linux/crypto/aes_ti.c
<<
>>
Prefs
   1/*
   2 * Scalar fixed time AES core transform
   3 *
   4 * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <crypto/aes.h>
  12#include <linux/crypto.h>
  13#include <linux/module.h>
  14#include <asm/unaligned.h>
  15
  16/*
  17 * Emit the sbox as volatile const to prevent the compiler from doing
  18 * constant folding on sbox references involving fixed indexes.
  19 */
  20static volatile const u8 __cacheline_aligned __aesti_sbox[] = {
  21        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
  22        0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  23        0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
  24        0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  25        0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
  26        0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  27        0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
  28        0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  29        0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
  30        0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  31        0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
  32        0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  33        0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
  34        0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  35        0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
  36        0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  37        0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
  38        0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  39        0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
  40        0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  41        0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
  42        0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  43        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
  44        0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  45        0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
  46        0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  47        0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
  48        0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  49        0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
  50        0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  51        0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
  52        0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
  53};
  54
  55static volatile const u8 __cacheline_aligned __aesti_inv_sbox[] = {
  56        0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
  57        0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  58        0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
  59        0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  60        0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
  61        0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  62        0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
  63        0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  64        0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
  65        0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  66        0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
  67        0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  68        0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
  69        0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  70        0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
  71        0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  72        0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
  73        0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  74        0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
  75        0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  76        0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
  77        0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  78        0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
  79        0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  80        0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
  81        0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  82        0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
  83        0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  84        0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
  85        0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  86        0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
  87        0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
  88};
  89
  90static u32 mul_by_x(u32 w)
  91{
  92        u32 x = w & 0x7f7f7f7f;
  93        u32 y = w & 0x80808080;
  94
  95        /* multiply by polynomial 'x' (0b10) in GF(2^8) */
  96        return (x << 1) ^ (y >> 7) * 0x1b;
  97}
  98
  99static u32 mul_by_x2(u32 w)
 100{
 101        u32 x = w & 0x3f3f3f3f;
 102        u32 y = w & 0x80808080;
 103        u32 z = w & 0x40404040;
 104
 105        /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */
 106        return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b;
 107}
 108
 109static u32 mix_columns(u32 x)
 110{
 111        /*
 112         * Perform the following matrix multiplication in GF(2^8)
 113         *
 114         * | 0x2 0x3 0x1 0x1 |   | x[0] |
 115         * | 0x1 0x2 0x3 0x1 |   | x[1] |
 116         * | 0x1 0x1 0x2 0x3 | x | x[2] |
 117         * | 0x3 0x1 0x1 0x2 |   | x[3] |
 118         */
 119        u32 y = mul_by_x(x) ^ ror32(x, 16);
 120
 121        return y ^ ror32(x ^ y, 8);
 122}
 123
 124static u32 inv_mix_columns(u32 x)
 125{
 126        /*
 127         * Perform the following matrix multiplication in GF(2^8)
 128         *
 129         * | 0xe 0xb 0xd 0x9 |   | x[0] |
 130         * | 0x9 0xe 0xb 0xd |   | x[1] |
 131         * | 0xd 0x9 0xe 0xb | x | x[2] |
 132         * | 0xb 0xd 0x9 0xe |   | x[3] |
 133         *
 134         * which can conveniently be reduced to
 135         *
 136         * | 0x2 0x3 0x1 0x1 |   | 0x5 0x0 0x4 0x0 |   | x[0] |
 137         * | 0x1 0x2 0x3 0x1 |   | 0x0 0x5 0x0 0x4 |   | x[1] |
 138         * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] |
 139         * | 0x3 0x1 0x1 0x2 |   | 0x0 0x4 0x0 0x5 |   | x[3] |
 140         */
 141        u32 y = mul_by_x2(x);
 142
 143        return mix_columns(x ^ y ^ ror32(y, 16));
 144}
 145
 146static __always_inline u32 subshift(u32 in[], int pos)
 147{
 148        return (__aesti_sbox[in[pos] & 0xff]) ^
 149               (__aesti_sbox[(in[(pos + 1) % 4] >>  8) & 0xff] <<  8) ^
 150               (__aesti_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
 151               (__aesti_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24);
 152}
 153
 154static __always_inline u32 inv_subshift(u32 in[], int pos)
 155{
 156        return (__aesti_inv_sbox[in[pos] & 0xff]) ^
 157               (__aesti_inv_sbox[(in[(pos + 3) % 4] >>  8) & 0xff] <<  8) ^
 158               (__aesti_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
 159               (__aesti_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24);
 160}
 161
 162static u32 subw(u32 in)
 163{
 164        return (__aesti_sbox[in & 0xff]) ^
 165               (__aesti_sbox[(in >>  8) & 0xff] <<  8) ^
 166               (__aesti_sbox[(in >> 16) & 0xff] << 16) ^
 167               (__aesti_sbox[(in >> 24) & 0xff] << 24);
 168}
 169
 170static int aesti_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
 171                            unsigned int key_len)
 172{
 173        u32 kwords = key_len / sizeof(u32);
 174        u32 rc, i, j;
 175
 176        if (key_len != AES_KEYSIZE_128 &&
 177            key_len != AES_KEYSIZE_192 &&
 178            key_len != AES_KEYSIZE_256)
 179                return -EINVAL;
 180
 181        ctx->key_length = key_len;
 182
 183        for (i = 0; i < kwords; i++)
 184                ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
 185
 186        for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) {
 187                u32 *rki = ctx->key_enc + (i * kwords);
 188                u32 *rko = rki + kwords;
 189
 190                rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0];
 191                rko[1] = rko[0] ^ rki[1];
 192                rko[2] = rko[1] ^ rki[2];
 193                rko[3] = rko[2] ^ rki[3];
 194
 195                if (key_len == 24) {
 196                        if (i >= 7)
 197                                break;
 198                        rko[4] = rko[3] ^ rki[4];
 199                        rko[5] = rko[4] ^ rki[5];
 200                } else if (key_len == 32) {
 201                        if (i >= 6)
 202                                break;
 203                        rko[4] = subw(rko[3]) ^ rki[4];
 204                        rko[5] = rko[4] ^ rki[5];
 205                        rko[6] = rko[5] ^ rki[6];
 206                        rko[7] = rko[6] ^ rki[7];
 207                }
 208        }
 209
 210        /*
 211         * Generate the decryption keys for the Equivalent Inverse Cipher.
 212         * This involves reversing the order of the round keys, and applying
 213         * the Inverse Mix Columns transformation to all but the first and
 214         * the last one.
 215         */
 216        ctx->key_dec[0] = ctx->key_enc[key_len + 24];
 217        ctx->key_dec[1] = ctx->key_enc[key_len + 25];
 218        ctx->key_dec[2] = ctx->key_enc[key_len + 26];
 219        ctx->key_dec[3] = ctx->key_enc[key_len + 27];
 220
 221        for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) {
 222                ctx->key_dec[i]     = inv_mix_columns(ctx->key_enc[j]);
 223                ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]);
 224                ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]);
 225                ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]);
 226        }
 227
 228        ctx->key_dec[i]     = ctx->key_enc[0];
 229        ctx->key_dec[i + 1] = ctx->key_enc[1];
 230        ctx->key_dec[i + 2] = ctx->key_enc[2];
 231        ctx->key_dec[i + 3] = ctx->key_enc[3];
 232
 233        return 0;
 234}
 235
 236static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key,
 237                         unsigned int key_len)
 238{
 239        struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 240        int err;
 241
 242        err = aesti_expand_key(ctx, in_key, key_len);
 243        if (err)
 244                return err;
 245
 246        /*
 247         * In order to force the compiler to emit data independent Sbox lookups
 248         * at the start of each block, xor the first round key with values at
 249         * fixed indexes in the Sbox. This will need to be repeated each time
 250         * the key is used, which will pull the entire Sbox into the D-cache
 251         * before any data dependent Sbox lookups are performed.
 252         */
 253        ctx->key_enc[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128];
 254        ctx->key_enc[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160];
 255        ctx->key_enc[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192];
 256        ctx->key_enc[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224];
 257
 258        ctx->key_dec[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128];
 259        ctx->key_dec[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160];
 260        ctx->key_dec[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192];
 261        ctx->key_dec[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224];
 262
 263        return 0;
 264}
 265
 266static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 267{
 268        const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 269        const u32 *rkp = ctx->key_enc + 4;
 270        int rounds = 6 + ctx->key_length / 4;
 271        u32 st0[4], st1[4];
 272        int round;
 273
 274        st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in);
 275        st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4);
 276        st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8);
 277        st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12);
 278
 279        st0[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128];
 280        st0[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160];
 281        st0[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192];
 282        st0[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224];
 283
 284        for (round = 0;; round += 2, rkp += 8) {
 285                st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0];
 286                st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1];
 287                st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2];
 288                st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3];
 289
 290                if (round == rounds - 2)
 291                        break;
 292
 293                st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4];
 294                st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5];
 295                st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6];
 296                st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7];
 297        }
 298
 299        put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out);
 300        put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4);
 301        put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8);
 302        put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12);
 303}
 304
 305static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 306{
 307        const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 308        const u32 *rkp = ctx->key_dec + 4;
 309        int rounds = 6 + ctx->key_length / 4;
 310        u32 st0[4], st1[4];
 311        int round;
 312
 313        st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in);
 314        st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4);
 315        st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8);
 316        st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12);
 317
 318        st0[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128];
 319        st0[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160];
 320        st0[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192];
 321        st0[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224];
 322
 323        for (round = 0;; round += 2, rkp += 8) {
 324                st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0];
 325                st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1];
 326                st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2];
 327                st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3];
 328
 329                if (round == rounds - 2)
 330                        break;
 331
 332                st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4];
 333                st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5];
 334                st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6];
 335                st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7];
 336        }
 337
 338        put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out);
 339        put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4);
 340        put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8);
 341        put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12);
 342}
 343
 344static struct crypto_alg aes_alg = {
 345        .cra_name                       = "aes",
 346        .cra_driver_name                = "aes-fixed-time",
 347        .cra_priority                   = 100 + 1,
 348        .cra_flags                      = CRYPTO_ALG_TYPE_CIPHER,
 349        .cra_blocksize                  = AES_BLOCK_SIZE,
 350        .cra_ctxsize                    = sizeof(struct crypto_aes_ctx),
 351        .cra_module                     = THIS_MODULE,
 352
 353        .cra_cipher.cia_min_keysize     = AES_MIN_KEY_SIZE,
 354        .cra_cipher.cia_max_keysize     = AES_MAX_KEY_SIZE,
 355        .cra_cipher.cia_setkey          = aesti_set_key,
 356        .cra_cipher.cia_encrypt         = aesti_encrypt,
 357        .cra_cipher.cia_decrypt         = aesti_decrypt
 358};
 359
 360static int __init aes_init(void)
 361{
 362        return crypto_register_alg(&aes_alg);
 363}
 364
 365static void __exit aes_fini(void)
 366{
 367        crypto_unregister_alg(&aes_alg);
 368}
 369
 370module_init(aes_init);
 371module_exit(aes_fini);
 372
 373MODULE_DESCRIPTION("Generic fixed time AES");
 374MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
 375MODULE_LICENSE("GPL v2");
 376