linux/block/blk-throttle.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include <linux/blk-cgroup.h>
  14#include "blk.h"
  15
  16/* Max dispatch from a group in 1 round */
  17static int throtl_grp_quantum = 8;
  18
  19/* Total max dispatch from all groups in one round */
  20static int throtl_quantum = 32;
  21
  22/* Throttling is performed over a slice and after that slice is renewed */
  23#define DFL_THROTL_SLICE_HD (HZ / 10)
  24#define DFL_THROTL_SLICE_SSD (HZ / 50)
  25#define MAX_THROTL_SLICE (HZ)
  26#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  27#define MIN_THROTL_BPS (320 * 1024)
  28#define MIN_THROTL_IOPS (10)
  29#define DFL_LATENCY_TARGET (-1L)
  30#define DFL_IDLE_THRESHOLD (0)
  31#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  32#define LATENCY_FILTERED_SSD (0)
  33/*
  34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  35 * help determine if its IO is impacted by others, hence we ignore the IO
  36 */
  37#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  38
  39#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
  40
  41static struct blkcg_policy blkcg_policy_throtl;
  42
  43/* A workqueue to queue throttle related work */
  44static struct workqueue_struct *kthrotld_workqueue;
  45
  46/*
  47 * To implement hierarchical throttling, throtl_grps form a tree and bios
  48 * are dispatched upwards level by level until they reach the top and get
  49 * issued.  When dispatching bios from the children and local group at each
  50 * level, if the bios are dispatched into a single bio_list, there's a risk
  51 * of a local or child group which can queue many bios at once filling up
  52 * the list starving others.
  53 *
  54 * To avoid such starvation, dispatched bios are queued separately
  55 * according to where they came from.  When they are again dispatched to
  56 * the parent, they're popped in round-robin order so that no single source
  57 * hogs the dispatch window.
  58 *
  59 * throtl_qnode is used to keep the queued bios separated by their sources.
  60 * Bios are queued to throtl_qnode which in turn is queued to
  61 * throtl_service_queue and then dispatched in round-robin order.
  62 *
  63 * It's also used to track the reference counts on blkg's.  A qnode always
  64 * belongs to a throtl_grp and gets queued on itself or the parent, so
  65 * incrementing the reference of the associated throtl_grp when a qnode is
  66 * queued and decrementing when dequeued is enough to keep the whole blkg
  67 * tree pinned while bios are in flight.
  68 */
  69struct throtl_qnode {
  70        struct list_head        node;           /* service_queue->queued[] */
  71        struct bio_list         bios;           /* queued bios */
  72        struct throtl_grp       *tg;            /* tg this qnode belongs to */
  73};
  74
  75struct throtl_service_queue {
  76        struct throtl_service_queue *parent_sq; /* the parent service_queue */
  77
  78        /*
  79         * Bios queued directly to this service_queue or dispatched from
  80         * children throtl_grp's.
  81         */
  82        struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
  83        unsigned int            nr_queued[2];   /* number of queued bios */
  84
  85        /*
  86         * RB tree of active children throtl_grp's, which are sorted by
  87         * their ->disptime.
  88         */
  89        struct rb_root          pending_tree;   /* RB tree of active tgs */
  90        struct rb_node          *first_pending; /* first node in the tree */
  91        unsigned int            nr_pending;     /* # queued in the tree */
  92        unsigned long           first_pending_disptime; /* disptime of the first tg */
  93        struct timer_list       pending_timer;  /* fires on first_pending_disptime */
  94};
  95
  96enum tg_state_flags {
  97        THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
  98        THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
  99};
 100
 101#define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
 102
 103enum {
 104        LIMIT_LOW,
 105        LIMIT_MAX,
 106        LIMIT_CNT,
 107};
 108
 109struct throtl_grp {
 110        /* must be the first member */
 111        struct blkg_policy_data pd;
 112
 113        /* active throtl group service_queue member */
 114        struct rb_node rb_node;
 115
 116        /* throtl_data this group belongs to */
 117        struct throtl_data *td;
 118
 119        /* this group's service queue */
 120        struct throtl_service_queue service_queue;
 121
 122        /*
 123         * qnode_on_self is used when bios are directly queued to this
 124         * throtl_grp so that local bios compete fairly with bios
 125         * dispatched from children.  qnode_on_parent is used when bios are
 126         * dispatched from this throtl_grp into its parent and will compete
 127         * with the sibling qnode_on_parents and the parent's
 128         * qnode_on_self.
 129         */
 130        struct throtl_qnode qnode_on_self[2];
 131        struct throtl_qnode qnode_on_parent[2];
 132
 133        /*
 134         * Dispatch time in jiffies. This is the estimated time when group
 135         * will unthrottle and is ready to dispatch more bio. It is used as
 136         * key to sort active groups in service tree.
 137         */
 138        unsigned long disptime;
 139
 140        unsigned int flags;
 141
 142        /* are there any throtl rules between this group and td? */
 143        bool has_rules[2];
 144
 145        /* internally used bytes per second rate limits */
 146        uint64_t bps[2][LIMIT_CNT];
 147        /* user configured bps limits */
 148        uint64_t bps_conf[2][LIMIT_CNT];
 149
 150        /* internally used IOPS limits */
 151        unsigned int iops[2][LIMIT_CNT];
 152        /* user configured IOPS limits */
 153        unsigned int iops_conf[2][LIMIT_CNT];
 154
 155        /* Number of bytes disptached in current slice */
 156        uint64_t bytes_disp[2];
 157        /* Number of bio's dispatched in current slice */
 158        unsigned int io_disp[2];
 159
 160        unsigned long last_low_overflow_time[2];
 161
 162        uint64_t last_bytes_disp[2];
 163        unsigned int last_io_disp[2];
 164
 165        unsigned long last_check_time;
 166
 167        unsigned long latency_target; /* us */
 168        unsigned long latency_target_conf; /* us */
 169        /* When did we start a new slice */
 170        unsigned long slice_start[2];
 171        unsigned long slice_end[2];
 172
 173        unsigned long last_finish_time; /* ns / 1024 */
 174        unsigned long checked_last_finish_time; /* ns / 1024 */
 175        unsigned long avg_idletime; /* ns / 1024 */
 176        unsigned long idletime_threshold; /* us */
 177        unsigned long idletime_threshold_conf; /* us */
 178
 179        unsigned int bio_cnt; /* total bios */
 180        unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
 181        unsigned long bio_cnt_reset_time;
 182};
 183
 184/* We measure latency for request size from <= 4k to >= 1M */
 185#define LATENCY_BUCKET_SIZE 9
 186
 187struct latency_bucket {
 188        unsigned long total_latency; /* ns / 1024 */
 189        int samples;
 190};
 191
 192struct avg_latency_bucket {
 193        unsigned long latency; /* ns / 1024 */
 194        bool valid;
 195};
 196
 197struct throtl_data
 198{
 199        /* service tree for active throtl groups */
 200        struct throtl_service_queue service_queue;
 201
 202        struct request_queue *queue;
 203
 204        /* Total Number of queued bios on READ and WRITE lists */
 205        unsigned int nr_queued[2];
 206
 207        unsigned int throtl_slice;
 208
 209        /* Work for dispatching throttled bios */
 210        struct work_struct dispatch_work;
 211        unsigned int limit_index;
 212        bool limit_valid[LIMIT_CNT];
 213
 214        unsigned long low_upgrade_time;
 215        unsigned long low_downgrade_time;
 216
 217        unsigned int scale;
 218
 219        struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
 220        struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
 221        struct latency_bucket __percpu *latency_buckets[2];
 222        unsigned long last_calculate_time;
 223        unsigned long filtered_latency;
 224
 225        bool track_bio_latency;
 226};
 227
 228static void throtl_pending_timer_fn(struct timer_list *t);
 229
 230static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 231{
 232        return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 233}
 234
 235static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 236{
 237        return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 238}
 239
 240static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 241{
 242        return pd_to_blkg(&tg->pd);
 243}
 244
 245/**
 246 * sq_to_tg - return the throl_grp the specified service queue belongs to
 247 * @sq: the throtl_service_queue of interest
 248 *
 249 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 250 * embedded in throtl_data, %NULL is returned.
 251 */
 252static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 253{
 254        if (sq && sq->parent_sq)
 255                return container_of(sq, struct throtl_grp, service_queue);
 256        else
 257                return NULL;
 258}
 259
 260/**
 261 * sq_to_td - return throtl_data the specified service queue belongs to
 262 * @sq: the throtl_service_queue of interest
 263 *
 264 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 265 * Determine the associated throtl_data accordingly and return it.
 266 */
 267static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 268{
 269        struct throtl_grp *tg = sq_to_tg(sq);
 270
 271        if (tg)
 272                return tg->td;
 273        else
 274                return container_of(sq, struct throtl_data, service_queue);
 275}
 276
 277/*
 278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 279 * make the IO dispatch more smooth.
 280 * Scale up: linearly scale up according to lapsed time since upgrade. For
 281 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 282 *           limit hits .max limit
 283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 284 */
 285static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 286{
 287        /* arbitrary value to avoid too big scale */
 288        if (td->scale < 4096 && time_after_eq(jiffies,
 289            td->low_upgrade_time + td->scale * td->throtl_slice))
 290                td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 291
 292        return low + (low >> 1) * td->scale;
 293}
 294
 295static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 296{
 297        struct blkcg_gq *blkg = tg_to_blkg(tg);
 298        struct throtl_data *td;
 299        uint64_t ret;
 300
 301        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 302                return U64_MAX;
 303
 304        td = tg->td;
 305        ret = tg->bps[rw][td->limit_index];
 306        if (ret == 0 && td->limit_index == LIMIT_LOW) {
 307                /* intermediate node or iops isn't 0 */
 308                if (!list_empty(&blkg->blkcg->css.children) ||
 309                    tg->iops[rw][td->limit_index])
 310                        return U64_MAX;
 311                else
 312                        return MIN_THROTL_BPS;
 313        }
 314
 315        if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 316            tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 317                uint64_t adjusted;
 318
 319                adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 320                ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 321        }
 322        return ret;
 323}
 324
 325static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 326{
 327        struct blkcg_gq *blkg = tg_to_blkg(tg);
 328        struct throtl_data *td;
 329        unsigned int ret;
 330
 331        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 332                return UINT_MAX;
 333
 334        td = tg->td;
 335        ret = tg->iops[rw][td->limit_index];
 336        if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 337                /* intermediate node or bps isn't 0 */
 338                if (!list_empty(&blkg->blkcg->css.children) ||
 339                    tg->bps[rw][td->limit_index])
 340                        return UINT_MAX;
 341                else
 342                        return MIN_THROTL_IOPS;
 343        }
 344
 345        if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 346            tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 347                uint64_t adjusted;
 348
 349                adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 350                if (adjusted > UINT_MAX)
 351                        adjusted = UINT_MAX;
 352                ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 353        }
 354        return ret;
 355}
 356
 357#define request_bucket_index(sectors) \
 358        clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 359
 360/**
 361 * throtl_log - log debug message via blktrace
 362 * @sq: the service_queue being reported
 363 * @fmt: printf format string
 364 * @args: printf args
 365 *
 366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 367 * throtl_grp; otherwise, just "throtl".
 368 */
 369#define throtl_log(sq, fmt, args...)    do {                            \
 370        struct throtl_grp *__tg = sq_to_tg((sq));                       \
 371        struct throtl_data *__td = sq_to_td((sq));                      \
 372                                                                        \
 373        (void)__td;                                                     \
 374        if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
 375                break;                                                  \
 376        if ((__tg)) {                                                   \
 377                blk_add_cgroup_trace_msg(__td->queue,                   \
 378                        tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
 379        } else {                                                        \
 380                blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
 381        }                                                               \
 382} while (0)
 383
 384static inline unsigned int throtl_bio_data_size(struct bio *bio)
 385{
 386        /* assume it's one sector */
 387        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 388                return 512;
 389        return bio->bi_iter.bi_size;
 390}
 391
 392static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 393{
 394        INIT_LIST_HEAD(&qn->node);
 395        bio_list_init(&qn->bios);
 396        qn->tg = tg;
 397}
 398
 399/**
 400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 401 * @bio: bio being added
 402 * @qn: qnode to add bio to
 403 * @queued: the service_queue->queued[] list @qn belongs to
 404 *
 405 * Add @bio to @qn and put @qn on @queued if it's not already on.
 406 * @qn->tg's reference count is bumped when @qn is activated.  See the
 407 * comment on top of throtl_qnode definition for details.
 408 */
 409static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 410                                 struct list_head *queued)
 411{
 412        bio_list_add(&qn->bios, bio);
 413        if (list_empty(&qn->node)) {
 414                list_add_tail(&qn->node, queued);
 415                blkg_get(tg_to_blkg(qn->tg));
 416        }
 417}
 418
 419/**
 420 * throtl_peek_queued - peek the first bio on a qnode list
 421 * @queued: the qnode list to peek
 422 */
 423static struct bio *throtl_peek_queued(struct list_head *queued)
 424{
 425        struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 426        struct bio *bio;
 427
 428        if (list_empty(queued))
 429                return NULL;
 430
 431        bio = bio_list_peek(&qn->bios);
 432        WARN_ON_ONCE(!bio);
 433        return bio;
 434}
 435
 436/**
 437 * throtl_pop_queued - pop the first bio form a qnode list
 438 * @queued: the qnode list to pop a bio from
 439 * @tg_to_put: optional out argument for throtl_grp to put
 440 *
 441 * Pop the first bio from the qnode list @queued.  After popping, the first
 442 * qnode is removed from @queued if empty or moved to the end of @queued so
 443 * that the popping order is round-robin.
 444 *
 445 * When the first qnode is removed, its associated throtl_grp should be put
 446 * too.  If @tg_to_put is NULL, this function automatically puts it;
 447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 448 * responsible for putting it.
 449 */
 450static struct bio *throtl_pop_queued(struct list_head *queued,
 451                                     struct throtl_grp **tg_to_put)
 452{
 453        struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 454        struct bio *bio;
 455
 456        if (list_empty(queued))
 457                return NULL;
 458
 459        bio = bio_list_pop(&qn->bios);
 460        WARN_ON_ONCE(!bio);
 461
 462        if (bio_list_empty(&qn->bios)) {
 463                list_del_init(&qn->node);
 464                if (tg_to_put)
 465                        *tg_to_put = qn->tg;
 466                else
 467                        blkg_put(tg_to_blkg(qn->tg));
 468        } else {
 469                list_move_tail(&qn->node, queued);
 470        }
 471
 472        return bio;
 473}
 474
 475/* init a service_queue, assumes the caller zeroed it */
 476static void throtl_service_queue_init(struct throtl_service_queue *sq)
 477{
 478        INIT_LIST_HEAD(&sq->queued[0]);
 479        INIT_LIST_HEAD(&sq->queued[1]);
 480        sq->pending_tree = RB_ROOT;
 481        timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 482}
 483
 484static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
 485{
 486        struct throtl_grp *tg;
 487        int rw;
 488
 489        tg = kzalloc_node(sizeof(*tg), gfp, node);
 490        if (!tg)
 491                return NULL;
 492
 493        throtl_service_queue_init(&tg->service_queue);
 494
 495        for (rw = READ; rw <= WRITE; rw++) {
 496                throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 497                throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 498        }
 499
 500        RB_CLEAR_NODE(&tg->rb_node);
 501        tg->bps[READ][LIMIT_MAX] = U64_MAX;
 502        tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 503        tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 504        tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 505        tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 506        tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 507        tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 508        tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 509        /* LIMIT_LOW will have default value 0 */
 510
 511        tg->latency_target = DFL_LATENCY_TARGET;
 512        tg->latency_target_conf = DFL_LATENCY_TARGET;
 513        tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 514        tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 515
 516        return &tg->pd;
 517}
 518
 519static void throtl_pd_init(struct blkg_policy_data *pd)
 520{
 521        struct throtl_grp *tg = pd_to_tg(pd);
 522        struct blkcg_gq *blkg = tg_to_blkg(tg);
 523        struct throtl_data *td = blkg->q->td;
 524        struct throtl_service_queue *sq = &tg->service_queue;
 525
 526        /*
 527         * If on the default hierarchy, we switch to properly hierarchical
 528         * behavior where limits on a given throtl_grp are applied to the
 529         * whole subtree rather than just the group itself.  e.g. If 16M
 530         * read_bps limit is set on the root group, the whole system can't
 531         * exceed 16M for the device.
 532         *
 533         * If not on the default hierarchy, the broken flat hierarchy
 534         * behavior is retained where all throtl_grps are treated as if
 535         * they're all separate root groups right below throtl_data.
 536         * Limits of a group don't interact with limits of other groups
 537         * regardless of the position of the group in the hierarchy.
 538         */
 539        sq->parent_sq = &td->service_queue;
 540        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 541                sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 542        tg->td = td;
 543}
 544
 545/*
 546 * Set has_rules[] if @tg or any of its parents have limits configured.
 547 * This doesn't require walking up to the top of the hierarchy as the
 548 * parent's has_rules[] is guaranteed to be correct.
 549 */
 550static void tg_update_has_rules(struct throtl_grp *tg)
 551{
 552        struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 553        struct throtl_data *td = tg->td;
 554        int rw;
 555
 556        for (rw = READ; rw <= WRITE; rw++)
 557                tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 558                        (td->limit_valid[td->limit_index] &&
 559                         (tg_bps_limit(tg, rw) != U64_MAX ||
 560                          tg_iops_limit(tg, rw) != UINT_MAX));
 561}
 562
 563static void throtl_pd_online(struct blkg_policy_data *pd)
 564{
 565        struct throtl_grp *tg = pd_to_tg(pd);
 566        /*
 567         * We don't want new groups to escape the limits of its ancestors.
 568         * Update has_rules[] after a new group is brought online.
 569         */
 570        tg_update_has_rules(tg);
 571}
 572
 573static void blk_throtl_update_limit_valid(struct throtl_data *td)
 574{
 575        struct cgroup_subsys_state *pos_css;
 576        struct blkcg_gq *blkg;
 577        bool low_valid = false;
 578
 579        rcu_read_lock();
 580        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 581                struct throtl_grp *tg = blkg_to_tg(blkg);
 582
 583                if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 584                    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
 585                        low_valid = true;
 586        }
 587        rcu_read_unlock();
 588
 589        td->limit_valid[LIMIT_LOW] = low_valid;
 590}
 591
 592static void throtl_upgrade_state(struct throtl_data *td);
 593static void throtl_pd_offline(struct blkg_policy_data *pd)
 594{
 595        struct throtl_grp *tg = pd_to_tg(pd);
 596
 597        tg->bps[READ][LIMIT_LOW] = 0;
 598        tg->bps[WRITE][LIMIT_LOW] = 0;
 599        tg->iops[READ][LIMIT_LOW] = 0;
 600        tg->iops[WRITE][LIMIT_LOW] = 0;
 601
 602        blk_throtl_update_limit_valid(tg->td);
 603
 604        if (!tg->td->limit_valid[tg->td->limit_index])
 605                throtl_upgrade_state(tg->td);
 606}
 607
 608static void throtl_pd_free(struct blkg_policy_data *pd)
 609{
 610        struct throtl_grp *tg = pd_to_tg(pd);
 611
 612        del_timer_sync(&tg->service_queue.pending_timer);
 613        kfree(tg);
 614}
 615
 616static struct throtl_grp *
 617throtl_rb_first(struct throtl_service_queue *parent_sq)
 618{
 619        /* Service tree is empty */
 620        if (!parent_sq->nr_pending)
 621                return NULL;
 622
 623        if (!parent_sq->first_pending)
 624                parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
 625
 626        if (parent_sq->first_pending)
 627                return rb_entry_tg(parent_sq->first_pending);
 628
 629        return NULL;
 630}
 631
 632static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 633{
 634        rb_erase(n, root);
 635        RB_CLEAR_NODE(n);
 636}
 637
 638static void throtl_rb_erase(struct rb_node *n,
 639                            struct throtl_service_queue *parent_sq)
 640{
 641        if (parent_sq->first_pending == n)
 642                parent_sq->first_pending = NULL;
 643        rb_erase_init(n, &parent_sq->pending_tree);
 644        --parent_sq->nr_pending;
 645}
 646
 647static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 648{
 649        struct throtl_grp *tg;
 650
 651        tg = throtl_rb_first(parent_sq);
 652        if (!tg)
 653                return;
 654
 655        parent_sq->first_pending_disptime = tg->disptime;
 656}
 657
 658static void tg_service_queue_add(struct throtl_grp *tg)
 659{
 660        struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 661        struct rb_node **node = &parent_sq->pending_tree.rb_node;
 662        struct rb_node *parent = NULL;
 663        struct throtl_grp *__tg;
 664        unsigned long key = tg->disptime;
 665        int left = 1;
 666
 667        while (*node != NULL) {
 668                parent = *node;
 669                __tg = rb_entry_tg(parent);
 670
 671                if (time_before(key, __tg->disptime))
 672                        node = &parent->rb_left;
 673                else {
 674                        node = &parent->rb_right;
 675                        left = 0;
 676                }
 677        }
 678
 679        if (left)
 680                parent_sq->first_pending = &tg->rb_node;
 681
 682        rb_link_node(&tg->rb_node, parent, node);
 683        rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
 684}
 685
 686static void __throtl_enqueue_tg(struct throtl_grp *tg)
 687{
 688        tg_service_queue_add(tg);
 689        tg->flags |= THROTL_TG_PENDING;
 690        tg->service_queue.parent_sq->nr_pending++;
 691}
 692
 693static void throtl_enqueue_tg(struct throtl_grp *tg)
 694{
 695        if (!(tg->flags & THROTL_TG_PENDING))
 696                __throtl_enqueue_tg(tg);
 697}
 698
 699static void __throtl_dequeue_tg(struct throtl_grp *tg)
 700{
 701        throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 702        tg->flags &= ~THROTL_TG_PENDING;
 703}
 704
 705static void throtl_dequeue_tg(struct throtl_grp *tg)
 706{
 707        if (tg->flags & THROTL_TG_PENDING)
 708                __throtl_dequeue_tg(tg);
 709}
 710
 711/* Call with queue lock held */
 712static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 713                                          unsigned long expires)
 714{
 715        unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 716
 717        /*
 718         * Since we are adjusting the throttle limit dynamically, the sleep
 719         * time calculated according to previous limit might be invalid. It's
 720         * possible the cgroup sleep time is very long and no other cgroups
 721         * have IO running so notify the limit changes. Make sure the cgroup
 722         * doesn't sleep too long to avoid the missed notification.
 723         */
 724        if (time_after(expires, max_expire))
 725                expires = max_expire;
 726        mod_timer(&sq->pending_timer, expires);
 727        throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 728                   expires - jiffies, jiffies);
 729}
 730
 731/**
 732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 733 * @sq: the service_queue to schedule dispatch for
 734 * @force: force scheduling
 735 *
 736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 737 * dispatch time of the first pending child.  Returns %true if either timer
 738 * is armed or there's no pending child left.  %false if the current
 739 * dispatch window is still open and the caller should continue
 740 * dispatching.
 741 *
 742 * If @force is %true, the dispatch timer is always scheduled and this
 743 * function is guaranteed to return %true.  This is to be used when the
 744 * caller can't dispatch itself and needs to invoke pending_timer
 745 * unconditionally.  Note that forced scheduling is likely to induce short
 746 * delay before dispatch starts even if @sq->first_pending_disptime is not
 747 * in the future and thus shouldn't be used in hot paths.
 748 */
 749static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 750                                          bool force)
 751{
 752        /* any pending children left? */
 753        if (!sq->nr_pending)
 754                return true;
 755
 756        update_min_dispatch_time(sq);
 757
 758        /* is the next dispatch time in the future? */
 759        if (force || time_after(sq->first_pending_disptime, jiffies)) {
 760                throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 761                return true;
 762        }
 763
 764        /* tell the caller to continue dispatching */
 765        return false;
 766}
 767
 768static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 769                bool rw, unsigned long start)
 770{
 771        tg->bytes_disp[rw] = 0;
 772        tg->io_disp[rw] = 0;
 773
 774        /*
 775         * Previous slice has expired. We must have trimmed it after last
 776         * bio dispatch. That means since start of last slice, we never used
 777         * that bandwidth. Do try to make use of that bandwidth while giving
 778         * credit.
 779         */
 780        if (time_after_eq(start, tg->slice_start[rw]))
 781                tg->slice_start[rw] = start;
 782
 783        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 784        throtl_log(&tg->service_queue,
 785                   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 786                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 787                   tg->slice_end[rw], jiffies);
 788}
 789
 790static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 791{
 792        tg->bytes_disp[rw] = 0;
 793        tg->io_disp[rw] = 0;
 794        tg->slice_start[rw] = jiffies;
 795        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 796        throtl_log(&tg->service_queue,
 797                   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 798                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 799                   tg->slice_end[rw], jiffies);
 800}
 801
 802static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 803                                        unsigned long jiffy_end)
 804{
 805        tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 806}
 807
 808static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 809                                       unsigned long jiffy_end)
 810{
 811        tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 812        throtl_log(&tg->service_queue,
 813                   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 814                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 815                   tg->slice_end[rw], jiffies);
 816}
 817
 818/* Determine if previously allocated or extended slice is complete or not */
 819static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 820{
 821        if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 822                return false;
 823
 824        return 1;
 825}
 826
 827/* Trim the used slices and adjust slice start accordingly */
 828static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 829{
 830        unsigned long nr_slices, time_elapsed, io_trim;
 831        u64 bytes_trim, tmp;
 832
 833        BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 834
 835        /*
 836         * If bps are unlimited (-1), then time slice don't get
 837         * renewed. Don't try to trim the slice if slice is used. A new
 838         * slice will start when appropriate.
 839         */
 840        if (throtl_slice_used(tg, rw))
 841                return;
 842
 843        /*
 844         * A bio has been dispatched. Also adjust slice_end. It might happen
 845         * that initially cgroup limit was very low resulting in high
 846         * slice_end, but later limit was bumped up and bio was dispached
 847         * sooner, then we need to reduce slice_end. A high bogus slice_end
 848         * is bad because it does not allow new slice to start.
 849         */
 850
 851        throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 852
 853        time_elapsed = jiffies - tg->slice_start[rw];
 854
 855        nr_slices = time_elapsed / tg->td->throtl_slice;
 856
 857        if (!nr_slices)
 858                return;
 859        tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
 860        do_div(tmp, HZ);
 861        bytes_trim = tmp;
 862
 863        io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
 864                HZ;
 865
 866        if (!bytes_trim && !io_trim)
 867                return;
 868
 869        if (tg->bytes_disp[rw] >= bytes_trim)
 870                tg->bytes_disp[rw] -= bytes_trim;
 871        else
 872                tg->bytes_disp[rw] = 0;
 873
 874        if (tg->io_disp[rw] >= io_trim)
 875                tg->io_disp[rw] -= io_trim;
 876        else
 877                tg->io_disp[rw] = 0;
 878
 879        tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
 880
 881        throtl_log(&tg->service_queue,
 882                   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 883                   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 884                   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 885}
 886
 887static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 888                                  unsigned long *wait)
 889{
 890        bool rw = bio_data_dir(bio);
 891        unsigned int io_allowed;
 892        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 893        u64 tmp;
 894
 895        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 896
 897        /* Slice has just started. Consider one slice interval */
 898        if (!jiffy_elapsed)
 899                jiffy_elapsed_rnd = tg->td->throtl_slice;
 900
 901        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 902
 903        /*
 904         * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 905         * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 906         * will allow dispatch after 1 second and after that slice should
 907         * have been trimmed.
 908         */
 909
 910        tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
 911        do_div(tmp, HZ);
 912
 913        if (tmp > UINT_MAX)
 914                io_allowed = UINT_MAX;
 915        else
 916                io_allowed = tmp;
 917
 918        if (tg->io_disp[rw] + 1 <= io_allowed) {
 919                if (wait)
 920                        *wait = 0;
 921                return true;
 922        }
 923
 924        /* Calc approx time to dispatch */
 925        jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
 926
 927        if (jiffy_wait > jiffy_elapsed)
 928                jiffy_wait = jiffy_wait - jiffy_elapsed;
 929        else
 930                jiffy_wait = 1;
 931
 932        if (wait)
 933                *wait = jiffy_wait;
 934        return 0;
 935}
 936
 937static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 938                                 unsigned long *wait)
 939{
 940        bool rw = bio_data_dir(bio);
 941        u64 bytes_allowed, extra_bytes, tmp;
 942        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 943        unsigned int bio_size = throtl_bio_data_size(bio);
 944
 945        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 946
 947        /* Slice has just started. Consider one slice interval */
 948        if (!jiffy_elapsed)
 949                jiffy_elapsed_rnd = tg->td->throtl_slice;
 950
 951        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 952
 953        tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
 954        do_div(tmp, HZ);
 955        bytes_allowed = tmp;
 956
 957        if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
 958                if (wait)
 959                        *wait = 0;
 960                return true;
 961        }
 962
 963        /* Calc approx time to dispatch */
 964        extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 965        jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
 966
 967        if (!jiffy_wait)
 968                jiffy_wait = 1;
 969
 970        /*
 971         * This wait time is without taking into consideration the rounding
 972         * up we did. Add that time also.
 973         */
 974        jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 975        if (wait)
 976                *wait = jiffy_wait;
 977        return 0;
 978}
 979
 980/*
 981 * Returns whether one can dispatch a bio or not. Also returns approx number
 982 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 983 */
 984static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 985                            unsigned long *wait)
 986{
 987        bool rw = bio_data_dir(bio);
 988        unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 989
 990        /*
 991         * Currently whole state machine of group depends on first bio
 992         * queued in the group bio list. So one should not be calling
 993         * this function with a different bio if there are other bios
 994         * queued.
 995         */
 996        BUG_ON(tg->service_queue.nr_queued[rw] &&
 997               bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 998
 999        /* If tg->bps = -1, then BW is unlimited */
1000        if (tg_bps_limit(tg, rw) == U64_MAX &&
1001            tg_iops_limit(tg, rw) == UINT_MAX) {
1002                if (wait)
1003                        *wait = 0;
1004                return true;
1005        }
1006
1007        /*
1008         * If previous slice expired, start a new one otherwise renew/extend
1009         * existing slice to make sure it is at least throtl_slice interval
1010         * long since now. New slice is started only for empty throttle group.
1011         * If there is queued bio, that means there should be an active
1012         * slice and it should be extended instead.
1013         */
1014        if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1015                throtl_start_new_slice(tg, rw);
1016        else {
1017                if (time_before(tg->slice_end[rw],
1018                    jiffies + tg->td->throtl_slice))
1019                        throtl_extend_slice(tg, rw,
1020                                jiffies + tg->td->throtl_slice);
1021        }
1022
1023        if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1024            tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1025                if (wait)
1026                        *wait = 0;
1027                return 1;
1028        }
1029
1030        max_wait = max(bps_wait, iops_wait);
1031
1032        if (wait)
1033                *wait = max_wait;
1034
1035        if (time_before(tg->slice_end[rw], jiffies + max_wait))
1036                throtl_extend_slice(tg, rw, jiffies + max_wait);
1037
1038        return 0;
1039}
1040
1041static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1042{
1043        bool rw = bio_data_dir(bio);
1044        unsigned int bio_size = throtl_bio_data_size(bio);
1045
1046        /* Charge the bio to the group */
1047        tg->bytes_disp[rw] += bio_size;
1048        tg->io_disp[rw]++;
1049        tg->last_bytes_disp[rw] += bio_size;
1050        tg->last_io_disp[rw]++;
1051
1052        /*
1053         * BIO_THROTTLED is used to prevent the same bio to be throttled
1054         * more than once as a throttled bio will go through blk-throtl the
1055         * second time when it eventually gets issued.  Set it when a bio
1056         * is being charged to a tg.
1057         */
1058        if (!bio_flagged(bio, BIO_THROTTLED))
1059                bio_set_flag(bio, BIO_THROTTLED);
1060}
1061
1062/**
1063 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1064 * @bio: bio to add
1065 * @qn: qnode to use
1066 * @tg: the target throtl_grp
1067 *
1068 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1069 * tg->qnode_on_self[] is used.
1070 */
1071static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1072                              struct throtl_grp *tg)
1073{
1074        struct throtl_service_queue *sq = &tg->service_queue;
1075        bool rw = bio_data_dir(bio);
1076
1077        if (!qn)
1078                qn = &tg->qnode_on_self[rw];
1079
1080        /*
1081         * If @tg doesn't currently have any bios queued in the same
1082         * direction, queueing @bio can change when @tg should be
1083         * dispatched.  Mark that @tg was empty.  This is automatically
1084         * cleaered on the next tg_update_disptime().
1085         */
1086        if (!sq->nr_queued[rw])
1087                tg->flags |= THROTL_TG_WAS_EMPTY;
1088
1089        throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1090
1091        sq->nr_queued[rw]++;
1092        throtl_enqueue_tg(tg);
1093}
1094
1095static void tg_update_disptime(struct throtl_grp *tg)
1096{
1097        struct throtl_service_queue *sq = &tg->service_queue;
1098        unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1099        struct bio *bio;
1100
1101        bio = throtl_peek_queued(&sq->queued[READ]);
1102        if (bio)
1103                tg_may_dispatch(tg, bio, &read_wait);
1104
1105        bio = throtl_peek_queued(&sq->queued[WRITE]);
1106        if (bio)
1107                tg_may_dispatch(tg, bio, &write_wait);
1108
1109        min_wait = min(read_wait, write_wait);
1110        disptime = jiffies + min_wait;
1111
1112        /* Update dispatch time */
1113        throtl_dequeue_tg(tg);
1114        tg->disptime = disptime;
1115        throtl_enqueue_tg(tg);
1116
1117        /* see throtl_add_bio_tg() */
1118        tg->flags &= ~THROTL_TG_WAS_EMPTY;
1119}
1120
1121static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1122                                        struct throtl_grp *parent_tg, bool rw)
1123{
1124        if (throtl_slice_used(parent_tg, rw)) {
1125                throtl_start_new_slice_with_credit(parent_tg, rw,
1126                                child_tg->slice_start[rw]);
1127        }
1128
1129}
1130
1131static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1132{
1133        struct throtl_service_queue *sq = &tg->service_queue;
1134        struct throtl_service_queue *parent_sq = sq->parent_sq;
1135        struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1136        struct throtl_grp *tg_to_put = NULL;
1137        struct bio *bio;
1138
1139        /*
1140         * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1141         * from @tg may put its reference and @parent_sq might end up
1142         * getting released prematurely.  Remember the tg to put and put it
1143         * after @bio is transferred to @parent_sq.
1144         */
1145        bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1146        sq->nr_queued[rw]--;
1147
1148        throtl_charge_bio(tg, bio);
1149
1150        /*
1151         * If our parent is another tg, we just need to transfer @bio to
1152         * the parent using throtl_add_bio_tg().  If our parent is
1153         * @td->service_queue, @bio is ready to be issued.  Put it on its
1154         * bio_lists[] and decrease total number queued.  The caller is
1155         * responsible for issuing these bios.
1156         */
1157        if (parent_tg) {
1158                throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1159                start_parent_slice_with_credit(tg, parent_tg, rw);
1160        } else {
1161                throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1162                                     &parent_sq->queued[rw]);
1163                BUG_ON(tg->td->nr_queued[rw] <= 0);
1164                tg->td->nr_queued[rw]--;
1165        }
1166
1167        throtl_trim_slice(tg, rw);
1168
1169        if (tg_to_put)
1170                blkg_put(tg_to_blkg(tg_to_put));
1171}
1172
1173static int throtl_dispatch_tg(struct throtl_grp *tg)
1174{
1175        struct throtl_service_queue *sq = &tg->service_queue;
1176        unsigned int nr_reads = 0, nr_writes = 0;
1177        unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1178        unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1179        struct bio *bio;
1180
1181        /* Try to dispatch 75% READS and 25% WRITES */
1182
1183        while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1184               tg_may_dispatch(tg, bio, NULL)) {
1185
1186                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1187                nr_reads++;
1188
1189                if (nr_reads >= max_nr_reads)
1190                        break;
1191        }
1192
1193        while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1194               tg_may_dispatch(tg, bio, NULL)) {
1195
1196                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1197                nr_writes++;
1198
1199                if (nr_writes >= max_nr_writes)
1200                        break;
1201        }
1202
1203        return nr_reads + nr_writes;
1204}
1205
1206static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1207{
1208        unsigned int nr_disp = 0;
1209
1210        while (1) {
1211                struct throtl_grp *tg = throtl_rb_first(parent_sq);
1212                struct throtl_service_queue *sq = &tg->service_queue;
1213
1214                if (!tg)
1215                        break;
1216
1217                if (time_before(jiffies, tg->disptime))
1218                        break;
1219
1220                throtl_dequeue_tg(tg);
1221
1222                nr_disp += throtl_dispatch_tg(tg);
1223
1224                if (sq->nr_queued[0] || sq->nr_queued[1])
1225                        tg_update_disptime(tg);
1226
1227                if (nr_disp >= throtl_quantum)
1228                        break;
1229        }
1230
1231        return nr_disp;
1232}
1233
1234static bool throtl_can_upgrade(struct throtl_data *td,
1235        struct throtl_grp *this_tg);
1236/**
1237 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1238 * @arg: the throtl_service_queue being serviced
1239 *
1240 * This timer is armed when a child throtl_grp with active bio's become
1241 * pending and queued on the service_queue's pending_tree and expires when
1242 * the first child throtl_grp should be dispatched.  This function
1243 * dispatches bio's from the children throtl_grps to the parent
1244 * service_queue.
1245 *
1246 * If the parent's parent is another throtl_grp, dispatching is propagated
1247 * by either arming its pending_timer or repeating dispatch directly.  If
1248 * the top-level service_tree is reached, throtl_data->dispatch_work is
1249 * kicked so that the ready bio's are issued.
1250 */
1251static void throtl_pending_timer_fn(struct timer_list *t)
1252{
1253        struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1254        struct throtl_grp *tg = sq_to_tg(sq);
1255        struct throtl_data *td = sq_to_td(sq);
1256        struct request_queue *q = td->queue;
1257        struct throtl_service_queue *parent_sq;
1258        bool dispatched;
1259        int ret;
1260
1261        spin_lock_irq(q->queue_lock);
1262        if (throtl_can_upgrade(td, NULL))
1263                throtl_upgrade_state(td);
1264
1265again:
1266        parent_sq = sq->parent_sq;
1267        dispatched = false;
1268
1269        while (true) {
1270                throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1271                           sq->nr_queued[READ] + sq->nr_queued[WRITE],
1272                           sq->nr_queued[READ], sq->nr_queued[WRITE]);
1273
1274                ret = throtl_select_dispatch(sq);
1275                if (ret) {
1276                        throtl_log(sq, "bios disp=%u", ret);
1277                        dispatched = true;
1278                }
1279
1280                if (throtl_schedule_next_dispatch(sq, false))
1281                        break;
1282
1283                /* this dispatch windows is still open, relax and repeat */
1284                spin_unlock_irq(q->queue_lock);
1285                cpu_relax();
1286                spin_lock_irq(q->queue_lock);
1287        }
1288
1289        if (!dispatched)
1290                goto out_unlock;
1291
1292        if (parent_sq) {
1293                /* @parent_sq is another throl_grp, propagate dispatch */
1294                if (tg->flags & THROTL_TG_WAS_EMPTY) {
1295                        tg_update_disptime(tg);
1296                        if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1297                                /* window is already open, repeat dispatching */
1298                                sq = parent_sq;
1299                                tg = sq_to_tg(sq);
1300                                goto again;
1301                        }
1302                }
1303        } else {
1304                /* reached the top-level, queue issueing */
1305                queue_work(kthrotld_workqueue, &td->dispatch_work);
1306        }
1307out_unlock:
1308        spin_unlock_irq(q->queue_lock);
1309}
1310
1311/**
1312 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1313 * @work: work item being executed
1314 *
1315 * This function is queued for execution when bio's reach the bio_lists[]
1316 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1317 * function.
1318 */
1319static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1320{
1321        struct throtl_data *td = container_of(work, struct throtl_data,
1322                                              dispatch_work);
1323        struct throtl_service_queue *td_sq = &td->service_queue;
1324        struct request_queue *q = td->queue;
1325        struct bio_list bio_list_on_stack;
1326        struct bio *bio;
1327        struct blk_plug plug;
1328        int rw;
1329
1330        bio_list_init(&bio_list_on_stack);
1331
1332        spin_lock_irq(q->queue_lock);
1333        for (rw = READ; rw <= WRITE; rw++)
1334                while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1335                        bio_list_add(&bio_list_on_stack, bio);
1336        spin_unlock_irq(q->queue_lock);
1337
1338        if (!bio_list_empty(&bio_list_on_stack)) {
1339                blk_start_plug(&plug);
1340                while((bio = bio_list_pop(&bio_list_on_stack)))
1341                        generic_make_request(bio);
1342                blk_finish_plug(&plug);
1343        }
1344}
1345
1346static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1347                              int off)
1348{
1349        struct throtl_grp *tg = pd_to_tg(pd);
1350        u64 v = *(u64 *)((void *)tg + off);
1351
1352        if (v == U64_MAX)
1353                return 0;
1354        return __blkg_prfill_u64(sf, pd, v);
1355}
1356
1357static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1358                               int off)
1359{
1360        struct throtl_grp *tg = pd_to_tg(pd);
1361        unsigned int v = *(unsigned int *)((void *)tg + off);
1362
1363        if (v == UINT_MAX)
1364                return 0;
1365        return __blkg_prfill_u64(sf, pd, v);
1366}
1367
1368static int tg_print_conf_u64(struct seq_file *sf, void *v)
1369{
1370        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1371                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1372        return 0;
1373}
1374
1375static int tg_print_conf_uint(struct seq_file *sf, void *v)
1376{
1377        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1378                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1379        return 0;
1380}
1381
1382static void tg_conf_updated(struct throtl_grp *tg, bool global)
1383{
1384        struct throtl_service_queue *sq = &tg->service_queue;
1385        struct cgroup_subsys_state *pos_css;
1386        struct blkcg_gq *blkg;
1387
1388        throtl_log(&tg->service_queue,
1389                   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1390                   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1391                   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1392
1393        /*
1394         * Update has_rules[] flags for the updated tg's subtree.  A tg is
1395         * considered to have rules if either the tg itself or any of its
1396         * ancestors has rules.  This identifies groups without any
1397         * restrictions in the whole hierarchy and allows them to bypass
1398         * blk-throttle.
1399         */
1400        blkg_for_each_descendant_pre(blkg, pos_css,
1401                        global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1402                struct throtl_grp *this_tg = blkg_to_tg(blkg);
1403                struct throtl_grp *parent_tg;
1404
1405                tg_update_has_rules(this_tg);
1406                /* ignore root/second level */
1407                if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1408                    !blkg->parent->parent)
1409                        continue;
1410                parent_tg = blkg_to_tg(blkg->parent);
1411                /*
1412                 * make sure all children has lower idle time threshold and
1413                 * higher latency target
1414                 */
1415                this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1416                                parent_tg->idletime_threshold);
1417                this_tg->latency_target = max(this_tg->latency_target,
1418                                parent_tg->latency_target);
1419        }
1420
1421        /*
1422         * We're already holding queue_lock and know @tg is valid.  Let's
1423         * apply the new config directly.
1424         *
1425         * Restart the slices for both READ and WRITES. It might happen
1426         * that a group's limit are dropped suddenly and we don't want to
1427         * account recently dispatched IO with new low rate.
1428         */
1429        throtl_start_new_slice(tg, 0);
1430        throtl_start_new_slice(tg, 1);
1431
1432        if (tg->flags & THROTL_TG_PENDING) {
1433                tg_update_disptime(tg);
1434                throtl_schedule_next_dispatch(sq->parent_sq, true);
1435        }
1436}
1437
1438static ssize_t tg_set_conf(struct kernfs_open_file *of,
1439                           char *buf, size_t nbytes, loff_t off, bool is_u64)
1440{
1441        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1442        struct blkg_conf_ctx ctx;
1443        struct throtl_grp *tg;
1444        int ret;
1445        u64 v;
1446
1447        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1448        if (ret)
1449                return ret;
1450
1451        ret = -EINVAL;
1452        if (sscanf(ctx.body, "%llu", &v) != 1)
1453                goto out_finish;
1454        if (!v)
1455                v = U64_MAX;
1456
1457        tg = blkg_to_tg(ctx.blkg);
1458
1459        if (is_u64)
1460                *(u64 *)((void *)tg + of_cft(of)->private) = v;
1461        else
1462                *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1463
1464        tg_conf_updated(tg, false);
1465        ret = 0;
1466out_finish:
1467        blkg_conf_finish(&ctx);
1468        return ret ?: nbytes;
1469}
1470
1471static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1472                               char *buf, size_t nbytes, loff_t off)
1473{
1474        return tg_set_conf(of, buf, nbytes, off, true);
1475}
1476
1477static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1478                                char *buf, size_t nbytes, loff_t off)
1479{
1480        return tg_set_conf(of, buf, nbytes, off, false);
1481}
1482
1483static struct cftype throtl_legacy_files[] = {
1484        {
1485                .name = "throttle.read_bps_device",
1486                .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1487                .seq_show = tg_print_conf_u64,
1488                .write = tg_set_conf_u64,
1489        },
1490        {
1491                .name = "throttle.write_bps_device",
1492                .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1493                .seq_show = tg_print_conf_u64,
1494                .write = tg_set_conf_u64,
1495        },
1496        {
1497                .name = "throttle.read_iops_device",
1498                .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1499                .seq_show = tg_print_conf_uint,
1500                .write = tg_set_conf_uint,
1501        },
1502        {
1503                .name = "throttle.write_iops_device",
1504                .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1505                .seq_show = tg_print_conf_uint,
1506                .write = tg_set_conf_uint,
1507        },
1508        {
1509                .name = "throttle.io_service_bytes",
1510                .private = (unsigned long)&blkcg_policy_throtl,
1511                .seq_show = blkg_print_stat_bytes,
1512        },
1513        {
1514                .name = "throttle.io_service_bytes_recursive",
1515                .private = (unsigned long)&blkcg_policy_throtl,
1516                .seq_show = blkg_print_stat_bytes_recursive,
1517        },
1518        {
1519                .name = "throttle.io_serviced",
1520                .private = (unsigned long)&blkcg_policy_throtl,
1521                .seq_show = blkg_print_stat_ios,
1522        },
1523        {
1524                .name = "throttle.io_serviced_recursive",
1525                .private = (unsigned long)&blkcg_policy_throtl,
1526                .seq_show = blkg_print_stat_ios_recursive,
1527        },
1528        { }     /* terminate */
1529};
1530
1531static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1532                         int off)
1533{
1534        struct throtl_grp *tg = pd_to_tg(pd);
1535        const char *dname = blkg_dev_name(pd->blkg);
1536        char bufs[4][21] = { "max", "max", "max", "max" };
1537        u64 bps_dft;
1538        unsigned int iops_dft;
1539        char idle_time[26] = "";
1540        char latency_time[26] = "";
1541
1542        if (!dname)
1543                return 0;
1544
1545        if (off == LIMIT_LOW) {
1546                bps_dft = 0;
1547                iops_dft = 0;
1548        } else {
1549                bps_dft = U64_MAX;
1550                iops_dft = UINT_MAX;
1551        }
1552
1553        if (tg->bps_conf[READ][off] == bps_dft &&
1554            tg->bps_conf[WRITE][off] == bps_dft &&
1555            tg->iops_conf[READ][off] == iops_dft &&
1556            tg->iops_conf[WRITE][off] == iops_dft &&
1557            (off != LIMIT_LOW ||
1558             (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1559              tg->latency_target_conf == DFL_LATENCY_TARGET)))
1560                return 0;
1561
1562        if (tg->bps_conf[READ][off] != U64_MAX)
1563                snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1564                        tg->bps_conf[READ][off]);
1565        if (tg->bps_conf[WRITE][off] != U64_MAX)
1566                snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1567                        tg->bps_conf[WRITE][off]);
1568        if (tg->iops_conf[READ][off] != UINT_MAX)
1569                snprintf(bufs[2], sizeof(bufs[2]), "%u",
1570                        tg->iops_conf[READ][off]);
1571        if (tg->iops_conf[WRITE][off] != UINT_MAX)
1572                snprintf(bufs[3], sizeof(bufs[3]), "%u",
1573                        tg->iops_conf[WRITE][off]);
1574        if (off == LIMIT_LOW) {
1575                if (tg->idletime_threshold_conf == ULONG_MAX)
1576                        strcpy(idle_time, " idle=max");
1577                else
1578                        snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1579                                tg->idletime_threshold_conf);
1580
1581                if (tg->latency_target_conf == ULONG_MAX)
1582                        strcpy(latency_time, " latency=max");
1583                else
1584                        snprintf(latency_time, sizeof(latency_time),
1585                                " latency=%lu", tg->latency_target_conf);
1586        }
1587
1588        seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1589                   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1590                   latency_time);
1591        return 0;
1592}
1593
1594static int tg_print_limit(struct seq_file *sf, void *v)
1595{
1596        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1597                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1598        return 0;
1599}
1600
1601static ssize_t tg_set_limit(struct kernfs_open_file *of,
1602                          char *buf, size_t nbytes, loff_t off)
1603{
1604        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1605        struct blkg_conf_ctx ctx;
1606        struct throtl_grp *tg;
1607        u64 v[4];
1608        unsigned long idle_time;
1609        unsigned long latency_time;
1610        int ret;
1611        int index = of_cft(of)->private;
1612
1613        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1614        if (ret)
1615                return ret;
1616
1617        tg = blkg_to_tg(ctx.blkg);
1618
1619        v[0] = tg->bps_conf[READ][index];
1620        v[1] = tg->bps_conf[WRITE][index];
1621        v[2] = tg->iops_conf[READ][index];
1622        v[3] = tg->iops_conf[WRITE][index];
1623
1624        idle_time = tg->idletime_threshold_conf;
1625        latency_time = tg->latency_target_conf;
1626        while (true) {
1627                char tok[27];   /* wiops=18446744073709551616 */
1628                char *p;
1629                u64 val = U64_MAX;
1630                int len;
1631
1632                if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1633                        break;
1634                if (tok[0] == '\0')
1635                        break;
1636                ctx.body += len;
1637
1638                ret = -EINVAL;
1639                p = tok;
1640                strsep(&p, "=");
1641                if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1642                        goto out_finish;
1643
1644                ret = -ERANGE;
1645                if (!val)
1646                        goto out_finish;
1647
1648                ret = -EINVAL;
1649                if (!strcmp(tok, "rbps"))
1650                        v[0] = val;
1651                else if (!strcmp(tok, "wbps"))
1652                        v[1] = val;
1653                else if (!strcmp(tok, "riops"))
1654                        v[2] = min_t(u64, val, UINT_MAX);
1655                else if (!strcmp(tok, "wiops"))
1656                        v[3] = min_t(u64, val, UINT_MAX);
1657                else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1658                        idle_time = val;
1659                else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1660                        latency_time = val;
1661                else
1662                        goto out_finish;
1663        }
1664
1665        tg->bps_conf[READ][index] = v[0];
1666        tg->bps_conf[WRITE][index] = v[1];
1667        tg->iops_conf[READ][index] = v[2];
1668        tg->iops_conf[WRITE][index] = v[3];
1669
1670        if (index == LIMIT_MAX) {
1671                tg->bps[READ][index] = v[0];
1672                tg->bps[WRITE][index] = v[1];
1673                tg->iops[READ][index] = v[2];
1674                tg->iops[WRITE][index] = v[3];
1675        }
1676        tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1677                tg->bps_conf[READ][LIMIT_MAX]);
1678        tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1679                tg->bps_conf[WRITE][LIMIT_MAX]);
1680        tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1681                tg->iops_conf[READ][LIMIT_MAX]);
1682        tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1683                tg->iops_conf[WRITE][LIMIT_MAX]);
1684        tg->idletime_threshold_conf = idle_time;
1685        tg->latency_target_conf = latency_time;
1686
1687        /* force user to configure all settings for low limit  */
1688        if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1689              tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1690            tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1691            tg->latency_target_conf == DFL_LATENCY_TARGET) {
1692                tg->bps[READ][LIMIT_LOW] = 0;
1693                tg->bps[WRITE][LIMIT_LOW] = 0;
1694                tg->iops[READ][LIMIT_LOW] = 0;
1695                tg->iops[WRITE][LIMIT_LOW] = 0;
1696                tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1697                tg->latency_target = DFL_LATENCY_TARGET;
1698        } else if (index == LIMIT_LOW) {
1699                tg->idletime_threshold = tg->idletime_threshold_conf;
1700                tg->latency_target = tg->latency_target_conf;
1701        }
1702
1703        blk_throtl_update_limit_valid(tg->td);
1704        if (tg->td->limit_valid[LIMIT_LOW]) {
1705                if (index == LIMIT_LOW)
1706                        tg->td->limit_index = LIMIT_LOW;
1707        } else
1708                tg->td->limit_index = LIMIT_MAX;
1709        tg_conf_updated(tg, index == LIMIT_LOW &&
1710                tg->td->limit_valid[LIMIT_LOW]);
1711        ret = 0;
1712out_finish:
1713        blkg_conf_finish(&ctx);
1714        return ret ?: nbytes;
1715}
1716
1717static struct cftype throtl_files[] = {
1718#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1719        {
1720                .name = "low",
1721                .flags = CFTYPE_NOT_ON_ROOT,
1722                .seq_show = tg_print_limit,
1723                .write = tg_set_limit,
1724                .private = LIMIT_LOW,
1725        },
1726#endif
1727        {
1728                .name = "max",
1729                .flags = CFTYPE_NOT_ON_ROOT,
1730                .seq_show = tg_print_limit,
1731                .write = tg_set_limit,
1732                .private = LIMIT_MAX,
1733        },
1734        { }     /* terminate */
1735};
1736
1737static void throtl_shutdown_wq(struct request_queue *q)
1738{
1739        struct throtl_data *td = q->td;
1740
1741        cancel_work_sync(&td->dispatch_work);
1742}
1743
1744static struct blkcg_policy blkcg_policy_throtl = {
1745        .dfl_cftypes            = throtl_files,
1746        .legacy_cftypes         = throtl_legacy_files,
1747
1748        .pd_alloc_fn            = throtl_pd_alloc,
1749        .pd_init_fn             = throtl_pd_init,
1750        .pd_online_fn           = throtl_pd_online,
1751        .pd_offline_fn          = throtl_pd_offline,
1752        .pd_free_fn             = throtl_pd_free,
1753};
1754
1755static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1756{
1757        unsigned long rtime = jiffies, wtime = jiffies;
1758
1759        if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1760                rtime = tg->last_low_overflow_time[READ];
1761        if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1762                wtime = tg->last_low_overflow_time[WRITE];
1763        return min(rtime, wtime);
1764}
1765
1766/* tg should not be an intermediate node */
1767static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1768{
1769        struct throtl_service_queue *parent_sq;
1770        struct throtl_grp *parent = tg;
1771        unsigned long ret = __tg_last_low_overflow_time(tg);
1772
1773        while (true) {
1774                parent_sq = parent->service_queue.parent_sq;
1775                parent = sq_to_tg(parent_sq);
1776                if (!parent)
1777                        break;
1778
1779                /*
1780                 * The parent doesn't have low limit, it always reaches low
1781                 * limit. Its overflow time is useless for children
1782                 */
1783                if (!parent->bps[READ][LIMIT_LOW] &&
1784                    !parent->iops[READ][LIMIT_LOW] &&
1785                    !parent->bps[WRITE][LIMIT_LOW] &&
1786                    !parent->iops[WRITE][LIMIT_LOW])
1787                        continue;
1788                if (time_after(__tg_last_low_overflow_time(parent), ret))
1789                        ret = __tg_last_low_overflow_time(parent);
1790        }
1791        return ret;
1792}
1793
1794static bool throtl_tg_is_idle(struct throtl_grp *tg)
1795{
1796        /*
1797         * cgroup is idle if:
1798         * - single idle is too long, longer than a fixed value (in case user
1799         *   configure a too big threshold) or 4 times of idletime threshold
1800         * - average think time is more than threshold
1801         * - IO latency is largely below threshold
1802         */
1803        unsigned long time;
1804        bool ret;
1805
1806        time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1807        ret = tg->latency_target == DFL_LATENCY_TARGET ||
1808              tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1809              (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1810              tg->avg_idletime > tg->idletime_threshold ||
1811              (tg->latency_target && tg->bio_cnt &&
1812                tg->bad_bio_cnt * 5 < tg->bio_cnt);
1813        throtl_log(&tg->service_queue,
1814                "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1815                tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1816                tg->bio_cnt, ret, tg->td->scale);
1817        return ret;
1818}
1819
1820static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1821{
1822        struct throtl_service_queue *sq = &tg->service_queue;
1823        bool read_limit, write_limit;
1824
1825        /*
1826         * if cgroup reaches low limit (if low limit is 0, the cgroup always
1827         * reaches), it's ok to upgrade to next limit
1828         */
1829        read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1830        write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1831        if (!read_limit && !write_limit)
1832                return true;
1833        if (read_limit && sq->nr_queued[READ] &&
1834            (!write_limit || sq->nr_queued[WRITE]))
1835                return true;
1836        if (write_limit && sq->nr_queued[WRITE] &&
1837            (!read_limit || sq->nr_queued[READ]))
1838                return true;
1839
1840        if (time_after_eq(jiffies,
1841                tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1842            throtl_tg_is_idle(tg))
1843                return true;
1844        return false;
1845}
1846
1847static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1848{
1849        while (true) {
1850                if (throtl_tg_can_upgrade(tg))
1851                        return true;
1852                tg = sq_to_tg(tg->service_queue.parent_sq);
1853                if (!tg || !tg_to_blkg(tg)->parent)
1854                        return false;
1855        }
1856        return false;
1857}
1858
1859static bool throtl_can_upgrade(struct throtl_data *td,
1860        struct throtl_grp *this_tg)
1861{
1862        struct cgroup_subsys_state *pos_css;
1863        struct blkcg_gq *blkg;
1864
1865        if (td->limit_index != LIMIT_LOW)
1866                return false;
1867
1868        if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1869                return false;
1870
1871        rcu_read_lock();
1872        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1873                struct throtl_grp *tg = blkg_to_tg(blkg);
1874
1875                if (tg == this_tg)
1876                        continue;
1877                if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1878                        continue;
1879                if (!throtl_hierarchy_can_upgrade(tg)) {
1880                        rcu_read_unlock();
1881                        return false;
1882                }
1883        }
1884        rcu_read_unlock();
1885        return true;
1886}
1887
1888static void throtl_upgrade_check(struct throtl_grp *tg)
1889{
1890        unsigned long now = jiffies;
1891
1892        if (tg->td->limit_index != LIMIT_LOW)
1893                return;
1894
1895        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1896                return;
1897
1898        tg->last_check_time = now;
1899
1900        if (!time_after_eq(now,
1901             __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1902                return;
1903
1904        if (throtl_can_upgrade(tg->td, NULL))
1905                throtl_upgrade_state(tg->td);
1906}
1907
1908static void throtl_upgrade_state(struct throtl_data *td)
1909{
1910        struct cgroup_subsys_state *pos_css;
1911        struct blkcg_gq *blkg;
1912
1913        throtl_log(&td->service_queue, "upgrade to max");
1914        td->limit_index = LIMIT_MAX;
1915        td->low_upgrade_time = jiffies;
1916        td->scale = 0;
1917        rcu_read_lock();
1918        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1919                struct throtl_grp *tg = blkg_to_tg(blkg);
1920                struct throtl_service_queue *sq = &tg->service_queue;
1921
1922                tg->disptime = jiffies - 1;
1923                throtl_select_dispatch(sq);
1924                throtl_schedule_next_dispatch(sq, true);
1925        }
1926        rcu_read_unlock();
1927        throtl_select_dispatch(&td->service_queue);
1928        throtl_schedule_next_dispatch(&td->service_queue, true);
1929        queue_work(kthrotld_workqueue, &td->dispatch_work);
1930}
1931
1932static void throtl_downgrade_state(struct throtl_data *td, int new)
1933{
1934        td->scale /= 2;
1935
1936        throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1937        if (td->scale) {
1938                td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1939                return;
1940        }
1941
1942        td->limit_index = new;
1943        td->low_downgrade_time = jiffies;
1944}
1945
1946static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1947{
1948        struct throtl_data *td = tg->td;
1949        unsigned long now = jiffies;
1950
1951        /*
1952         * If cgroup is below low limit, consider downgrade and throttle other
1953         * cgroups
1954         */
1955        if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1956            time_after_eq(now, tg_last_low_overflow_time(tg) +
1957                                        td->throtl_slice) &&
1958            (!throtl_tg_is_idle(tg) ||
1959             !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1960                return true;
1961        return false;
1962}
1963
1964static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1965{
1966        while (true) {
1967                if (!throtl_tg_can_downgrade(tg))
1968                        return false;
1969                tg = sq_to_tg(tg->service_queue.parent_sq);
1970                if (!tg || !tg_to_blkg(tg)->parent)
1971                        break;
1972        }
1973        return true;
1974}
1975
1976static void throtl_downgrade_check(struct throtl_grp *tg)
1977{
1978        uint64_t bps;
1979        unsigned int iops;
1980        unsigned long elapsed_time;
1981        unsigned long now = jiffies;
1982
1983        if (tg->td->limit_index != LIMIT_MAX ||
1984            !tg->td->limit_valid[LIMIT_LOW])
1985                return;
1986        if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1987                return;
1988        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1989                return;
1990
1991        elapsed_time = now - tg->last_check_time;
1992        tg->last_check_time = now;
1993
1994        if (time_before(now, tg_last_low_overflow_time(tg) +
1995                        tg->td->throtl_slice))
1996                return;
1997
1998        if (tg->bps[READ][LIMIT_LOW]) {
1999                bps = tg->last_bytes_disp[READ] * HZ;
2000                do_div(bps, elapsed_time);
2001                if (bps >= tg->bps[READ][LIMIT_LOW])
2002                        tg->last_low_overflow_time[READ] = now;
2003        }
2004
2005        if (tg->bps[WRITE][LIMIT_LOW]) {
2006                bps = tg->last_bytes_disp[WRITE] * HZ;
2007                do_div(bps, elapsed_time);
2008                if (bps >= tg->bps[WRITE][LIMIT_LOW])
2009                        tg->last_low_overflow_time[WRITE] = now;
2010        }
2011
2012        if (tg->iops[READ][LIMIT_LOW]) {
2013                iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2014                if (iops >= tg->iops[READ][LIMIT_LOW])
2015                        tg->last_low_overflow_time[READ] = now;
2016        }
2017
2018        if (tg->iops[WRITE][LIMIT_LOW]) {
2019                iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2020                if (iops >= tg->iops[WRITE][LIMIT_LOW])
2021                        tg->last_low_overflow_time[WRITE] = now;
2022        }
2023
2024        /*
2025         * If cgroup is below low limit, consider downgrade and throttle other
2026         * cgroups
2027         */
2028        if (throtl_hierarchy_can_downgrade(tg))
2029                throtl_downgrade_state(tg->td, LIMIT_LOW);
2030
2031        tg->last_bytes_disp[READ] = 0;
2032        tg->last_bytes_disp[WRITE] = 0;
2033        tg->last_io_disp[READ] = 0;
2034        tg->last_io_disp[WRITE] = 0;
2035}
2036
2037static void blk_throtl_update_idletime(struct throtl_grp *tg)
2038{
2039        unsigned long now = ktime_get_ns() >> 10;
2040        unsigned long last_finish_time = tg->last_finish_time;
2041
2042        if (now <= last_finish_time || last_finish_time == 0 ||
2043            last_finish_time == tg->checked_last_finish_time)
2044                return;
2045
2046        tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2047        tg->checked_last_finish_time = last_finish_time;
2048}
2049
2050#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2051static void throtl_update_latency_buckets(struct throtl_data *td)
2052{
2053        struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2054        int i, cpu, rw;
2055        unsigned long last_latency[2] = { 0 };
2056        unsigned long latency[2];
2057
2058        if (!blk_queue_nonrot(td->queue))
2059                return;
2060        if (time_before(jiffies, td->last_calculate_time + HZ))
2061                return;
2062        td->last_calculate_time = jiffies;
2063
2064        memset(avg_latency, 0, sizeof(avg_latency));
2065        for (rw = READ; rw <= WRITE; rw++) {
2066                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2067                        struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2068
2069                        for_each_possible_cpu(cpu) {
2070                                struct latency_bucket *bucket;
2071
2072                                /* this isn't race free, but ok in practice */
2073                                bucket = per_cpu_ptr(td->latency_buckets[rw],
2074                                        cpu);
2075                                tmp->total_latency += bucket[i].total_latency;
2076                                tmp->samples += bucket[i].samples;
2077                                bucket[i].total_latency = 0;
2078                                bucket[i].samples = 0;
2079                        }
2080
2081                        if (tmp->samples >= 32) {
2082                                int samples = tmp->samples;
2083
2084                                latency[rw] = tmp->total_latency;
2085
2086                                tmp->total_latency = 0;
2087                                tmp->samples = 0;
2088                                latency[rw] /= samples;
2089                                if (latency[rw] == 0)
2090                                        continue;
2091                                avg_latency[rw][i].latency = latency[rw];
2092                        }
2093                }
2094        }
2095
2096        for (rw = READ; rw <= WRITE; rw++) {
2097                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2098                        if (!avg_latency[rw][i].latency) {
2099                                if (td->avg_buckets[rw][i].latency < last_latency[rw])
2100                                        td->avg_buckets[rw][i].latency =
2101                                                last_latency[rw];
2102                                continue;
2103                        }
2104
2105                        if (!td->avg_buckets[rw][i].valid)
2106                                latency[rw] = avg_latency[rw][i].latency;
2107                        else
2108                                latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2109                                        avg_latency[rw][i].latency) >> 3;
2110
2111                        td->avg_buckets[rw][i].latency = max(latency[rw],
2112                                last_latency[rw]);
2113                        td->avg_buckets[rw][i].valid = true;
2114                        last_latency[rw] = td->avg_buckets[rw][i].latency;
2115                }
2116        }
2117
2118        for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2119                throtl_log(&td->service_queue,
2120                        "Latency bucket %d: read latency=%ld, read valid=%d, "
2121                        "write latency=%ld, write valid=%d", i,
2122                        td->avg_buckets[READ][i].latency,
2123                        td->avg_buckets[READ][i].valid,
2124                        td->avg_buckets[WRITE][i].latency,
2125                        td->avg_buckets[WRITE][i].valid);
2126}
2127#else
2128static inline void throtl_update_latency_buckets(struct throtl_data *td)
2129{
2130}
2131#endif
2132
2133static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2134{
2135#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2136        if (bio->bi_css) {
2137                if (bio->bi_cg_private)
2138                        blkg_put(tg_to_blkg(bio->bi_cg_private));
2139                bio->bi_cg_private = tg;
2140                blkg_get(tg_to_blkg(tg));
2141        }
2142        blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2143#endif
2144}
2145
2146bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2147                    struct bio *bio)
2148{
2149        struct throtl_qnode *qn = NULL;
2150        struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2151        struct throtl_service_queue *sq;
2152        bool rw = bio_data_dir(bio);
2153        bool throttled = false;
2154        struct throtl_data *td = tg->td;
2155
2156        WARN_ON_ONCE(!rcu_read_lock_held());
2157
2158        /* see throtl_charge_bio() */
2159        if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2160                goto out;
2161
2162        spin_lock_irq(q->queue_lock);
2163
2164        throtl_update_latency_buckets(td);
2165
2166        if (unlikely(blk_queue_bypass(q)))
2167                goto out_unlock;
2168
2169        blk_throtl_assoc_bio(tg, bio);
2170        blk_throtl_update_idletime(tg);
2171
2172        sq = &tg->service_queue;
2173
2174again:
2175        while (true) {
2176                if (tg->last_low_overflow_time[rw] == 0)
2177                        tg->last_low_overflow_time[rw] = jiffies;
2178                throtl_downgrade_check(tg);
2179                throtl_upgrade_check(tg);
2180                /* throtl is FIFO - if bios are already queued, should queue */
2181                if (sq->nr_queued[rw])
2182                        break;
2183
2184                /* if above limits, break to queue */
2185                if (!tg_may_dispatch(tg, bio, NULL)) {
2186                        tg->last_low_overflow_time[rw] = jiffies;
2187                        if (throtl_can_upgrade(td, tg)) {
2188                                throtl_upgrade_state(td);
2189                                goto again;
2190                        }
2191                        break;
2192                }
2193
2194                /* within limits, let's charge and dispatch directly */
2195                throtl_charge_bio(tg, bio);
2196
2197                /*
2198                 * We need to trim slice even when bios are not being queued
2199                 * otherwise it might happen that a bio is not queued for
2200                 * a long time and slice keeps on extending and trim is not
2201                 * called for a long time. Now if limits are reduced suddenly
2202                 * we take into account all the IO dispatched so far at new
2203                 * low rate and * newly queued IO gets a really long dispatch
2204                 * time.
2205                 *
2206                 * So keep on trimming slice even if bio is not queued.
2207                 */
2208                throtl_trim_slice(tg, rw);
2209
2210                /*
2211                 * @bio passed through this layer without being throttled.
2212                 * Climb up the ladder.  If we''re already at the top, it
2213                 * can be executed directly.
2214                 */
2215                qn = &tg->qnode_on_parent[rw];
2216                sq = sq->parent_sq;
2217                tg = sq_to_tg(sq);
2218                if (!tg)
2219                        goto out_unlock;
2220        }
2221
2222        /* out-of-limit, queue to @tg */
2223        throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2224                   rw == READ ? 'R' : 'W',
2225                   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2226                   tg_bps_limit(tg, rw),
2227                   tg->io_disp[rw], tg_iops_limit(tg, rw),
2228                   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2229
2230        tg->last_low_overflow_time[rw] = jiffies;
2231
2232        td->nr_queued[rw]++;
2233        throtl_add_bio_tg(bio, qn, tg);
2234        throttled = true;
2235
2236        /*
2237         * Update @tg's dispatch time and force schedule dispatch if @tg
2238         * was empty before @bio.  The forced scheduling isn't likely to
2239         * cause undue delay as @bio is likely to be dispatched directly if
2240         * its @tg's disptime is not in the future.
2241         */
2242        if (tg->flags & THROTL_TG_WAS_EMPTY) {
2243                tg_update_disptime(tg);
2244                throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2245        }
2246
2247out_unlock:
2248        spin_unlock_irq(q->queue_lock);
2249out:
2250        bio_set_flag(bio, BIO_THROTTLED);
2251
2252#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2253        if (throttled || !td->track_bio_latency)
2254                bio->bi_issue_stat.stat |= SKIP_LATENCY;
2255#endif
2256        return throttled;
2257}
2258
2259#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2260static void throtl_track_latency(struct throtl_data *td, sector_t size,
2261        int op, unsigned long time)
2262{
2263        struct latency_bucket *latency;
2264        int index;
2265
2266        if (!td || td->limit_index != LIMIT_LOW ||
2267            !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2268            !blk_queue_nonrot(td->queue))
2269                return;
2270
2271        index = request_bucket_index(size);
2272
2273        latency = get_cpu_ptr(td->latency_buckets[op]);
2274        latency[index].total_latency += time;
2275        latency[index].samples++;
2276        put_cpu_ptr(td->latency_buckets[op]);
2277}
2278
2279void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2280{
2281        struct request_queue *q = rq->q;
2282        struct throtl_data *td = q->td;
2283
2284        throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2285                req_op(rq), time_ns >> 10);
2286}
2287
2288void blk_throtl_bio_endio(struct bio *bio)
2289{
2290        struct throtl_grp *tg;
2291        u64 finish_time_ns;
2292        unsigned long finish_time;
2293        unsigned long start_time;
2294        unsigned long lat;
2295        int rw = bio_data_dir(bio);
2296
2297        tg = bio->bi_cg_private;
2298        if (!tg)
2299                return;
2300        bio->bi_cg_private = NULL;
2301
2302        finish_time_ns = ktime_get_ns();
2303        tg->last_finish_time = finish_time_ns >> 10;
2304
2305        start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2306        finish_time = __blk_stat_time(finish_time_ns) >> 10;
2307        if (!start_time || finish_time <= start_time) {
2308                blkg_put(tg_to_blkg(tg));
2309                return;
2310        }
2311
2312        lat = finish_time - start_time;
2313        /* this is only for bio based driver */
2314        if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2315                throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2316                        bio_op(bio), lat);
2317
2318        if (tg->latency_target && lat >= tg->td->filtered_latency) {
2319                int bucket;
2320                unsigned int threshold;
2321
2322                bucket = request_bucket_index(
2323                        blk_stat_size(&bio->bi_issue_stat));
2324                threshold = tg->td->avg_buckets[rw][bucket].latency +
2325                        tg->latency_target;
2326                if (lat > threshold)
2327                        tg->bad_bio_cnt++;
2328                /*
2329                 * Not race free, could get wrong count, which means cgroups
2330                 * will be throttled
2331                 */
2332                tg->bio_cnt++;
2333        }
2334
2335        if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2336                tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2337                tg->bio_cnt /= 2;
2338                tg->bad_bio_cnt /= 2;
2339        }
2340
2341        blkg_put(tg_to_blkg(tg));
2342}
2343#endif
2344
2345/*
2346 * Dispatch all bios from all children tg's queued on @parent_sq.  On
2347 * return, @parent_sq is guaranteed to not have any active children tg's
2348 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2349 */
2350static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2351{
2352        struct throtl_grp *tg;
2353
2354        while ((tg = throtl_rb_first(parent_sq))) {
2355                struct throtl_service_queue *sq = &tg->service_queue;
2356                struct bio *bio;
2357
2358                throtl_dequeue_tg(tg);
2359
2360                while ((bio = throtl_peek_queued(&sq->queued[READ])))
2361                        tg_dispatch_one_bio(tg, bio_data_dir(bio));
2362                while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2363                        tg_dispatch_one_bio(tg, bio_data_dir(bio));
2364        }
2365}
2366
2367/**
2368 * blk_throtl_drain - drain throttled bios
2369 * @q: request_queue to drain throttled bios for
2370 *
2371 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2372 */
2373void blk_throtl_drain(struct request_queue *q)
2374        __releases(q->queue_lock) __acquires(q->queue_lock)
2375{
2376        struct throtl_data *td = q->td;
2377        struct blkcg_gq *blkg;
2378        struct cgroup_subsys_state *pos_css;
2379        struct bio *bio;
2380        int rw;
2381
2382        queue_lockdep_assert_held(q);
2383        rcu_read_lock();
2384
2385        /*
2386         * Drain each tg while doing post-order walk on the blkg tree, so
2387         * that all bios are propagated to td->service_queue.  It'd be
2388         * better to walk service_queue tree directly but blkg walk is
2389         * easier.
2390         */
2391        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2392                tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2393
2394        /* finally, transfer bios from top-level tg's into the td */
2395        tg_drain_bios(&td->service_queue);
2396
2397        rcu_read_unlock();
2398        spin_unlock_irq(q->queue_lock);
2399
2400        /* all bios now should be in td->service_queue, issue them */
2401        for (rw = READ; rw <= WRITE; rw++)
2402                while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2403                                                NULL)))
2404                        generic_make_request(bio);
2405
2406        spin_lock_irq(q->queue_lock);
2407}
2408
2409int blk_throtl_init(struct request_queue *q)
2410{
2411        struct throtl_data *td;
2412        int ret;
2413
2414        td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2415        if (!td)
2416                return -ENOMEM;
2417        td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2418                LATENCY_BUCKET_SIZE, __alignof__(u64));
2419        if (!td->latency_buckets[READ]) {
2420                kfree(td);
2421                return -ENOMEM;
2422        }
2423        td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2424                LATENCY_BUCKET_SIZE, __alignof__(u64));
2425        if (!td->latency_buckets[WRITE]) {
2426                free_percpu(td->latency_buckets[READ]);
2427                kfree(td);
2428                return -ENOMEM;
2429        }
2430
2431        INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2432        throtl_service_queue_init(&td->service_queue);
2433
2434        q->td = td;
2435        td->queue = q;
2436
2437        td->limit_valid[LIMIT_MAX] = true;
2438        td->limit_index = LIMIT_MAX;
2439        td->low_upgrade_time = jiffies;
2440        td->low_downgrade_time = jiffies;
2441
2442        /* activate policy */
2443        ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2444        if (ret) {
2445                free_percpu(td->latency_buckets[READ]);
2446                free_percpu(td->latency_buckets[WRITE]);
2447                kfree(td);
2448        }
2449        return ret;
2450}
2451
2452void blk_throtl_exit(struct request_queue *q)
2453{
2454        BUG_ON(!q->td);
2455        throtl_shutdown_wq(q);
2456        blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2457        free_percpu(q->td->latency_buckets[READ]);
2458        free_percpu(q->td->latency_buckets[WRITE]);
2459        kfree(q->td);
2460}
2461
2462void blk_throtl_register_queue(struct request_queue *q)
2463{
2464        struct throtl_data *td;
2465        int i;
2466
2467        td = q->td;
2468        BUG_ON(!td);
2469
2470        if (blk_queue_nonrot(q)) {
2471                td->throtl_slice = DFL_THROTL_SLICE_SSD;
2472                td->filtered_latency = LATENCY_FILTERED_SSD;
2473        } else {
2474                td->throtl_slice = DFL_THROTL_SLICE_HD;
2475                td->filtered_latency = LATENCY_FILTERED_HD;
2476                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2477                        td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2478                        td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2479                }
2480        }
2481#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2482        /* if no low limit, use previous default */
2483        td->throtl_slice = DFL_THROTL_SLICE_HD;
2484#endif
2485
2486        td->track_bio_latency = !queue_is_rq_based(q);
2487        if (!td->track_bio_latency)
2488                blk_stat_enable_accounting(q);
2489}
2490
2491#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2492ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2493{
2494        if (!q->td)
2495                return -EINVAL;
2496        return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2497}
2498
2499ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2500        const char *page, size_t count)
2501{
2502        unsigned long v;
2503        unsigned long t;
2504
2505        if (!q->td)
2506                return -EINVAL;
2507        if (kstrtoul(page, 10, &v))
2508                return -EINVAL;
2509        t = msecs_to_jiffies(v);
2510        if (t == 0 || t > MAX_THROTL_SLICE)
2511                return -EINVAL;
2512        q->td->throtl_slice = t;
2513        return count;
2514}
2515#endif
2516
2517static int __init throtl_init(void)
2518{
2519        kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2520        if (!kthrotld_workqueue)
2521                panic("Failed to create kthrotld\n");
2522
2523        return blkcg_policy_register(&blkcg_policy_throtl);
2524}
2525
2526module_init(throtl_init);
2527