linux/block/blk-settings.c
<<
>>
Prefs
   1/*
   2 * Functions related to setting various queue properties from drivers
   3 */
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <linux/init.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
  10#include <linux/gcd.h>
  11#include <linux/lcm.h>
  12#include <linux/jiffies.h>
  13#include <linux/gfp.h>
  14
  15#include "blk.h"
  16#include "blk-wbt.h"
  17
  18unsigned long blk_max_low_pfn;
  19EXPORT_SYMBOL(blk_max_low_pfn);
  20
  21unsigned long blk_max_pfn;
  22
  23/**
  24 * blk_queue_prep_rq - set a prepare_request function for queue
  25 * @q:          queue
  26 * @pfn:        prepare_request function
  27 *
  28 * It's possible for a queue to register a prepare_request callback which
  29 * is invoked before the request is handed to the request_fn. The goal of
  30 * the function is to prepare a request for I/O, it can be used to build a
  31 * cdb from the request data for instance.
  32 *
  33 */
  34void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  35{
  36        q->prep_rq_fn = pfn;
  37}
  38EXPORT_SYMBOL(blk_queue_prep_rq);
  39
  40/**
  41 * blk_queue_unprep_rq - set an unprepare_request function for queue
  42 * @q:          queue
  43 * @ufn:        unprepare_request function
  44 *
  45 * It's possible for a queue to register an unprepare_request callback
  46 * which is invoked before the request is finally completed. The goal
  47 * of the function is to deallocate any data that was allocated in the
  48 * prepare_request callback.
  49 *
  50 */
  51void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
  52{
  53        q->unprep_rq_fn = ufn;
  54}
  55EXPORT_SYMBOL(blk_queue_unprep_rq);
  56
  57void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  58{
  59        q->softirq_done_fn = fn;
  60}
  61EXPORT_SYMBOL(blk_queue_softirq_done);
  62
  63void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  64{
  65        q->rq_timeout = timeout;
  66}
  67EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  68
  69void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
  70{
  71        WARN_ON_ONCE(q->mq_ops);
  72        q->rq_timed_out_fn = fn;
  73}
  74EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
  75
  76void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
  77{
  78        q->lld_busy_fn = fn;
  79}
  80EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
  81
  82/**
  83 * blk_set_default_limits - reset limits to default values
  84 * @lim:  the queue_limits structure to reset
  85 *
  86 * Description:
  87 *   Returns a queue_limit struct to its default state.
  88 */
  89void blk_set_default_limits(struct queue_limits *lim)
  90{
  91        lim->max_segments = BLK_MAX_SEGMENTS;
  92        lim->max_discard_segments = 1;
  93        lim->max_integrity_segments = 0;
  94        lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  95        lim->virt_boundary_mask = 0;
  96        lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  97        lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
  98        lim->max_dev_sectors = 0;
  99        lim->chunk_sectors = 0;
 100        lim->max_write_same_sectors = 0;
 101        lim->max_write_zeroes_sectors = 0;
 102        lim->max_discard_sectors = 0;
 103        lim->max_hw_discard_sectors = 0;
 104        lim->discard_granularity = 0;
 105        lim->discard_alignment = 0;
 106        lim->discard_misaligned = 0;
 107        lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 108        lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
 109        lim->alignment_offset = 0;
 110        lim->io_opt = 0;
 111        lim->misaligned = 0;
 112        lim->cluster = 1;
 113        lim->zoned = BLK_ZONED_NONE;
 114}
 115EXPORT_SYMBOL(blk_set_default_limits);
 116
 117/**
 118 * blk_set_stacking_limits - set default limits for stacking devices
 119 * @lim:  the queue_limits structure to reset
 120 *
 121 * Description:
 122 *   Returns a queue_limit struct to its default state. Should be used
 123 *   by stacking drivers like DM that have no internal limits.
 124 */
 125void blk_set_stacking_limits(struct queue_limits *lim)
 126{
 127        blk_set_default_limits(lim);
 128
 129        /* Inherit limits from component devices */
 130        lim->max_segments = USHRT_MAX;
 131        lim->max_discard_segments = 1;
 132        lim->max_hw_sectors = UINT_MAX;
 133        lim->max_segment_size = UINT_MAX;
 134        lim->max_sectors = UINT_MAX;
 135        lim->max_dev_sectors = UINT_MAX;
 136        lim->max_write_same_sectors = UINT_MAX;
 137        lim->max_write_zeroes_sectors = UINT_MAX;
 138}
 139EXPORT_SYMBOL(blk_set_stacking_limits);
 140
 141/**
 142 * blk_queue_make_request - define an alternate make_request function for a device
 143 * @q:  the request queue for the device to be affected
 144 * @mfn: the alternate make_request function
 145 *
 146 * Description:
 147 *    The normal way for &struct bios to be passed to a device
 148 *    driver is for them to be collected into requests on a request
 149 *    queue, and then to allow the device driver to select requests
 150 *    off that queue when it is ready.  This works well for many block
 151 *    devices. However some block devices (typically virtual devices
 152 *    such as md or lvm) do not benefit from the processing on the
 153 *    request queue, and are served best by having the requests passed
 154 *    directly to them.  This can be achieved by providing a function
 155 *    to blk_queue_make_request().
 156 *
 157 * Caveat:
 158 *    The driver that does this *must* be able to deal appropriately
 159 *    with buffers in "highmemory". This can be accomplished by either calling
 160 *    kmap_atomic() to get a temporary kernel mapping, or by calling
 161 *    blk_queue_bounce() to create a buffer in normal memory.
 162 **/
 163void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
 164{
 165        /*
 166         * set defaults
 167         */
 168        q->nr_requests = BLKDEV_MAX_RQ;
 169
 170        q->make_request_fn = mfn;
 171        blk_queue_dma_alignment(q, 511);
 172        blk_queue_congestion_threshold(q);
 173        q->nr_batching = BLK_BATCH_REQ;
 174
 175        blk_set_default_limits(&q->limits);
 176}
 177EXPORT_SYMBOL(blk_queue_make_request);
 178
 179/**
 180 * blk_queue_bounce_limit - set bounce buffer limit for queue
 181 * @q: the request queue for the device
 182 * @max_addr: the maximum address the device can handle
 183 *
 184 * Description:
 185 *    Different hardware can have different requirements as to what pages
 186 *    it can do I/O directly to. A low level driver can call
 187 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
 188 *    buffers for doing I/O to pages residing above @max_addr.
 189 **/
 190void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
 191{
 192        unsigned long b_pfn = max_addr >> PAGE_SHIFT;
 193        int dma = 0;
 194
 195        q->bounce_gfp = GFP_NOIO;
 196#if BITS_PER_LONG == 64
 197        /*
 198         * Assume anything <= 4GB can be handled by IOMMU.  Actually
 199         * some IOMMUs can handle everything, but I don't know of a
 200         * way to test this here.
 201         */
 202        if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
 203                dma = 1;
 204        q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
 205#else
 206        if (b_pfn < blk_max_low_pfn)
 207                dma = 1;
 208        q->limits.bounce_pfn = b_pfn;
 209#endif
 210        if (dma) {
 211                init_emergency_isa_pool();
 212                q->bounce_gfp = GFP_NOIO | GFP_DMA;
 213                q->limits.bounce_pfn = b_pfn;
 214        }
 215}
 216EXPORT_SYMBOL(blk_queue_bounce_limit);
 217
 218/**
 219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 220 * @q:  the request queue for the device
 221 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 222 *
 223 * Description:
 224 *    Enables a low level driver to set a hard upper limit,
 225 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 226 *    the device driver based upon the capabilities of the I/O
 227 *    controller.
 228 *
 229 *    max_dev_sectors is a hard limit imposed by the storage device for
 230 *    READ/WRITE requests. It is set by the disk driver.
 231 *
 232 *    max_sectors is a soft limit imposed by the block layer for
 233 *    filesystem type requests.  This value can be overridden on a
 234 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 235 *    The soft limit can not exceed max_hw_sectors.
 236 **/
 237void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 238{
 239        struct queue_limits *limits = &q->limits;
 240        unsigned int max_sectors;
 241
 242        if ((max_hw_sectors << 9) < PAGE_SIZE) {
 243                max_hw_sectors = 1 << (PAGE_SHIFT - 9);
 244                printk(KERN_INFO "%s: set to minimum %d\n",
 245                       __func__, max_hw_sectors);
 246        }
 247
 248        limits->max_hw_sectors = max_hw_sectors;
 249        max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
 250        max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
 251        limits->max_sectors = max_sectors;
 252        q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 253}
 254EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 255
 256/**
 257 * blk_queue_chunk_sectors - set size of the chunk for this queue
 258 * @q:  the request queue for the device
 259 * @chunk_sectors:  chunk sectors in the usual 512b unit
 260 *
 261 * Description:
 262 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 263 *    this limit and prevent merging across chunks. Note that the chunk size
 264 *    must currently be a power-of-2 in sectors. Also note that the block
 265 *    layer must accept a page worth of data at any offset. So if the
 266 *    crossing of chunks is a hard limitation in the driver, it must still be
 267 *    prepared to split single page bios.
 268 **/
 269void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
 270{
 271        BUG_ON(!is_power_of_2(chunk_sectors));
 272        q->limits.chunk_sectors = chunk_sectors;
 273}
 274EXPORT_SYMBOL(blk_queue_chunk_sectors);
 275
 276/**
 277 * blk_queue_max_discard_sectors - set max sectors for a single discard
 278 * @q:  the request queue for the device
 279 * @max_discard_sectors: maximum number of sectors to discard
 280 **/
 281void blk_queue_max_discard_sectors(struct request_queue *q,
 282                unsigned int max_discard_sectors)
 283{
 284        q->limits.max_hw_discard_sectors = max_discard_sectors;
 285        q->limits.max_discard_sectors = max_discard_sectors;
 286}
 287EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 288
 289/**
 290 * blk_queue_max_write_same_sectors - set max sectors for a single write same
 291 * @q:  the request queue for the device
 292 * @max_write_same_sectors: maximum number of sectors to write per command
 293 **/
 294void blk_queue_max_write_same_sectors(struct request_queue *q,
 295                                      unsigned int max_write_same_sectors)
 296{
 297        q->limits.max_write_same_sectors = max_write_same_sectors;
 298}
 299EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
 300
 301/**
 302 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 303 *                                      write zeroes
 304 * @q:  the request queue for the device
 305 * @max_write_zeroes_sectors: maximum number of sectors to write per command
 306 **/
 307void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
 308                unsigned int max_write_zeroes_sectors)
 309{
 310        q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
 311}
 312EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
 313
 314/**
 315 * blk_queue_max_segments - set max hw segments for a request for this queue
 316 * @q:  the request queue for the device
 317 * @max_segments:  max number of segments
 318 *
 319 * Description:
 320 *    Enables a low level driver to set an upper limit on the number of
 321 *    hw data segments in a request.
 322 **/
 323void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 324{
 325        if (!max_segments) {
 326                max_segments = 1;
 327                printk(KERN_INFO "%s: set to minimum %d\n",
 328                       __func__, max_segments);
 329        }
 330
 331        q->limits.max_segments = max_segments;
 332}
 333EXPORT_SYMBOL(blk_queue_max_segments);
 334
 335/**
 336 * blk_queue_max_discard_segments - set max segments for discard requests
 337 * @q:  the request queue for the device
 338 * @max_segments:  max number of segments
 339 *
 340 * Description:
 341 *    Enables a low level driver to set an upper limit on the number of
 342 *    segments in a discard request.
 343 **/
 344void blk_queue_max_discard_segments(struct request_queue *q,
 345                unsigned short max_segments)
 346{
 347        q->limits.max_discard_segments = max_segments;
 348}
 349EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
 350
 351/**
 352 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 353 * @q:  the request queue for the device
 354 * @max_size:  max size of segment in bytes
 355 *
 356 * Description:
 357 *    Enables a low level driver to set an upper limit on the size of a
 358 *    coalesced segment
 359 **/
 360void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 361{
 362        if (max_size < PAGE_SIZE) {
 363                max_size = PAGE_SIZE;
 364                printk(KERN_INFO "%s: set to minimum %d\n",
 365                       __func__, max_size);
 366        }
 367
 368        q->limits.max_segment_size = max_size;
 369}
 370EXPORT_SYMBOL(blk_queue_max_segment_size);
 371
 372/**
 373 * blk_queue_logical_block_size - set logical block size for the queue
 374 * @q:  the request queue for the device
 375 * @size:  the logical block size, in bytes
 376 *
 377 * Description:
 378 *   This should be set to the lowest possible block size that the
 379 *   storage device can address.  The default of 512 covers most
 380 *   hardware.
 381 **/
 382void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
 383{
 384        q->limits.logical_block_size = size;
 385
 386        if (q->limits.physical_block_size < size)
 387                q->limits.physical_block_size = size;
 388
 389        if (q->limits.io_min < q->limits.physical_block_size)
 390                q->limits.io_min = q->limits.physical_block_size;
 391}
 392EXPORT_SYMBOL(blk_queue_logical_block_size);
 393
 394/**
 395 * blk_queue_physical_block_size - set physical block size for the queue
 396 * @q:  the request queue for the device
 397 * @size:  the physical block size, in bytes
 398 *
 399 * Description:
 400 *   This should be set to the lowest possible sector size that the
 401 *   hardware can operate on without reverting to read-modify-write
 402 *   operations.
 403 */
 404void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 405{
 406        q->limits.physical_block_size = size;
 407
 408        if (q->limits.physical_block_size < q->limits.logical_block_size)
 409                q->limits.physical_block_size = q->limits.logical_block_size;
 410
 411        if (q->limits.io_min < q->limits.physical_block_size)
 412                q->limits.io_min = q->limits.physical_block_size;
 413}
 414EXPORT_SYMBOL(blk_queue_physical_block_size);
 415
 416/**
 417 * blk_queue_alignment_offset - set physical block alignment offset
 418 * @q:  the request queue for the device
 419 * @offset: alignment offset in bytes
 420 *
 421 * Description:
 422 *   Some devices are naturally misaligned to compensate for things like
 423 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 424 *   should call this function for devices whose first sector is not
 425 *   naturally aligned.
 426 */
 427void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 428{
 429        q->limits.alignment_offset =
 430                offset & (q->limits.physical_block_size - 1);
 431        q->limits.misaligned = 0;
 432}
 433EXPORT_SYMBOL(blk_queue_alignment_offset);
 434
 435/**
 436 * blk_limits_io_min - set minimum request size for a device
 437 * @limits: the queue limits
 438 * @min:  smallest I/O size in bytes
 439 *
 440 * Description:
 441 *   Some devices have an internal block size bigger than the reported
 442 *   hardware sector size.  This function can be used to signal the
 443 *   smallest I/O the device can perform without incurring a performance
 444 *   penalty.
 445 */
 446void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 447{
 448        limits->io_min = min;
 449
 450        if (limits->io_min < limits->logical_block_size)
 451                limits->io_min = limits->logical_block_size;
 452
 453        if (limits->io_min < limits->physical_block_size)
 454                limits->io_min = limits->physical_block_size;
 455}
 456EXPORT_SYMBOL(blk_limits_io_min);
 457
 458/**
 459 * blk_queue_io_min - set minimum request size for the queue
 460 * @q:  the request queue for the device
 461 * @min:  smallest I/O size in bytes
 462 *
 463 * Description:
 464 *   Storage devices may report a granularity or preferred minimum I/O
 465 *   size which is the smallest request the device can perform without
 466 *   incurring a performance penalty.  For disk drives this is often the
 467 *   physical block size.  For RAID arrays it is often the stripe chunk
 468 *   size.  A properly aligned multiple of minimum_io_size is the
 469 *   preferred request size for workloads where a high number of I/O
 470 *   operations is desired.
 471 */
 472void blk_queue_io_min(struct request_queue *q, unsigned int min)
 473{
 474        blk_limits_io_min(&q->limits, min);
 475}
 476EXPORT_SYMBOL(blk_queue_io_min);
 477
 478/**
 479 * blk_limits_io_opt - set optimal request size for a device
 480 * @limits: the queue limits
 481 * @opt:  smallest I/O size in bytes
 482 *
 483 * Description:
 484 *   Storage devices may report an optimal I/O size, which is the
 485 *   device's preferred unit for sustained I/O.  This is rarely reported
 486 *   for disk drives.  For RAID arrays it is usually the stripe width or
 487 *   the internal track size.  A properly aligned multiple of
 488 *   optimal_io_size is the preferred request size for workloads where
 489 *   sustained throughput is desired.
 490 */
 491void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 492{
 493        limits->io_opt = opt;
 494}
 495EXPORT_SYMBOL(blk_limits_io_opt);
 496
 497/**
 498 * blk_queue_io_opt - set optimal request size for the queue
 499 * @q:  the request queue for the device
 500 * @opt:  optimal request size in bytes
 501 *
 502 * Description:
 503 *   Storage devices may report an optimal I/O size, which is the
 504 *   device's preferred unit for sustained I/O.  This is rarely reported
 505 *   for disk drives.  For RAID arrays it is usually the stripe width or
 506 *   the internal track size.  A properly aligned multiple of
 507 *   optimal_io_size is the preferred request size for workloads where
 508 *   sustained throughput is desired.
 509 */
 510void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 511{
 512        blk_limits_io_opt(&q->limits, opt);
 513}
 514EXPORT_SYMBOL(blk_queue_io_opt);
 515
 516/**
 517 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 518 * @t:  the stacking driver (top)
 519 * @b:  the underlying device (bottom)
 520 **/
 521void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
 522{
 523        blk_stack_limits(&t->limits, &b->limits, 0);
 524}
 525EXPORT_SYMBOL(blk_queue_stack_limits);
 526
 527/**
 528 * blk_stack_limits - adjust queue_limits for stacked devices
 529 * @t:  the stacking driver limits (top device)
 530 * @b:  the underlying queue limits (bottom, component device)
 531 * @start:  first data sector within component device
 532 *
 533 * Description:
 534 *    This function is used by stacking drivers like MD and DM to ensure
 535 *    that all component devices have compatible block sizes and
 536 *    alignments.  The stacking driver must provide a queue_limits
 537 *    struct (top) and then iteratively call the stacking function for
 538 *    all component (bottom) devices.  The stacking function will
 539 *    attempt to combine the values and ensure proper alignment.
 540 *
 541 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 542 *    top device's block sizes and alignment offsets may be adjusted to
 543 *    ensure alignment with the bottom device. If no compatible sizes
 544 *    and alignments exist, -1 is returned and the resulting top
 545 *    queue_limits will have the misaligned flag set to indicate that
 546 *    the alignment_offset is undefined.
 547 */
 548int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 549                     sector_t start)
 550{
 551        unsigned int top, bottom, alignment, ret = 0;
 552
 553        t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 554        t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 555        t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 556        t->max_write_same_sectors = min(t->max_write_same_sectors,
 557                                        b->max_write_same_sectors);
 558        t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
 559                                        b->max_write_zeroes_sectors);
 560        t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 561
 562        t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 563                                            b->seg_boundary_mask);
 564        t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
 565                                            b->virt_boundary_mask);
 566
 567        t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 568        t->max_discard_segments = min_not_zero(t->max_discard_segments,
 569                                               b->max_discard_segments);
 570        t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 571                                                 b->max_integrity_segments);
 572
 573        t->max_segment_size = min_not_zero(t->max_segment_size,
 574                                           b->max_segment_size);
 575
 576        t->misaligned |= b->misaligned;
 577
 578        alignment = queue_limit_alignment_offset(b, start);
 579
 580        /* Bottom device has different alignment.  Check that it is
 581         * compatible with the current top alignment.
 582         */
 583        if (t->alignment_offset != alignment) {
 584
 585                top = max(t->physical_block_size, t->io_min)
 586                        + t->alignment_offset;
 587                bottom = max(b->physical_block_size, b->io_min) + alignment;
 588
 589                /* Verify that top and bottom intervals line up */
 590                if (max(top, bottom) % min(top, bottom)) {
 591                        t->misaligned = 1;
 592                        ret = -1;
 593                }
 594        }
 595
 596        t->logical_block_size = max(t->logical_block_size,
 597                                    b->logical_block_size);
 598
 599        t->physical_block_size = max(t->physical_block_size,
 600                                     b->physical_block_size);
 601
 602        t->io_min = max(t->io_min, b->io_min);
 603        t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 604
 605        t->cluster &= b->cluster;
 606
 607        /* Physical block size a multiple of the logical block size? */
 608        if (t->physical_block_size & (t->logical_block_size - 1)) {
 609                t->physical_block_size = t->logical_block_size;
 610                t->misaligned = 1;
 611                ret = -1;
 612        }
 613
 614        /* Minimum I/O a multiple of the physical block size? */
 615        if (t->io_min & (t->physical_block_size - 1)) {
 616                t->io_min = t->physical_block_size;
 617                t->misaligned = 1;
 618                ret = -1;
 619        }
 620
 621        /* Optimal I/O a multiple of the physical block size? */
 622        if (t->io_opt & (t->physical_block_size - 1)) {
 623                t->io_opt = 0;
 624                t->misaligned = 1;
 625                ret = -1;
 626        }
 627
 628        t->raid_partial_stripes_expensive =
 629                max(t->raid_partial_stripes_expensive,
 630                    b->raid_partial_stripes_expensive);
 631
 632        /* Find lowest common alignment_offset */
 633        t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
 634                % max(t->physical_block_size, t->io_min);
 635
 636        /* Verify that new alignment_offset is on a logical block boundary */
 637        if (t->alignment_offset & (t->logical_block_size - 1)) {
 638                t->misaligned = 1;
 639                ret = -1;
 640        }
 641
 642        /* Discard alignment and granularity */
 643        if (b->discard_granularity) {
 644                alignment = queue_limit_discard_alignment(b, start);
 645
 646                if (t->discard_granularity != 0 &&
 647                    t->discard_alignment != alignment) {
 648                        top = t->discard_granularity + t->discard_alignment;
 649                        bottom = b->discard_granularity + alignment;
 650
 651                        /* Verify that top and bottom intervals line up */
 652                        if ((max(top, bottom) % min(top, bottom)) != 0)
 653                                t->discard_misaligned = 1;
 654                }
 655
 656                t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 657                                                      b->max_discard_sectors);
 658                t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
 659                                                         b->max_hw_discard_sectors);
 660                t->discard_granularity = max(t->discard_granularity,
 661                                             b->discard_granularity);
 662                t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
 663                        t->discard_granularity;
 664        }
 665
 666        if (b->chunk_sectors)
 667                t->chunk_sectors = min_not_zero(t->chunk_sectors,
 668                                                b->chunk_sectors);
 669
 670        return ret;
 671}
 672EXPORT_SYMBOL(blk_stack_limits);
 673
 674/**
 675 * bdev_stack_limits - adjust queue limits for stacked drivers
 676 * @t:  the stacking driver limits (top device)
 677 * @bdev:  the component block_device (bottom)
 678 * @start:  first data sector within component device
 679 *
 680 * Description:
 681 *    Merges queue limits for a top device and a block_device.  Returns
 682 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 683 *    device caused misalignment.
 684 */
 685int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
 686                      sector_t start)
 687{
 688        struct request_queue *bq = bdev_get_queue(bdev);
 689
 690        start += get_start_sect(bdev);
 691
 692        return blk_stack_limits(t, &bq->limits, start);
 693}
 694EXPORT_SYMBOL(bdev_stack_limits);
 695
 696/**
 697 * disk_stack_limits - adjust queue limits for stacked drivers
 698 * @disk:  MD/DM gendisk (top)
 699 * @bdev:  the underlying block device (bottom)
 700 * @offset:  offset to beginning of data within component device
 701 *
 702 * Description:
 703 *    Merges the limits for a top level gendisk and a bottom level
 704 *    block_device.
 705 */
 706void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
 707                       sector_t offset)
 708{
 709        struct request_queue *t = disk->queue;
 710
 711        if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
 712                char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
 713
 714                disk_name(disk, 0, top);
 715                bdevname(bdev, bottom);
 716
 717                printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
 718                       top, bottom);
 719        }
 720}
 721EXPORT_SYMBOL(disk_stack_limits);
 722
 723/**
 724 * blk_queue_dma_pad - set pad mask
 725 * @q:     the request queue for the device
 726 * @mask:  pad mask
 727 *
 728 * Set dma pad mask.
 729 *
 730 * Appending pad buffer to a request modifies the last entry of a
 731 * scatter list such that it includes the pad buffer.
 732 **/
 733void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
 734{
 735        q->dma_pad_mask = mask;
 736}
 737EXPORT_SYMBOL(blk_queue_dma_pad);
 738
 739/**
 740 * blk_queue_update_dma_pad - update pad mask
 741 * @q:     the request queue for the device
 742 * @mask:  pad mask
 743 *
 744 * Update dma pad mask.
 745 *
 746 * Appending pad buffer to a request modifies the last entry of a
 747 * scatter list such that it includes the pad buffer.
 748 **/
 749void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 750{
 751        if (mask > q->dma_pad_mask)
 752                q->dma_pad_mask = mask;
 753}
 754EXPORT_SYMBOL(blk_queue_update_dma_pad);
 755
 756/**
 757 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 758 * @q:  the request queue for the device
 759 * @dma_drain_needed: fn which returns non-zero if drain is necessary
 760 * @buf:        physically contiguous buffer
 761 * @size:       size of the buffer in bytes
 762 *
 763 * Some devices have excess DMA problems and can't simply discard (or
 764 * zero fill) the unwanted piece of the transfer.  They have to have a
 765 * real area of memory to transfer it into.  The use case for this is
 766 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 767 * bigger than the transfer size some HBAs will lock up if there
 768 * aren't DMA elements to contain the excess transfer.  What this API
 769 * does is adjust the queue so that the buf is always appended
 770 * silently to the scatterlist.
 771 *
 772 * Note: This routine adjusts max_hw_segments to make room for appending
 773 * the drain buffer.  If you call blk_queue_max_segments() after calling
 774 * this routine, you must set the limit to one fewer than your device
 775 * can support otherwise there won't be room for the drain buffer.
 776 */
 777int blk_queue_dma_drain(struct request_queue *q,
 778                               dma_drain_needed_fn *dma_drain_needed,
 779                               void *buf, unsigned int size)
 780{
 781        if (queue_max_segments(q) < 2)
 782                return -EINVAL;
 783        /* make room for appending the drain */
 784        blk_queue_max_segments(q, queue_max_segments(q) - 1);
 785        q->dma_drain_needed = dma_drain_needed;
 786        q->dma_drain_buffer = buf;
 787        q->dma_drain_size = size;
 788
 789        return 0;
 790}
 791EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
 792
 793/**
 794 * blk_queue_segment_boundary - set boundary rules for segment merging
 795 * @q:  the request queue for the device
 796 * @mask:  the memory boundary mask
 797 **/
 798void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 799{
 800        if (mask < PAGE_SIZE - 1) {
 801                mask = PAGE_SIZE - 1;
 802                printk(KERN_INFO "%s: set to minimum %lx\n",
 803                       __func__, mask);
 804        }
 805
 806        q->limits.seg_boundary_mask = mask;
 807}
 808EXPORT_SYMBOL(blk_queue_segment_boundary);
 809
 810/**
 811 * blk_queue_virt_boundary - set boundary rules for bio merging
 812 * @q:  the request queue for the device
 813 * @mask:  the memory boundary mask
 814 **/
 815void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
 816{
 817        q->limits.virt_boundary_mask = mask;
 818}
 819EXPORT_SYMBOL(blk_queue_virt_boundary);
 820
 821/**
 822 * blk_queue_dma_alignment - set dma length and memory alignment
 823 * @q:     the request queue for the device
 824 * @mask:  alignment mask
 825 *
 826 * description:
 827 *    set required memory and length alignment for direct dma transactions.
 828 *    this is used when building direct io requests for the queue.
 829 *
 830 **/
 831void blk_queue_dma_alignment(struct request_queue *q, int mask)
 832{
 833        q->dma_alignment = mask;
 834}
 835EXPORT_SYMBOL(blk_queue_dma_alignment);
 836
 837/**
 838 * blk_queue_update_dma_alignment - update dma length and memory alignment
 839 * @q:     the request queue for the device
 840 * @mask:  alignment mask
 841 *
 842 * description:
 843 *    update required memory and length alignment for direct dma transactions.
 844 *    If the requested alignment is larger than the current alignment, then
 845 *    the current queue alignment is updated to the new value, otherwise it
 846 *    is left alone.  The design of this is to allow multiple objects
 847 *    (driver, device, transport etc) to set their respective
 848 *    alignments without having them interfere.
 849 *
 850 **/
 851void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
 852{
 853        BUG_ON(mask > PAGE_SIZE);
 854
 855        if (mask > q->dma_alignment)
 856                q->dma_alignment = mask;
 857}
 858EXPORT_SYMBOL(blk_queue_update_dma_alignment);
 859
 860void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
 861{
 862        if (queueable)
 863                blk_queue_flag_clear(QUEUE_FLAG_FLUSH_NQ, q);
 864        else
 865                blk_queue_flag_set(QUEUE_FLAG_FLUSH_NQ, q);
 866}
 867EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
 868
 869/**
 870 * blk_set_queue_depth - tell the block layer about the device queue depth
 871 * @q:          the request queue for the device
 872 * @depth:              queue depth
 873 *
 874 */
 875void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
 876{
 877        q->queue_depth = depth;
 878        wbt_set_queue_depth(q->rq_wb, depth);
 879}
 880EXPORT_SYMBOL(blk_set_queue_depth);
 881
 882/**
 883 * blk_queue_write_cache - configure queue's write cache
 884 * @q:          the request queue for the device
 885 * @wc:         write back cache on or off
 886 * @fua:        device supports FUA writes, if true
 887 *
 888 * Tell the block layer about the write cache of @q.
 889 */
 890void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
 891{
 892        spin_lock_irq(q->queue_lock);
 893        if (wc)
 894                queue_flag_set(QUEUE_FLAG_WC, q);
 895        else
 896                queue_flag_clear(QUEUE_FLAG_WC, q);
 897        if (fua)
 898                queue_flag_set(QUEUE_FLAG_FUA, q);
 899        else
 900                queue_flag_clear(QUEUE_FLAG_FUA, q);
 901        spin_unlock_irq(q->queue_lock);
 902
 903        wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
 904}
 905EXPORT_SYMBOL_GPL(blk_queue_write_cache);
 906
 907static int __init blk_settings_init(void)
 908{
 909        blk_max_low_pfn = max_low_pfn - 1;
 910        blk_max_pfn = max_pfn - 1;
 911        return 0;
 912}
 913subsys_initcall(blk_settings_init);
 914