)bio_end_sector(bio),
2134                        (long long)maxsector);
2135}
2136
2137#ifdef CONFIG_FAIL_MAKE_REQUEST
2138
2139static DECLARE_FAULT_ATTR(fail_make_request);
2140
2141static int __init setup_fail_make_request(char *str)
2142{
2143        return setup_fault_attr(&fail_make_request, str);
2144}
2145__setup("fail_make_request=", setup_fail_make_request);
2146
2147static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2148{
2149        return part->make_it_fail && should_fail(&fail_make_request, bytes);
2150}
2151
2152static int __init fail_make_request_debugfs(void)
2153{
2154        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2155                                                NULL, &fail_make_request);
2156
2157        return PTR_ERR_OR_ZERO(dir);
2158}
2159
2160late_initcall(fail_make_request_debugfs);
2161
2162#else /* CONFIG_FAIL_MAKE_REQUEST */
2163
2164static inline bool should_fail_request(struct hd_struct *part,
2165                                        unsigned int bytes)
2166{
2167        return false;
2168}
2169
2170#endif /* CONFIG_FAIL_MAKE_REQUEST */
2171
2172static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2173{
2174        if (part->policy && op_is_write(bio_op(bio))) {
2175                char b[BDEVNAME_SIZE];
2176
2177                printk(KERN_ERR
2178                       "generic_make_request: Trying to write "
2179                        "to read-only block-device %s (partno %d)\n",
2180                        bio_devname(bio, b), part->partno);
2181                return true;
2182        }
2183
2184        return false;
2185}
2186
2187static noinline int should_fail_bio(struct bio *bio)
2188{
2189        if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2190                return -EIO;
2191        return 0;
2192}
2193ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2194
2195/*
2196 * Check whether this bio extends beyond the end of the device or partition.
2197 * This may well happen - the kernel calls bread() without checking the size of
2198 * the device, e.g., when mounting a file system.
2199 */
2200static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2201{
2202        unsigned int nr_sectors = bio_sectors(bio);
2203
2204        if (nr_sectors && maxsector &&
2205            (nr_sectors > maxsector ||
2206             bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2207                handle_bad_sector(bio, maxsector);
2208                return -EIO;
2209        }
2210        return 0;
2211}
2212
2213/*
2214 * Remap block n of partition p to block n+start(p) of the disk.
2215 */
2216static inline int blk_partition_remap(struct bio *bio)
2217{
2218        struct hd_struct *p;
2219        int ret = -EIO;
2220
2221        rcu_read_lock();
2222        p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2223        if (unlikely(!p))
2224                goto out;
2225        if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2226                goto out;
2227        if (unlikely(bio_check_ro(bio, p)))
2228                goto out;
2229
2230        /*
2231         * Zone reset does not include bi_size so bio_sectors() is always 0.
2232         * Include a test for the reset op code and perform the remap if needed.
2233         */
2234        if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2235                if (bio_check_eod(bio, part_nr_sects_read(p)))
2236                        goto out;
2237                bio->bi_iter.bi_sector += p->start_sect;
2238                bio->bi_partno = 0;
2239                trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2240                                      bio->bi_iter.bi_sector - p->start_sect);
2241        }
2242        ret = 0;
2243out:
2244        rcu_read_unlock();
2245        return ret;
2246}
2247
2248static noinline_for_stack bool
2249generic_make_request_checks(struct bio *bio)
2250{
2251        struct request_queue *q;
2252        int nr_sectors = bio_sectors(bio);
2253        blk_status_t status = BLK_STS_IOERR;
2254        char b[BDEVNAME_SIZE];
2255
2256        might_sleep();
2257
2258        q = bio->bi_disk->queue;
2259        if (unlikely(!q)) {
2260                printk(KERN_ERR
2261                       "generic_make_request: Trying to access "
2262                        "nonexistent block-device %s (%Lu)\n",
2263                        bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2264                goto end_io;
2265        }
2266
2267        /*
2268         * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2269         * if queue is not a request based queue.
2270         */
2271        if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2272                goto not_supported;
2273
2274        if (should_fail_bio(bio))
2275                goto end_io;
2276
2277        if (bio->bi_partno) {
2278                if (unlikely(blk_partition_remap(bio)))
2279                        goto end_io;
2280        } else {
2281                if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2282                        goto end_io;
2283                if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2284                        goto end_io;
2285        }
2286
2287        /*
2288         * Filter flush bio's early so that make_request based
2289         * drivers without flush support don't have to worry
2290         * about them.
2291         */
2292        if (op_is_flush(bio->bi_opf) &&
2293            !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2294                bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2295                if (!nr_sectors) {
2296                        status = BLK_STS_OK;
2297                        goto end_io;
2298                }
2299        }
2300
2301        switch (bio_op(bio)) {
2302        case REQ_OP_DISCARD:
2303                if (!blk_queue_discard(q))
2304                        goto not_supported;
2305                break;
2306        case REQ_OP_SECURE_ERASE:
2307                if (!blk_queue_secure_erase(q))
2308                        goto not_supported;
2309                break;
2310        case REQ_OP_WRITE_SAME:
2311                if (!q->limits.max_write_same_sectors)
2312                        goto not_supported;
2313                break;
2314        case REQ_OP_ZONE_REPORT:
2315        case REQ_OP_ZONE_RESET:
2316                if (!blk_queue_is_zoned(q))
2317                        goto not_supported;
2318                break;
2319        case REQ_OP_WRITE_ZEROES:
2320                if (!q->limits.max_write_zeroes_sectors)
2321                        goto not_supported;
2322                break;
2323        default:
2324                break;
2325        }
2326
2327        /*
2328         * Various block parts want %current->io_context and lazy ioc
2329         * allocation ends up trading a lot of pain for a small amount of
2330         * memory.  Just allocate it upfront.  This may fail and block
2331         * layer knows how to live with it.
2332         */
2333        create_io_context(GFP_ATOMIC, q->node);
2334
2335        if (!blkcg_bio_issue_check(q, bio))
2336                return false;
2337
2338        if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2339                trace_block_bio_queue(q, bio);
2340                /* Now that enqueuing has been traced, we need to trace
2341                 * completion as well.
2342                 */
2343                bio_set_flag(bio, BIO_TRACE_COMPLETION);
2344        }
2345        return true;
2346
2347not_supported:
2348        status = BLK_STS_NOTSUPP;
2349end_io:
2350        bio->bi_status = status;
2351        bio_endio(bio);
2352        return false;
2353}
2354
2355/**
2356 * generic_make_request - hand a buffer to its device driver for I/O
2357 * @bio:  The bio describing the location in memory and on the device.
2358 *
2359 * generic_make_request() is used to make I/O requests of block
2360 * devices. It is passed a &struct bio, which describes the I/O that needs
2361 * to be done.
2362 *
2363 * generic_make_request() does not return any status.  The
2364 * success/failure status of the request, along with notification of
2365 * completion, is delivered asynchronously through the bio->bi_end_io
2366 * function described (one day) else where.
2367 *
2368 * The caller of generic_make_request must make sure that bi_io_vec
2369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2370 * set to describe the device address, and the
2371 * bi_end_io and optionally bi_private are set to describe how
2372 * completion notification should be signaled.
2373 *
2374 * generic_make_request and the drivers it calls may use bi_next if this
2375 * bio happens to be merged with someone else, and may resubmit the bio to
2376 * a lower device by calling into generic_make_request recursively, which
2377 * means the bio should NOT be touched after the call to ->make_request_fn.
2378 */
2379blk_qc_t generic_make_request(struct bio *bio)
2380{
2381        /*
2382         * bio_list_on_stack[0] contains bios submitted by the current
2383         * make_request_fn.
2384         * bio_list_on_stack[1] contains bios that were submitted before
2385         * the current make_request_fn, but that haven't been processed
2386         * yet.
2387         */
2388        struct bio_list bio_list_on_stack[2];
2389        blk_mq_req_flags_t flags = 0;
2390        struct request_queue *q = bio->bi_disk->queue;
2391        blk_qc_t ret = BLK_QC_T_NONE;
2392
2393        if (bio->bi_opf & REQ_NOWAIT)
2394                flags = BLK_MQ_REQ_NOWAIT;
2395        if (blk_queue_enter(q, flags) < 0) {
2396                if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2397                        bio_wouldblock_error(bio);
2398                else
2399                        bio_io_error(bio);
2400                return ret;
2401        }
2402
2403        if (!generic_make_request_checks(bio))
2404                goto out;
2405
2406        /*
2407         * We only want one ->make_request_fn to be active at a time, else
2408         * stack usage with stacked devices could be a problem.  So use
2409         * current->bio_list to keep a list of requests submited by a
2410         * make_request_fn function.  current->bio_list is also used as a
2411         * flag to say if generic_make_request is currently active in this
2412         * task or not.  If it is NULL, then no make_request is active.  If
2413         * it is non-NULL, then a make_request is active, and new requests
2414         * should be added at the tail
2415         */
2416        if (current->bio_list) {
2417                bio_list_add(&current->bio_list[0], bio);
2418                goto out;
2419        }
2420
2421        /* following loop may be a bit non-obvious, and so deserves some
2422         * explanation.
2423         * Before entering the loop, bio->bi_next is NULL (as all callers
2424         * ensure that) so we have a list with a single bio.
2425         * We pretend that we have just taken it off a longer list, so
2426         * we assign bio_list to a pointer to the bio_list_on_stack,
2427         * thus initialising the bio_list of new bios to be
2428         * added.  ->make_request() may indeed add some more bios
2429         * through a recursive call to generic_make_request.  If it
2430         * did, we find a non-NULL value in bio_list and re-enter the loop
2431         * from the top.  In this case we really did just take the bio
2432         * of the top of the list (no pretending) and so remove it from
2433         * bio_list, and call into ->make_request() again.
2434         */
2435        BUG_ON(bio->bi_next);
2436        bio_list_init(&bio_list_on_stack[0]);
2437        current->bio_list = bio_list_on_stack;
2438        do {
2439                bool enter_succeeded = true;
2440
2441                if (unlikely(q != bio->bi_disk->queue)) {
2442                        if (q)
2443                                blk_queue_exit(q);
2444                        q = bio->bi_disk->queue;
2445                        flags = 0;
2446                        if (bio->bi_opf & REQ_NOWAIT)
2447                                flags = BLK_MQ_REQ_NOWAIT;
2448                        if (blk_queue_enter(q, flags) < 0) {
2449                                enter_succeeded = false;
2450                                q = NULL;
2451                        }
2452                }
2453
2454                if (enter_succeeded) {
2455                        struct bio_list lower, same;
2456
2457                        /* Create a fresh bio_list for all subordinate requests */
2458                        bio_list_on_stack[1] = bio_list_on_stack[0];
2459                        bio_list_init(&bio_list_on_stack[0]);
2460                        ret = q->make_request_fn(q, bio);
2461
2462                        /* sort new bios into those for a lower level
2463                         * and those for the same level
2464                         */
2465                        bio_list_init(&lower);
2466                        bio_list_init(&same);
2467                        while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2468                                if (q == bio->bi_disk->queue)
2469                                        bio_list_add(&same, bio);
2470                                else
2471                                        bio_list_add(&lower, bio);
2472                        /* now assemble so we handle the lowest level first */
2473                        bio_list_merge(&bio_list_on_stack[0], &lower);
2474                        bio_list_merge(&bio_list_on_stack[0], &same);
2475                        bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2476                } else {
2477                        if (unlikely(!blk_queue_dying(q) &&
2478                                        (bio->bi_opf & REQ_NOWAIT)))
2479                                bio_wouldblock_error(bio);
2480                        else
2481                                bio_io_error(bio);
2482                }
2483                bio = bio_list_pop(&bio_list_on_stack[0]);
2484        } while (bio);
2485        current->bio_list = NULL; /* deactivate */
2486
2487out:
2488        if (q)
2489                blk_queue_exit(q);
2490        return ret;
2491}
2492EXPORT_SYMBOL(generic_make_request);
2493
2494/**
2495 * direct_make_request - hand a buffer directly to its device driver for I/O
2496 * @bio:  The bio describing the location in memory and on the device.
2497 *
2498 * This function behaves like generic_make_request(), but does not protect
2499 * against recursion.  Must only be used if the called driver is known
2500 * to not call generic_make_request (or direct_make_request) again from
2501 * its make_request function.  (Calling direct_make_request again from
2502 * a workqueue is perfectly fine as that doesn't recurse).
2503 */
2504blk_qc_t direct_make_request(struct bio *bio)
2505{
2506        struct request_queue *q = bio->bi_disk->queue;
2507        bool nowait = bio->bi_opf & REQ_NOWAIT;
2508        blk_qc_t ret;
2509
2510        if (!generic_make_request_checks(bio))
2511                return BLK_QC_T_NONE;
2512
2513        if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2514                if (nowait && !blk_queue_dying(q))
2515                        bio->bi_status = BLK_STS_AGAIN;
2516                else
2517                        bio->bi_status = BLK_STS_IOERR;
2518                bio_endio(bio);
2519                return BLK_QC_T_NONE;
2520        }
2521
2522        ret = q->make_request_fn(q, bio);
2523        blk_queue_exit(q);
2524        return ret;
2525}
2526EXPORT_SYMBOL_GPL(direct_make_request);
2527
2528/**
2529 * submit_bio - submit a bio to the block device layer for I/O
2530 * @bio: The &struct bio which describes the I/O
2531 *
2532 * submit_bio() is very similar in purpose to generic_make_request(), and
2533 * uses that function to do most of the work. Both are fairly rough
2534 * interfaces; @bio must be presetup and ready for I/O.
2535 *
2536 */
2537blk_qc_t submit_bio(struct bio *bio)
2538{
2539        /*
2540         * If it's a regular read/write or a barrier with data attached,
2541         * go through the normal accounting stuff before submission.
2542         */
2543        if (bio_has_data(bio)) {
2544                unsigned int count;
2545
2546                if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2547                        count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2548                else
2549                        count = bio_sectors(bio);
2550
2551                if (op_is_write(bio_op(bio))) {
2552                        count_vm_events(PGPGOUT, count);
2553                } else {
2554                        task_io_account_read(bio->bi_iter.bi_size);
2555                        count_vm_events(PGPGIN, count);
2556                }
2557
2558                if (unlikely(block_dump)) {
2559                        char b[BDEVNAME_SIZE];
2560                        printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2561                        current->comm, task_pid_nr(current),
2562                                op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2563                                (unsigned long long)bio->bi_iter.bi_sector,
2564                                bio_devname(bio, b), count);
2565                }
2566        }
2567
2568        return generic_make_request(bio);
2569}
2570EXPORT_SYMBOL(submit_bio);
2571
2572bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2573{
2574        if (!q->poll_fn || !blk_qc_t_valid(cookie))
2575                return false;
2576
2577        if (current->plug)
2578                blk_flush_plug_list(current->plug, false);
2579        return q->poll_fn(q, cookie);
2580}
2581EXPORT_SYMBOL_GPL(blk_poll);
2582
2583/**
2584 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2585 *                              for new the queue limits
2586 * @q:  the queue
2587 * @rq: the request being checked
2588 *
2589 * Description:
2590 *    @rq may have been made based on weaker limitations of upper-level queues
2591 *    in request stacking drivers, and it may violate the limitation of @q.
2592 *    Since the block layer and the underlying device driver trust @rq
2593 *    after it is inserted to @q, it should be checked against @q before
2594 *    the insertion using this generic function.
2595 *
2596 *    Request stacking drivers like request-based dm may change the queue
2597 *    limits when retrying requests on other queues. Those requests need
2598 *    to be checked against the new queue limits again during dispatch.
2599 */
2600static int blk_cloned_rq_check_limits(struct request_queue *q,
2601                                      struct request *rq)
2602{
2603        if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2604                printk(KERN_ERR "%s: over max size limit.\n", __func__);
2605                return -EIO;
2606        }
2607
2608        /*
2609         * queue's settings related to segment counting like q->bounce_pfn
2610         * may differ from that of other stacking queues.
2611         * Recalculate it to check the request correctly on this queue's
2612         * limitation.
2613         */
2614        blk_recalc_rq_segments(rq);
2615        if (rq->nr_phys_segments > queue_max_segments(q)) {
2616                printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2617                return -EIO;
2618        }
2619
2620        return 0;
2621}
2622
2623/**
2624 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2625 * @q:  the queue to submit the request
2626 * @rq: the request being queued
2627 */
2628blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2629{
2630        unsigned long flags;
2631        int where = ELEVATOR_INSERT_BACK;
2632
2633        if (blk_cloned_rq_check_limits(q, rq))
2634                return BLK_STS_IOERR;
2635
2636        if (rq->rq_disk &&
2637            should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2638                return BLK_STS_IOERR;
2639
2640        if (q->mq_ops) {
2641                if (blk_queue_io_stat(q))
2642                        blk_account_io_start(rq, true);
2643                /*
2644                 * Since we have a scheduler attached on the top device,
2645                 * bypass a potential scheduler on the bottom device for
2646                 * insert.
2647                 */
2648                return blk_mq_request_issue_directly(rq);
2649        }
2650
2651        spin_lock_irqsave(q->queue_lock, flags);
2652        if (unlikely(blk_queue_dying(q))) {
2653                spin_unlock_irqrestore(q->queue_lock, flags);
2654                return BLK_STS_IOERR;
2655        }
2656
2657        /*
2658         * Submitting request must be dequeued before calling this function
2659         * because it will be linked to another request_queue
2660         */
2661        BUG_ON(blk_queued_rq(rq));
2662
2663        if (op_is_flush(rq->cmd_flags))
2664                where = ELEVATOR_INSERT_FLUSH;
2665
2666        add_acct_request(q, rq, where);
2667        if (where == ELEVATOR_INSERT_FLUSH)
2668                __blk_run_queue(q);
2669        spin_unlock_irqrestore(q->queue_lock, flags);
2670
2671        return BLK_STS_OK;
2672}
2673EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2674
2675/**
2676 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2677 * @rq: request to examine
2678 *
2679 * Description:
2680 *     A request could be merge of IOs which require different failure
2681 *     handling.  This function determines the number of bytes which
2682 *     can be failed from the beginning of the request without
2683 *     crossing into area which need to be retried further.
2684 *
2685 * Return:
2686 *     The number of bytes to fail.
2687 */
2688unsigned int blk_rq_err_bytes(const struct request *rq)
2689{
2690        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2691        unsigned int bytes = 0;
2692        struct bio *bio;
2693
2694        if (!(rq->rq_flags & RQF_MIXED_MERGE))
2695                return blk_rq_bytes(rq);
2696
2697        /*
2698         * Currently the only 'mixing' which can happen is between
2699         * different fastfail types.  We can safely fail portions
2700         * which have all the failfast bits that the first one has -
2701         * the ones which are at least as eager to fail as the first
2702         * one.
2703         */
2704        for (bio = rq->bio; bio; bio = bio->bi_next) {
2705                if ((bio->bi_opf & ff) != ff)
2706                        break;
2707                bytes += bio->bi_iter.bi_size;
2708        }
2709
2710        /* this could lead to infinite loop */
2711        BUG_ON(blk_rq_bytes(rq) && !bytes);
2712        return bytes;
2713}
2714EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2715
2716void blk_account_io_completion(struct request *req, unsigned int bytes)
2717{
2718        if (blk_do_io_stat(req)) {
2719                const int rw = rq_data_dir(req);
2720                struct hd_struct *part;
2721                int cpu;
2722
2723                cpu = part_stat_lock();
2724                part = req->part;
2725                part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2726                part_stat_unlock();
2727        }
2728}
2729
2730void blk_account_io_done(struct request *req)
2731{
2732        /*
2733         * Account IO completion.  flush_rq isn't accounted as a
2734         * normal IO on queueing nor completion.  Accounting the
2735         * containing request is enough.
2736         */
2737        if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2738                unsigned long duration = jiffies - req->start_time;
2739                const int rw = rq_data_dir(req);
2740                struct hd_struct *part;
2741                int cpu;
2742
2743                cpu = part_stat_lock();
2744                part = req->part;
2745
2746                part_stat_inc(cpu, part, ios[rw]);
2747                part_stat_add(cpu, part, ticks[rw], duration);
2748                part_round_stats(req->q, cpu, part);
2749                part_dec_in_flight(req->q, part, rw);
2750
2751                hd_struct_put(part);
2752                part_stat_unlock();
2753        }
2754}
2755
2756#ifdef CONFIG_PM
2757/*
2758 * Don't process normal requests when queue is suspended
2759 * or in the process of suspending/resuming
2760 */
2761static bool blk_pm_allow_request(struct request *rq)
2762{
2763        switch (rq->q->rpm_status) {
2764        case RPM_RESUMING:
2765        case RPM_SUSPENDING:
2766                return rq->rq_flags & RQF_PM;
2767        case RPM_SUSPENDED:
2768                return false;
2769        }
2770
2771        return true;
2772}
2773#else
2774static bool blk_pm_allow_request(struct request *rq)
2775{
2776        return true;
2777}
2778#endif
2779
2780void blk_account_io_start(struct request *rq, bool new_io)
2781{
2782        struct hd_struct *part;
2783        int rw = rq_data_dir(rq);
2784        int cpu;
2785
2786        if (!blk_do_io_stat(rq))
2787                return;
2788
2789        cpu = part_stat_lock();
2790
2791        if (!new_io) {
2792                part = rq->part;
2793                part_stat_inc(cpu, part, merges[rw]);
2794        } else {
2795                part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2796                if (!hd_struct_try_get(part)) {
2797                        /*
2798                         * The partition is already being removed,
2799                         * the request will be accounted on the disk only
2800                         *
2801                         * We take a reference on disk->part0 although that
2802                         * partition will never be deleted, so we can treat
2803                         * it as any other partition.
2804                         */
2805                        part = &rq->rq_disk->part0;
2806                        hd_struct_get(part);
2807                }
2808                part_round_stats(rq->q, cpu, part);
2809                part_inc_in_flight(rq->q, part, rw);
2810                rq->part = part;
2811        }
2812
2813        part_stat_unlock();
2814}
2815
2816static struct request *elv_next_request(struct request_queue *q)
2817{
2818        struct request *rq;
2819        struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2820
2821        WARN_ON_ONCE(q->mq_ops);
2822
2823        while (1) {
2824                list_for_each_entry(rq, &q->queue_head, queuelist) {
2825                        if (blk_pm_allow_request(rq))
2826                                return rq;
2827
2828                        if (rq->rq_flags & RQF_SOFTBARRIER)
2829                                break;
2830                }
2831
2832                /*
2833                 * Flush request is running and flush request isn't queueable
2834                 * in the drive, we can hold the queue till flush request is
2835                 * finished. Even we don't do this, driver can't dispatch next
2836                 * requests and will requeue them. And this can improve
2837                 * throughput too. For example, we have request flush1, write1,
2838                 * flush 2. flush1 is dispatched, then queue is hold, write1
2839                 * isn't inserted to queue. After flush1 is finished, flush2
2840                 * will be dispatched. Since disk cache is already clean,
2841                 * flush2 will be finished very soon, so looks like flush2 is
2842                 * folded to flush1.
2843                 * Since the queue is hold, a flag is set to indicate the queue
2844                 * should be restarted later. Please see flush_end_io() for
2845                 * details.
2846                 */
2847                if (fq->flush_pending_idx != fq->flush_running_idx &&
2848                                !queue_flush_queueable(q)) {
2849                        fq->flush_queue_delayed = 1;
2850                        return NULL;
2851                }
2852                if (unlikely(blk_queue_bypass(q)) ||
2853                    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2854                        return NULL;
2855        }
2856}
2857
2858/**
2859 * blk_peek_request - peek at the top of a request queue
2860 * @q: request queue to peek at
2861 *
2862 * Description:
2863 *     Return the request at the top of @q.  The returned request
2864 *     should be started using blk_start_request() before LLD starts
2865 *     processing it.
2866 *
2867 * Return:
2868 *     Pointer to the request at the top of @q if available.  Null
2869 *     otherwise.
2870 */
2871struct request *blk_peek_request(struct request_queue *q)
2872{
2873        struct request *rq;
2874        int ret;
2875
2876        lockdep_assert_held(q->queue_lock);
2877        WARN_ON_ONCE(q->mq_ops);
2878
2879        while ((rq = elv_next_request(q)) != NULL) {
2880                if (!(rq->rq_flags & RQF_STARTED)) {
2881                        /*
2882                         * This is the first time the device driver
2883                         * sees this request (possibly after
2884                         * requeueing).  Notify IO scheduler.
2885                         */
2886                        if (rq->rq_flags & RQF_SORTED)
2887                                elv_activate_rq(q, rq);
2888
2889                        /*
2890                         * just mark as started even if we don't start
2891                         * it, a request that has been delayed should
2892                         * not be passed by new incoming requests
2893                         */
2894                        rq->rq_flags |= RQF_STARTED;
2895                        trace_block_rq_issue(q, rq);
2896                }
2897
2898                if (!q->boundary_rq || q->boundary_rq == rq) {
2899                        q->end_sector = rq_end_sector(rq);
2900                        q->boundary_rq = NULL;
2901                }
2902
2903                if (rq->rq_flags & RQF_DONTPREP)
2904                        break;
2905
2906                if (q->dma_drain_size && blk_rq_bytes(rq)) {
2907                        /*
2908                         * make sure space for the drain appears we
2909                         * know we can do this because max_hw_segments
2910                         * has been adjusted to be one fewer than the
2911                         * device can handle
2912                         */
2913                        rq->nr_phys_segments++;
2914                }
2915
2916                if (!q->prep_rq_fn)
2917                        break;
2918
2919                ret = q->prep_rq_fn(q, rq);
2920                if (ret == BLKPREP_OK) {
2921                        break;
2922                } else if (ret == BLKPREP_DEFER) {
2923                        /*
2924                         * the request may have been (partially) prepped.
2925                         * we need to keep this request in the front to
2926                         * avoid resource deadlock.  RQF_STARTED will
2927                         * prevent other fs requests from passing this one.
2928                         */
2929                        if (q->dma_drain_size && blk_rq_bytes(rq) &&
2930                            !(rq->rq_flags & RQF_DONTPREP)) {
2931                                /*
2932                                 * remove the space for the drain we added
2933                                 * so that we don't add it again
2934                                 */
2935                                --rq->nr_phys_segments;
2936                        }
2937
2938                        rq = NULL;
2939                        break;
2940                } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2941                        rq->rq_flags |= RQF_QUIET;
2942                        /*
2943                         * Mark this request as started so we don't trigger
2944                         * any debug logic in the end I/O path.
2945                         */
2946                        blk_start_request(rq);
2947                        __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2948                                        BLK_STS_TARGET : BLK_STS_IOERR);
2949                } else {
2950                        printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2951                        break;
2952                }
2953        }
2954
2955        return rq;
2956}
2957EXPORT_SYMBOL(blk_peek_request);
2958
2959static void blk_dequeue_request(struct request *rq)
2960{
2961        struct request_queue *q = rq->q;
2962
2963        BUG_ON(list_empty(&rq->queuelist));
2964        BUG_ON(ELV_ON_HASH(rq));
2965
2966        list_del_init(&rq->queuelist);
2967
2968        /*
2969         * the time frame between a request being removed from the lists
2970         * and to it is freed is accounted as io that is in progress at
2971         * the driver side.
2972         */
2973        if (blk_account_rq(rq)) {
2974                q->in_flight[rq_is_sync(rq)]++;
2975                set_io_start_time_ns(rq);
2976        }
2977}
2978
2979/**
2980 * blk_start_request - start request processing on the driver
2981 * @req: request to dequeue
2982 *
2983 * Description:
2984 *     Dequeue @req and start timeout timer on it.  This hands off the
2985 *     request to the driver.
2986 */
2987void blk_start_request(struct request *req)
2988{
2989        lockdep_assert_held(req->q->queue_lock);
2990        WARN_ON_ONCE(req->q->mq_ops);
2991
2992        blk_dequeue_request(req);
2993
2994        if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2995                blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2996                req->rq_flags |= RQF_STATS;
2997                wbt_issue(req->q->rq_wb, &req->issue_stat);
2998        }
2999
3000        BUG_ON(blk_rq_is_complete(req));
3001        blk_add_timer(req);
3002}
3003EXPORT_SYMBOL(blk_start_request);
3004
3005/**
3006 * blk_fetch_request - fetch a request from a request queue
3007 * @q: request queue to fetch a request from
3008 *
3009 * Description:
3010 *     Return the request at the top of @q.  The request is started on
3011 *     return and LLD can start processing it immediately.
3012 *
3013 * Return:
3014 *     Pointer to the request at the top of @q if available.  Null
3015 *     otherwise.
3016 */
3017struct request *blk_fetch_request(struct request_queue *q)
3018{
3019        struct request *rq;
3020
3021        lockdep_assert_held(q->queue_lock);
3022        WARN_ON_ONCE(q->mq_ops);
3023
3024        rq = blk_peek_request(q);
3025        if (rq)
3026                blk_start_request(rq);
3027        return rq;
3028}
3029EXPORT_SYMBOL(blk_fetch_request);
3030
3031/*
3032 * Steal bios from a request and add them to a bio list.
3033 * The request must not have been partially completed before.
3034 */
3035void blk_steal_bios(struct bio_list *list, struct request *rq)
3036{
3037        if (rq->bio) {
3038                if (list->tail)
3039                        list->tail->bi_next = rq->bio;
3040                else
3041                        list->head = rq->bio;
3042                list->tail = rq->biotail;
3043
3044                rq->bio = NULL;
3045                rq->biotail = NULL;
3046        }
3047
3048        rq->__data_len = 0;
3049}
3050EXPORT_SYMBOL_GPL(blk_steal_bios);
3051
3052/**
3053 * blk_update_request - Special helper function for request stacking drivers
3054 * @req:      the request being processed
3055 * @error:    block status code
3056 * @nr_bytes: number of bytes to complete @req
3057 *
3058 * Description:
3059 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3060 *     the request structure even if @req doesn't have leftover.
3061 *     If @req has leftover, sets it up for the next range of segments.
3062 *
3063 *     This special helper function is only for request stacking drivers
3064 *     (e.g. request-based dm) so that they can handle partial completion.
3065 *     Actual device drivers should use blk_end_request instead.
3066 *
3067 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068 *     %false return from this function.
3069 *
3070 * Return:
3071 *     %false - this request doesn't have any more data
3072 *     %true  - this request has more data
3073 **/
3074bool blk_update_request(struct request *req, blk_status_t error,
3075                unsigned int nr_bytes)
3076{
3077        int total_bytes;
3078
3079        trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3080
3081        if (!req->bio)
3082                return false;
3083
3084        if (unlikely(error && !blk_rq_is_passthrough(req) &&
3085                     !(req->rq_flags & RQF_QUIET)))
3086                print_req_error(req, error);
3087
3088        blk_account_io_completion(req, nr_bytes);
3089
3090        total_bytes = 0;
3091        while (req->bio) {
3092                struct bio *bio = req->bio;
3093                unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3094
3095                if (bio_bytes == bio->bi_iter.bi_size)
3096                        req->bio = bio->bi_next;
3097
3098                /* Completion has already been traced */
3099                bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3100                req_bio_endio(req, bio, bio_bytes, error);
3101
3102                total_bytes += bio_bytes;
3103                nr_bytes -= bio_bytes;
3104
3105                if (!nr_bytes)
3106                        break;
3107        }
3108
3109        /*
3110         * completely done
3111         */
3112        if (!req->bio) {
3113                /*
3114                 * Reset counters so that the request stacking driver
3115                 * can find how many bytes remain in the request
3116                 * later.
3117                 */
3118                req->__data_len = 0;
3119                return false;
3120        }
3121
3122        req->__data_len -= total_bytes;
3123
3124        /* update sector only for requests with clear definition of sector */
3125        if (!blk_rq_is_passthrough(req))
3126                req->__sector += total_bytes >> 9;
3127
3128        /* mixed attributes always follow the first bio */
3129        if (req->rq_flags & RQF_MIXED_MERGE) {
3130                req->cmd_flags &= ~REQ_FAILFAST_MASK;
3131                req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3132        }
3133
3134        if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3135                /*
3136                 * If total number of sectors is less than the first segment
3137                 * size, something has gone terribly wrong.
3138                 */
3139                if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3140                        blk_dump_rq_flags(req, "request botched");
3141                        req->__data_len = blk_rq_cur_bytes(req);
3142                }
3143
3144                /* recalculate the number of segments */
3145                blk_recalc_rq_segments(req);
3146        }
3147
3148        return true;
3149}
3150EXPORT_SYMBOL_GPL(blk_update_request);
3151
3152static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3153                                    unsigned int nr_bytes,
3154                                    unsigned int bidi_bytes)
3155{
3156        if (blk_update_request(rq, error, nr_bytes))
3157                return true;
3158
3159        /* Bidi request must be completed as a whole */
3160        if (unlikely(blk_bidi_rq(rq)) &&
3161            blk_update_request(rq->next_rq, error, bidi_bytes))
3162                return true;
3163
3164        if (blk_queue_add_random(rq->q))
3165                add_disk_randomness(rq->rq_disk);
3166
3167        return false;
3168}
3169
3170/**
3171 * blk_unprep_request - unprepare a request
3172 * @req:        the request
3173 *
3174 * This function makes a request ready for complete resubmission (or
3175 * completion).  It happens only after all error handling is complete,
3176 * so represents the appropriate moment to deallocate any resources
3177 * that were allocated to the request in the prep_rq_fn.  The queue
3178 * lock is held when calling this.
3179 */
3180void blk_unprep_request(struct request *req)
3181{
3182        struct request_queue *q = req->q;
3183
3184        req->rq_flags &= ~RQF_DONTPREP;
3185        if (q->unprep_rq_fn)
3186                q->unprep_rq_fn(q, req);
3187}
3188EXPORT_SYMBOL_GPL(blk_unprep_request);
3189
3190void blk_finish_request(struct request *req, blk_status_t error)
3191{
3192        struct request_queue *q = req->q;
3193
3194        lockdep_assert_held(req->q->queue_lock);
3195        WARN_ON_ONCE(q->mq_ops);
3196
3197        if (req->rq_flags & RQF_STATS)
3198                blk_stat_add(req);
3199
3200        if (req->rq_flags & RQF_QUEUED)
3201                blk_queue_end_tag(q, req);
3202
3203        BUG_ON(blk_queued_rq(req));
3204
3205        if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3206                laptop_io_completion(req->q->backing_dev_info);
3207
3208        blk_delete_timer(req);
3209
3210        if (req->rq_flags & RQF_DONTPREP)
3211                blk_unprep_request(req);
3212
3213        blk_account_io_done(req);
3214
3215        if (req->end_io) {
3216                wbt_done(req->q->rq_wb, &req->issue_stat);
3217                req->end_io(req, error);
3218        } else {
3219                if (blk_bidi_rq(req))
3220                        __blk_put_request(req->next_rq->q, req->next_rq);
3221
3222                __blk_put_request(q, req);
3223        }
3224}
3225EXPORT_SYMBOL(blk_finish_request);
3226
3227/**
3228 * blk_end_bidi_request - Complete a bidi request
3229 * @rq:         the request to complete
3230 * @error:      block status code
3231 * @nr_bytes:   number of bytes to complete @rq
3232 * @bidi_bytes: number of bytes to complete @rq->next_rq
3233 *
3234 * Description:
3235 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3236 *     Drivers that supports bidi can safely call this member for any
3237 *     type of request, bidi or uni.  In the later case @bidi_bytes is
3238 *     just ignored.
3239 *
3240 * Return:
3241 *     %false - we are done with this request
3242 *     %true  - still buffers pending for this request
3243 **/
3244static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3245                                 unsigned int nr_bytes, unsigned int bidi_bytes)
3246{
3247        struct request_queue *q = rq->q;
3248        unsigned long flags;
3249
3250        WARN_ON_ONCE(q->mq_ops);
3251
3252        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3253                return true;
3254
3255        spin_lock_irqsave(q->queue_lock, flags);
3256        blk_finish_request(rq, error);
3257        spin_unlock_irqrestore(q->queue_lock, flags);
3258
3259        return false;
3260}
3261
3262/**
3263 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3264 * @rq:         the request to complete
3265 * @error:      block status code
3266 * @nr_bytes:   number of bytes to complete @rq
3267 * @bidi_bytes: number of bytes to complete @rq->next_rq
3268 *
3269 * Description:
3270 *     Identical to blk_end_bidi_request() except that queue lock is
3271 *     assumed to be locked on entry and remains so on return.
3272 *
3273 * Return:
3274 *     %false - we are done with this request
3275 *     %true  - still buffers pending for this request
3276 **/
3277static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3278                                   unsigned int nr_bytes, unsigned int bidi_bytes)
3279{
3280        lockdep_assert_held(rq->q->queue_lock);
3281        WARN_ON_ONCE(rq->q->mq_ops);
3282
3283        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3284                return true;
3285
3286        blk_finish_request(rq, error);
3287
3288        return false;
3289}
3290
3291/**
3292 * blk_end_request - Helper function for drivers to complete the request.
3293 * @rq:       the request being processed
3294 * @error:    block status code
3295 * @nr_bytes: number of bytes to complete
3296 *
3297 * Description:
3298 *     Ends I/O on a number of bytes attached to @rq.
3299 *     If @rq has leftover, sets it up for the next range of segments.
3300 *
3301 * Return:
3302 *     %false - we are done with this request
3303 *     %true  - still buffers pending for this request
3304 **/
3305bool blk_end_request(struct request *rq, blk_status_t error,
3306                unsigned int nr_bytes)
3307{
3308        WARN_ON_ONCE(rq->q->mq_ops);
3309        return blk_end_bidi_request(rq, error, nr_bytes, 0);
3310}
3311EXPORT_SYMBOL(blk_end_request);
3312
3313/**
3314 * blk_end_request_all - Helper function for drives to finish the request.
3315 * @rq: the request to finish
3316 * @error: block status code
3317 *
3318 * Description:
3319 *     Completely finish @rq.
3320 */
3321void blk_end_request_all(struct request *rq, blk_status_t error)
3322{
3323        bool pending;
3324        unsigned int bidi_bytes = 0;
3325
3326        if (unlikely(blk_bidi_rq(rq)))
3327                bidi_bytes = blk_rq_bytes(rq->next_rq);
3328
3329        pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3330        BUG_ON(pending);
3331}
3332EXPORT_SYMBOL(blk_end_request_all);
3333
3334/**
3335 * __blk_end_request - Helper function for drivers to complete the request.
3336 * @rq:       the request being processed
3337 * @error:    block status code
3338 * @nr_bytes: number of bytes to complete
3339 *
3340 * Description:
3341 *     Must be called with queue lock held unlike blk_end_request().
3342 *
3343 * Return:
3344 *     %false - we are done with this request
3345 *     %true  - still buffers pending for this request
3346 **/
3347bool __blk_end_request(struct request *rq, blk_status_t error,
3348                unsigned int nr_bytes)
3349{
3350        lockdep_assert_held(rq->q->queue_lock);
3351        WARN_ON_ONCE(rq->q->mq_ops);
3352
3353        return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3354}
3355EXPORT_SYMBOL(__blk_end_request);
3356
3357/**
3358 * __blk_end_request_all - Helper function for drives to finish the request.
3359 * @rq: the request to finish
3360 * @error:    block status code
3361 *
3362 * Description:
3363 *     Completely finish @rq.  Must be called with queue lock held.
3364 */
3365void __blk_end_request_all(struct request *rq, blk_status_t error)
3366{
3367        bool pending;
3368        unsigned int bidi_bytes = 0;
3369
3370        lockdep_assert_held(rq->q->queue_lock);
3371        WARN_ON_ONCE(rq->q->mq_ops);
3372
3373        if (unlikely(blk_bidi_rq(rq)))
3374                bidi_bytes = blk_rq_bytes(rq->next_rq);
3375
3376        pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3377        BUG_ON(pending);
3378}
3379EXPORT_SYMBOL(__blk_end_request_all);
3380
3381/**
3382 * __blk_end_request_cur - Helper function to finish the current request chunk.
3383 * @rq: the request to finish the current chunk for
3384 * @error:    block status code
3385 *
3386 * Description:
3387 *     Complete the current consecutively mapped chunk from @rq.  Must
3388 *     be called with queue lock held.
3389 *
3390 * Return:
3391 *     %false - we are done with this request
3392 *     %true  - still buffers pending for this request
3393 */
3394bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3395{
3396        return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3397}
3398EXPORT_SYMBOL(__blk_end_request_cur);
3399
3400void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3401                     struct bio *bio)
3402{
3403        if (bio_has_data(bio))
3404                rq->nr_phys_segments = bio_phys_segments(q, bio);
3405        else if (bio_op(bio) == REQ_OP_DISCARD)
3406                rq->nr_phys_segments = 1;
3407
3408        rq->__data_len = bio->bi_iter.bi_size;
3409        rq->bio = rq->biotail = bio;
3410
3411        if (bio->bi_disk)
3412                rq->rq_disk = bio->bi_disk;
3413}
3414
3415#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3416/**
3417 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3418 * @rq: the request to be flushed
3419 *
3420 * Description:
3421 *     Flush all pages in @rq.
3422 */
3423void rq_flush_dcache_pages(struct request *rq)
3424{
3425        struct req_iterator iter;
3426        struct bio_vec bvec;
3427
3428        rq_for_each_segment(bvec, rq, iter)
3429                flush_dcache_page(bvec.bv_page);
3430}
3431EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3432#endif
3433
3434/**
3435 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3436 * @q : the queue of the device being checked
3437 *
3438 * Description:
3439 *    Check if underlying low-level drivers of a device are busy.
3440 *    If the drivers want to export their busy state, they must set own
3441 *    exporting function using blk_queue_lld_busy() first.
3442 *
3443 *    Basically, this function is used only by request stacking drivers
3444 *    to stop dispatching requests to underlying devices when underlying
3445 *    devices are busy.  This behavior helps more I/O merging on the queue
3446 *    of the request stacking driver and prevents I/O throughput regression
3447 *    on burst I/O load.
3448 *
3449 * Return:
3450 *    0 - Not busy (The request stacking driver should dispatch request)
3451 *    1 - Busy (The request stacking driver should stop dispatching request)
3452 */
3453int blk_lld_busy(struct request_queue *q)
3454{
3455        if (q->lld_busy_fn)
3456                return q->lld_busy_fn(q);
3457
3458        return 0;
3459}
3460EXPORT_SYMBOL_GPL(blk_lld_busy);
3461
3462/**
3463 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3464 * @rq: the clone request to be cleaned up
3465 *
3466 * Description:
3467 *     Free all bios in @rq for a cloned request.
3468 */
3469void blk_rq_unprep_clone(struct request *rq)
3470{
3471        struct bio *bio;
3472
3473        while ((bio = rq->bio) != NULL) {
3474                rq->bio = bio->bi_next;
3475
3476                bio_put(bio);
3477        }
3478}
3479EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3480
3481/*
3482 * Copy attributes of the original request to the clone request.
3483 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3484 */
3485static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3486{
3487        dst->cpu = src->cpu;
3488        dst->__sector = blk_rq_pos(src);
3489        dst->__data_len = blk_rq_bytes(src);
3490        dst->nr_phys_segments = src->nr_phys_segments;
3491        dst->ioprio = src->ioprio;
3492        dst->extra_len = src->extra_len;
3493}
3494
3495/**
3496 * blk_rq_prep_clone - Helper function to setup clone request
3497 * @rq: the request to be setup
3498 * @rq_src: original request to be cloned
3499 * @bs: bio_set that bios for clone are allocated from
3500 * @gfp_mask: memory allocation mask for bio
3501 * @bio_ctr: setup function to be called for each clone bio.
3502 *           Returns %0 for success, non %0 for failure.
3503 * @data: private data to be passed to @bio_ctr
3504 *
3505 * Description:
3506 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3507 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3508 *     are not copied, and copying such parts is the caller's responsibility.
3509 *     Also, pages which the original bios are pointing to are not copied
3510 *     and the cloned bios just point same pages.
3511 *     So cloned bios must be completed before original bios, which means
3512 *     the caller must complete @rq before @rq_src.
3513 */
3514int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3515                      struct bio_set *bs, gfp_t gfp_mask,
3516                      int (*bio_ctr)(struct bio *, struct bio *, void *),
3517                      void *data)
3518{
3519        struct bio *bio, *bio_src;
3520
3521        if (!bs)
3522                bs = fs_bio_set;
3523
3524        __rq_for_each_bio(bio_src, rq_src) {
3525                bio = bio_clone_fast(bio_src, gfp_mask, bs);
3526                if (!bio)
3527                        goto free_and_out;
3528
3529                if (bio_ctr && bio_ctr(bio, bio_src, data))
3530                        goto free_and_out;
3531
3532                if (rq->bio) {
3533                        rq->biotail->bi_next = bio;
3534                        rq->biotail = bio;
3535                } else
3536                        rq->bio = rq->biotail = bio;
3537        }
3538
3539        __blk_rq_prep_clone(rq, rq_src);
3540
3541        return 0;
3542
3543free_and_out:
3544        if (bio)
3545                bio_put(bio);
3546        blk_rq_unprep_clone(rq);
3547
3548        return -ENOMEM;
3549}
3550EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3551
3552int kblockd_schedule_work(struct work_struct *work)
3553{
3554        return queue_work(kblockd_workqueue, work);
3555}
3556EXPORT_SYMBOL(kblockd_schedule_work);
3557
3558int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3559{
3560        return queue_work_on(cpu, kblockd_workqueue, work);
3561}
3562EXPORT_SYMBOL(kblockd_schedule_work_on);
3563
3564int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3565                                unsigned long delay)
3566{
3567        return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3568}
3569EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3570
3571/**
3572 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3573 * @plug:       The &struct blk_plug that needs to be initialized
3574 *
3575 * Description:
3576 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3577 *   pending I/O should the task end up blocking between blk_start_plug() and
3578 *   blk_finish_plug(). This is important from a performance perspective, but
3579 *   also ensures that we don't deadlock. For instance, if the task is blocking
3580 *   for a memory allocation, memory reclaim could end up wanting to free a
3581 *   page belonging to that request that is currently residing in our private
3582 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3583 *   this kind of deadlock.
3584 */
3585void blk_start_plug(struct blk_plug *plug)
3586{
3587        struct task_struct *tsk = current;
3588
3589        /*
3590         * If this is a nested plug, don't actually assign it.
3591         */
3592        if (tsk->plug)
3593                return;
3594
3595        INIT_LIST_HEAD(&plug->list);
3596        INIT_LIST_HEAD(&plug->mq_list);
3597        INIT_LIST_HEAD(&plug->cb_list);
3598        /*
3599         * Store ordering should not be needed here, since a potential
3600         * preempt will imply a full memory barrier
3601         */
3602        tsk->plug = plug;
3603}
3604EXPORT_SYMBOL(blk_start_plug);
3605
3606static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3607{
3608        struct request *rqa = container_of(a, struct request, queuelist);
3609        struct request *rqb = container_of(b, struct request, queuelist);
3610
3611        return !(rqa->q < rqb->q ||
3612                (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3613}
3614
3615/*
3616 * If 'from_schedule' is true, then postpone the dispatch of requests
3617 * until a safe kblockd context. We due this to avoid accidental big
3618 * additional stack usage in driver dispatch, in places where the originally
3619 * plugger did not intend it.
3620 */
3621static void queue_unplugged(struct request_queue *q, unsigned int depth,
3622                            bool from_schedule)
3623        __releases(q->queue_lock)
3624{
3625        lockdep_assert_held(q->queue_lock);
3626
3627        trace_block_unplug(q, depth, !from_schedule);
3628
3629        if (from_schedule)
3630                blk_run_queue_async(q);
3631        else
3632                __blk_run_queue(q);
3633        spin_unlock(q->queue_lock);
3634}
3635
3636static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3637{
3638        LIST_HEAD(callbacks);
3639
3640        while (!list_empty(&plug->cb_list)) {
3641                list_splice_init(&plug->cb_list, &callbacks);
3642
3643                while (!list_empty(&callbacks)) {
3644                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
3645                                                          struct blk_plug_cb,
3646                                                          list);
3647                        list_del(&cb->list);
3648                        cb->callback(cb, from_schedule);
3649                }
3650        }
3651}
3652
3653struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3654                                      int size)
3655{
3656        struct blk_plug *plug = current->plug;
3657        struct blk_plug_cb *cb;
3658
3659        if (!plug)
3660                return NULL;
3661
3662        list_for_each_entry(cb, &plug->cb_list, list)
3663                if (cb->callback == unplug && cb->data == data)
3664                        return cb;
3665
3666        /* Not currently on the callback list */
3667        BUG_ON(size < sizeof(*cb));
3668        cb = kzalloc(size, GFP_ATOMIC);
3669        if (cb) {
3670                cb->data = data;
3671                cb->callback = unplug;
3672                list_add(&cb->list, &plug->cb_list);
3673        }
3674        return cb;
3675}
3676EXPORT_SYMBOL(blk_check_plugged);
3677
3678void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3679{
3680        struct request_queue *q;
3681        unsigned long flags;
3682        struct request *rq;
3683        LIST_HEAD(list);
3684        unsigned int depth;
3685
3686        flush_plug_callbacks(plug, from_schedule);
3687
3688        if (!list_empty(&plug->mq_list))
3689                blk_mq_flush_plug_list(plug, from_schedule);
3690
3691        if (list_empty(&plug->list))
3692                return;
3693
3694        list_splice_init(&plug->list, &list);
3695
3696        list_sort(NULL, &list, plug_rq_cmp);
3697
3698        q = NULL;
3699        depth = 0;
3700
3701        /*
3702         * Save and disable interrupts here, to avoid doing it for every
3703         * queue lock we have to take.
3704         */
3705        local_irq_save(flags);
3706        while (!list_empty(&list)) {
3707                rq = list_entry_rq(list.next);
3708                list_del_init(&rq->queuelist);
3709                BUG_ON(!rq->q);
3710                if (rq->q != q) {
3711                        /*
3712                         * This drops the queue lock
3713                         */
3714                        if (q)
3715                                queue_unplugged(q, depth, from_schedule);
3716                        q = rq->q;
3717                        depth = 0;
3718                        spin_lock(q->queue_lock);
3719                }
3720
3721                /*
3722                 * Short-circuit if @q is dead
3723                 */
3724                if (unlikely(blk_queue_dying(q))) {
3725                        __blk_end_request_all(rq, BLK_STS_IOERR);
3726                        continue;
3727                }
3728
3729                /*
3730                 * rq is already accounted, so use raw insert
3731                 */
3732                if (op_is_flush(rq->cmd_flags))
3733                        __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3734                else
3735                        __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3736
3737                depth++;
3738        }
3739
3740        /*
3741         * This drops the queue lock
3742         */
3743        if (q)
3744                queue_unplugged(q, depth, from_schedule);
3745
3746        local_irq_restore(flags);
3747}
3748
3749void blk_finish_plug(struct blk_plug *plug)
3750{
3751        if (plug != current->plug)
3752                return;
3753        blk_flush_plug_list(plug, false);
3754
3755        current->plug = NULL;
3756}
3757EXPORT_SYMBOL(blk_finish_plug);
3758
3759#ifdef CONFIG_PM
3760/**
3761 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3762 * @q: the queue of the device
3763 * @dev: the device the queue belongs to
3764 *
3765 * Description:
3766 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3767 *    @dev. Drivers that want to take advantage of request-based runtime PM
3768 *    should call this function after @dev has been initialized, and its
3769 *    request queue @q has been allocated, and runtime PM for it can not happen
3770 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3771 *    cases, driver should call this function before any I/O has taken place.
3772 *
3773 *    This function takes care of setting up using auto suspend for the device,
3774 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3775 *    until an updated value is either set by user or by driver. Drivers do
3776 *    not need to touch other autosuspend settings.
3777 *
3778 *    The block layer runtime PM is request based, so only works for drivers
3779 *    that use request as their IO unit instead of those directly use bio's.
3780 */
3781void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3782{
3783        /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3784        if (q->mq_ops)
3785                return;
3786
3787        q->dev = dev;
3788        q->rpm_status = RPM_ACTIVE;
3789        pm_runtime_set_autosuspend_delay(q->dev, -1);
3790        pm_runtime_use_autosuspend(q->dev);
3791}
3792EXPORT_SYMBOL(blk_pm_runtime_init);
3793
3794/**
3795 * blk_pre_runtime_suspend - Pre runtime suspend check
3796 * @q: the queue of the device
3797 *
3798 * Description:
3799 *    This function will check if runtime suspend is allowed for the device
3800 *    by examining if there are any requests pending in the queue. If there
3801 *    are requests pending, the device can not be runtime suspended; otherwise,
3802 *    the queue's status will be updated to SUSPENDING and the driver can
3803 *    proceed to suspend the device.
3804 *
3805 *    For the not allowed case, we mark last busy for the device so that
3806 *    runtime PM core will try to autosuspend it some time later.
3807 *
3808 *    This function should be called near the start of the device's
3809 *    runtime_suspend callback.
3810 *
3811 * Return:
3812 *    0         - OK to runtime suspend the device
3813 *    -EBUSY    - Device should not be runtime suspended
3814 */
3815int blk_pre_runtime_suspend(struct request_queue *q)
3816{
3817        int ret = 0;
3818
3819        if (!q->dev)
3820                return ret;
3821
3822        spin_lock_irq(q->queue_lock);
3823        if (q->nr_pending) {
3824                ret = -EBUSY;
3825                pm_runtime_mark_last_busy(q->dev);
3826        } else {
3827                q->rpm_status = RPM_SUSPENDING;
3828        }
3829        spin_unlock_irq(q->queue_lock);
3830        return ret;
3831}
3832EXPORT_SYMBOL(blk_pre_runtime_suspend);
3833
3834/**
3835 * blk_post_runtime_suspend - Post runtime suspend processing
3836 * @q: the queue of the device
3837 * @err: return value of the device's runtime_suspend function
3838 *
3839 * Description:
3840 *    Update the queue's runtime status according to the return value of the
3841 *    device's runtime suspend function and mark last busy for the device so
3842 *    that PM core will try to auto suspend the device at a later time.
3843 *
3844 *    This function should be called near the end of the device's
3845 *    runtime_suspend callback.
3846 */
3847void blk_post_runtime_suspend(struct request_queue *q, int err)
3848{
3849        if (!q->dev)
3850                return;
3851
3852        spin_lock_irq(q->queue_lock);
3853        if (!err) {
3854                q->rpm_status = RPM_SUSPENDED;
3855        } else {
3856                q->rpm_status = RPM_ACTIVE;
3857                pm_runtime_mark_last_busy(q->dev);
3858        }
3859        spin_unlock_irq(q->queue_lock);
3860}
3861EXPORT_SYMBOL(blk_post_runtime_suspend);
3862
3863/**
3864 * blk_pre_runtime_resume - Pre runtime resume processing
3865 * @q: the queue of the device
3866 *
3867 * Description:
3868 *    Update the queue's runtime status to RESUMING in preparation for the
3869 *    runtime resume of the device.
3870 *
3871 *    This function should be called near the start of the device's
3872 *    runtime_resume callback.
3873 */
3874void blk_pre_runtime_resume(struct request_queue *q)
3875{
3876        if (!q->dev)
3877                return;
3878
3879        spin_lock_irq(q->queue_lock);
3880        q->rpm_status = RPM_RESUMING;
3881        spin_unlock_irq(q->queue_lock);
3882}
3883EXPORT_SYMBOL(blk_pre_runtime_resume);
3884
3885/**
3886 * blk_post_runtime_resume - Post runtime resume processing
3887 * @q: the queue of the device
3888 * @err: return value of the device's runtime_resume function
3889 *
3890 * Description:
3891 *    Update the queue's runtime status according to the return value of the
3892 *    device's runtime_resume function. If it is successfully resumed, process
3893 *    the requests that are queued into the device's queue when it is resuming
3894 *    and then mark last busy and initiate autosuspend for it.
3895 *
3896 *    This function should be called near the end of the device's
3897 *    runtime_resume callback.
3898 */
3899void blk_post_runtime_resume(struct request_queue *q, int err)
3900{
3901        if (!q->dev)
3902                return;
3903
3904        spin_lock_irq(q->queue_lock);
3905        if (!err) {
3906                q->rpm_status = RPM_ACTIVE;
3907                __blk_run_queue(q);
3908                pm_runtime_mark_last_busy(q->dev);
3909                pm_request_autosuspend(q->dev);
3910        } else {
3911                q->rpm_status = RPM_SUSPENDED;
3912        }
3913        spin_unlock_irq(q->queue_lock);
3914}
3915EXPORT_SYMBOL(blk_post_runtime_resume);
3916
3917/**
3918 * blk_set_runtime_active - Force runtime status of the queue to be active
3919 * @q: the queue of the device
3920 *
3921 * If the device is left runtime suspended during system suspend the resume
3922 * hook typically resumes the device and corrects runtime status
3923 * accordingly. However, that does not affect the queue runtime PM status
3924 * which is still "suspended". This prevents processing requests from the
3925 * queue.
3926 *
3927 * This function can be used in driver's resume hook to correct queue
3928 * runtime PM status and re-enable peeking requests from the queue. It
3929 * should be called before first request is added to the queue.
3930 */
3931void blk_set_runtime_active(struct request_queue *q)
3932{
3933        spin_lock_irq(q->queue_lock);
3934        q->rpm_status = RPM_ACTIVE;
3935        pm_runtime_mark_last_busy(q->dev);
3936        pm_request_autosuspend(q->dev);
3937        spin_unlock_irq(q->queue_lock);
3938}
3939EXPORT_SYMBOL(blk_set_runtime_active);
3940#endif
3941
3942int __init blk_dev_init(void)
3943{
3944        BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3945        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3946                        FIELD_SIZEOF(struct request, cmd_flags));
3947        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3948                        FIELD_SIZEOF(struct bio, bi_opf));
3949
3950        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3951        kblockd_workqueue = alloc_workqueue("kblockd",
3952                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3953        if (!kblockd_workqueue)
3954                panic("Failed to create kblockd\n");
3955
3956        request_cachep = kmem_cache_create("blkdev_requests",
3957                        sizeof(struct request), 0, SLAB_PANIC, NULL);
3958
3959        blk_requestq_cachep = kmem_cache_create("request_queue",
3960                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3961
3962#ifdef CONFIG_DEBUG_FS
3963        blk_debugfs_root = debugfs_create_dir("block", NULL);
3964#endif
3965
3966        return 0;
3967}
3968