linux/block/blk-wbt.c
<<
>>
Prefs
   1/*
   2 * buffered writeback throttling. loosely based on CoDel. We can't drop
   3 * packets for IO scheduling, so the logic is something like this:
   4 *
   5 * - Monitor latencies in a defined window of time.
   6 * - If the minimum latency in the above window exceeds some target, increment
   7 *   scaling step and scale down queue depth by a factor of 2x. The monitoring
   8 *   window is then shrunk to 100 / sqrt(scaling step + 1).
   9 * - For any window where we don't have solid data on what the latencies
  10 *   look like, retain status quo.
  11 * - If latencies look good, decrement scaling step.
  12 * - If we're only doing writes, allow the scaling step to go negative. This
  13 *   will temporarily boost write performance, snapping back to a stable
  14 *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
  15 *   positive scaling steps where we shrink the monitoring window, a negative
  16 *   scaling step retains the default step==0 window size.
  17 *
  18 * Copyright (C) 2016 Jens Axboe
  19 *
  20 */
  21#include <linux/kernel.h>
  22#include <linux/blk_types.h>
  23#include <linux/slab.h>
  24#include <linux/backing-dev.h>
  25#include <linux/swap.h>
  26
  27#include "blk-wbt.h"
  28
  29#define CREATE_TRACE_POINTS
  30#include <trace/events/wbt.h>
  31
  32enum {
  33        /*
  34         * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
  35         * from here depending on device stats
  36         */
  37        RWB_DEF_DEPTH   = 16,
  38
  39        /*
  40         * 100msec window
  41         */
  42        RWB_WINDOW_NSEC         = 100 * 1000 * 1000ULL,
  43
  44        /*
  45         * Disregard stats, if we don't meet this minimum
  46         */
  47        RWB_MIN_WRITE_SAMPLES   = 3,
  48
  49        /*
  50         * If we have this number of consecutive windows with not enough
  51         * information to scale up or down, scale up.
  52         */
  53        RWB_UNKNOWN_BUMP        = 5,
  54};
  55
  56static inline bool rwb_enabled(struct rq_wb *rwb)
  57{
  58        return rwb && rwb->wb_normal != 0;
  59}
  60
  61/*
  62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
  63 * false if 'v' + 1 would be bigger than 'below'.
  64 */
  65static bool atomic_inc_below(atomic_t *v, int below)
  66{
  67        int cur = atomic_read(v);
  68
  69        for (;;) {
  70                int old;
  71
  72                if (cur >= below)
  73                        return false;
  74                old = atomic_cmpxchg(v, cur, cur + 1);
  75                if (old == cur)
  76                        break;
  77                cur = old;
  78        }
  79
  80        return true;
  81}
  82
  83static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
  84{
  85        if (rwb_enabled(rwb)) {
  86                const unsigned long cur = jiffies;
  87
  88                if (cur != *var)
  89                        *var = cur;
  90        }
  91}
  92
  93/*
  94 * If a task was rate throttled in balance_dirty_pages() within the last
  95 * second or so, use that to indicate a higher cleaning rate.
  96 */
  97static bool wb_recent_wait(struct rq_wb *rwb)
  98{
  99        struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb;
 100
 101        return time_before(jiffies, wb->dirty_sleep + HZ);
 102}
 103
 104static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd)
 105{
 106        return &rwb->rq_wait[is_kswapd];
 107}
 108
 109static void rwb_wake_all(struct rq_wb *rwb)
 110{
 111        int i;
 112
 113        for (i = 0; i < WBT_NUM_RWQ; i++) {
 114                struct rq_wait *rqw = &rwb->rq_wait[i];
 115
 116                if (waitqueue_active(&rqw->wait))
 117                        wake_up_all(&rqw->wait);
 118        }
 119}
 120
 121void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
 122{
 123        struct rq_wait *rqw;
 124        int inflight, limit;
 125
 126        if (!(wb_acct & WBT_TRACKED))
 127                return;
 128
 129        rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD);
 130        inflight = atomic_dec_return(&rqw->inflight);
 131
 132        /*
 133         * wbt got disabled with IO in flight. Wake up any potential
 134         * waiters, we don't have to do more than that.
 135         */
 136        if (unlikely(!rwb_enabled(rwb))) {
 137                rwb_wake_all(rwb);
 138                return;
 139        }
 140
 141        /*
 142         * If the device does write back caching, drop further down
 143         * before we wake people up.
 144         */
 145        if (rwb->wc && !wb_recent_wait(rwb))
 146                limit = 0;
 147        else
 148                limit = rwb->wb_normal;
 149
 150        /*
 151         * Don't wake anyone up if we are above the normal limit.
 152         */
 153        if (inflight && inflight >= limit)
 154                return;
 155
 156        if (waitqueue_active(&rqw->wait)) {
 157                int diff = limit - inflight;
 158
 159                if (!inflight || diff >= rwb->wb_background / 2)
 160                        wake_up_all(&rqw->wait);
 161        }
 162}
 163
 164/*
 165 * Called on completion of a request. Note that it's also called when
 166 * a request is merged, when the request gets freed.
 167 */
 168void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
 169{
 170        if (!rwb)
 171                return;
 172
 173        if (!wbt_is_tracked(stat)) {
 174                if (rwb->sync_cookie == stat) {
 175                        rwb->sync_issue = 0;
 176                        rwb->sync_cookie = NULL;
 177                }
 178
 179                if (wbt_is_read(stat))
 180                        wb_timestamp(rwb, &rwb->last_comp);
 181        } else {
 182                WARN_ON_ONCE(stat == rwb->sync_cookie);
 183                __wbt_done(rwb, wbt_stat_to_mask(stat));
 184        }
 185        wbt_clear_state(stat);
 186}
 187
 188/*
 189 * Return true, if we can't increase the depth further by scaling
 190 */
 191static bool calc_wb_limits(struct rq_wb *rwb)
 192{
 193        unsigned int depth;
 194        bool ret = false;
 195
 196        if (!rwb->min_lat_nsec) {
 197                rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
 198                return false;
 199        }
 200
 201        /*
 202         * For QD=1 devices, this is a special case. It's important for those
 203         * to have one request ready when one completes, so force a depth of
 204         * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
 205         * since the device can't have more than that in flight. If we're
 206         * scaling down, then keep a setting of 1/1/1.
 207         */
 208        if (rwb->queue_depth == 1) {
 209                if (rwb->scale_step > 0)
 210                        rwb->wb_max = rwb->wb_normal = 1;
 211                else {
 212                        rwb->wb_max = rwb->wb_normal = 2;
 213                        ret = true;
 214                }
 215                rwb->wb_background = 1;
 216        } else {
 217                /*
 218                 * scale_step == 0 is our default state. If we have suffered
 219                 * latency spikes, step will be > 0, and we shrink the
 220                 * allowed write depths. If step is < 0, we're only doing
 221                 * writes, and we allow a temporarily higher depth to
 222                 * increase performance.
 223                 */
 224                depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
 225                if (rwb->scale_step > 0)
 226                        depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
 227                else if (rwb->scale_step < 0) {
 228                        unsigned int maxd = 3 * rwb->queue_depth / 4;
 229
 230                        depth = 1 + ((depth - 1) << -rwb->scale_step);
 231                        if (depth > maxd) {
 232                                depth = maxd;
 233                                ret = true;
 234                        }
 235                }
 236
 237                /*
 238                 * Set our max/normal/bg queue depths based on how far
 239                 * we have scaled down (->scale_step).
 240                 */
 241                rwb->wb_max = depth;
 242                rwb->wb_normal = (rwb->wb_max + 1) / 2;
 243                rwb->wb_background = (rwb->wb_max + 3) / 4;
 244        }
 245
 246        return ret;
 247}
 248
 249static inline bool stat_sample_valid(struct blk_rq_stat *stat)
 250{
 251        /*
 252         * We need at least one read sample, and a minimum of
 253         * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
 254         * that it's writes impacting us, and not just some sole read on
 255         * a device that is in a lower power state.
 256         */
 257        return (stat[READ].nr_samples >= 1 &&
 258                stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
 259}
 260
 261static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
 262{
 263        u64 now, issue = READ_ONCE(rwb->sync_issue);
 264
 265        if (!issue || !rwb->sync_cookie)
 266                return 0;
 267
 268        now = ktime_to_ns(ktime_get());
 269        return now - issue;
 270}
 271
 272enum {
 273        LAT_OK = 1,
 274        LAT_UNKNOWN,
 275        LAT_UNKNOWN_WRITES,
 276        LAT_EXCEEDED,
 277};
 278
 279static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
 280{
 281        struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
 282        u64 thislat;
 283
 284        /*
 285         * If our stored sync issue exceeds the window size, or it
 286         * exceeds our min target AND we haven't logged any entries,
 287         * flag the latency as exceeded. wbt works off completion latencies,
 288         * but for a flooded device, a single sync IO can take a long time
 289         * to complete after being issued. If this time exceeds our
 290         * monitoring window AND we didn't see any other completions in that
 291         * window, then count that sync IO as a violation of the latency.
 292         */
 293        thislat = rwb_sync_issue_lat(rwb);
 294        if (thislat > rwb->cur_win_nsec ||
 295            (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
 296                trace_wbt_lat(bdi, thislat);
 297                return LAT_EXCEEDED;
 298        }
 299
 300        /*
 301         * No read/write mix, if stat isn't valid
 302         */
 303        if (!stat_sample_valid(stat)) {
 304                /*
 305                 * If we had writes in this stat window and the window is
 306                 * current, we're only doing writes. If a task recently
 307                 * waited or still has writes in flights, consider us doing
 308                 * just writes as well.
 309                 */
 310                if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
 311                    wbt_inflight(rwb))
 312                        return LAT_UNKNOWN_WRITES;
 313                return LAT_UNKNOWN;
 314        }
 315
 316        /*
 317         * If the 'min' latency exceeds our target, step down.
 318         */
 319        if (stat[READ].min > rwb->min_lat_nsec) {
 320                trace_wbt_lat(bdi, stat[READ].min);
 321                trace_wbt_stat(bdi, stat);
 322                return LAT_EXCEEDED;
 323        }
 324
 325        if (rwb->scale_step)
 326                trace_wbt_stat(bdi, stat);
 327
 328        return LAT_OK;
 329}
 330
 331static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
 332{
 333        struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
 334
 335        trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
 336                        rwb->wb_background, rwb->wb_normal, rwb->wb_max);
 337}
 338
 339static void scale_up(struct rq_wb *rwb)
 340{
 341        /*
 342         * Hit max in previous round, stop here
 343         */
 344        if (rwb->scaled_max)
 345                return;
 346
 347        rwb->scale_step--;
 348        rwb->unknown_cnt = 0;
 349
 350        rwb->scaled_max = calc_wb_limits(rwb);
 351
 352        rwb_wake_all(rwb);
 353
 354        rwb_trace_step(rwb, "step up");
 355}
 356
 357/*
 358 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
 359 * had a latency violation.
 360 */
 361static void scale_down(struct rq_wb *rwb, bool hard_throttle)
 362{
 363        /*
 364         * Stop scaling down when we've hit the limit. This also prevents
 365         * ->scale_step from going to crazy values, if the device can't
 366         * keep up.
 367         */
 368        if (rwb->wb_max == 1)
 369                return;
 370
 371        if (rwb->scale_step < 0 && hard_throttle)
 372                rwb->scale_step = 0;
 373        else
 374                rwb->scale_step++;
 375
 376        rwb->scaled_max = false;
 377        rwb->unknown_cnt = 0;
 378        calc_wb_limits(rwb);
 379        rwb_trace_step(rwb, "step down");
 380}
 381
 382static void rwb_arm_timer(struct rq_wb *rwb)
 383{
 384        if (rwb->scale_step > 0) {
 385                /*
 386                 * We should speed this up, using some variant of a fast
 387                 * integer inverse square root calculation. Since we only do
 388                 * this for every window expiration, it's not a huge deal,
 389                 * though.
 390                 */
 391                rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
 392                                        int_sqrt((rwb->scale_step + 1) << 8));
 393        } else {
 394                /*
 395                 * For step < 0, we don't want to increase/decrease the
 396                 * window size.
 397                 */
 398                rwb->cur_win_nsec = rwb->win_nsec;
 399        }
 400
 401        blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
 402}
 403
 404static void wb_timer_fn(struct blk_stat_callback *cb)
 405{
 406        struct rq_wb *rwb = cb->data;
 407        unsigned int inflight = wbt_inflight(rwb);
 408        int status;
 409
 410        status = latency_exceeded(rwb, cb->stat);
 411
 412        trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step,
 413                        inflight);
 414
 415        /*
 416         * If we exceeded the latency target, step down. If we did not,
 417         * step one level up. If we don't know enough to say either exceeded
 418         * or ok, then don't do anything.
 419         */
 420        switch (status) {
 421        case LAT_EXCEEDED:
 422                scale_down(rwb, true);
 423                break;
 424        case LAT_OK:
 425                scale_up(rwb);
 426                break;
 427        case LAT_UNKNOWN_WRITES:
 428                /*
 429                 * We started a the center step, but don't have a valid
 430                 * read/write sample, but we do have writes going on.
 431                 * Allow step to go negative, to increase write perf.
 432                 */
 433                scale_up(rwb);
 434                break;
 435        case LAT_UNKNOWN:
 436                if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
 437                        break;
 438                /*
 439                 * We get here when previously scaled reduced depth, and we
 440                 * currently don't have a valid read/write sample. For that
 441                 * case, slowly return to center state (step == 0).
 442                 */
 443                if (rwb->scale_step > 0)
 444                        scale_up(rwb);
 445                else if (rwb->scale_step < 0)
 446                        scale_down(rwb, false);
 447                break;
 448        default:
 449                break;
 450        }
 451
 452        /*
 453         * Re-arm timer, if we have IO in flight
 454         */
 455        if (rwb->scale_step || inflight)
 456                rwb_arm_timer(rwb);
 457}
 458
 459void wbt_update_limits(struct rq_wb *rwb)
 460{
 461        rwb->scale_step = 0;
 462        rwb->scaled_max = false;
 463        calc_wb_limits(rwb);
 464
 465        rwb_wake_all(rwb);
 466}
 467
 468static bool close_io(struct rq_wb *rwb)
 469{
 470        const unsigned long now = jiffies;
 471
 472        return time_before(now, rwb->last_issue + HZ / 10) ||
 473                time_before(now, rwb->last_comp + HZ / 10);
 474}
 475
 476#define REQ_HIPRIO      (REQ_SYNC | REQ_META | REQ_PRIO)
 477
 478static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
 479{
 480        unsigned int limit;
 481
 482        /*
 483         * At this point we know it's a buffered write. If this is
 484         * kswapd trying to free memory, or REQ_SYNC is set, then
 485         * it's WB_SYNC_ALL writeback, and we'll use the max limit for
 486         * that. If the write is marked as a background write, then use
 487         * the idle limit, or go to normal if we haven't had competing
 488         * IO for a bit.
 489         */
 490        if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
 491                limit = rwb->wb_max;
 492        else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
 493                /*
 494                 * If less than 100ms since we completed unrelated IO,
 495                 * limit us to half the depth for background writeback.
 496                 */
 497                limit = rwb->wb_background;
 498        } else
 499                limit = rwb->wb_normal;
 500
 501        return limit;
 502}
 503
 504static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
 505                             wait_queue_entry_t *wait, unsigned long rw)
 506{
 507        /*
 508         * inc it here even if disabled, since we'll dec it at completion.
 509         * this only happens if the task was sleeping in __wbt_wait(),
 510         * and someone turned it off at the same time.
 511         */
 512        if (!rwb_enabled(rwb)) {
 513                atomic_inc(&rqw->inflight);
 514                return true;
 515        }
 516
 517        /*
 518         * If the waitqueue is already active and we are not the next
 519         * in line to be woken up, wait for our turn.
 520         */
 521        if (waitqueue_active(&rqw->wait) &&
 522            rqw->wait.head.next != &wait->entry)
 523                return false;
 524
 525        return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
 526}
 527
 528/*
 529 * Block if we will exceed our limit, or if we are currently waiting for
 530 * the timer to kick off queuing again.
 531 */
 532static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
 533        __releases(lock)
 534        __acquires(lock)
 535{
 536        struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd());
 537        DEFINE_WAIT(wait);
 538
 539        if (may_queue(rwb, rqw, &wait, rw))
 540                return;
 541
 542        do {
 543                prepare_to_wait_exclusive(&rqw->wait, &wait,
 544                                                TASK_UNINTERRUPTIBLE);
 545
 546                if (may_queue(rwb, rqw, &wait, rw))
 547                        break;
 548
 549                if (lock) {
 550                        spin_unlock_irq(lock);
 551                        io_schedule();
 552                        spin_lock_irq(lock);
 553                } else
 554                        io_schedule();
 555        } while (1);
 556
 557        finish_wait(&rqw->wait, &wait);
 558}
 559
 560static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
 561{
 562        const int op = bio_op(bio);
 563
 564        /*
 565         * If not a WRITE, do nothing
 566         */
 567        if (op != REQ_OP_WRITE)
 568                return false;
 569
 570        /*
 571         * Don't throttle WRITE_ODIRECT
 572         */
 573        if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
 574                return false;
 575
 576        return true;
 577}
 578
 579/*
 580 * Returns true if the IO request should be accounted, false if not.
 581 * May sleep, if we have exceeded the writeback limits. Caller can pass
 582 * in an irq held spinlock, if it holds one when calling this function.
 583 * If we do sleep, we'll release and re-grab it.
 584 */
 585enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
 586{
 587        unsigned int ret = 0;
 588
 589        if (!rwb_enabled(rwb))
 590                return 0;
 591
 592        if (bio_op(bio) == REQ_OP_READ)
 593                ret = WBT_READ;
 594
 595        if (!wbt_should_throttle(rwb, bio)) {
 596                if (ret & WBT_READ)
 597                        wb_timestamp(rwb, &rwb->last_issue);
 598                return ret;
 599        }
 600
 601        __wbt_wait(rwb, bio->bi_opf, lock);
 602
 603        if (!blk_stat_is_active(rwb->cb))
 604                rwb_arm_timer(rwb);
 605
 606        if (current_is_kswapd())
 607                ret |= WBT_KSWAPD;
 608
 609        return ret | WBT_TRACKED;
 610}
 611
 612void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
 613{
 614        if (!rwb_enabled(rwb))
 615                return;
 616
 617        /*
 618         * Track sync issue, in case it takes a long time to complete. Allows
 619         * us to react quicker, if a sync IO takes a long time to complete.
 620         * Note that this is just a hint. 'stat' can go away when the
 621         * request completes, so it's important we never dereference it. We
 622         * only use the address to compare with, which is why we store the
 623         * sync_issue time locally.
 624         */
 625        if (wbt_is_read(stat) && !rwb->sync_issue) {
 626                rwb->sync_cookie = stat;
 627                rwb->sync_issue = blk_stat_time(stat);
 628        }
 629}
 630
 631void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
 632{
 633        if (!rwb_enabled(rwb))
 634                return;
 635        if (stat == rwb->sync_cookie) {
 636                rwb->sync_issue = 0;
 637                rwb->sync_cookie = NULL;
 638        }
 639}
 640
 641void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
 642{
 643        if (rwb) {
 644                rwb->queue_depth = depth;
 645                wbt_update_limits(rwb);
 646        }
 647}
 648
 649void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
 650{
 651        if (rwb)
 652                rwb->wc = write_cache_on;
 653}
 654
 655/*
 656 * Disable wbt, if enabled by default.
 657 */
 658void wbt_disable_default(struct request_queue *q)
 659{
 660        struct rq_wb *rwb = q->rq_wb;
 661
 662        if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT)
 663                wbt_exit(q);
 664}
 665EXPORT_SYMBOL_GPL(wbt_disable_default);
 666
 667/*
 668 * Enable wbt if defaults are configured that way
 669 */
 670void wbt_enable_default(struct request_queue *q)
 671{
 672        /* Throttling already enabled? */
 673        if (q->rq_wb)
 674                return;
 675
 676        /* Queue not registered? Maybe shutting down... */
 677        if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
 678                return;
 679
 680        if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
 681            (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
 682                wbt_init(q);
 683}
 684EXPORT_SYMBOL_GPL(wbt_enable_default);
 685
 686u64 wbt_default_latency_nsec(struct request_queue *q)
 687{
 688        /*
 689         * We default to 2msec for non-rotational storage, and 75msec
 690         * for rotational storage.
 691         */
 692        if (blk_queue_nonrot(q))
 693                return 2000000ULL;
 694        else
 695                return 75000000ULL;
 696}
 697
 698static int wbt_data_dir(const struct request *rq)
 699{
 700        const int op = req_op(rq);
 701
 702        if (op == REQ_OP_READ)
 703                return READ;
 704        else if (op == REQ_OP_WRITE || op == REQ_OP_FLUSH)
 705                return WRITE;
 706
 707        /* don't account */
 708        return -1;
 709}
 710
 711int wbt_init(struct request_queue *q)
 712{
 713        struct rq_wb *rwb;
 714        int i;
 715
 716        BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
 717
 718        rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
 719        if (!rwb)
 720                return -ENOMEM;
 721
 722        rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
 723        if (!rwb->cb) {
 724                kfree(rwb);
 725                return -ENOMEM;
 726        }
 727
 728        for (i = 0; i < WBT_NUM_RWQ; i++) {
 729                atomic_set(&rwb->rq_wait[i].inflight, 0);
 730                init_waitqueue_head(&rwb->rq_wait[i].wait);
 731        }
 732
 733        rwb->last_comp = rwb->last_issue = jiffies;
 734        rwb->queue = q;
 735        rwb->win_nsec = RWB_WINDOW_NSEC;
 736        rwb->enable_state = WBT_STATE_ON_DEFAULT;
 737        wbt_update_limits(rwb);
 738
 739        /*
 740         * Assign rwb and add the stats callback.
 741         */
 742        q->rq_wb = rwb;
 743        blk_stat_add_callback(q, rwb->cb);
 744
 745        rwb->min_lat_nsec = wbt_default_latency_nsec(q);
 746
 747        wbt_set_queue_depth(rwb, blk_queue_depth(q));
 748        wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
 749
 750        return 0;
 751}
 752
 753void wbt_exit(struct request_queue *q)
 754{
 755        struct rq_wb *rwb = q->rq_wb;
 756
 757        if (rwb) {
 758                blk_stat_remove_callback(q, rwb->cb);
 759                blk_stat_free_callback(rwb->cb);
 760                q->rq_wb = NULL;
 761                kfree(rwb);
 762        }
 763}
 764