linux/block/cfq-iosched.c
<<
>>
Prefs
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11#include <linux/sched/clock.h>
  12#include <linux/blkdev.h>
  13#include <linux/elevator.h>
  14#include <linux/ktime.h>
  15#include <linux/rbtree.h>
  16#include <linux/ioprio.h>
  17#include <linux/blktrace_api.h>
  18#include <linux/blk-cgroup.h>
  19#include "blk.h"
  20#include "blk-wbt.h"
  21
  22/*
  23 * tunables
  24 */
  25/* max queue in one round of service */
  26static const int cfq_quantum = 8;
  27static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
  28/* maximum backwards seek, in KiB */
  29static const int cfq_back_max = 16 * 1024;
  30/* penalty of a backwards seek */
  31static const int cfq_back_penalty = 2;
  32static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
  33static u64 cfq_slice_async = NSEC_PER_SEC / 25;
  34static const int cfq_slice_async_rq = 2;
  35static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
  36static u64 cfq_group_idle = NSEC_PER_SEC / 125;
  37static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
  38static const int cfq_hist_divisor = 4;
  39
  40/*
  41 * offset from end of queue service tree for idle class
  42 */
  43#define CFQ_IDLE_DELAY          (NSEC_PER_SEC / 5)
  44/* offset from end of group service tree under time slice mode */
  45#define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
  46/* offset from end of group service under IOPS mode */
  47#define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
  48
  49/*
  50 * below this threshold, we consider thinktime immediate
  51 */
  52#define CFQ_MIN_TT              (2 * NSEC_PER_SEC / HZ)
  53
  54#define CFQ_SLICE_SCALE         (5)
  55#define CFQ_HW_QUEUE_MIN        (5)
  56#define CFQ_SERVICE_SHIFT       12
  57
  58#define CFQQ_SEEK_THR           (sector_t)(8 * 100)
  59#define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
  60#define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
  61#define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
  62
  63#define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
  64#define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
  65#define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
  66
  67static struct kmem_cache *cfq_pool;
  68
  69#define CFQ_PRIO_LISTS          IOPRIO_BE_NR
  70#define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  71#define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  72
  73#define sample_valid(samples)   ((samples) > 80)
  74#define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
  75
  76/* blkio-related constants */
  77#define CFQ_WEIGHT_LEGACY_MIN   10
  78#define CFQ_WEIGHT_LEGACY_DFL   500
  79#define CFQ_WEIGHT_LEGACY_MAX   1000
  80
  81struct cfq_ttime {
  82        u64 last_end_request;
  83
  84        u64 ttime_total;
  85        u64 ttime_mean;
  86        unsigned long ttime_samples;
  87};
  88
  89/*
  90 * Most of our rbtree usage is for sorting with min extraction, so
  91 * if we cache the leftmost node we don't have to walk down the tree
  92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  93 * move this into the elevator for the rq sorting as well.
  94 */
  95struct cfq_rb_root {
  96        struct rb_root_cached rb;
  97        struct rb_node *rb_rightmost;
  98        unsigned count;
  99        u64 min_vdisktime;
 100        struct cfq_ttime ttime;
 101};
 102#define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
 103                        .rb_rightmost = NULL,                        \
 104                        .ttime = {.last_end_request = ktime_get_ns(),},}
 105
 106/*
 107 * Per process-grouping structure
 108 */
 109struct cfq_queue {
 110        /* reference count */
 111        int ref;
 112        /* various state flags, see below */
 113        unsigned int flags;
 114        /* parent cfq_data */
 115        struct cfq_data *cfqd;
 116        /* service_tree member */
 117        struct rb_node rb_node;
 118        /* service_tree key */
 119        u64 rb_key;
 120        /* prio tree member */
 121        struct rb_node p_node;
 122        /* prio tree root we belong to, if any */
 123        struct rb_root *p_root;
 124        /* sorted list of pending requests */
 125        struct rb_root sort_list;
 126        /* if fifo isn't expired, next request to serve */
 127        struct request *next_rq;
 128        /* requests queued in sort_list */
 129        int queued[2];
 130        /* currently allocated requests */
 131        int allocated[2];
 132        /* fifo list of requests in sort_list */
 133        struct list_head fifo;
 134
 135        /* time when queue got scheduled in to dispatch first request. */
 136        u64 dispatch_start;
 137        u64 allocated_slice;
 138        u64 slice_dispatch;
 139        /* time when first request from queue completed and slice started. */
 140        u64 slice_start;
 141        u64 slice_end;
 142        s64 slice_resid;
 143
 144        /* pending priority requests */
 145        int prio_pending;
 146        /* number of requests that are on the dispatch list or inside driver */
 147        int dispatched;
 148
 149        /* io prio of this group */
 150        unsigned short ioprio, org_ioprio;
 151        unsigned short ioprio_class, org_ioprio_class;
 152
 153        pid_t pid;
 154
 155        u32 seek_history;
 156        sector_t last_request_pos;
 157
 158        struct cfq_rb_root *service_tree;
 159        struct cfq_queue *new_cfqq;
 160        struct cfq_group *cfqg;
 161        /* Number of sectors dispatched from queue in single dispatch round */
 162        unsigned long nr_sectors;
 163};
 164
 165/*
 166 * First index in the service_trees.
 167 * IDLE is handled separately, so it has negative index
 168 */
 169enum wl_class_t {
 170        BE_WORKLOAD = 0,
 171        RT_WORKLOAD = 1,
 172        IDLE_WORKLOAD = 2,
 173        CFQ_PRIO_NR,
 174};
 175
 176/*
 177 * Second index in the service_trees.
 178 */
 179enum wl_type_t {
 180        ASYNC_WORKLOAD = 0,
 181        SYNC_NOIDLE_WORKLOAD = 1,
 182        SYNC_WORKLOAD = 2
 183};
 184
 185struct cfqg_stats {
 186#ifdef CONFIG_CFQ_GROUP_IOSCHED
 187        /* number of ios merged */
 188        struct blkg_rwstat              merged;
 189        /* total time spent on device in ns, may not be accurate w/ queueing */
 190        struct blkg_rwstat              service_time;
 191        /* total time spent waiting in scheduler queue in ns */
 192        struct blkg_rwstat              wait_time;
 193        /* number of IOs queued up */
 194        struct blkg_rwstat              queued;
 195        /* total disk time and nr sectors dispatched by this group */
 196        struct blkg_stat                time;
 197#ifdef CONFIG_DEBUG_BLK_CGROUP
 198        /* time not charged to this cgroup */
 199        struct blkg_stat                unaccounted_time;
 200        /* sum of number of ios queued across all samples */
 201        struct blkg_stat                avg_queue_size_sum;
 202        /* count of samples taken for average */
 203        struct blkg_stat                avg_queue_size_samples;
 204        /* how many times this group has been removed from service tree */
 205        struct blkg_stat                dequeue;
 206        /* total time spent waiting for it to be assigned a timeslice. */
 207        struct blkg_stat                group_wait_time;
 208        /* time spent idling for this blkcg_gq */
 209        struct blkg_stat                idle_time;
 210        /* total time with empty current active q with other requests queued */
 211        struct blkg_stat                empty_time;
 212        /* fields after this shouldn't be cleared on stat reset */
 213        uint64_t                        start_group_wait_time;
 214        uint64_t                        start_idle_time;
 215        uint64_t                        start_empty_time;
 216        uint16_t                        flags;
 217#endif  /* CONFIG_DEBUG_BLK_CGROUP */
 218#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
 219};
 220
 221/* Per-cgroup data */
 222struct cfq_group_data {
 223        /* must be the first member */
 224        struct blkcg_policy_data cpd;
 225
 226        unsigned int weight;
 227        unsigned int leaf_weight;
 228};
 229
 230/* This is per cgroup per device grouping structure */
 231struct cfq_group {
 232        /* must be the first member */
 233        struct blkg_policy_data pd;
 234
 235        /* group service_tree member */
 236        struct rb_node rb_node;
 237
 238        /* group service_tree key */
 239        u64 vdisktime;
 240
 241        /*
 242         * The number of active cfqgs and sum of their weights under this
 243         * cfqg.  This covers this cfqg's leaf_weight and all children's
 244         * weights, but does not cover weights of further descendants.
 245         *
 246         * If a cfqg is on the service tree, it's active.  An active cfqg
 247         * also activates its parent and contributes to the children_weight
 248         * of the parent.
 249         */
 250        int nr_active;
 251        unsigned int children_weight;
 252
 253        /*
 254         * vfraction is the fraction of vdisktime that the tasks in this
 255         * cfqg are entitled to.  This is determined by compounding the
 256         * ratios walking up from this cfqg to the root.
 257         *
 258         * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
 259         * vfractions on a service tree is approximately 1.  The sum may
 260         * deviate a bit due to rounding errors and fluctuations caused by
 261         * cfqgs entering and leaving the service tree.
 262         */
 263        unsigned int vfraction;
 264
 265        /*
 266         * There are two weights - (internal) weight is the weight of this
 267         * cfqg against the sibling cfqgs.  leaf_weight is the wight of
 268         * this cfqg against the child cfqgs.  For the root cfqg, both
 269         * weights are kept in sync for backward compatibility.
 270         */
 271        unsigned int weight;
 272        unsigned int new_weight;
 273        unsigned int dev_weight;
 274
 275        unsigned int leaf_weight;
 276        unsigned int new_leaf_weight;
 277        unsigned int dev_leaf_weight;
 278
 279        /* number of cfqq currently on this group */
 280        int nr_cfqq;
 281
 282        /*
 283         * Per group busy queues average. Useful for workload slice calc. We
 284         * create the array for each prio class but at run time it is used
 285         * only for RT and BE class and slot for IDLE class remains unused.
 286         * This is primarily done to avoid confusion and a gcc warning.
 287         */
 288        unsigned int busy_queues_avg[CFQ_PRIO_NR];
 289        /*
 290         * rr lists of queues with requests. We maintain service trees for
 291         * RT and BE classes. These trees are subdivided in subclasses
 292         * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
 293         * class there is no subclassification and all the cfq queues go on
 294         * a single tree service_tree_idle.
 295         * Counts are embedded in the cfq_rb_root
 296         */
 297        struct cfq_rb_root service_trees[2][3];
 298        struct cfq_rb_root service_tree_idle;
 299
 300        u64 saved_wl_slice;
 301        enum wl_type_t saved_wl_type;
 302        enum wl_class_t saved_wl_class;
 303
 304        /* number of requests that are on the dispatch list or inside driver */
 305        int dispatched;
 306        struct cfq_ttime ttime;
 307        struct cfqg_stats stats;        /* stats for this cfqg */
 308
 309        /* async queue for each priority case */
 310        struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
 311        struct cfq_queue *async_idle_cfqq;
 312
 313};
 314
 315struct cfq_io_cq {
 316        struct io_cq            icq;            /* must be the first member */
 317        struct cfq_queue        *cfqq[2];
 318        struct cfq_ttime        ttime;
 319        int                     ioprio;         /* the current ioprio */
 320#ifdef CONFIG_CFQ_GROUP_IOSCHED
 321        uint64_t                blkcg_serial_nr; /* the current blkcg serial */
 322#endif
 323};
 324
 325/*
 326 * Per block device queue structure
 327 */
 328struct cfq_data {
 329        struct request_queue *queue;
 330        /* Root service tree for cfq_groups */
 331        struct cfq_rb_root grp_service_tree;
 332        struct cfq_group *root_group;
 333
 334        /*
 335         * The priority currently being served
 336         */
 337        enum wl_class_t serving_wl_class;
 338        enum wl_type_t serving_wl_type;
 339        u64 workload_expires;
 340        struct cfq_group *serving_group;
 341
 342        /*
 343         * Each priority tree is sorted by next_request position.  These
 344         * trees are used when determining if two or more queues are
 345         * interleaving requests (see cfq_close_cooperator).
 346         */
 347        struct rb_root prio_trees[CFQ_PRIO_LISTS];
 348
 349        unsigned int busy_queues;
 350        unsigned int busy_sync_queues;
 351
 352        int rq_in_driver;
 353        int rq_in_flight[2];
 354
 355        /*
 356         * queue-depth detection
 357         */
 358        int rq_queued;
 359        int hw_tag;
 360        /*
 361         * hw_tag can be
 362         * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
 363         *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
 364         *  0 => no NCQ
 365         */
 366        int hw_tag_est_depth;
 367        unsigned int hw_tag_samples;
 368
 369        /*
 370         * idle window management
 371         */
 372        struct hrtimer idle_slice_timer;
 373        struct work_struct unplug_work;
 374
 375        struct cfq_queue *active_queue;
 376        struct cfq_io_cq *active_cic;
 377
 378        sector_t last_position;
 379
 380        /*
 381         * tunables, see top of file
 382         */
 383        unsigned int cfq_quantum;
 384        unsigned int cfq_back_penalty;
 385        unsigned int cfq_back_max;
 386        unsigned int cfq_slice_async_rq;
 387        unsigned int cfq_latency;
 388        u64 cfq_fifo_expire[2];
 389        u64 cfq_slice[2];
 390        u64 cfq_slice_idle;
 391        u64 cfq_group_idle;
 392        u64 cfq_target_latency;
 393
 394        /*
 395         * Fallback dummy cfqq for extreme OOM conditions
 396         */
 397        struct cfq_queue oom_cfqq;
 398
 399        u64 last_delayed_sync;
 400};
 401
 402static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
 403static void cfq_put_queue(struct cfq_queue *cfqq);
 404
 405static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
 406                                            enum wl_class_t class,
 407                                            enum wl_type_t type)
 408{
 409        if (!cfqg)
 410                return NULL;
 411
 412        if (class == IDLE_WORKLOAD)
 413                return &cfqg->service_tree_idle;
 414
 415        return &cfqg->service_trees[class][type];
 416}
 417
 418enum cfqq_state_flags {
 419        CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
 420        CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
 421        CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
 422        CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
 423        CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
 424        CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
 425        CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
 426        CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
 427        CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
 428        CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
 429        CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
 430        CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
 431        CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
 432};
 433
 434#define CFQ_CFQQ_FNS(name)                                              \
 435static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
 436{                                                                       \
 437        (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
 438}                                                                       \
 439static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
 440{                                                                       \
 441        (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
 442}                                                                       \
 443static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
 444{                                                                       \
 445        return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
 446}
 447
 448CFQ_CFQQ_FNS(on_rr);
 449CFQ_CFQQ_FNS(wait_request);
 450CFQ_CFQQ_FNS(must_dispatch);
 451CFQ_CFQQ_FNS(must_alloc_slice);
 452CFQ_CFQQ_FNS(fifo_expire);
 453CFQ_CFQQ_FNS(idle_window);
 454CFQ_CFQQ_FNS(prio_changed);
 455CFQ_CFQQ_FNS(slice_new);
 456CFQ_CFQQ_FNS(sync);
 457CFQ_CFQQ_FNS(coop);
 458CFQ_CFQQ_FNS(split_coop);
 459CFQ_CFQQ_FNS(deep);
 460CFQ_CFQQ_FNS(wait_busy);
 461#undef CFQ_CFQQ_FNS
 462
 463#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
 464
 465/* cfqg stats flags */
 466enum cfqg_stats_flags {
 467        CFQG_stats_waiting = 0,
 468        CFQG_stats_idling,
 469        CFQG_stats_empty,
 470};
 471
 472#define CFQG_FLAG_FNS(name)                                             \
 473static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)     \
 474{                                                                       \
 475        stats->flags |= (1 << CFQG_stats_##name);                       \
 476}                                                                       \
 477static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)    \
 478{                                                                       \
 479        stats->flags &= ~(1 << CFQG_stats_##name);                      \
 480}                                                                       \
 481static inline int cfqg_stats_##name(struct cfqg_stats *stats)           \
 482{                                                                       \
 483        return (stats->flags & (1 << CFQG_stats_##name)) != 0;          \
 484}                                                                       \
 485
 486CFQG_FLAG_FNS(waiting)
 487CFQG_FLAG_FNS(idling)
 488CFQG_FLAG_FNS(empty)
 489#undef CFQG_FLAG_FNS
 490
 491/* This should be called with the queue_lock held. */
 492static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
 493{
 494        unsigned long long now;
 495
 496        if (!cfqg_stats_waiting(stats))
 497                return;
 498
 499        now = sched_clock();
 500        if (time_after64(now, stats->start_group_wait_time))
 501                blkg_stat_add(&stats->group_wait_time,
 502                              now - stats->start_group_wait_time);
 503        cfqg_stats_clear_waiting(stats);
 504}
 505
 506/* This should be called with the queue_lock held. */
 507static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
 508                                                 struct cfq_group *curr_cfqg)
 509{
 510        struct cfqg_stats *stats = &cfqg->stats;
 511
 512        if (cfqg_stats_waiting(stats))
 513                return;
 514        if (cfqg == curr_cfqg)
 515                return;
 516        stats->start_group_wait_time = sched_clock();
 517        cfqg_stats_mark_waiting(stats);
 518}
 519
 520/* This should be called with the queue_lock held. */
 521static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
 522{
 523        unsigned long long now;
 524
 525        if (!cfqg_stats_empty(stats))
 526                return;
 527
 528        now = sched_clock();
 529        if (time_after64(now, stats->start_empty_time))
 530                blkg_stat_add(&stats->empty_time,
 531                              now - stats->start_empty_time);
 532        cfqg_stats_clear_empty(stats);
 533}
 534
 535static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
 536{
 537        blkg_stat_add(&cfqg->stats.dequeue, 1);
 538}
 539
 540static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
 541{
 542        struct cfqg_stats *stats = &cfqg->stats;
 543
 544        if (blkg_rwstat_total(&stats->queued))
 545                return;
 546
 547        /*
 548         * group is already marked empty. This can happen if cfqq got new
 549         * request in parent group and moved to this group while being added
 550         * to service tree. Just ignore the event and move on.
 551         */
 552        if (cfqg_stats_empty(stats))
 553                return;
 554
 555        stats->start_empty_time = sched_clock();
 556        cfqg_stats_mark_empty(stats);
 557}
 558
 559static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
 560{
 561        struct cfqg_stats *stats = &cfqg->stats;
 562
 563        if (cfqg_stats_idling(stats)) {
 564                unsigned long long now = sched_clock();
 565
 566                if (time_after64(now, stats->start_idle_time))
 567                        blkg_stat_add(&stats->idle_time,
 568                                      now - stats->start_idle_time);
 569                cfqg_stats_clear_idling(stats);
 570        }
 571}
 572
 573static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
 574{
 575        struct cfqg_stats *stats = &cfqg->stats;
 576
 577        BUG_ON(cfqg_stats_idling(stats));
 578
 579        stats->start_idle_time = sched_clock();
 580        cfqg_stats_mark_idling(stats);
 581}
 582
 583static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
 584{
 585        struct cfqg_stats *stats = &cfqg->stats;
 586
 587        blkg_stat_add(&stats->avg_queue_size_sum,
 588                      blkg_rwstat_total(&stats->queued));
 589        blkg_stat_add(&stats->avg_queue_size_samples, 1);
 590        cfqg_stats_update_group_wait_time(stats);
 591}
 592
 593#else   /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 594
 595static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
 596static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
 597static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
 598static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
 599static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
 600static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
 601static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
 602
 603#endif  /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
 604
 605#ifdef CONFIG_CFQ_GROUP_IOSCHED
 606
 607static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
 608{
 609        return pd ? container_of(pd, struct cfq_group, pd) : NULL;
 610}
 611
 612static struct cfq_group_data
 613*cpd_to_cfqgd(struct blkcg_policy_data *cpd)
 614{
 615        return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
 616}
 617
 618static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
 619{
 620        return pd_to_blkg(&cfqg->pd);
 621}
 622
 623static struct blkcg_policy blkcg_policy_cfq;
 624
 625static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
 626{
 627        return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
 628}
 629
 630static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
 631{
 632        return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
 633}
 634
 635static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
 636{
 637        struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
 638
 639        return pblkg ? blkg_to_cfqg(pblkg) : NULL;
 640}
 641
 642static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
 643                                      struct cfq_group *ancestor)
 644{
 645        return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
 646                                    cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
 647}
 648
 649static inline void cfqg_get(struct cfq_group *cfqg)
 650{
 651        return blkg_get(cfqg_to_blkg(cfqg));
 652}
 653
 654static inline void cfqg_put(struct cfq_group *cfqg)
 655{
 656        return blkg_put(cfqg_to_blkg(cfqg));
 657}
 658
 659#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  do {                    \
 660        blk_add_cgroup_trace_msg((cfqd)->queue,                         \
 661                        cfqg_to_blkg((cfqq)->cfqg)->blkcg,              \
 662                        "cfq%d%c%c " fmt, (cfqq)->pid,                  \
 663                        cfq_cfqq_sync((cfqq)) ? 'S' : 'A',              \
 664                        cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
 665                          ##args);                                      \
 666} while (0)
 667
 668#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)  do {                    \
 669        blk_add_cgroup_trace_msg((cfqd)->queue,                         \
 670                        cfqg_to_blkg(cfqg)->blkcg, fmt, ##args);        \
 671} while (0)
 672
 673static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 674                                            struct cfq_group *curr_cfqg,
 675                                            unsigned int op)
 676{
 677        blkg_rwstat_add(&cfqg->stats.queued, op, 1);
 678        cfqg_stats_end_empty_time(&cfqg->stats);
 679        cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
 680}
 681
 682static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 683                        uint64_t time, unsigned long unaccounted_time)
 684{
 685        blkg_stat_add(&cfqg->stats.time, time);
 686#ifdef CONFIG_DEBUG_BLK_CGROUP
 687        blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
 688#endif
 689}
 690
 691static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
 692                                               unsigned int op)
 693{
 694        blkg_rwstat_add(&cfqg->stats.queued, op, -1);
 695}
 696
 697static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
 698                                               unsigned int op)
 699{
 700        blkg_rwstat_add(&cfqg->stats.merged, op, 1);
 701}
 702
 703static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 704                        uint64_t start_time, uint64_t io_start_time,
 705                        unsigned int op)
 706{
 707        struct cfqg_stats *stats = &cfqg->stats;
 708        unsigned long long now = sched_clock();
 709
 710        if (time_after64(now, io_start_time))
 711                blkg_rwstat_add(&stats->service_time, op, now - io_start_time);
 712        if (time_after64(io_start_time, start_time))
 713                blkg_rwstat_add(&stats->wait_time, op,
 714                                io_start_time - start_time);
 715}
 716
 717/* @stats = 0 */
 718static void cfqg_stats_reset(struct cfqg_stats *stats)
 719{
 720        /* queued stats shouldn't be cleared */
 721        blkg_rwstat_reset(&stats->merged);
 722        blkg_rwstat_reset(&stats->service_time);
 723        blkg_rwstat_reset(&stats->wait_time);
 724        blkg_stat_reset(&stats->time);
 725#ifdef CONFIG_DEBUG_BLK_CGROUP
 726        blkg_stat_reset(&stats->unaccounted_time);
 727        blkg_stat_reset(&stats->avg_queue_size_sum);
 728        blkg_stat_reset(&stats->avg_queue_size_samples);
 729        blkg_stat_reset(&stats->dequeue);
 730        blkg_stat_reset(&stats->group_wait_time);
 731        blkg_stat_reset(&stats->idle_time);
 732        blkg_stat_reset(&stats->empty_time);
 733#endif
 734}
 735
 736/* @to += @from */
 737static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
 738{
 739        /* queued stats shouldn't be cleared */
 740        blkg_rwstat_add_aux(&to->merged, &from->merged);
 741        blkg_rwstat_add_aux(&to->service_time, &from->service_time);
 742        blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
 743        blkg_stat_add_aux(&from->time, &from->time);
 744#ifdef CONFIG_DEBUG_BLK_CGROUP
 745        blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
 746        blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
 747        blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
 748        blkg_stat_add_aux(&to->dequeue, &from->dequeue);
 749        blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
 750        blkg_stat_add_aux(&to->idle_time, &from->idle_time);
 751        blkg_stat_add_aux(&to->empty_time, &from->empty_time);
 752#endif
 753}
 754
 755/*
 756 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
 757 * recursive stats can still account for the amount used by this cfqg after
 758 * it's gone.
 759 */
 760static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
 761{
 762        struct cfq_group *parent = cfqg_parent(cfqg);
 763
 764        lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
 765
 766        if (unlikely(!parent))
 767                return;
 768
 769        cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
 770        cfqg_stats_reset(&cfqg->stats);
 771}
 772
 773#else   /* CONFIG_CFQ_GROUP_IOSCHED */
 774
 775static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
 776static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
 777                                      struct cfq_group *ancestor)
 778{
 779        return true;
 780}
 781static inline void cfqg_get(struct cfq_group *cfqg) { }
 782static inline void cfqg_put(struct cfq_group *cfqg) { }
 783
 784#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
 785        blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
 786                        cfq_cfqq_sync((cfqq)) ? 'S' : 'A',              \
 787                        cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
 788                                ##args)
 789#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
 790
 791static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
 792                        struct cfq_group *curr_cfqg, unsigned int op) { }
 793static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
 794                        uint64_t time, unsigned long unaccounted_time) { }
 795static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
 796                        unsigned int op) { }
 797static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
 798                        unsigned int op) { }
 799static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
 800                        uint64_t start_time, uint64_t io_start_time,
 801                        unsigned int op) { }
 802
 803#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
 804
 805#define cfq_log(cfqd, fmt, args...)     \
 806        blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
 807
 808/* Traverses through cfq group service trees */
 809#define for_each_cfqg_st(cfqg, i, j, st) \
 810        for (i = 0; i <= IDLE_WORKLOAD; i++) \
 811                for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
 812                        : &cfqg->service_tree_idle; \
 813                        (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
 814                        (i == IDLE_WORKLOAD && j == 0); \
 815                        j++, st = i < IDLE_WORKLOAD ? \
 816                        &cfqg->service_trees[i][j]: NULL) \
 817
 818static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
 819        struct cfq_ttime *ttime, bool group_idle)
 820{
 821        u64 slice;
 822        if (!sample_valid(ttime->ttime_samples))
 823                return false;
 824        if (group_idle)
 825                slice = cfqd->cfq_group_idle;
 826        else
 827                slice = cfqd->cfq_slice_idle;
 828        return ttime->ttime_mean > slice;
 829}
 830
 831static inline bool iops_mode(struct cfq_data *cfqd)
 832{
 833        /*
 834         * If we are not idling on queues and it is a NCQ drive, parallel
 835         * execution of requests is on and measuring time is not possible
 836         * in most of the cases until and unless we drive shallower queue
 837         * depths and that becomes a performance bottleneck. In such cases
 838         * switch to start providing fairness in terms of number of IOs.
 839         */
 840        if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
 841                return true;
 842        else
 843                return false;
 844}
 845
 846static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
 847{
 848        if (cfq_class_idle(cfqq))
 849                return IDLE_WORKLOAD;
 850        if (cfq_class_rt(cfqq))
 851                return RT_WORKLOAD;
 852        return BE_WORKLOAD;
 853}
 854
 855
 856static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
 857{
 858        if (!cfq_cfqq_sync(cfqq))
 859                return ASYNC_WORKLOAD;
 860        if (!cfq_cfqq_idle_window(cfqq))
 861                return SYNC_NOIDLE_WORKLOAD;
 862        return SYNC_WORKLOAD;
 863}
 864
 865static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
 866                                        struct cfq_data *cfqd,
 867                                        struct cfq_group *cfqg)
 868{
 869        if (wl_class == IDLE_WORKLOAD)
 870                return cfqg->service_tree_idle.count;
 871
 872        return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
 873                cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
 874                cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
 875}
 876
 877static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
 878                                        struct cfq_group *cfqg)
 879{
 880        return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
 881                cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
 882}
 883
 884static void cfq_dispatch_insert(struct request_queue *, struct request *);
 885static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
 886                                       struct cfq_io_cq *cic, struct bio *bio);
 887
 888static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
 889{
 890        /* cic->icq is the first member, %NULL will convert to %NULL */
 891        return container_of(icq, struct cfq_io_cq, icq);
 892}
 893
 894static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
 895                                               struct io_context *ioc)
 896{
 897        if (ioc)
 898                return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
 899        return NULL;
 900}
 901
 902static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
 903{
 904        return cic->cfqq[is_sync];
 905}
 906
 907static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
 908                                bool is_sync)
 909{
 910        cic->cfqq[is_sync] = cfqq;
 911}
 912
 913static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
 914{
 915        return cic->icq.q->elevator->elevator_data;
 916}
 917
 918/*
 919 * scheduler run of queue, if there are requests pending and no one in the
 920 * driver that will restart queueing
 921 */
 922static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 923{
 924        if (cfqd->busy_queues) {
 925                cfq_log(cfqd, "schedule dispatch");
 926                kblockd_schedule_work(&cfqd->unplug_work);
 927        }
 928}
 929
 930/*
 931 * Scale schedule slice based on io priority. Use the sync time slice only
 932 * if a queue is marked sync and has sync io queued. A sync queue with async
 933 * io only, should not get full sync slice length.
 934 */
 935static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
 936                                 unsigned short prio)
 937{
 938        u64 base_slice = cfqd->cfq_slice[sync];
 939        u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
 940
 941        WARN_ON(prio >= IOPRIO_BE_NR);
 942
 943        return base_slice + (slice * (4 - prio));
 944}
 945
 946static inline u64
 947cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 948{
 949        return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 950}
 951
 952/**
 953 * cfqg_scale_charge - scale disk time charge according to cfqg weight
 954 * @charge: disk time being charged
 955 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
 956 *
 957 * Scale @charge according to @vfraction, which is in range (0, 1].  The
 958 * scaling is inversely proportional.
 959 *
 960 * scaled = charge / vfraction
 961 *
 962 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
 963 */
 964static inline u64 cfqg_scale_charge(u64 charge,
 965                                    unsigned int vfraction)
 966{
 967        u64 c = charge << CFQ_SERVICE_SHIFT;    /* make it fixed point */
 968
 969        /* charge / vfraction */
 970        c <<= CFQ_SERVICE_SHIFT;
 971        return div_u64(c, vfraction);
 972}
 973
 974static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
 975{
 976        s64 delta = (s64)(vdisktime - min_vdisktime);
 977        if (delta > 0)
 978                min_vdisktime = vdisktime;
 979
 980        return min_vdisktime;
 981}
 982
 983static void update_min_vdisktime(struct cfq_rb_root *st)
 984{
 985        if (!RB_EMPTY_ROOT(&st->rb.rb_root)) {
 986                struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost);
 987
 988                st->min_vdisktime = max_vdisktime(st->min_vdisktime,
 989                                                  cfqg->vdisktime);
 990        }
 991}
 992
 993/*
 994 * get averaged number of queues of RT/BE priority.
 995 * average is updated, with a formula that gives more weight to higher numbers,
 996 * to quickly follows sudden increases and decrease slowly
 997 */
 998
 999static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1000                                        struct cfq_group *cfqg, bool rt)
1001{
1002        unsigned min_q, max_q;
1003        unsigned mult  = cfq_hist_divisor - 1;
1004        unsigned round = cfq_hist_divisor / 2;
1005        unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1006
1007        min_q = min(cfqg->busy_queues_avg[rt], busy);
1008        max_q = max(cfqg->busy_queues_avg[rt], busy);
1009        cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1010                cfq_hist_divisor;
1011        return cfqg->busy_queues_avg[rt];
1012}
1013
1014static inline u64
1015cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1016{
1017        return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1018}
1019
1020static inline u64
1021cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1022{
1023        u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1024        if (cfqd->cfq_latency) {
1025                /*
1026                 * interested queues (we consider only the ones with the same
1027                 * priority class in the cfq group)
1028                 */
1029                unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1030                                                cfq_class_rt(cfqq));
1031                u64 sync_slice = cfqd->cfq_slice[1];
1032                u64 expect_latency = sync_slice * iq;
1033                u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1034
1035                if (expect_latency > group_slice) {
1036                        u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1037                        u64 low_slice;
1038
1039                        /* scale low_slice according to IO priority
1040                         * and sync vs async */
1041                        low_slice = div64_u64(base_low_slice*slice, sync_slice);
1042                        low_slice = min(slice, low_slice);
1043                        /* the adapted slice value is scaled to fit all iqs
1044                         * into the target latency */
1045                        slice = div64_u64(slice*group_slice, expect_latency);
1046                        slice = max(slice, low_slice);
1047                }
1048        }
1049        return slice;
1050}
1051
1052static inline void
1053cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1054{
1055        u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1056        u64 now = ktime_get_ns();
1057
1058        cfqq->slice_start = now;
1059        cfqq->slice_end = now + slice;
1060        cfqq->allocated_slice = slice;
1061        cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1062}
1063
1064/*
1065 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1066 * isn't valid until the first request from the dispatch is activated
1067 * and the slice time set.
1068 */
1069static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1070{
1071        if (cfq_cfqq_slice_new(cfqq))
1072                return false;
1073        if (ktime_get_ns() < cfqq->slice_end)
1074                return false;
1075
1076        return true;
1077}
1078
1079/*
1080 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1081 * We choose the request that is closest to the head right now. Distance
1082 * behind the head is penalized and only allowed to a certain extent.
1083 */
1084static struct request *
1085cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1086{
1087        sector_t s1, s2, d1 = 0, d2 = 0;
1088        unsigned long back_max;
1089#define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
1090#define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
1091        unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1092
1093        if (rq1 == NULL || rq1 == rq2)
1094                return rq2;
1095        if (rq2 == NULL)
1096                return rq1;
1097
1098        if (rq_is_sync(rq1) != rq_is_sync(rq2))
1099                return rq_is_sync(rq1) ? rq1 : rq2;
1100
1101        if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1102                return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1103
1104        s1 = blk_rq_pos(rq1);
1105        s2 = blk_rq_pos(rq2);
1106
1107        /*
1108         * by definition, 1KiB is 2 sectors
1109         */
1110        back_max = cfqd->cfq_back_max * 2;
1111
1112        /*
1113         * Strict one way elevator _except_ in the case where we allow
1114         * short backward seeks which are biased as twice the cost of a
1115         * similar forward seek.
1116         */
1117        if (s1 >= last)
1118                d1 = s1 - last;
1119        else if (s1 + back_max >= last)
1120                d1 = (last - s1) * cfqd->cfq_back_penalty;
1121        else
1122                wrap |= CFQ_RQ1_WRAP;
1123
1124        if (s2 >= last)
1125                d2 = s2 - last;
1126        else if (s2 + back_max >= last)
1127                d2 = (last - s2) * cfqd->cfq_back_penalty;
1128        else
1129                wrap |= CFQ_RQ2_WRAP;
1130
1131        /* Found required data */
1132
1133        /*
1134         * By doing switch() on the bit mask "wrap" we avoid having to
1135         * check two variables for all permutations: --> faster!
1136         */
1137        switch (wrap) {
1138        case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1139                if (d1 < d2)
1140                        return rq1;
1141                else if (d2 < d1)
1142                        return rq2;
1143                else {
1144                        if (s1 >= s2)
1145                                return rq1;
1146                        else
1147                                return rq2;
1148                }
1149
1150        case CFQ_RQ2_WRAP:
1151                return rq1;
1152        case CFQ_RQ1_WRAP:
1153                return rq2;
1154        case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1155        default:
1156                /*
1157                 * Since both rqs are wrapped,
1158                 * start with the one that's further behind head
1159                 * (--> only *one* back seek required),
1160                 * since back seek takes more time than forward.
1161                 */
1162                if (s1 <= s2)
1163                        return rq1;
1164                else
1165                        return rq2;
1166        }
1167}
1168
1169static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1170{
1171        /* Service tree is empty */
1172        if (!root->count)
1173                return NULL;
1174
1175        return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node);
1176}
1177
1178static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1179{
1180        return rb_entry_cfqg(rb_first_cached(&root->rb));
1181}
1182
1183static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1184{
1185        if (root->rb_rightmost == n)
1186                root->rb_rightmost = rb_prev(n);
1187
1188        rb_erase_cached(n, &root->rb);
1189        RB_CLEAR_NODE(n);
1190
1191        --root->count;
1192}
1193
1194/*
1195 * would be nice to take fifo expire time into account as well
1196 */
1197static struct request *
1198cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1199                  struct request *last)
1200{
1201        struct rb_node *rbnext = rb_next(&last->rb_node);
1202        struct rb_node *rbprev = rb_prev(&last->rb_node);
1203        struct request *next = NULL, *prev = NULL;
1204
1205        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1206
1207        if (rbprev)
1208                prev = rb_entry_rq(rbprev);
1209
1210        if (rbnext)
1211                next = rb_entry_rq(rbnext);
1212        else {
1213                rbnext = rb_first(&cfqq->sort_list);
1214                if (rbnext && rbnext != &last->rb_node)
1215                        next = rb_entry_rq(rbnext);
1216        }
1217
1218        return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1219}
1220
1221static u64 cfq_slice_offset(struct cfq_data *cfqd,
1222                            struct cfq_queue *cfqq)
1223{
1224        /*
1225         * just an approximation, should be ok.
1226         */
1227        return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1228                       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1229}
1230
1231static inline s64
1232cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1233{
1234        return cfqg->vdisktime - st->min_vdisktime;
1235}
1236
1237static void
1238__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1239{
1240        struct rb_node **node = &st->rb.rb_root.rb_node;
1241        struct rb_node *parent = NULL;
1242        struct cfq_group *__cfqg;
1243        s64 key = cfqg_key(st, cfqg);
1244        bool leftmost = true, rightmost = true;
1245
1246        while (*node != NULL) {
1247                parent = *node;
1248                __cfqg = rb_entry_cfqg(parent);
1249
1250                if (key < cfqg_key(st, __cfqg)) {
1251                        node = &parent->rb_left;
1252                        rightmost = false;
1253                } else {
1254                        node = &parent->rb_right;
1255                        leftmost = false;
1256                }
1257        }
1258
1259        if (rightmost)
1260                st->rb_rightmost = &cfqg->rb_node;
1261
1262        rb_link_node(&cfqg->rb_node, parent, node);
1263        rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost);
1264}
1265
1266/*
1267 * This has to be called only on activation of cfqg
1268 */
1269static void
1270cfq_update_group_weight(struct cfq_group *cfqg)
1271{
1272        if (cfqg->new_weight) {
1273                cfqg->weight = cfqg->new_weight;
1274                cfqg->new_weight = 0;
1275        }
1276}
1277
1278static void
1279cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1280{
1281        BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1282
1283        if (cfqg->new_leaf_weight) {
1284                cfqg->leaf_weight = cfqg->new_leaf_weight;
1285                cfqg->new_leaf_weight = 0;
1286        }
1287}
1288
1289static void
1290cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1291{
1292        unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;      /* start with 1 */
1293        struct cfq_group *pos = cfqg;
1294        struct cfq_group *parent;
1295        bool propagate;
1296
1297        /* add to the service tree */
1298        BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1299
1300        /*
1301         * Update leaf_weight.  We cannot update weight at this point
1302         * because cfqg might already have been activated and is
1303         * contributing its current weight to the parent's child_weight.
1304         */
1305        cfq_update_group_leaf_weight(cfqg);
1306        __cfq_group_service_tree_add(st, cfqg);
1307
1308        /*
1309         * Activate @cfqg and calculate the portion of vfraction @cfqg is
1310         * entitled to.  vfraction is calculated by walking the tree
1311         * towards the root calculating the fraction it has at each level.
1312         * The compounded ratio is how much vfraction @cfqg owns.
1313         *
1314         * Start with the proportion tasks in this cfqg has against active
1315         * children cfqgs - its leaf_weight against children_weight.
1316         */
1317        propagate = !pos->nr_active++;
1318        pos->children_weight += pos->leaf_weight;
1319        vfr = vfr * pos->leaf_weight / pos->children_weight;
1320
1321        /*
1322         * Compound ->weight walking up the tree.  Both activation and
1323         * vfraction calculation are done in the same loop.  Propagation
1324         * stops once an already activated node is met.  vfraction
1325         * calculation should always continue to the root.
1326         */
1327        while ((parent = cfqg_parent(pos))) {
1328                if (propagate) {
1329                        cfq_update_group_weight(pos);
1330                        propagate = !parent->nr_active++;
1331                        parent->children_weight += pos->weight;
1332                }
1333                vfr = vfr * pos->weight / parent->children_weight;
1334                pos = parent;
1335        }
1336
1337        cfqg->vfraction = max_t(unsigned, vfr, 1);
1338}
1339
1340static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1341{
1342        if (!iops_mode(cfqd))
1343                return CFQ_SLICE_MODE_GROUP_DELAY;
1344        else
1345                return CFQ_IOPS_MODE_GROUP_DELAY;
1346}
1347
1348static void
1349cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1350{
1351        struct cfq_rb_root *st = &cfqd->grp_service_tree;
1352        struct cfq_group *__cfqg;
1353        struct rb_node *n;
1354
1355        cfqg->nr_cfqq++;
1356        if (!RB_EMPTY_NODE(&cfqg->rb_node))
1357                return;
1358
1359        /*
1360         * Currently put the group at the end. Later implement something
1361         * so that groups get lesser vtime based on their weights, so that
1362         * if group does not loose all if it was not continuously backlogged.
1363         */
1364        n = st->rb_rightmost;
1365        if (n) {
1366                __cfqg = rb_entry_cfqg(n);
1367                cfqg->vdisktime = __cfqg->vdisktime +
1368                        cfq_get_cfqg_vdisktime_delay(cfqd);
1369        } else
1370                cfqg->vdisktime = st->min_vdisktime;
1371        cfq_group_service_tree_add(st, cfqg);
1372}
1373
1374static void
1375cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1376{
1377        struct cfq_group *pos = cfqg;
1378        bool propagate;
1379
1380        /*
1381         * Undo activation from cfq_group_service_tree_add().  Deactivate
1382         * @cfqg and propagate deactivation upwards.
1383         */
1384        propagate = !--pos->nr_active;
1385        pos->children_weight -= pos->leaf_weight;
1386
1387        while (propagate) {
1388                struct cfq_group *parent = cfqg_parent(pos);
1389
1390                /* @pos has 0 nr_active at this point */
1391                WARN_ON_ONCE(pos->children_weight);
1392                pos->vfraction = 0;
1393
1394                if (!parent)
1395                        break;
1396
1397                propagate = !--parent->nr_active;
1398                parent->children_weight -= pos->weight;
1399                pos = parent;
1400        }
1401
1402        /* remove from the service tree */
1403        if (!RB_EMPTY_NODE(&cfqg->rb_node))
1404                cfq_rb_erase(&cfqg->rb_node, st);
1405}
1406
1407static void
1408cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1409{
1410        struct cfq_rb_root *st = &cfqd->grp_service_tree;
1411
1412        BUG_ON(cfqg->nr_cfqq < 1);
1413        cfqg->nr_cfqq--;
1414
1415        /* If there are other cfq queues under this group, don't delete it */
1416        if (cfqg->nr_cfqq)
1417                return;
1418
1419        cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1420        cfq_group_service_tree_del(st, cfqg);
1421        cfqg->saved_wl_slice = 0;
1422        cfqg_stats_update_dequeue(cfqg);
1423}
1424
1425static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1426                                       u64 *unaccounted_time)
1427{
1428        u64 slice_used;
1429        u64 now = ktime_get_ns();
1430
1431        /*
1432         * Queue got expired before even a single request completed or
1433         * got expired immediately after first request completion.
1434         */
1435        if (!cfqq->slice_start || cfqq->slice_start == now) {
1436                /*
1437                 * Also charge the seek time incurred to the group, otherwise
1438                 * if there are mutiple queues in the group, each can dispatch
1439                 * a single request on seeky media and cause lots of seek time
1440                 * and group will never know it.
1441                 */
1442                slice_used = max_t(u64, (now - cfqq->dispatch_start),
1443                                        jiffies_to_nsecs(1));
1444        } else {
1445                slice_used = now - cfqq->slice_start;
1446                if (slice_used > cfqq->allocated_slice) {
1447                        *unaccounted_time = slice_used - cfqq->allocated_slice;
1448                        slice_used = cfqq->allocated_slice;
1449                }
1450                if (cfqq->slice_start > cfqq->dispatch_start)
1451                        *unaccounted_time += cfqq->slice_start -
1452                                        cfqq->dispatch_start;
1453        }
1454
1455        return slice_used;
1456}
1457
1458static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459                                struct cfq_queue *cfqq)
1460{
1461        struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462        u64 used_sl, charge, unaccounted_sl = 0;
1463        int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464                        - cfqg->service_tree_idle.count;
1465        unsigned int vfr;
1466        u64 now = ktime_get_ns();
1467
1468        BUG_ON(nr_sync < 0);
1469        used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1470
1471        if (iops_mode(cfqd))
1472                charge = cfqq->slice_dispatch;
1473        else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1474                charge = cfqq->allocated_slice;
1475
1476        /*
1477         * Can't update vdisktime while on service tree and cfqg->vfraction
1478         * is valid only while on it.  Cache vfr, leave the service tree,
1479         * update vdisktime and go back on.  The re-addition to the tree
1480         * will also update the weights as necessary.
1481         */
1482        vfr = cfqg->vfraction;
1483        cfq_group_service_tree_del(st, cfqg);
1484        cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1485        cfq_group_service_tree_add(st, cfqg);
1486
1487        /* This group is being expired. Save the context */
1488        if (cfqd->workload_expires > now) {
1489                cfqg->saved_wl_slice = cfqd->workload_expires - now;
1490                cfqg->saved_wl_type = cfqd->serving_wl_type;
1491                cfqg->saved_wl_class = cfqd->serving_wl_class;
1492        } else
1493                cfqg->saved_wl_slice = 0;
1494
1495        cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496                                        st->min_vdisktime);
1497        cfq_log_cfqq(cfqq->cfqd, cfqq,
1498                     "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1499                     used_sl, cfqq->slice_dispatch, charge,
1500                     iops_mode(cfqd), cfqq->nr_sectors);
1501        cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502        cfqg_stats_set_start_empty_time(cfqg);
1503}
1504
1505/**
1506 * cfq_init_cfqg_base - initialize base part of a cfq_group
1507 * @cfqg: cfq_group to initialize
1508 *
1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510 * is enabled or not.
1511 */
1512static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513{
1514        struct cfq_rb_root *st;
1515        int i, j;
1516
1517        for_each_cfqg_st(cfqg, i, j, st)
1518                *st = CFQ_RB_ROOT;
1519        RB_CLEAR_NODE(&cfqg->rb_node);
1520
1521        cfqg->ttime.last_end_request = ktime_get_ns();
1522}
1523
1524#ifdef CONFIG_CFQ_GROUP_IOSCHED
1525static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1526                            bool on_dfl, bool reset_dev, bool is_leaf_weight);
1527
1528static void cfqg_stats_exit(struct cfqg_stats *stats)
1529{
1530        blkg_rwstat_exit(&stats->merged);
1531        blkg_rwstat_exit(&stats->service_time);
1532        blkg_rwstat_exit(&stats->wait_time);
1533        blkg_rwstat_exit(&stats->queued);
1534        blkg_stat_exit(&stats->time);
1535#ifdef CONFIG_DEBUG_BLK_CGROUP
1536        blkg_stat_exit(&stats->unaccounted_time);
1537        blkg_stat_exit(&stats->avg_queue_size_sum);
1538        blkg_stat_exit(&stats->avg_queue_size_samples);
1539        blkg_stat_exit(&stats->dequeue);
1540        blkg_stat_exit(&stats->group_wait_time);
1541        blkg_stat_exit(&stats->idle_time);
1542        blkg_stat_exit(&stats->empty_time);
1543#endif
1544}
1545
1546static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1547{
1548        if (blkg_rwstat_init(&stats->merged, gfp) ||
1549            blkg_rwstat_init(&stats->service_time, gfp) ||
1550            blkg_rwstat_init(&stats->wait_time, gfp) ||
1551            blkg_rwstat_init(&stats->queued, gfp) ||
1552            blkg_stat_init(&stats->time, gfp))
1553                goto err;
1554
1555#ifdef CONFIG_DEBUG_BLK_CGROUP
1556        if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1557            blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1558            blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1559            blkg_stat_init(&stats->dequeue, gfp) ||
1560            blkg_stat_init(&stats->group_wait_time, gfp) ||
1561            blkg_stat_init(&stats->idle_time, gfp) ||
1562            blkg_stat_init(&stats->empty_time, gfp))
1563                goto err;
1564#endif
1565        return 0;
1566err:
1567        cfqg_stats_exit(stats);
1568        return -ENOMEM;
1569}
1570
1571static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1572{
1573        struct cfq_group_data *cgd;
1574
1575        cgd = kzalloc(sizeof(*cgd), gfp);
1576        if (!cgd)
1577                return NULL;
1578        return &cgd->cpd;
1579}
1580
1581static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1582{
1583        struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1584        unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1585                              CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1586
1587        if (cpd_to_blkcg(cpd) == &blkcg_root)
1588                weight *= 2;
1589
1590        cgd->weight = weight;
1591        cgd->leaf_weight = weight;
1592}
1593
1594static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1595{
1596        kfree(cpd_to_cfqgd(cpd));
1597}
1598
1599static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1600{
1601        struct blkcg *blkcg = cpd_to_blkcg(cpd);
1602        bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1603        unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1604
1605        if (blkcg == &blkcg_root)
1606                weight *= 2;
1607
1608        WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1609        WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1610}
1611
1612static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1613{
1614        struct cfq_group *cfqg;
1615
1616        cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1617        if (!cfqg)
1618                return NULL;
1619
1620        cfq_init_cfqg_base(cfqg);
1621        if (cfqg_stats_init(&cfqg->stats, gfp)) {
1622                kfree(cfqg);
1623                return NULL;
1624        }
1625
1626        return &cfqg->pd;
1627}
1628
1629static void cfq_pd_init(struct blkg_policy_data *pd)
1630{
1631        struct cfq_group *cfqg = pd_to_cfqg(pd);
1632        struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1633
1634        cfqg->weight = cgd->weight;
1635        cfqg->leaf_weight = cgd->leaf_weight;
1636}
1637
1638static void cfq_pd_offline(struct blkg_policy_data *pd)
1639{
1640        struct cfq_group *cfqg = pd_to_cfqg(pd);
1641        int i;
1642
1643        for (i = 0; i < IOPRIO_BE_NR; i++) {
1644                if (cfqg->async_cfqq[0][i])
1645                        cfq_put_queue(cfqg->async_cfqq[0][i]);
1646                if (cfqg->async_cfqq[1][i])
1647                        cfq_put_queue(cfqg->async_cfqq[1][i]);
1648        }
1649
1650        if (cfqg->async_idle_cfqq)
1651                cfq_put_queue(cfqg->async_idle_cfqq);
1652
1653        /*
1654         * @blkg is going offline and will be ignored by
1655         * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1656         * that they don't get lost.  If IOs complete after this point, the
1657         * stats for them will be lost.  Oh well...
1658         */
1659        cfqg_stats_xfer_dead(cfqg);
1660}
1661
1662static void cfq_pd_free(struct blkg_policy_data *pd)
1663{
1664        struct cfq_group *cfqg = pd_to_cfqg(pd);
1665
1666        cfqg_stats_exit(&cfqg->stats);
1667        return kfree(cfqg);
1668}
1669
1670static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1671{
1672        struct cfq_group *cfqg = pd_to_cfqg(pd);
1673
1674        cfqg_stats_reset(&cfqg->stats);
1675}
1676
1677static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1678                                         struct blkcg *blkcg)
1679{
1680        struct blkcg_gq *blkg;
1681
1682        blkg = blkg_lookup(blkcg, cfqd->queue);
1683        if (likely(blkg))
1684                return blkg_to_cfqg(blkg);
1685        return NULL;
1686}
1687
1688static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1689{
1690        cfqq->cfqg = cfqg;
1691        /* cfqq reference on cfqg */
1692        cfqg_get(cfqg);
1693}
1694
1695static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1696                                     struct blkg_policy_data *pd, int off)
1697{
1698        struct cfq_group *cfqg = pd_to_cfqg(pd);
1699
1700        if (!cfqg->dev_weight)
1701                return 0;
1702        return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1703}
1704
1705static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1706{
1707        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1708                          cfqg_prfill_weight_device, &blkcg_policy_cfq,
1709                          0, false);
1710        return 0;
1711}
1712
1713static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1714                                          struct blkg_policy_data *pd, int off)
1715{
1716        struct cfq_group *cfqg = pd_to_cfqg(pd);
1717
1718        if (!cfqg->dev_leaf_weight)
1719                return 0;
1720        return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1721}
1722
1723static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1724{
1725        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1726                          cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1727                          0, false);
1728        return 0;
1729}
1730
1731static int cfq_print_weight(struct seq_file *sf, void *v)
1732{
1733        struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1734        struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1735        unsigned int val = 0;
1736
1737        if (cgd)
1738                val = cgd->weight;
1739
1740        seq_printf(sf, "%u\n", val);
1741        return 0;
1742}
1743
1744static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1745{
1746        struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1747        struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1748        unsigned int val = 0;
1749
1750        if (cgd)
1751                val = cgd->leaf_weight;
1752
1753        seq_printf(sf, "%u\n", val);
1754        return 0;
1755}
1756
1757static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1758                                        char *buf, size_t nbytes, loff_t off,
1759                                        bool on_dfl, bool is_leaf_weight)
1760{
1761        unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1762        unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1763        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1764        struct blkg_conf_ctx ctx;
1765        struct cfq_group *cfqg;
1766        struct cfq_group_data *cfqgd;
1767        int ret;
1768        u64 v;
1769
1770        ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1771        if (ret)
1772                return ret;
1773
1774        if (sscanf(ctx.body, "%llu", &v) == 1) {
1775                /* require "default" on dfl */
1776                ret = -ERANGE;
1777                if (!v && on_dfl)
1778                        goto out_finish;
1779        } else if (!strcmp(strim(ctx.body), "default")) {
1780                v = 0;
1781        } else {
1782                ret = -EINVAL;
1783                goto out_finish;
1784        }
1785
1786        cfqg = blkg_to_cfqg(ctx.blkg);
1787        cfqgd = blkcg_to_cfqgd(blkcg);
1788
1789        ret = -ERANGE;
1790        if (!v || (v >= min && v <= max)) {
1791                if (!is_leaf_weight) {
1792                        cfqg->dev_weight = v;
1793                        cfqg->new_weight = v ?: cfqgd->weight;
1794                } else {
1795                        cfqg->dev_leaf_weight = v;
1796                        cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1797                }
1798                ret = 0;
1799        }
1800out_finish:
1801        blkg_conf_finish(&ctx);
1802        return ret ?: nbytes;
1803}
1804
1805static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1806                                      char *buf, size_t nbytes, loff_t off)
1807{
1808        return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1809}
1810
1811static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1812                                           char *buf, size_t nbytes, loff_t off)
1813{
1814        return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1815}
1816
1817static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1818                            bool on_dfl, bool reset_dev, bool is_leaf_weight)
1819{
1820        unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1821        unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1822        struct blkcg *blkcg = css_to_blkcg(css);
1823        struct blkcg_gq *blkg;
1824        struct cfq_group_data *cfqgd;
1825        int ret = 0;
1826
1827        if (val < min || val > max)
1828                return -ERANGE;
1829
1830        spin_lock_irq(&blkcg->lock);
1831        cfqgd = blkcg_to_cfqgd(blkcg);
1832        if (!cfqgd) {
1833                ret = -EINVAL;
1834                goto out;
1835        }
1836
1837        if (!is_leaf_weight)
1838                cfqgd->weight = val;
1839        else
1840                cfqgd->leaf_weight = val;
1841
1842        hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1843                struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1844
1845                if (!cfqg)
1846                        continue;
1847
1848                if (!is_leaf_weight) {
1849                        if (reset_dev)
1850                                cfqg->dev_weight = 0;
1851                        if (!cfqg->dev_weight)
1852                                cfqg->new_weight = cfqgd->weight;
1853                } else {
1854                        if (reset_dev)
1855                                cfqg->dev_leaf_weight = 0;
1856                        if (!cfqg->dev_leaf_weight)
1857                                cfqg->new_leaf_weight = cfqgd->leaf_weight;
1858                }
1859        }
1860
1861out:
1862        spin_unlock_irq(&blkcg->lock);
1863        return ret;
1864}
1865
1866static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1867                          u64 val)
1868{
1869        return __cfq_set_weight(css, val, false, false, false);
1870}
1871
1872static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1873                               struct cftype *cft, u64 val)
1874{
1875        return __cfq_set_weight(css, val, false, false, true);
1876}
1877
1878static int cfqg_print_stat(struct seq_file *sf, void *v)
1879{
1880        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1881                          &blkcg_policy_cfq, seq_cft(sf)->private, false);
1882        return 0;
1883}
1884
1885static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1886{
1887        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1888                          &blkcg_policy_cfq, seq_cft(sf)->private, true);
1889        return 0;
1890}
1891
1892static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1893                                      struct blkg_policy_data *pd, int off)
1894{
1895        u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1896                                          &blkcg_policy_cfq, off);
1897        return __blkg_prfill_u64(sf, pd, sum);
1898}
1899
1900static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1901                                        struct blkg_policy_data *pd, int off)
1902{
1903        struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1904                                                        &blkcg_policy_cfq, off);
1905        return __blkg_prfill_rwstat(sf, pd, &sum);
1906}
1907
1908static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1909{
1910        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1911                          cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1912                          seq_cft(sf)->private, false);
1913        return 0;
1914}
1915
1916static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1917{
1918        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1919                          cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1920                          seq_cft(sf)->private, true);
1921        return 0;
1922}
1923
1924static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1925                               int off)
1926{
1927        u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1928
1929        return __blkg_prfill_u64(sf, pd, sum >> 9);
1930}
1931
1932static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1933{
1934        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1935                          cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1936        return 0;
1937}
1938
1939static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1940                                         struct blkg_policy_data *pd, int off)
1941{
1942        struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1943                                        offsetof(struct blkcg_gq, stat_bytes));
1944        u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1945                atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1946
1947        return __blkg_prfill_u64(sf, pd, sum >> 9);
1948}
1949
1950static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1951{
1952        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1953                          cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1954                          false);
1955        return 0;
1956}
1957
1958#ifdef CONFIG_DEBUG_BLK_CGROUP
1959static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1960                                      struct blkg_policy_data *pd, int off)
1961{
1962        struct cfq_group *cfqg = pd_to_cfqg(pd);
1963        u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1964        u64 v = 0;
1965
1966        if (samples) {
1967                v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1968                v = div64_u64(v, samples);
1969        }
1970        __blkg_prfill_u64(sf, pd, v);
1971        return 0;
1972}
1973
1974/* print avg_queue_size */
1975static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1976{
1977        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1978                          cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1979                          0, false);
1980        return 0;
1981}
1982#endif  /* CONFIG_DEBUG_BLK_CGROUP */
1983
1984static struct cftype cfq_blkcg_legacy_files[] = {
1985        /* on root, weight is mapped to leaf_weight */
1986        {
1987                .name = "weight_device",
1988                .flags = CFTYPE_ONLY_ON_ROOT,
1989                .seq_show = cfqg_print_leaf_weight_device,
1990                .write = cfqg_set_leaf_weight_device,
1991        },
1992        {
1993                .name = "weight",
1994                .flags = CFTYPE_ONLY_ON_ROOT,
1995                .seq_show = cfq_print_leaf_weight,
1996                .write_u64 = cfq_set_leaf_weight,
1997        },
1998
1999        /* no such mapping necessary for !roots */
2000        {
2001                .name = "weight_device",
2002                .flags = CFTYPE_NOT_ON_ROOT,
2003                .seq_show = cfqg_print_weight_device,
2004                .write = cfqg_set_weight_device,
2005        },
2006        {
2007                .name = "weight",
2008                .flags = CFTYPE_NOT_ON_ROOT,
2009                .seq_show = cfq_print_weight,
2010                .write_u64 = cfq_set_weight,
2011        },
2012
2013        {
2014                .name = "leaf_weight_device",
2015                .seq_show = cfqg_print_leaf_weight_device,
2016                .write = cfqg_set_leaf_weight_device,
2017        },
2018        {
2019                .name = "leaf_weight",
2020                .seq_show = cfq_print_leaf_weight,
2021                .write_u64 = cfq_set_leaf_weight,
2022        },
2023
2024        /* statistics, covers only the tasks in the cfqg */
2025        {
2026                .name = "time",
2027                .private = offsetof(struct cfq_group, stats.time),
2028                .seq_show = cfqg_print_stat,
2029        },
2030        {
2031                .name = "sectors",
2032                .seq_show = cfqg_print_stat_sectors,
2033        },
2034        {
2035                .name = "io_service_bytes",
2036                .private = (unsigned long)&blkcg_policy_cfq,
2037                .seq_show = blkg_print_stat_bytes,
2038        },
2039        {
2040                .name = "io_serviced",
2041                .private = (unsigned long)&blkcg_policy_cfq,
2042                .seq_show = blkg_print_stat_ios,
2043        },
2044        {
2045                .name = "io_service_time",
2046                .private = offsetof(struct cfq_group, stats.service_time),
2047                .seq_show = cfqg_print_rwstat,
2048        },
2049        {
2050                .name = "io_wait_time",
2051                .private = offsetof(struct cfq_group, stats.wait_time),
2052                .seq_show = cfqg_print_rwstat,
2053        },
2054        {
2055                .name = "io_merged",
2056                .private = offsetof(struct cfq_group, stats.merged),
2057                .seq_show = cfqg_print_rwstat,
2058        },
2059        {
2060                .name = "io_queued",
2061                .private = offsetof(struct cfq_group, stats.queued),
2062                .seq_show = cfqg_print_rwstat,
2063        },
2064
2065        /* the same statictics which cover the cfqg and its descendants */
2066        {
2067                .name = "time_recursive",
2068                .private = offsetof(struct cfq_group, stats.time),
2069                .seq_show = cfqg_print_stat_recursive,
2070        },
2071        {
2072                .name = "sectors_recursive",
2073                .seq_show = cfqg_print_stat_sectors_recursive,
2074        },
2075        {
2076                .name = "io_service_bytes_recursive",
2077                .private = (unsigned long)&blkcg_policy_cfq,
2078                .seq_show = blkg_print_stat_bytes_recursive,
2079        },
2080        {
2081                .name = "io_serviced_recursive",
2082                .private = (unsigned long)&blkcg_policy_cfq,
2083                .seq_show = blkg_print_stat_ios_recursive,
2084        },
2085        {
2086                .name = "io_service_time_recursive",
2087                .private = offsetof(struct cfq_group, stats.service_time),
2088                .seq_show = cfqg_print_rwstat_recursive,
2089        },
2090        {
2091                .name = "io_wait_time_recursive",
2092                .private = offsetof(struct cfq_group, stats.wait_time),
2093                .seq_show = cfqg_print_rwstat_recursive,
2094        },
2095        {
2096                .name = "io_merged_recursive",
2097                .private = offsetof(struct cfq_group, stats.merged),
2098                .seq_show = cfqg_print_rwstat_recursive,
2099        },
2100        {
2101                .name = "io_queued_recursive",
2102                .private = offsetof(struct cfq_group, stats.queued),
2103                .seq_show = cfqg_print_rwstat_recursive,
2104        },
2105#ifdef CONFIG_DEBUG_BLK_CGROUP
2106        {
2107                .name = "avg_queue_size",
2108                .seq_show = cfqg_print_avg_queue_size,
2109        },
2110        {
2111                .name = "group_wait_time",
2112                .private = offsetof(struct cfq_group, stats.group_wait_time),
2113                .seq_show = cfqg_print_stat,
2114        },
2115        {
2116                .name = "idle_time",
2117                .private = offsetof(struct cfq_group, stats.idle_time),
2118                .seq_show = cfqg_print_stat,
2119        },
2120        {
2121                .name = "empty_time",
2122                .private = offsetof(struct cfq_group, stats.empty_time),
2123                .seq_show = cfqg_print_stat,
2124        },
2125        {
2126                .name = "dequeue",
2127                .private = offsetof(struct cfq_group, stats.dequeue),
2128                .seq_show = cfqg_print_stat,
2129        },
2130        {
2131                .name = "unaccounted_time",
2132                .private = offsetof(struct cfq_group, stats.unaccounted_time),
2133                .seq_show = cfqg_print_stat,
2134        },
2135#endif  /* CONFIG_DEBUG_BLK_CGROUP */
2136        { }     /* terminate */
2137};
2138
2139static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2140{
2141        struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2142        struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2143
2144        seq_printf(sf, "default %u\n", cgd->weight);
2145        blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2146                          &blkcg_policy_cfq, 0, false);
2147        return 0;
2148}
2149
2150static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2151                                     char *buf, size_t nbytes, loff_t off)
2152{
2153        char *endp;
2154        int ret;
2155        u64 v;
2156
2157        buf = strim(buf);
2158
2159        /* "WEIGHT" or "default WEIGHT" sets the default weight */
2160        v = simple_strtoull(buf, &endp, 0);
2161        if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2162                ret = __cfq_set_weight(of_css(of), v, true, false, false);
2163                return ret ?: nbytes;
2164        }
2165
2166        /* "MAJ:MIN WEIGHT" */
2167        return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2168}
2169
2170static struct cftype cfq_blkcg_files[] = {
2171        {
2172                .name = "weight",
2173                .flags = CFTYPE_NOT_ON_ROOT,
2174                .seq_show = cfq_print_weight_on_dfl,
2175                .write = cfq_set_weight_on_dfl,
2176        },
2177        { }     /* terminate */
2178};
2179
2180#else /* GROUP_IOSCHED */
2181static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2182                                         struct blkcg *blkcg)
2183{
2184        return cfqd->root_group;
2185}
2186
2187static inline void
2188cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2189        cfqq->cfqg = cfqg;
2190}
2191
2192#endif /* GROUP_IOSCHED */
2193
2194/*
2195 * The cfqd->service_trees holds all pending cfq_queue's that have
2196 * requests waiting to be processed. It is sorted in the order that
2197 * we will service the queues.
2198 */
2199static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2200                                 bool add_front)
2201{
2202        struct rb_node **p, *parent;
2203        struct cfq_queue *__cfqq;
2204        u64 rb_key;
2205        struct cfq_rb_root *st;
2206        bool leftmost = true;
2207        int new_cfqq = 1;
2208        u64 now = ktime_get_ns();
2209
2210        st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2211        if (cfq_class_idle(cfqq)) {
2212                rb_key = CFQ_IDLE_DELAY;
2213                parent = st->rb_rightmost;
2214                if (parent && parent != &cfqq->rb_node) {
2215                        __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2216                        rb_key += __cfqq->rb_key;
2217                } else
2218                        rb_key += now;
2219        } else if (!add_front) {
2220                /*
2221                 * Get our rb key offset. Subtract any residual slice
2222                 * value carried from last service. A negative resid
2223                 * count indicates slice overrun, and this should position
2224                 * the next service time further away in the tree.
2225                 */
2226                rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2227                rb_key -= cfqq->slice_resid;
2228                cfqq->slice_resid = 0;
2229        } else {
2230                rb_key = -NSEC_PER_SEC;
2231                __cfqq = cfq_rb_first(st);
2232                rb_key += __cfqq ? __cfqq->rb_key : now;
2233        }
2234
2235        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2236                new_cfqq = 0;
2237                /*
2238                 * same position, nothing more to do
2239                 */
2240                if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2241                        return;
2242
2243                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2244                cfqq->service_tree = NULL;
2245        }
2246
2247        parent = NULL;
2248        cfqq->service_tree = st;
2249        p = &st->rb.rb_root.rb_node;
2250        while (*p) {
2251                parent = *p;
2252                __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2253
2254                /*
2255                 * sort by key, that represents service time.
2256                 */
2257                if (rb_key < __cfqq->rb_key)
2258                        p = &parent->rb_left;
2259                else {
2260                        p = &parent->rb_right;
2261                        leftmost = false;
2262                }
2263        }
2264
2265        cfqq->rb_key = rb_key;
2266        rb_link_node(&cfqq->rb_node, parent, p);
2267        rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost);
2268        st->count++;
2269        if (add_front || !new_cfqq)
2270                return;
2271        cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2272}
2273
2274static struct cfq_queue *
2275cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2276                     sector_t sector, struct rb_node **ret_parent,
2277                     struct rb_node ***rb_link)
2278{
2279        struct rb_node **p, *parent;
2280        struct cfq_queue *cfqq = NULL;
2281
2282        parent = NULL;
2283        p = &root->rb_node;
2284        while (*p) {
2285                struct rb_node **n;
2286
2287                parent = *p;
2288                cfqq = rb_entry(parent, struct cfq_queue, p_node);
2289
2290                /*
2291                 * Sort strictly based on sector.  Smallest to the left,
2292                 * largest to the right.
2293                 */
2294                if (sector > blk_rq_pos(cfqq->next_rq))
2295                        n = &(*p)->rb_right;
2296                else if (sector < blk_rq_pos(cfqq->next_rq))
2297                        n = &(*p)->rb_left;
2298                else
2299                        break;
2300                p = n;
2301                cfqq = NULL;
2302        }
2303
2304        *ret_parent = parent;
2305        if (rb_link)
2306                *rb_link = p;
2307        return cfqq;
2308}
2309
2310static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2311{
2312        struct rb_node **p, *parent;
2313        struct cfq_queue *__cfqq;
2314
2315        if (cfqq->p_root) {
2316                rb_erase(&cfqq->p_node, cfqq->p_root);
2317                cfqq->p_root = NULL;
2318        }
2319
2320        if (cfq_class_idle(cfqq))
2321                return;
2322        if (!cfqq->next_rq)
2323                return;
2324
2325        cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2326        __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2327                                      blk_rq_pos(cfqq->next_rq), &parent, &p);
2328        if (!__cfqq) {
2329                rb_link_node(&cfqq->p_node, parent, p);
2330                rb_insert_color(&cfqq->p_node, cfqq->p_root);
2331        } else
2332                cfqq->p_root = NULL;
2333}
2334
2335/*
2336 * Update cfqq's position in the service tree.
2337 */
2338static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2339{
2340        /*
2341         * Resorting requires the cfqq to be on the RR list already.
2342         */
2343        if (cfq_cfqq_on_rr(cfqq)) {
2344                cfq_service_tree_add(cfqd, cfqq, 0);
2345                cfq_prio_tree_add(cfqd, cfqq);
2346        }
2347}
2348
2349/*
2350 * add to busy list of queues for service, trying to be fair in ordering
2351 * the pending list according to last request service
2352 */
2353static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2354{
2355        cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2356        BUG_ON(cfq_cfqq_on_rr(cfqq));
2357        cfq_mark_cfqq_on_rr(cfqq);
2358        cfqd->busy_queues++;
2359        if (cfq_cfqq_sync(cfqq))
2360                cfqd->busy_sync_queues++;
2361
2362        cfq_resort_rr_list(cfqd, cfqq);
2363}
2364
2365/*
2366 * Called when the cfqq no longer has requests pending, remove it from
2367 * the service tree.
2368 */
2369static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2370{
2371        cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2372        BUG_ON(!cfq_cfqq_on_rr(cfqq));
2373        cfq_clear_cfqq_on_rr(cfqq);
2374
2375        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2376                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2377                cfqq->service_tree = NULL;
2378        }
2379        if (cfqq->p_root) {
2380                rb_erase(&cfqq->p_node, cfqq->p_root);
2381                cfqq->p_root = NULL;
2382        }
2383
2384        cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2385        BUG_ON(!cfqd->busy_queues);
2386        cfqd->busy_queues--;
2387        if (cfq_cfqq_sync(cfqq))
2388                cfqd->busy_sync_queues--;
2389}
2390
2391/*
2392 * rb tree support functions
2393 */
2394static void cfq_del_rq_rb(struct request *rq)
2395{
2396        struct cfq_queue *cfqq = RQ_CFQQ(rq);
2397        const int sync = rq_is_sync(rq);
2398
2399        BUG_ON(!cfqq->queued[sync]);
2400        cfqq->queued[sync]--;
2401
2402        elv_rb_del(&cfqq->sort_list, rq);
2403
2404        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2405                /*
2406                 * Queue will be deleted from service tree when we actually
2407                 * expire it later. Right now just remove it from prio tree
2408                 * as it is empty.
2409                 */
2410                if (cfqq->p_root) {
2411                        rb_erase(&cfqq->p_node, cfqq->p_root);
2412                        cfqq->p_root = NULL;
2413                }
2414        }
2415}
2416
2417static void cfq_add_rq_rb(struct request *rq)
2418{
2419        struct cfq_queue *cfqq = RQ_CFQQ(rq);
2420        struct cfq_data *cfqd = cfqq->cfqd;
2421        struct request *prev;
2422
2423        cfqq->queued[rq_is_sync(rq)]++;
2424
2425        elv_rb_add(&cfqq->sort_list, rq);
2426
2427        if (!cfq_cfqq_on_rr(cfqq))
2428                cfq_add_cfqq_rr(cfqd, cfqq);
2429
2430        /*
2431         * check if this request is a better next-serve candidate
2432         */
2433        prev = cfqq->next_rq;
2434        cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2435
2436        /*
2437         * adjust priority tree position, if ->next_rq changes
2438         */
2439        if (prev != cfqq->next_rq)
2440                cfq_prio_tree_add(cfqd, cfqq);
2441
2442        BUG_ON(!cfqq->next_rq);
2443}
2444
2445static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2446{
2447        elv_rb_del(&cfqq->sort_list, rq);
2448        cfqq->queued[rq_is_sync(rq)]--;
2449        cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2450        cfq_add_rq_rb(rq);
2451        cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2452                                 rq->cmd_flags);
2453}
2454
2455static struct request *
2456cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2457{
2458        struct task_struct *tsk = current;
2459        struct cfq_io_cq *cic;
2460        struct cfq_queue *cfqq;
2461
2462        cic = cfq_cic_lookup(cfqd, tsk->io_context);
2463        if (!cic)
2464                return NULL;
2465
2466        cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2467        if (cfqq)
2468                return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2469
2470        return NULL;
2471}
2472
2473static void cfq_activate_request(struct request_queue *q, struct request *rq)
2474{
2475        struct cfq_data *cfqd = q->elevator->elevator_data;
2476
2477        cfqd->rq_in_driver++;
2478        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2479                                                cfqd->rq_in_driver);
2480
2481        cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2482}
2483
2484static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2485{
2486        struct cfq_data *cfqd = q->elevator->elevator_data;
2487
2488        WARN_ON(!cfqd->rq_in_driver);
2489        cfqd->rq_in_driver--;
2490        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2491                                                cfqd->rq_in_driver);
2492}
2493
2494static void cfq_remove_request(struct request *rq)
2495{
2496        struct cfq_queue *cfqq = RQ_CFQQ(rq);
2497
2498        if (cfqq->next_rq == rq)
2499                cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2500
2501        list_del_init(&rq->queuelist);
2502        cfq_del_rq_rb(rq);
2503
2504        cfqq->cfqd->rq_queued--;
2505        cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2506        if (rq->cmd_flags & REQ_PRIO) {
2507                WARN_ON(!cfqq->prio_pending);
2508                cfqq->prio_pending--;
2509        }
2510}
2511
2512static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2513                     struct bio *bio)
2514{
2515        struct cfq_data *cfqd = q->elevator->elevator_data;
2516        struct request *__rq;
2517
2518        __rq = cfq_find_rq_fmerge(cfqd, bio);
2519        if (__rq && elv_bio_merge_ok(__rq, bio)) {
2520                *req = __rq;
2521                return ELEVATOR_FRONT_MERGE;
2522        }
2523
2524        return ELEVATOR_NO_MERGE;
2525}
2526
2527static void cfq_merged_request(struct request_queue *q, struct request *req,
2528                               enum elv_merge type)
2529{
2530        if (type == ELEVATOR_FRONT_MERGE) {
2531                struct cfq_queue *cfqq = RQ_CFQQ(req);
2532
2533                cfq_reposition_rq_rb(cfqq, req);
2534        }
2535}
2536
2537static void cfq_bio_merged(struct request_queue *q, struct request *req,
2538                                struct bio *bio)
2539{
2540        cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2541}
2542
2543static void
2544cfq_merged_requests(struct request_queue *q, struct request *rq,
2545                    struct request *next)
2546{
2547        struct cfq_queue *cfqq = RQ_CFQQ(rq);
2548        struct cfq_data *cfqd = q->elevator->elevator_data;
2549
2550        /*
2551         * reposition in fifo if next is older than rq
2552         */
2553        if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2554            next->fifo_time < rq->fifo_time &&
2555            cfqq == RQ_CFQQ(next)) {
2556                list_move(&rq->queuelist, &next->queuelist);
2557                rq->fifo_time = next->fifo_time;
2558        }
2559
2560        if (cfqq->next_rq == next)
2561                cfqq->next_rq = rq;
2562        cfq_remove_request(next);
2563        cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2564
2565        cfqq = RQ_CFQQ(next);
2566        /*
2567         * all requests of this queue are merged to other queues, delete it
2568         * from the service tree. If it's the active_queue,
2569         * cfq_dispatch_requests() will choose to expire it or do idle
2570         */
2571        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2572            cfqq != cfqd->active_queue)
2573                cfq_del_cfqq_rr(cfqd, cfqq);
2574}
2575
2576static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2577                               struct bio *bio)
2578{
2579        struct cfq_data *cfqd = q->elevator->elevator_data;
2580        bool is_sync = op_is_sync(bio->bi_opf);
2581        struct cfq_io_cq *cic;
2582        struct cfq_queue *cfqq;
2583
2584        /*
2585         * Disallow merge of a sync bio into an async request.
2586         */
2587        if (is_sync && !rq_is_sync(rq))
2588                return false;
2589
2590        /*
2591         * Lookup the cfqq that this bio will be queued with and allow
2592         * merge only if rq is queued there.
2593         */
2594        cic = cfq_cic_lookup(cfqd, current->io_context);
2595        if (!cic)
2596                return false;
2597
2598        cfqq = cic_to_cfqq(cic, is_sync);
2599        return cfqq == RQ_CFQQ(rq);
2600}
2601
2602static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2603                              struct request *next)
2604{
2605        return RQ_CFQQ(rq) == RQ_CFQQ(next);
2606}
2607
2608static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2609{
2610        hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2611        cfqg_stats_update_idle_time(cfqq->cfqg);
2612}
2613
2614static void __cfq_set_active_queue(struct cfq_data *cfqd,
2615                                   struct cfq_queue *cfqq)
2616{
2617        if (cfqq) {
2618                cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2619                                cfqd->serving_wl_class, cfqd->serving_wl_type);
2620                cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2621                cfqq->slice_start = 0;
2622                cfqq->dispatch_start = ktime_get_ns();
2623                cfqq->allocated_slice = 0;
2624                cfqq->slice_end = 0;
2625                cfqq->slice_dispatch = 0;
2626                cfqq->nr_sectors = 0;
2627
2628                cfq_clear_cfqq_wait_request(cfqq);
2629                cfq_clear_cfqq_must_dispatch(cfqq);
2630                cfq_clear_cfqq_must_alloc_slice(cfqq);
2631                cfq_clear_cfqq_fifo_expire(cfqq);
2632                cfq_mark_cfqq_slice_new(cfqq);
2633
2634                cfq_del_timer(cfqd, cfqq);
2635        }
2636
2637        cfqd->active_queue = cfqq;
2638}
2639
2640/*
2641 * current cfqq expired its slice (or was too idle), select new one
2642 */
2643static void
2644__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2645                    bool timed_out)
2646{
2647        cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2648
2649        if (cfq_cfqq_wait_request(cfqq))
2650                cfq_del_timer(cfqd, cfqq);
2651
2652        cfq_clear_cfqq_wait_request(cfqq);
2653        cfq_clear_cfqq_wait_busy(cfqq);
2654
2655        /*
2656         * If this cfqq is shared between multiple processes, check to
2657         * make sure that those processes are still issuing I/Os within
2658         * the mean seek distance.  If not, it may be time to break the
2659         * queues apart again.
2660         */
2661        if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2662                cfq_mark_cfqq_split_coop(cfqq);
2663
2664        /*
2665         * store what was left of this slice, if the queue idled/timed out
2666         */
2667        if (timed_out) {
2668                if (cfq_cfqq_slice_new(cfqq))
2669                        cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2670                else
2671                        cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2672                cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2673        }
2674
2675        cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2676
2677        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2678                cfq_del_cfqq_rr(cfqd, cfqq);
2679
2680        cfq_resort_rr_list(cfqd, cfqq);
2681
2682        if (cfqq == cfqd->active_queue)
2683                cfqd->active_queue = NULL;
2684
2685        if (cfqd->active_cic) {
2686                put_io_context(cfqd->active_cic->icq.ioc);
2687                cfqd->active_cic = NULL;
2688        }
2689}
2690
2691static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2692{
2693        struct cfq_queue *cfqq = cfqd->active_queue;
2694
2695        if (cfqq)
2696                __cfq_slice_expired(cfqd, cfqq, timed_out);
2697}
2698
2699/*
2700 * Get next queue for service. Unless we have a queue preemption,
2701 * we'll simply select the first cfqq in the service tree.
2702 */
2703static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2704{
2705        struct cfq_rb_root *st = st_for(cfqd->serving_group,
2706                        cfqd->serving_wl_class, cfqd->serving_wl_type);
2707
2708        if (!cfqd->rq_queued)
2709                return NULL;
2710
2711        /* There is nothing to dispatch */
2712        if (!st)
2713                return NULL;
2714        if (RB_EMPTY_ROOT(&st->rb.rb_root))
2715                return NULL;
2716        return cfq_rb_first(st);
2717}
2718
2719static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2720{
2721        struct cfq_group *cfqg;
2722        struct cfq_queue *cfqq;
2723        int i, j;
2724        struct cfq_rb_root *st;
2725
2726        if (!cfqd->rq_queued)
2727                return NULL;
2728
2729        cfqg = cfq_get_next_cfqg(cfqd);
2730        if (!cfqg)
2731                return NULL;
2732
2733        for_each_cfqg_st(cfqg, i, j, st) {
2734                cfqq = cfq_rb_first(st);
2735                if (cfqq)
2736                        return cfqq;
2737        }
2738        return NULL;
2739}
2740
2741/*
2742 * Get and set a new active queue for service.
2743 */
2744static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2745                                              struct cfq_queue *cfqq)
2746{
2747        if (!cfqq)
2748                cfqq = cfq_get_next_queue(cfqd);
2749
2750        __cfq_set_active_queue(cfqd, cfqq);
2751        return cfqq;
2752}
2753
2754static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2755                                          struct request *rq)
2756{
2757        if (blk_rq_pos(rq) >= cfqd->last_position)
2758                return blk_rq_pos(rq) - cfqd->last_position;
2759        else
2760                return cfqd->last_position - blk_rq_pos(rq);
2761}
2762
2763static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2764                               struct request *rq)
2765{
2766        return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2767}
2768
2769static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2770                                    struct cfq_queue *cur_cfqq)
2771{
2772        struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2773        struct rb_node *parent, *node;
2774        struct cfq_queue *__cfqq;
2775        sector_t sector = cfqd->last_position;
2776
2777        if (RB_EMPTY_ROOT(root))
2778                return NULL;
2779
2780        /*
2781         * First, if we find a request starting at the end of the last
2782         * request, choose it.
2783         */
2784        __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2785        if (__cfqq)
2786                return __cfqq;
2787
2788        /*
2789         * If the exact sector wasn't found, the parent of the NULL leaf
2790         * will contain the closest sector.
2791         */
2792        __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2793        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2794                return __cfqq;
2795
2796        if (blk_rq_pos(__cfqq->next_rq) < sector)
2797                node = rb_next(&__cfqq->p_node);
2798        else
2799                node = rb_prev(&__cfqq->p_node);
2800        if (!node)
2801                return NULL;
2802
2803        __cfqq = rb_entry(node, struct cfq_queue, p_node);
2804        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2805                return __cfqq;
2806
2807        return NULL;
2808}
2809
2810/*
2811 * cfqd - obvious
2812 * cur_cfqq - passed in so that we don't decide that the current queue is
2813 *            closely cooperating with itself.
2814 *
2815 * So, basically we're assuming that that cur_cfqq has dispatched at least
2816 * one request, and that cfqd->last_position reflects a position on the disk
2817 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2818 * assumption.
2819 */
2820static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2821                                              struct cfq_queue *cur_cfqq)
2822{
2823        struct cfq_queue *cfqq;
2824
2825        if (cfq_class_idle(cur_cfqq))
2826                return NULL;
2827        if (!cfq_cfqq_sync(cur_cfqq))
2828                return NULL;
2829        if (CFQQ_SEEKY(cur_cfqq))
2830                return NULL;
2831
2832        /*
2833         * Don't search priority tree if it's the only queue in the group.
2834         */
2835        if (cur_cfqq->cfqg->nr_cfqq == 1)
2836                return NULL;
2837
2838        /*
2839         * We should notice if some of the queues are cooperating, eg
2840         * working closely on the same area of the disk. In that case,
2841         * we can group them together and don't waste time idling.
2842         */
2843        cfqq = cfqq_close(cfqd, cur_cfqq);
2844        if (!cfqq)
2845                return NULL;
2846
2847        /* If new queue belongs to different cfq_group, don't choose it */
2848        if (cur_cfqq->cfqg != cfqq->cfqg)
2849                return NULL;
2850
2851        /*
2852         * It only makes sense to merge sync queues.
2853         */
2854        if (!cfq_cfqq_sync(cfqq))
2855                return NULL;
2856        if (CFQQ_SEEKY(cfqq))
2857                return NULL;
2858
2859        /*
2860         * Do not merge queues of different priority classes
2861         */
2862        if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2863                return NULL;
2864
2865        return cfqq;
2866}
2867
2868/*
2869 * Determine whether we should enforce idle window for this queue.
2870 */
2871
2872static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2873{
2874        enum wl_class_t wl_class = cfqq_class(cfqq);
2875        struct cfq_rb_root *st = cfqq->service_tree;
2876
2877        BUG_ON(!st);
2878        BUG_ON(!st->count);
2879
2880        if (!cfqd->cfq_slice_idle)
2881                return false;
2882
2883        /* We never do for idle class queues. */
2884        if (wl_class == IDLE_WORKLOAD)
2885                return false;
2886
2887        /* We do for queues that were marked with idle window flag. */
2888        if (cfq_cfqq_idle_window(cfqq) &&
2889           !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2890                return true;
2891
2892        /*
2893         * Otherwise, we do only if they are the last ones
2894         * in their service tree.
2895         */
2896        if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2897           !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2898                return true;
2899        cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2900        return false;
2901}
2902
2903static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2904{
2905        struct cfq_queue *cfqq = cfqd->active_queue;
2906        struct cfq_rb_root *st = cfqq->service_tree;
2907        struct cfq_io_cq *cic;
2908        u64 sl, group_idle = 0;
2909        u64 now = ktime_get_ns();
2910
2911        /*
2912         * SSD device without seek penalty, disable idling. But only do so
2913         * for devices that support queuing, otherwise we still have a problem
2914         * with sync vs async workloads.
2915         */
2916        if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2917                !cfqd->cfq_group_idle)
2918                return;
2919
2920        WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2921        WARN_ON(cfq_cfqq_slice_new(cfqq));
2922
2923        /*
2924         * idle is disabled, either manually or by past process history
2925         */
2926        if (!cfq_should_idle(cfqd, cfqq)) {
2927                /* no queue idling. Check for group idling */
2928                if (cfqd->cfq_group_idle)
2929                        group_idle = cfqd->cfq_group_idle;
2930                else
2931                        return;
2932        }
2933
2934        /*
2935         * still active requests from this queue, don't idle
2936         */
2937        if (cfqq->dispatched)
2938                return;
2939
2940        /*
2941         * task has exited, don't wait
2942         */
2943        cic = cfqd->active_cic;
2944        if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2945                return;
2946
2947        /*
2948         * If our average think time is larger than the remaining time
2949         * slice, then don't idle. This avoids overrunning the allotted
2950         * time slice.
2951         */
2952        if (sample_valid(cic->ttime.ttime_samples) &&
2953            (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2954                cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2955                             cic->ttime.ttime_mean);
2956                return;
2957        }
2958
2959        /*
2960         * There are other queues in the group or this is the only group and
2961         * it has too big thinktime, don't do group idle.
2962         */
2963        if (group_idle &&
2964            (cfqq->cfqg->nr_cfqq > 1 ||
2965             cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2966                return;
2967
2968        cfq_mark_cfqq_wait_request(cfqq);
2969
2970        if (group_idle)
2971                sl = cfqd->cfq_group_idle;
2972        else
2973                sl = cfqd->cfq_slice_idle;
2974
2975        hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2976                      HRTIMER_MODE_REL);
2977        cfqg_stats_set_start_idle_time(cfqq->cfqg);
2978        cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2979                        group_idle ? 1 : 0);
2980}
2981
2982/*
2983 * Move request from internal lists to the request queue dispatch list.
2984 */
2985static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2986{
2987        struct cfq_data *cfqd = q->elevator->elevator_data;
2988        struct cfq_queue *cfqq = RQ_CFQQ(rq);
2989
2990        cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2991
2992        cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2993        cfq_remove_request(rq);
2994        cfqq->dispatched++;
2995        (RQ_CFQG(rq))->dispatched++;
2996        elv_dispatch_sort(q, rq);
2997
2998        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2999        cfqq->nr_sectors += blk_rq_sectors(rq);
3000}
3001
3002/*
3003 * return expired entry, or NULL to just start from scratch in rbtree
3004 */
3005static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3006{
3007        struct request *rq = NULL;
3008
3009        if (cfq_cfqq_fifo_expire(cfqq))
3010                return NULL;
3011
3012        cfq_mark_cfqq_fifo_expire(cfqq);
3013
3014        if (list_empty(&cfqq->fifo))
3015                return NULL;
3016
3017        rq = rq_entry_fifo(cfqq->fifo.next);
3018        if (ktime_get_ns() < rq->fifo_time)
3019                rq = NULL;
3020
3021        return rq;
3022}
3023
3024static inline int
3025cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3026{
3027        const int base_rq = cfqd->cfq_slice_async_rq;
3028
3029        WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3030
3031        return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3032}
3033
3034/*
3035 * Must be called with the queue_lock held.
3036 */
3037static int cfqq_process_refs(struct cfq_queue *cfqq)
3038{
3039        int process_refs, io_refs;
3040
3041        io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3042        process_refs = cfqq->ref - io_refs;
3043        BUG_ON(process_refs < 0);
3044        return process_refs;
3045}
3046
3047static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3048{
3049        int process_refs, new_process_refs;
3050        struct cfq_queue *__cfqq;
3051
3052        /*
3053         * If there are no process references on the new_cfqq, then it is
3054         * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3055         * chain may have dropped their last reference (not just their
3056         * last process reference).
3057         */
3058        if (!cfqq_process_refs(new_cfqq))
3059                return;
3060
3061        /* Avoid a circular list and skip interim queue merges */
3062        while ((__cfqq = new_cfqq->new_cfqq)) {
3063                if (__cfqq == cfqq)
3064                        return;
3065                new_cfqq = __cfqq;
3066        }
3067
3068        process_refs = cfqq_process_refs(cfqq);
3069        new_process_refs = cfqq_process_refs(new_cfqq);
3070        /*
3071         * If the process for the cfqq has gone away, there is no
3072         * sense in merging the queues.
3073         */
3074        if (process_refs == 0 || new_process_refs == 0)
3075                return;
3076
3077        /*
3078         * Merge in the direction of the lesser amount of work.
3079         */
3080        if (new_process_refs >= process_refs) {
3081                cfqq->new_cfqq = new_cfqq;
3082                new_cfqq->ref += process_refs;
3083        } else {
3084                new_cfqq->new_cfqq = cfqq;
3085                cfqq->ref += new_process_refs;
3086        }
3087}
3088
3089static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3090                        struct cfq_group *cfqg, enum wl_class_t wl_class)
3091{
3092        struct cfq_queue *queue;
3093        int i;
3094        bool key_valid = false;
3095        u64 lowest_key = 0;
3096        enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3097
3098        for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3099                /* select the one with lowest rb_key */
3100                queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3101                if (queue &&
3102                    (!key_valid || queue->rb_key < lowest_key)) {
3103                        lowest_key = queue->rb_key;
3104                        cur_best = i;
3105                        key_valid = true;
3106                }
3107        }
3108
3109        return cur_best;
3110}
3111
3112static void
3113choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3114{
3115        u64 slice;
3116        unsigned count;
3117        struct cfq_rb_root *st;
3118        u64 group_slice;
3119        enum wl_class_t original_class = cfqd->serving_wl_class;
3120        u64 now = ktime_get_ns();
3121
3122        /* Choose next priority. RT > BE > IDLE */
3123        if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3124                cfqd->serving_wl_class = RT_WORKLOAD;
3125        else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3126                cfqd->serving_wl_class = BE_WORKLOAD;
3127        else {
3128                cfqd->serving_wl_class = IDLE_WORKLOAD;
3129                cfqd->workload_expires = now + jiffies_to_nsecs(1);
3130                return;
3131        }
3132
3133        if (original_class != cfqd->serving_wl_class)
3134                goto new_workload;
3135
3136        /*
3137         * For RT and BE, we have to choose also the type
3138         * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3139         * expiration time
3140         */
3141        st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3142        count = st->count;
3143
3144        /*
3145         * check workload expiration, and that we still have other queues ready
3146         */
3147        if (count && !(now > cfqd->workload_expires))
3148                return;
3149
3150new_workload:
3151        /* otherwise select new workload type */
3152        cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3153                                        cfqd->serving_wl_class);
3154        st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3155        count = st->count;
3156
3157        /*
3158         * the workload slice is computed as a fraction of target latency
3159         * proportional to the number of queues in that workload, over
3160         * all the queues in the same priority class
3161         */
3162        group_slice = cfq_group_slice(cfqd, cfqg);
3163
3164        slice = div_u64(group_slice * count,
3165                max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3166                      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3167                                        cfqg)));
3168
3169        if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3170                u64 tmp;
3171
3172                /*
3173                 * Async queues are currently system wide. Just taking
3174                 * proportion of queues with-in same group will lead to higher
3175                 * async ratio system wide as generally root group is going
3176                 * to have higher weight. A more accurate thing would be to
3177                 * calculate system wide asnc/sync ratio.
3178                 */
3179                tmp = cfqd->cfq_target_latency *
3180                        cfqg_busy_async_queues(cfqd, cfqg);
3181                tmp = div_u64(tmp, cfqd->busy_queues);
3182                slice = min_t(u64, slice, tmp);
3183
3184                /* async workload slice is scaled down according to
3185                 * the sync/async slice ratio. */
3186                slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3187        } else
3188                /* sync workload slice is at least 2 * cfq_slice_idle */
3189                slice = max(slice, 2 * cfqd->cfq_slice_idle);
3190
3191        slice = max_t(u64, slice, CFQ_MIN_TT);
3192        cfq_log(cfqd, "workload slice:%llu", slice);
3193        cfqd->workload_expires = now + slice;
3194}
3195
3196static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3197{
3198        struct cfq_rb_root *st = &cfqd->grp_service_tree;
3199        struct cfq_group *cfqg;
3200
3201        if (RB_EMPTY_ROOT(&st->rb.rb_root))
3202                return NULL;
3203        cfqg = cfq_rb_first_group(st);
3204        update_min_vdisktime(st);
3205        return cfqg;
3206}
3207
3208static void cfq_choose_cfqg(struct cfq_data *cfqd)
3209{
3210        struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3211        u64 now = ktime_get_ns();
3212
3213        cfqd->serving_group = cfqg;
3214
3215        /* Restore the workload type data */
3216        if (cfqg->saved_wl_slice) {
3217                cfqd->workload_expires = now + cfqg->saved_wl_slice;
3218                cfqd->serving_wl_type = cfqg->saved_wl_type;
3219                cfqd->serving_wl_class = cfqg->saved_wl_class;
3220        } else
3221                cfqd->workload_expires = now - 1;
3222
3223        choose_wl_class_and_type(cfqd, cfqg);
3224}
3225
3226/*
3227 * Select a queue for service. If we have a current active queue,
3228 * check whether to continue servicing it, or retrieve and set a new one.
3229 */
3230static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3231{
3232        struct cfq_queue *cfqq, *new_cfqq = NULL;
3233        u64 now = ktime_get_ns();
3234
3235        cfqq = cfqd->active_queue;
3236        if (!cfqq)
3237                goto new_queue;
3238
3239        if (!cfqd->rq_queued)
3240                return NULL;
3241
3242        /*
3243         * We were waiting for group to get backlogged. Expire the queue
3244         */
3245        if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3246                goto expire;
3247
3248        /*
3249         * The active queue has run out of time, expire it and select new.
3250         */
3251        if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3252                /*
3253                 * If slice had not expired at the completion of last request
3254                 * we might not have turned on wait_busy flag. Don't expire
3255                 * the queue yet. Allow the group to get backlogged.
3256                 *
3257                 * The very fact that we have used the slice, that means we
3258                 * have been idling all along on this queue and it should be
3259                 * ok to wait for this request to complete.
3260                 */
3261                if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3262                    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3263                        cfqq = NULL;
3264                        goto keep_queue;
3265                } else
3266                        goto check_group_idle;
3267        }
3268
3269        /*
3270         * The active queue has requests and isn't expired, allow it to
3271         * dispatch.
3272         */
3273        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3274                goto keep_queue;
3275
3276        /*
3277         * If another queue has a request waiting within our mean seek
3278         * distance, let it run.  The expire code will check for close
3279         * cooperators and put the close queue at the front of the service
3280         * tree.  If possible, merge the expiring queue with the new cfqq.
3281         */
3282        new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3283        if (new_cfqq) {
3284                if (!cfqq->new_cfqq)
3285                        cfq_setup_merge(cfqq, new_cfqq);
3286                goto expire;
3287        }
3288
3289        /*
3290         * No requests pending. If the active queue still has requests in
3291         * flight or is idling for a new request, allow either of these
3292         * conditions to happen (or time out) before selecting a new queue.
3293         */
3294        if (hrtimer_active(&cfqd->idle_slice_timer)) {
3295                cfqq = NULL;
3296                goto keep_queue;
3297        }
3298
3299        /*
3300         * This is a deep seek queue, but the device is much faster than
3301         * the queue can deliver, don't idle
3302         **/
3303        if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3304            (cfq_cfqq_slice_new(cfqq) ||
3305            (cfqq->slice_end - now > now - cfqq->slice_start))) {
3306                cfq_clear_cfqq_deep(cfqq);
3307                cfq_clear_cfqq_idle_window(cfqq);
3308        }
3309
3310        if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3311                cfqq = NULL;
3312                goto keep_queue;
3313        }
3314
3315        /*
3316         * If group idle is enabled and there are requests dispatched from
3317         * this group, wait for requests to complete.
3318         */
3319check_group_idle:
3320        if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3321            cfqq->cfqg->dispatched &&
3322            !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3323                cfqq = NULL;
3324                goto keep_queue;
3325        }
3326
3327expire:
3328        cfq_slice_expired(cfqd, 0);
3329new_queue:
3330        /*
3331         * Current queue expired. Check if we have to switch to a new
3332         * service tree
3333         */
3334        if (!new_cfqq)
3335                cfq_choose_cfqg(cfqd);
3336
3337        cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3338keep_queue:
3339        return cfqq;
3340}
3341
3342static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3343{
3344        int dispatched = 0;
3345
3346        while (cfqq->next_rq) {
3347                cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3348                dispatched++;
3349        }
3350
3351        BUG_ON(!list_empty(&cfqq->fifo));
3352
3353        /* By default cfqq is not expired if it is empty. Do it explicitly */
3354        __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3355        return dispatched;
3356}
3357
3358/*
3359 * Drain our current requests. Used for barriers and when switching
3360 * io schedulers on-the-fly.
3361 */
3362static int cfq_forced_dispatch(struct cfq_data *cfqd)
3363{
3364        struct cfq_queue *cfqq;
3365        int dispatched = 0;
3366
3367        /* Expire the timeslice of the current active queue first */
3368        cfq_slice_expired(cfqd, 0);
3369        while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3370                __cfq_set_active_queue(cfqd, cfqq);
3371                dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3372        }
3373
3374        BUG_ON(cfqd->busy_queues);
3375
3376        cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3377        return dispatched;
3378}
3379
3380static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3381        struct cfq_queue *cfqq)
3382{
3383        u64 now = ktime_get_ns();
3384
3385        /* the queue hasn't finished any request, can't estimate */
3386        if (cfq_cfqq_slice_new(cfqq))
3387                return true;
3388        if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3389                return true;
3390
3391        return false;
3392}
3393
3394static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3395{
3396        unsigned int max_dispatch;
3397
3398        if (cfq_cfqq_must_dispatch(cfqq))
3399                return true;
3400
3401        /*
3402         * Drain async requests before we start sync IO
3403         */
3404        if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3405                return false;
3406
3407        /*
3408         * If this is an async queue and we have sync IO in flight, let it wait
3409         */
3410        if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3411                return false;
3412
3413        max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3414        if (cfq_class_idle(cfqq))
3415                max_dispatch = 1;
3416
3417        /*
3418         * Does this cfqq already have too much IO in flight?
3419         */
3420        if (cfqq->dispatched >= max_dispatch) {
3421                bool promote_sync = false;
3422                /*
3423                 * idle queue must always only have a single IO in flight
3424                 */
3425                if (cfq_class_idle(cfqq))
3426                        return false;
3427
3428                /*
3429                 * If there is only one sync queue
3430                 * we can ignore async queue here and give the sync
3431                 * queue no dispatch limit. The reason is a sync queue can
3432                 * preempt async queue, limiting the sync queue doesn't make
3433                 * sense. This is useful for aiostress test.
3434                 */
3435                if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3436                        promote_sync = true;
3437
3438                /*
3439                 * We have other queues, don't allow more IO from this one
3440                 */
3441                if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3442                                !promote_sync)
3443                        return false;
3444
3445                /*
3446                 * Sole queue user, no limit
3447                 */
3448                if (cfqd->busy_queues == 1 || promote_sync)
3449                        max_dispatch = -1;
3450                else
3451                        /*
3452                         * Normally we start throttling cfqq when cfq_quantum/2
3453                         * requests have been dispatched. But we can drive
3454                         * deeper queue depths at the beginning of slice
3455                         * subjected to upper limit of cfq_quantum.
3456                         * */
3457                        max_dispatch = cfqd->cfq_quantum;
3458        }
3459
3460        /*
3461         * Async queues must wait a bit before being allowed dispatch.
3462         * We also ramp up the dispatch depth gradually for async IO,
3463         * based on the last sync IO we serviced
3464         */
3465        if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3466                u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3467                unsigned int depth;
3468
3469                depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3470                if (!depth && !cfqq->dispatched)
3471                        depth = 1;
3472                if (depth < max_dispatch)
3473                        max_dispatch = depth;
3474        }
3475
3476        /*
3477         * If we're below the current max, allow a dispatch
3478         */
3479        return cfqq->dispatched < max_dispatch;
3480}
3481
3482/*
3483 * Dispatch a request from cfqq, moving them to the request queue
3484 * dispatch list.
3485 */
3486static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3487{
3488        struct request *rq;
3489
3490        BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3491
3492        rq = cfq_check_fifo(cfqq);
3493        if (rq)
3494                cfq_mark_cfqq_must_dispatch(cfqq);
3495
3496        if (!cfq_may_dispatch(cfqd, cfqq))
3497                return false;
3498
3499        /*
3500         * follow expired path, else get first next available
3501         */
3502        if (!rq)
3503                rq = cfqq->next_rq;
3504        else
3505                cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3506
3507        /*
3508         * insert request into driver dispatch list
3509         */
3510        cfq_dispatch_insert(cfqd->queue, rq);
3511
3512        if (!cfqd->active_cic) {
3513                struct cfq_io_cq *cic = RQ_CIC(rq);
3514
3515                atomic_long_inc(&cic->icq.ioc->refcount);
3516                cfqd->active_cic = cic;
3517        }
3518
3519        return true;
3520}
3521
3522/*
3523 * Find the cfqq that we need to service and move a request from that to the
3524 * dispatch list
3525 */
3526static int cfq_dispatch_requests(struct request_queue *q, int force)
3527{
3528        struct cfq_data *cfqd = q->elevator->elevator_data;
3529        struct cfq_queue *cfqq;
3530
3531        if (!cfqd->busy_queues)
3532                return 0;
3533
3534        if (unlikely(force))
3535                return cfq_forced_dispatch(cfqd);
3536
3537        cfqq = cfq_select_queue(cfqd);
3538        if (!cfqq)
3539                return 0;
3540
3541        /*
3542         * Dispatch a request from this cfqq, if it is allowed
3543         */
3544        if (!cfq_dispatch_request(cfqd, cfqq))
3545                return 0;
3546
3547        cfqq->slice_dispatch++;
3548        cfq_clear_cfqq_must_dispatch(cfqq);
3549
3550        /*
3551         * expire an async queue immediately if it has used up its slice. idle
3552         * queue always expire after 1 dispatch round.
3553         */
3554        if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3555            cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3556            cfq_class_idle(cfqq))) {
3557                cfqq->slice_end = ktime_get_ns() + 1;
3558                cfq_slice_expired(cfqd, 0);
3559        }
3560
3561        cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3562        return 1;
3563}
3564
3565/*
3566 * task holds one reference to the queue, dropped when task exits. each rq
3567 * in-flight on this queue also holds a reference, dropped when rq is freed.
3568 *
3569 * Each cfq queue took a reference on the parent group. Drop it now.
3570 * queue lock must be held here.
3571 */
3572static void cfq_put_queue(struct cfq_queue *cfqq)
3573{
3574        struct cfq_data *cfqd = cfqq->cfqd;
3575        struct cfq_group *cfqg;
3576
3577        BUG_ON(cfqq->ref <= 0);
3578
3579        cfqq->ref--;
3580        if (cfqq->ref)
3581                return;
3582
3583        cfq_log_cfqq(cfqd, cfqq, "put_queue");
3584        BUG_ON(rb_first(&cfqq->sort_list));
3585        BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3586        cfqg = cfqq->cfqg;
3587
3588        if (unlikely(cfqd->active_queue == cfqq)) {
3589                __cfq_slice_expired(cfqd, cfqq, 0);
3590                cfq_schedule_dispatch(cfqd);
3591        }
3592
3593        BUG_ON(cfq_cfqq_on_rr(cfqq));
3594        kmem_cache_free(cfq_pool, cfqq);
3595        cfqg_put(cfqg);
3596}
3597
3598static void cfq_put_cooperator(struct cfq_queue *cfqq)
3599{
3600        struct cfq_queue *__cfqq, *next;
3601
3602        /*
3603         * If this queue was scheduled to merge with another queue, be
3604         * sure to drop the reference taken on that queue (and others in
3605         * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3606         */
3607        __cfqq = cfqq->new_cfqq;
3608        while (__cfqq) {
3609                if (__cfqq == cfqq) {
3610                        WARN(1, "cfqq->new_cfqq loop detected\n");
3611                        break;
3612                }
3613                next = __cfqq->new_cfqq;
3614                cfq_put_queue(__cfqq);
3615                __cfqq = next;
3616        }
3617}
3618
3619static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3620{
3621        if (unlikely(cfqq == cfqd->active_queue)) {
3622                __cfq_slice_expired(cfqd, cfqq, 0);
3623                cfq_schedule_dispatch(cfqd);
3624        }
3625
3626        cfq_put_cooperator(cfqq);
3627
3628        cfq_put_queue(cfqq);
3629}
3630
3631static void cfq_init_icq(struct io_cq *icq)
3632{
3633        struct cfq_io_cq *cic = icq_to_cic(icq);
3634
3635        cic->ttime.last_end_request = ktime_get_ns();
3636}
3637
3638static void cfq_exit_icq(struct io_cq *icq)
3639{
3640        struct cfq_io_cq *cic = icq_to_cic(icq);
3641        struct cfq_data *cfqd = cic_to_cfqd(cic);
3642
3643        if (cic_to_cfqq(cic, false)) {
3644                cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3645                cic_set_cfqq(cic, NULL, false);
3646        }
3647
3648        if (cic_to_cfqq(cic, true)) {
3649                cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3650                cic_set_cfqq(cic, NULL, true);
3651        }
3652}
3653
3654static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3655{
3656        struct task_struct *tsk = current;
3657        int ioprio_class;
3658
3659        if (!cfq_cfqq_prio_changed(cfqq))
3660                return;
3661
3662        ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3663        switch (ioprio_class) {
3664        default:
3665                printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3666        case IOPRIO_CLASS_NONE:
3667                /*
3668                 * no prio set, inherit CPU scheduling settings
3669                 */
3670                cfqq->ioprio = task_nice_ioprio(tsk);
3671                cfqq->ioprio_class = task_nice_ioclass(tsk);
3672                break;
3673        case IOPRIO_CLASS_RT:
3674                cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3675                cfqq->ioprio_class = IOPRIO_CLASS_RT;
3676                break;
3677        case IOPRIO_CLASS_BE:
3678                cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3679                cfqq->ioprio_class = IOPRIO_CLASS_BE;
3680                break;
3681        case IOPRIO_CLASS_IDLE:
3682                cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3683                cfqq->ioprio = 7;
3684                cfq_clear_cfqq_idle_window(cfqq);
3685                break;
3686        }
3687
3688        /*
3689         * keep track of original prio settings in case we have to temporarily
3690         * elevate the priority of this queue
3691         */
3692        cfqq->org_ioprio = cfqq->ioprio;
3693        cfqq->org_ioprio_class = cfqq->ioprio_class;
3694        cfq_clear_cfqq_prio_changed(cfqq);
3695}
3696
3697static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3698{
3699        int ioprio = cic->icq.ioc->ioprio;
3700        struct cfq_data *cfqd = cic_to_cfqd(cic);
3701        struct cfq_queue *cfqq;
3702
3703        /*
3704         * Check whether ioprio has changed.  The condition may trigger
3705         * spuriously on a newly created cic but there's no harm.
3706         */
3707        if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3708                return;
3709
3710        cfqq = cic_to_cfqq(cic, false);
3711        if (cfqq) {
3712                cfq_put_queue(cfqq);
3713                cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3714                cic_set_cfqq(cic, cfqq, false);
3715        }
3716
3717        cfqq = cic_to_cfqq(cic, true);
3718        if (cfqq)
3719                cfq_mark_cfqq_prio_changed(cfqq);
3720
3721        cic->ioprio = ioprio;
3722}
3723
3724static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3725                          pid_t pid, bool is_sync)
3726{
3727        RB_CLEAR_NODE(&cfqq->rb_node);
3728        RB_CLEAR_NODE(&cfqq->p_node);
3729        INIT_LIST_HEAD(&cfqq->fifo);
3730
3731        cfqq->ref = 0;
3732        cfqq->cfqd = cfqd;
3733
3734        cfq_mark_cfqq_prio_changed(cfqq);
3735
3736        if (is_sync) {
3737                if (!cfq_class_idle(cfqq))
3738                        cfq_mark_cfqq_idle_window(cfqq);
3739                cfq_mark_cfqq_sync(cfqq);
3740        }
3741        cfqq->pid = pid;
3742}
3743
3744#ifdef CONFIG_CFQ_GROUP_IOSCHED
3745static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3746{
3747        struct cfq_data *cfqd = cic_to_cfqd(cic);
3748        struct cfq_queue *cfqq;
3749        uint64_t serial_nr;
3750
3751        rcu_read_lock();
3752        serial_nr = bio_blkcg(bio)->css.serial_nr;
3753        rcu_read_unlock();
3754
3755        /*
3756         * Check whether blkcg has changed.  The condition may trigger
3757         * spuriously on a newly created cic but there's no harm.
3758         */
3759        if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3760                return;
3761
3762        /*
3763         * Drop reference to queues.  New queues will be assigned in new
3764         * group upon arrival of fresh requests.
3765         */
3766        cfqq = cic_to_cfqq(cic, false);
3767        if (cfqq) {
3768                cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3769                cic_set_cfqq(cic, NULL, false);
3770                cfq_put_queue(cfqq);
3771        }
3772
3773        cfqq = cic_to_cfqq(cic, true);
3774        if (cfqq) {
3775                cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3776                cic_set_cfqq(cic, NULL, true);
3777                cfq_put_queue(cfqq);
3778        }
3779
3780        cic->blkcg_serial_nr = serial_nr;
3781}
3782#else
3783static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3784{
3785}
3786#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3787
3788static struct cfq_queue **
3789cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3790{
3791        switch (ioprio_class) {
3792        case IOPRIO_CLASS_RT:
3793                return &cfqg->async_cfqq[0][ioprio];
3794        case IOPRIO_CLASS_NONE:
3795                ioprio = IOPRIO_NORM;
3796                /* fall through */
3797        case IOPRIO_CLASS_BE:
3798                return &cfqg->async_cfqq[1][ioprio];
3799        case IOPRIO_CLASS_IDLE:
3800                return &cfqg->async_idle_cfqq;
3801        default:
3802                BUG();
3803        }
3804}
3805
3806static struct cfq_queue *
3807cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3808              struct bio *bio)
3809{
3810        int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3811        int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3812        struct cfq_queue **async_cfqq = NULL;
3813        struct cfq_queue *cfqq;
3814        struct cfq_group *cfqg;
3815
3816        rcu_read_lock();
3817        cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3818        if (!cfqg) {
3819                cfqq = &cfqd->oom_cfqq;
3820                goto out;
3821        }
3822
3823        if (!is_sync) {
3824                if (!ioprio_valid(cic->ioprio)) {
3825                        struct task_struct *tsk = current;
3826                        ioprio = task_nice_ioprio(tsk);
3827                        ioprio_class = task_nice_ioclass(tsk);
3828                }
3829                async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3830                cfqq = *async_cfqq;
3831                if (cfqq)
3832                        goto out;
3833        }
3834
3835        cfqq = kmem_cache_alloc_node(cfq_pool,
3836                                     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3837                                     cfqd->queue->node);
3838        if (!cfqq) {
3839                cfqq = &cfqd->oom_cfqq;
3840                goto out;
3841        }
3842
3843        /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3844        cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3845        cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3846        cfq_init_prio_data(cfqq, cic);
3847        cfq_link_cfqq_cfqg(cfqq, cfqg);
3848        cfq_log_cfqq(cfqd, cfqq, "alloced");
3849
3850        if (async_cfqq) {
3851                /* a new async queue is created, pin and remember */
3852                cfqq->ref++;
3853                *async_cfqq = cfqq;
3854        }
3855out:
3856        cfqq->ref++;
3857        rcu_read_unlock();
3858        return cfqq;
3859}
3860
3861static void
3862__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3863{
3864        u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3865        elapsed = min(elapsed, 2UL * slice_idle);
3866
3867        ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3868        ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
3869        ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3870                                     ttime->ttime_samples);
3871}
3872
3873static void
3874cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3875                        struct cfq_io_cq *cic)
3876{
3877        if (cfq_cfqq_sync(cfqq)) {
3878                __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3879                __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3880                        cfqd->cfq_slice_idle);
3881        }
3882#ifdef CONFIG_CFQ_GROUP_IOSCHED
3883        __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3884#endif
3885}
3886
3887static void
3888cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3889                       struct request *rq)
3890{
3891        sector_t sdist = 0;
3892        sector_t n_sec = blk_rq_sectors(rq);
3893        if (cfqq->last_request_pos) {
3894                if (cfqq->last_request_pos < blk_rq_pos(rq))
3895                        sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3896                else
3897                        sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3898        }
3899
3900        cfqq->seek_history <<= 1;
3901        if (blk_queue_nonrot(cfqd->queue))
3902                cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3903        else
3904                cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3905}
3906
3907static inline bool req_noidle(struct request *req)
3908{
3909        return req_op(req) == REQ_OP_WRITE &&
3910                (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3911}
3912
3913/*
3914 * Disable idle window if the process thinks too long or seeks so much that
3915 * it doesn't matter
3916 */
3917static void
3918cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3919                       struct cfq_io_cq *cic)
3920{
3921        int old_idle, enable_idle;
3922
3923        /*
3924         * Don't idle for async or idle io prio class
3925         */
3926        if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3927                return;
3928
3929        enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3930
3931        if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3932                cfq_mark_cfqq_deep(cfqq);
3933
3934        if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3935                enable_idle = 0;
3936        else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3937                 !cfqd->cfq_slice_idle ||
3938                 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3939                enable_idle = 0;
3940        else if (sample_valid(cic->ttime.ttime_samples)) {
3941                if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3942                        enable_idle = 0;
3943                else
3944                        enable_idle = 1;
3945        }
3946
3947        if (old_idle != enable_idle) {
3948                cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3949                if (enable_idle)
3950                        cfq_mark_cfqq_idle_window(cfqq);
3951                else
3952                        cfq_clear_cfqq_idle_window(cfqq);
3953        }
3954}
3955
3956/*
3957 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3958 * no or if we aren't sure, a 1 will cause a preempt.
3959 */
3960static bool
3961cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3962                   struct request *rq)
3963{
3964        struct cfq_queue *cfqq;
3965
3966        cfqq = cfqd->active_queue;
3967        if (!cfqq)
3968                return false;
3969
3970        if (cfq_class_idle(new_cfqq))
3971                return false;
3972
3973        if (cfq_class_idle(cfqq))
3974                return true;
3975
3976        /*
3977         * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3978         */
3979        if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3980                return false;
3981
3982        /*
3983         * if the new request is sync, but the currently running queue is
3984         * not, let the sync request have priority.
3985         */
3986        if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3987                return true;
3988
3989        /*
3990         * Treat ancestors of current cgroup the same way as current cgroup.
3991         * For anybody else we disallow preemption to guarantee service
3992         * fairness among cgroups.
3993         */
3994        if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3995                return false;
3996
3997        if (cfq_slice_used(cfqq))
3998                return true;
3999
4000        /*
4001         * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4002         */
4003        if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4004                return true;
4005
4006        WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4007        /* Allow preemption only if we are idling on sync-noidle tree */
4008        if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4009            cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4010            RB_EMPTY_ROOT(&cfqq->sort_list))
4011                return true;
4012
4013        /*
4014         * So both queues are sync. Let the new request get disk time if
4015         * it's a metadata request and the current queue is doing regular IO.
4016         */
4017        if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4018                return true;
4019
4020        /* An idle queue should not be idle now for some reason */
4021        if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4022                return true;
4023
4024        if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4025                return false;
4026
4027        /*
4028         * if this request is as-good as one we would expect from the
4029         * current cfqq, let it preempt
4030         */
4031        if (cfq_rq_close(cfqd, cfqq, rq))
4032                return true;
4033
4034        return false;
4035}
4036
4037/*
4038 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4039 * let it have half of its nominal slice.
4040 */
4041static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4042{
4043        enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4044
4045        cfq_log_cfqq(cfqd, cfqq, "preempt");
4046        cfq_slice_expired(cfqd, 1);
4047
4048        /*
4049         * workload type is changed, don't save slice, otherwise preempt
4050         * doesn't happen
4051         */
4052        if (old_type != cfqq_type(cfqq))
4053                cfqq->cfqg->saved_wl_slice = 0;
4054
4055        /*
4056         * Put the new queue at the front of the of the current list,
4057         * so we know that it will be selected next.
4058         */
4059        BUG_ON(!cfq_cfqq_on_rr(cfqq));
4060
4061        cfq_service_tree_add(cfqd, cfqq, 1);
4062
4063        cfqq->slice_end = 0;
4064        cfq_mark_cfqq_slice_new(cfqq);
4065}
4066
4067/*
4068 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4069 * something we should do about it
4070 */
4071static void
4072cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4073                struct request *rq)
4074{
4075        struct cfq_io_cq *cic = RQ_CIC(rq);
4076
4077        cfqd->rq_queued++;
4078        if (rq->cmd_flags & REQ_PRIO)
4079                cfqq->prio_pending++;
4080
4081        cfq_update_io_thinktime(cfqd, cfqq, cic);
4082        cfq_update_io_seektime(cfqd, cfqq, rq);
4083        cfq_update_idle_window(cfqd, cfqq, cic);
4084
4085        cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4086
4087        if (cfqq == cfqd->active_queue) {
4088                /*
4089                 * Remember that we saw a request from this process, but
4090                 * don't start queuing just yet. Otherwise we risk seeing lots
4091                 * of tiny requests, because we disrupt the normal plugging
4092                 * and merging. If the request is already larger than a single
4093                 * page, let it rip immediately. For that case we assume that
4094                 * merging is already done. Ditto for a busy system that
4095                 * has other work pending, don't risk delaying until the
4096                 * idle timer unplug to continue working.
4097                 */
4098                if (cfq_cfqq_wait_request(cfqq)) {
4099                        if (blk_rq_bytes(rq) > PAGE_SIZE ||
4100                            cfqd->busy_queues > 1) {
4101                                cfq_del_timer(cfqd, cfqq);
4102                                cfq_clear_cfqq_wait_request(cfqq);
4103                                __blk_run_queue(cfqd->queue);
4104                        } else {
4105                                cfqg_stats_update_idle_time(cfqq->cfqg);
4106                                cfq_mark_cfqq_must_dispatch(cfqq);
4107                        }
4108                }
4109        } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4110                /*
4111                 * not the active queue - expire current slice if it is
4112                 * idle and has expired it's mean thinktime or this new queue
4113                 * has some old slice time left and is of higher priority or
4114                 * this new queue is RT and the current one is BE
4115                 */
4116                cfq_preempt_queue(cfqd, cfqq);
4117                __blk_run_queue(cfqd->queue);
4118        }
4119}
4120
4121static void cfq_insert_request(struct request_queue *q, struct request *rq)
4122{
4123        struct cfq_data *cfqd = q->elevator->elevator_data;
4124        struct cfq_queue *cfqq = RQ_CFQQ(rq);
4125
4126        cfq_log_cfqq(cfqd, cfqq, "insert_request");
4127        cfq_init_prio_data(cfqq, RQ_CIC(rq));
4128
4129        rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4130        list_add_tail(&rq->queuelist, &cfqq->fifo);
4131        cfq_add_rq_rb(rq);
4132        cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4133                                 rq->cmd_flags);
4134        cfq_rq_enqueued(cfqd, cfqq, rq);
4135}
4136
4137/*
4138 * Update hw_tag based on peak queue depth over 50 samples under
4139 * sufficient load.
4140 */
4141static void cfq_update_hw_tag(struct cfq_data *cfqd)
4142{
4143        struct cfq_queue *cfqq = cfqd->active_queue;
4144
4145        if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4146                cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4147
4148        if (cfqd->hw_tag == 1)
4149                return;
4150
4151        if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4152            cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4153                return;
4154
4155        /*
4156         * If active queue hasn't enough requests and can idle, cfq might not
4157         * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4158         * case
4159         */
4160        if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4161            cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4162            CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4163                return;
4164
4165        if (cfqd->hw_tag_samples++ < 50)
4166                return;
4167
4168        if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4169                cfqd->hw_tag = 1;
4170        else
4171                cfqd->hw_tag = 0;
4172}
4173
4174static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4175{
4176        struct cfq_io_cq *cic = cfqd->active_cic;
4177        u64 now = ktime_get_ns();
4178
4179        /* If the queue already has requests, don't wait */
4180        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4181                return false;
4182
4183        /* If there are other queues in the group, don't wait */
4184        if (cfqq->cfqg->nr_cfqq > 1)
4185                return false;
4186
4187        /* the only queue in the group, but think time is big */
4188        if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4189                return false;
4190
4191        if (cfq_slice_used(cfqq))
4192                return true;
4193
4194        /* if slice left is less than think time, wait busy */
4195        if (cic && sample_valid(cic->ttime.ttime_samples)
4196            && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4197                return true;
4198
4199        /*
4200         * If think times is less than a jiffy than ttime_mean=0 and above
4201         * will not be true. It might happen that slice has not expired yet
4202         * but will expire soon (4-5 ns) during select_queue(). To cover the
4203         * case where think time is less than a jiffy, mark the queue wait
4204         * busy if only 1 jiffy is left in the slice.
4205         */
4206        if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4207                return true;
4208
4209        return false;
4210}
4211
4212static void cfq_completed_request(struct request_queue *q, struct request *rq)
4213{
4214        struct cfq_queue *cfqq = RQ_CFQQ(rq);
4215        struct cfq_data *cfqd = cfqq->cfqd;
4216        const int sync = rq_is_sync(rq);
4217        u64 now = ktime_get_ns();
4218
4219        cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4220
4221        cfq_update_hw_tag(cfqd);
4222
4223        WARN_ON(!cfqd->rq_in_driver);
4224        WARN_ON(!cfqq->dispatched);
4225        cfqd->rq_in_driver--;
4226        cfqq->dispatched--;
4227        (RQ_CFQG(rq))->dispatched--;
4228        cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4229                                     rq_io_start_time_ns(rq), rq->cmd_flags);
4230
4231        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4232
4233        if (sync) {
4234                struct cfq_rb_root *st;
4235
4236                RQ_CIC(rq)->ttime.last_end_request = now;
4237
4238                if (cfq_cfqq_on_rr(cfqq))
4239                        st = cfqq->service_tree;
4240                else
4241                        st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4242                                        cfqq_type(cfqq));
4243
4244                st->ttime.last_end_request = now;
4245                /*
4246                 * We have to do this check in jiffies since start_time is in
4247                 * jiffies and it is not trivial to convert to ns. If
4248                 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4249                 * will become problematic but so far we are fine (the default
4250                 * is 128 ms).
4251                 */
4252                if (!time_after(rq->start_time +
4253                                  nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4254                                jiffies))
4255                        cfqd->last_delayed_sync = now;
4256        }
4257
4258#ifdef CONFIG_CFQ_GROUP_IOSCHED
4259        cfqq->cfqg->ttime.last_end_request = now;
4260#endif
4261
4262        /*
4263         * If this is the active queue, check if it needs to be expired,
4264         * or if we want to idle in case it has no pending requests.
4265         */
4266        if (cfqd->active_queue == cfqq) {
4267                const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4268
4269                if (cfq_cfqq_slice_new(cfqq)) {
4270                        cfq_set_prio_slice(cfqd, cfqq);
4271                        cfq_clear_cfqq_slice_new(cfqq);
4272                }
4273
4274                /*
4275                 * Should we wait for next request to come in before we expire
4276                 * the queue.
4277                 */
4278                if (cfq_should_wait_busy(cfqd, cfqq)) {
4279                        u64 extend_sl = cfqd->cfq_slice_idle;
4280                        if (!cfqd->cfq_slice_idle)
4281                                extend_sl = cfqd->cfq_group_idle;
4282                        cfqq->slice_end = now + extend_sl;
4283                        cfq_mark_cfqq_wait_busy(cfqq);
4284                        cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4285                }
4286
4287                /*
4288                 * Idling is not enabled on:
4289                 * - expired queues
4290                 * - idle-priority queues
4291                 * - async queues
4292                 * - queues with still some requests queued
4293                 * - when there is a close cooperator
4294                 */
4295                if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4296                        cfq_slice_expired(cfqd, 1);
4297                else if (sync && cfqq_empty &&
4298                         !cfq_close_cooperator(cfqd, cfqq)) {
4299                        cfq_arm_slice_timer(cfqd);
4300                }
4301        }
4302
4303        if (!cfqd->rq_in_driver)
4304                cfq_schedule_dispatch(cfqd);
4305}
4306
4307static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4308{
4309        /*
4310         * If REQ_PRIO is set, boost class and prio level, if it's below
4311         * BE/NORM. If prio is not set, restore the potentially boosted
4312         * class/prio level.
4313         */
4314        if (!(op & REQ_PRIO)) {
4315                cfqq->ioprio_class = cfqq->org_ioprio_class;
4316                cfqq->ioprio = cfqq->org_ioprio;
4317        } else {
4318                if (cfq_class_idle(cfqq))
4319                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
4320                if (cfqq->ioprio > IOPRIO_NORM)
4321                        cfqq->ioprio = IOPRIO_NORM;
4322        }
4323}
4324
4325static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4326{
4327        if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4328                cfq_mark_cfqq_must_alloc_slice(cfqq);
4329                return ELV_MQUEUE_MUST;
4330        }
4331
4332        return ELV_MQUEUE_MAY;
4333}
4334
4335static int cfq_may_queue(struct request_queue *q, unsigned int op)
4336{
4337        struct cfq_data *cfqd = q->elevator->elevator_data;
4338        struct task_struct *tsk = current;
4339        struct cfq_io_cq *cic;
4340        struct cfq_queue *cfqq;
4341
4342        /*
4343         * don't force setup of a queue from here, as a call to may_queue
4344         * does not necessarily imply that a request actually will be queued.
4345         * so just lookup a possibly existing queue, or return 'may queue'
4346         * if that fails
4347         */
4348        cic = cfq_cic_lookup(cfqd, tsk->io_context);
4349        if (!cic)
4350                return ELV_MQUEUE_MAY;
4351
4352        cfqq = cic_to_cfqq(cic, op_is_sync(op));
4353        if (cfqq) {
4354                cfq_init_prio_data(cfqq, cic);
4355                cfqq_boost_on_prio(cfqq, op);
4356
4357                return __cfq_may_queue(cfqq);
4358        }
4359
4360        return ELV_MQUEUE_MAY;
4361}
4362
4363/*
4364 * queue lock held here
4365 */
4366static void cfq_put_request(struct request *rq)
4367{
4368        struct cfq_queue *cfqq = RQ_CFQQ(rq);
4369
4370        if (cfqq) {
4371                const int rw = rq_data_dir(rq);
4372
4373                BUG_ON(!cfqq->allocated[rw]);
4374                cfqq->allocated[rw]--;
4375
4376                /* Put down rq reference on cfqg */
4377                cfqg_put(RQ_CFQG(rq));
4378                rq->elv.priv[0] = NULL;
4379                rq->elv.priv[1] = NULL;
4380
4381                cfq_put_queue(cfqq);
4382        }
4383}
4384
4385static struct cfq_queue *
4386cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4387                struct cfq_queue *cfqq)
4388{
4389        cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4390        cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4391        cfq_mark_cfqq_coop(cfqq->new_cfqq);
4392        cfq_put_queue(cfqq);
4393        return cic_to_cfqq(cic, 1);
4394}
4395
4396/*
4397 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4398 * was the last process referring to said cfqq.
4399 */
4400static struct cfq_queue *
4401split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4402{
4403        if (cfqq_process_refs(cfqq) == 1) {
4404                cfqq->pid = current->pid;
4405                cfq_clear_cfqq_coop(cfqq);
4406                cfq_clear_cfqq_split_coop(cfqq);
4407                return cfqq;
4408        }
4409
4410        cic_set_cfqq(cic, NULL, 1);
4411
4412        cfq_put_cooperator(cfqq);
4413
4414        cfq_put_queue(cfqq);
4415        return NULL;
4416}
4417/*
4418 * Allocate cfq data structures associated with this request.
4419 */
4420static int
4421cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4422                gfp_t gfp_mask)
4423{
4424        struct cfq_data *cfqd = q->elevator->elevator_data;
4425        struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4426        const int rw = rq_data_dir(rq);
4427        const bool is_sync = rq_is_sync(rq);
4428        struct cfq_queue *cfqq;
4429
4430        spin_lock_irq(q->queue_lock);
4431
4432        check_ioprio_changed(cic, bio);
4433        check_blkcg_changed(cic, bio);
4434new_queue:
4435        cfqq = cic_to_cfqq(cic, is_sync);
4436        if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4437                if (cfqq)
4438                        cfq_put_queue(cfqq);
4439                cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4440                cic_set_cfqq(cic, cfqq, is_sync);
4441        } else {
4442                /*
4443                 * If the queue was seeky for too long, break it apart.
4444                 */
4445                if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4446                        cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4447                        cfqq = split_cfqq(cic, cfqq);
4448                        if (!cfqq)
4449                                goto new_queue;
4450                }
4451
4452                /*
4453                 * Check to see if this queue is scheduled to merge with
4454                 * another, closely cooperating queue.  The merging of
4455                 * queues happens here as it must be done in process context.
4456                 * The reference on new_cfqq was taken in merge_cfqqs.
4457                 */
4458                if (cfqq->new_cfqq)
4459                        cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4460        }
4461
4462        cfqq->allocated[rw]++;
4463
4464        cfqq->ref++;
4465        cfqg_get(cfqq->cfqg);
4466        rq->elv.priv[0] = cfqq;
4467        rq->elv.priv[1] = cfqq->cfqg;
4468        spin_unlock_irq(q->queue_lock);
4469
4470        return 0;
4471}
4472
4473static void cfq_kick_queue(struct work_struct *work)
4474{
4475        struct cfq_data *cfqd =
4476                container_of(work, struct cfq_data, unplug_work);
4477        struct request_queue *q = cfqd->queue;
4478
4479        spin_lock_irq(q->queue_lock);
4480        __blk_run_queue(cfqd->queue);
4481        spin_unlock_irq(q->queue_lock);
4482}
4483
4484/*
4485 * Timer running if the active_queue is currently idling inside its time slice
4486 */
4487static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4488{
4489        struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4490                                             idle_slice_timer);
4491        struct cfq_queue *cfqq;
4492        unsigned long flags;
4493        int timed_out = 1;
4494
4495        cfq_log(cfqd, "idle timer fired");
4496
4497        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4498
4499        cfqq = cfqd->active_queue;
4500        if (cfqq) {
4501                timed_out = 0;
4502
4503                /*
4504                 * We saw a request before the queue expired, let it through
4505                 */
4506                if (cfq_cfqq_must_dispatch(cfqq))
4507                        goto out_kick;
4508
4509                /*
4510                 * expired
4511                 */
4512                if (cfq_slice_used(cfqq))
4513                        goto expire;
4514
4515                /*
4516                 * only expire and reinvoke request handler, if there are
4517                 * other queues with pending requests
4518                 */
4519                if (!cfqd->busy_queues)
4520                        goto out_cont;
4521
4522                /*
4523                 * not expired and it has a request pending, let it dispatch
4524                 */
4525                if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4526                        goto out_kick;
4527
4528                /*
4529                 * Queue depth flag is reset only when the idle didn't succeed
4530                 */
4531                cfq_clear_cfqq_deep(cfqq);
4532        }
4533expire:
4534        cfq_slice_expired(cfqd, timed_out);
4535out_kick:
4536        cfq_schedule_dispatch(cfqd);
4537out_cont:
4538        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4539        return HRTIMER_NORESTART;
4540}
4541
4542static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4543{
4544        hrtimer_cancel(&cfqd->idle_slice_timer);
4545        cancel_work_sync(&cfqd->unplug_work);
4546}
4547
4548static void cfq_exit_queue(struct elevator_queue *e)
4549{
4550        struct cfq_data *cfqd = e->elevator_data;
4551        struct request_queue *q = cfqd->queue;
4552
4553        cfq_shutdown_timer_wq(cfqd);
4554
4555        spin_lock_irq(q->queue_lock);
4556
4557        if (cfqd->active_queue)
4558                __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4559
4560        spin_unlock_irq(q->queue_lock);
4561
4562        cfq_shutdown_timer_wq(cfqd);
4563
4564#ifdef CONFIG_CFQ_GROUP_IOSCHED
4565        blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4566#else
4567        kfree(cfqd->root_group);
4568#endif
4569        kfree(cfqd);
4570}
4571
4572static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4573{
4574        struct cfq_data *cfqd;
4575        struct blkcg_gq *blkg __maybe_unused;
4576        int i, ret;
4577        struct elevator_queue *eq;
4578
4579        eq = elevator_alloc(q, e);
4580        if (!eq)
4581                return -ENOMEM;
4582
4583        cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4584        if (!cfqd) {
4585                kobject_put(&eq->kobj);
4586                return -ENOMEM;
4587        }
4588        eq->elevator_data = cfqd;
4589
4590        cfqd->queue = q;
4591        spin_lock_irq(q->queue_lock);
4592        q->elevator = eq;
4593        spin_unlock_irq(q->queue_lock);
4594
4595        /* Init root service tree */
4596        cfqd->grp_service_tree = CFQ_RB_ROOT;
4597
4598        /* Init root group and prefer root group over other groups by default */
4599#ifdef CONFIG_CFQ_GROUP_IOSCHED
4600        ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4601        if (ret)
4602                goto out_free;
4603
4604        cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4605#else
4606        ret = -ENOMEM;
4607        cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4608                                        GFP_KERNEL, cfqd->queue->node);
4609        if (!cfqd->root_group)
4610                goto out_free;
4611
4612        cfq_init_cfqg_base(cfqd->root_group);
4613        cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4614        cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4615#endif
4616
4617        /*
4618         * Not strictly needed (since RB_ROOT just clears the node and we
4619         * zeroed cfqd on alloc), but better be safe in case someone decides
4620         * to add magic to the rb code
4621         */
4622        for (i = 0; i < CFQ_PRIO_LISTS; i++)
4623                cfqd->prio_trees[i] = RB_ROOT;
4624
4625        /*
4626         * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4627         * Grab a permanent reference to it, so that the normal code flow
4628         * will not attempt to free it.  oom_cfqq is linked to root_group
4629         * but shouldn't hold a reference as it'll never be unlinked.  Lose
4630         * the reference from linking right away.
4631         */
4632        cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4633        cfqd->oom_cfqq.ref++;
4634
4635        spin_lock_irq(q->queue_lock);
4636        cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4637        cfqg_put(cfqd->root_group);
4638        spin_unlock_irq(q->queue_lock);
4639
4640        hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4641                     HRTIMER_MODE_REL);
4642        cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4643
4644        INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4645
4646        cfqd->cfq_quantum = cfq_quantum;
4647        cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4648        cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4649        cfqd->cfq_back_max = cfq_back_max;
4650        cfqd->cfq_back_penalty = cfq_back_penalty;
4651        cfqd->cfq_slice[0] = cfq_slice_async;
4652        cfqd->cfq_slice[1] = cfq_slice_sync;
4653        cfqd->cfq_target_latency = cfq_target_latency;
4654        cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4655        cfqd->cfq_slice_idle = cfq_slice_idle;
4656        cfqd->cfq_group_idle = cfq_group_idle;
4657        cfqd->cfq_latency = 1;
4658        cfqd->hw_tag = -1;
4659        /*
4660         * we optimistically start assuming sync ops weren't delayed in last
4661         * second, in order to have larger depth for async operations.
4662         */
4663        cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4664        return 0;
4665
4666out_free:
4667        kfree(cfqd);
4668        kobject_put(&eq->kobj);
4669        return ret;
4670}
4671
4672static void cfq_registered_queue(struct request_queue *q)
4673{
4674        struct elevator_queue *e = q->elevator;
4675        struct cfq_data *cfqd = e->elevator_data;
4676
4677        /*
4678         * Default to IOPS mode with no idling for SSDs
4679         */
4680        if (blk_queue_nonrot(q))
4681                cfqd->cfq_slice_idle = 0;
4682        wbt_disable_default(q);
4683}
4684
4685/*
4686 * sysfs parts below -->
4687 */
4688static ssize_t
4689cfq_var_show(unsigned int var, char *page)
4690{
4691        return sprintf(page, "%u\n", var);
4692}
4693
4694static void
4695cfq_var_store(unsigned int *var, const char *page)
4696{
4697        char *p = (char *) page;
4698
4699        *var = simple_strtoul(p, &p, 10);
4700}
4701
4702#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4703static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4704{                                                                       \
4705        struct cfq_data *cfqd = e->elevator_data;                       \
4706        u64 __data = __VAR;                                             \
4707        if (__CONV)                                                     \
4708                __data = div_u64(__data, NSEC_PER_MSEC);                        \
4709        return cfq_var_show(__data, (page));                            \
4710}
4711SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4712SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4713SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4714SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4715SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4716SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4717SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4718SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4719SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4720SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4721SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4722SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4723#undef SHOW_FUNCTION
4724
4725#define USEC_SHOW_FUNCTION(__FUNC, __VAR)                               \
4726static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4727{                                                                       \
4728        struct cfq_data *cfqd = e->elevator_data;                       \
4729        u64 __data = __VAR;                                             \
4730        __data = div_u64(__data, NSEC_PER_USEC);                        \
4731        return cfq_var_show(__data, (page));                            \
4732}
4733USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4734USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4735USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4736USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4737USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4738#undef USEC_SHOW_FUNCTION
4739
4740#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4741static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4742{                                                                       \
4743        struct cfq_data *cfqd = e->elevator_data;                       \
4744        unsigned int __data;                                            \
4745        cfq_var_store(&__data, (page));                                 \
4746        if (__data < (MIN))                                             \
4747                __data = (MIN);                                         \
4748        else if (__data > (MAX))                                        \
4749                __data = (MAX);                                         \
4750        if (__CONV)                                                     \
4751                *(__PTR) = (u64)__data * NSEC_PER_MSEC;                 \
4752        else                                                            \
4753                *(__PTR) = __data;                                      \
4754        return count;                                                   \
4755}
4756STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4757STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4758                UINT_MAX, 1);
4759STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4760                UINT_MAX, 1);
4761STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4762STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4763                UINT_MAX, 0);
4764STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4765STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4766STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4767STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4768STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4769                UINT_MAX, 0);
4770STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4771STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4772#undef STORE_FUNCTION
4773
4774#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)                    \
4775static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4776{                                                                       \
4777        struct cfq_data *cfqd = e->elevator_data;                       \
4778        unsigned int __data;                                            \
4779        cfq_var_store(&__data, (page));                                 \
4780        if (__data < (MIN))                                             \
4781                __data = (MIN);                                         \
4782        else if (__data > (MAX))                                        \
4783                __data = (MAX);                                         \
4784        *(__PTR) = (u64)__data * NSEC_PER_USEC;                         \
4785        return count;                                                   \
4786}
4787USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4788USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4789USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4790USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4791USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4792#undef USEC_STORE_FUNCTION
4793
4794#define CFQ_ATTR(name) \
4795        __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4796
4797static struct elv_fs_entry cfq_attrs[] = {
4798        CFQ_ATTR(quantum),
4799        CFQ_ATTR(fifo_expire_sync),
4800        CFQ_ATTR(fifo_expire_async),
4801        CFQ_ATTR(back_seek_max),
4802        CFQ_ATTR(back_seek_penalty),
4803        CFQ_ATTR(slice_sync),
4804        CFQ_ATTR(slice_sync_us),
4805        CFQ_ATTR(slice_async),
4806        CFQ_ATTR(slice_async_us),
4807        CFQ_ATTR(slice_async_rq),
4808        CFQ_ATTR(slice_idle),
4809        CFQ_ATTR(slice_idle_us),
4810        CFQ_ATTR(group_idle),
4811        CFQ_ATTR(group_idle_us),
4812        CFQ_ATTR(low_latency),
4813        CFQ_ATTR(target_latency),
4814        CFQ_ATTR(target_latency_us),
4815        __ATTR_NULL
4816};
4817
4818static struct elevator_type iosched_cfq = {
4819        .ops.sq = {
4820                .elevator_merge_fn =            cfq_merge,
4821                .elevator_merged_fn =           cfq_merged_request,
4822                .elevator_merge_req_fn =        cfq_merged_requests,
4823                .elevator_allow_bio_merge_fn =  cfq_allow_bio_merge,
4824                .elevator_allow_rq_merge_fn =   cfq_allow_rq_merge,
4825                .elevator_bio_merged_fn =       cfq_bio_merged,
4826                .elevator_dispatch_fn =         cfq_dispatch_requests,
4827                .elevator_add_req_fn =          cfq_insert_request,
4828                .elevator_activate_req_fn =     cfq_activate_request,
4829                .elevator_deactivate_req_fn =   cfq_deactivate_request,
4830                .elevator_completed_req_fn =    cfq_completed_request,
4831                .elevator_former_req_fn =       elv_rb_former_request,
4832                .elevator_latter_req_fn =       elv_rb_latter_request,
4833                .elevator_init_icq_fn =         cfq_init_icq,
4834                .elevator_exit_icq_fn =         cfq_exit_icq,
4835                .elevator_set_req_fn =          cfq_set_request,
4836                .elevator_put_req_fn =          cfq_put_request,
4837                .elevator_may_queue_fn =        cfq_may_queue,
4838                .elevator_init_fn =             cfq_init_queue,
4839                .elevator_exit_fn =             cfq_exit_queue,
4840                .elevator_registered_fn =       cfq_registered_queue,
4841        },
4842        .icq_size       =       sizeof(struct cfq_io_cq),
4843        .icq_align      =       __alignof__(struct cfq_io_cq),
4844        .elevator_attrs =       cfq_attrs,
4845        .elevator_name  =       "cfq",
4846        .elevator_owner =       THIS_MODULE,
4847};
4848
4849#ifdef CONFIG_CFQ_GROUP_IOSCHED
4850static struct blkcg_policy blkcg_policy_cfq = {
4851        .dfl_cftypes            = cfq_blkcg_files,
4852        .legacy_cftypes         = cfq_blkcg_legacy_files,
4853
4854        .cpd_alloc_fn           = cfq_cpd_alloc,
4855        .cpd_init_fn            = cfq_cpd_init,
4856        .cpd_free_fn            = cfq_cpd_free,
4857        .cpd_bind_fn            = cfq_cpd_bind,
4858
4859        .pd_alloc_fn            = cfq_pd_alloc,
4860        .pd_init_fn             = cfq_pd_init,
4861        .pd_offline_fn          = cfq_pd_offline,
4862        .pd_free_fn             = cfq_pd_free,
4863        .pd_reset_stats_fn      = cfq_pd_reset_stats,
4864};
4865#endif
4866
4867static int __init cfq_init(void)
4868{
4869        int ret;
4870
4871#ifdef CONFIG_CFQ_GROUP_IOSCHED
4872        ret = blkcg_policy_register(&blkcg_policy_cfq);
4873        if (ret)
4874                return ret;
4875#else
4876        cfq_group_idle = 0;
4877#endif
4878
4879        ret = -ENOMEM;
4880        cfq_pool = KMEM_CACHE(cfq_queue, 0);
4881        if (!cfq_pool)
4882                goto err_pol_unreg;
4883
4884        ret = elv_register(&iosched_cfq);
4885        if (ret)
4886                goto err_free_pool;
4887
4888        return 0;
4889
4890err_free_pool:
4891        kmem_cache_destroy(cfq_pool);
4892err_pol_unreg:
4893#ifdef CONFIG_CFQ_GROUP_IOSCHED
4894        blkcg_policy_unregister(&blkcg_policy_cfq);
4895#endif
4896        return ret;
4897}
4898
4899static void __exit cfq_exit(void)
4900{
4901#ifdef CONFIG_CFQ_GROUP_IOSCHED
4902        blkcg_policy_unregister(&blkcg_policy_cfq);
4903#endif
4904        elv_unregister(&iosched_cfq);
4905        kmem_cache_destroy(cfq_pool);
4906}
4907
4908module_init(cfq_init);
4909module_exit(cfq_exit);
4910
4911MODULE_AUTHOR("Jens Axboe");
4912MODULE_LICENSE("GPL");
4913MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4914