linux/crypto/lrw.c
<<
>>
Prefs
   1/* LRW: as defined by Cyril Guyot in
   2 *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
   3 *
   4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
   5 *
   6 * Based on ecb.c
   7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 */
  14/* This implementation is checked against the test vectors in the above
  15 * document and by a test vector provided by Ken Buchanan at
  16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
  17 *
  18 * The test vectors are included in the testing module tcrypt.[ch] */
  19
  20#include <crypto/internal/skcipher.h>
  21#include <crypto/scatterwalk.h>
  22#include <linux/err.h>
  23#include <linux/init.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/scatterlist.h>
  27#include <linux/slab.h>
  28
  29#include <crypto/b128ops.h>
  30#include <crypto/gf128mul.h>
  31
  32#define LRW_BUFFER_SIZE 128u
  33
  34#define LRW_BLOCK_SIZE 16
  35
  36struct priv {
  37        struct crypto_skcipher *child;
  38
  39        /*
  40         * optimizes multiplying a random (non incrementing, as at the
  41         * start of a new sector) value with key2, we could also have
  42         * used 4k optimization tables or no optimization at all. In the
  43         * latter case we would have to store key2 here
  44         */
  45        struct gf128mul_64k *table;
  46
  47        /*
  48         * stores:
  49         *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
  50         *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
  51         *  key2*{ 0,0,...1,1,1,1,1 }, etc
  52         * needed for optimized multiplication of incrementing values
  53         * with key2
  54         */
  55        be128 mulinc[128];
  56};
  57
  58struct rctx {
  59        be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
  60
  61        be128 t;
  62
  63        be128 *ext;
  64
  65        struct scatterlist srcbuf[2];
  66        struct scatterlist dstbuf[2];
  67        struct scatterlist *src;
  68        struct scatterlist *dst;
  69
  70        unsigned int left;
  71
  72        struct skcipher_request subreq;
  73};
  74
  75static inline void setbit128_bbe(void *b, int bit)
  76{
  77        __set_bit(bit ^ (0x80 -
  78#ifdef __BIG_ENDIAN
  79                         BITS_PER_LONG
  80#else
  81                         BITS_PER_BYTE
  82#endif
  83                        ), b);
  84}
  85
  86static int setkey(struct crypto_skcipher *parent, const u8 *key,
  87                  unsigned int keylen)
  88{
  89        struct priv *ctx = crypto_skcipher_ctx(parent);
  90        struct crypto_skcipher *child = ctx->child;
  91        int err, bsize = LRW_BLOCK_SIZE;
  92        const u8 *tweak = key + keylen - bsize;
  93        be128 tmp = { 0 };
  94        int i;
  95
  96        crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
  97        crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
  98                                         CRYPTO_TFM_REQ_MASK);
  99        err = crypto_skcipher_setkey(child, key, keylen - bsize);
 100        crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
 101                                          CRYPTO_TFM_RES_MASK);
 102        if (err)
 103                return err;
 104
 105        if (ctx->table)
 106                gf128mul_free_64k(ctx->table);
 107
 108        /* initialize multiplication table for Key2 */
 109        ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
 110        if (!ctx->table)
 111                return -ENOMEM;
 112
 113        /* initialize optimization table */
 114        for (i = 0; i < 128; i++) {
 115                setbit128_bbe(&tmp, i);
 116                ctx->mulinc[i] = tmp;
 117                gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 118        }
 119
 120        return 0;
 121}
 122
 123static inline void inc(be128 *iv)
 124{
 125        be64_add_cpu(&iv->b, 1);
 126        if (!iv->b)
 127                be64_add_cpu(&iv->a, 1);
 128}
 129
 130/* this returns the number of consequative 1 bits starting
 131 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
 132static inline int get_index128(be128 *block)
 133{
 134        int x;
 135        __be32 *p = (__be32 *) block;
 136
 137        for (p += 3, x = 0; x < 128; p--, x += 32) {
 138                u32 val = be32_to_cpup(p);
 139
 140                if (!~val)
 141                        continue;
 142
 143                return x + ffz(val);
 144        }
 145
 146        return x;
 147}
 148
 149static int post_crypt(struct skcipher_request *req)
 150{
 151        struct rctx *rctx = skcipher_request_ctx(req);
 152        be128 *buf = rctx->ext ?: rctx->buf;
 153        struct skcipher_request *subreq;
 154        const int bs = LRW_BLOCK_SIZE;
 155        struct skcipher_walk w;
 156        struct scatterlist *sg;
 157        unsigned offset;
 158        int err;
 159
 160        subreq = &rctx->subreq;
 161        err = skcipher_walk_virt(&w, subreq, false);
 162
 163        while (w.nbytes) {
 164                unsigned int avail = w.nbytes;
 165                be128 *wdst;
 166
 167                wdst = w.dst.virt.addr;
 168
 169                do {
 170                        be128_xor(wdst, buf++, wdst);
 171                        wdst++;
 172                } while ((avail -= bs) >= bs);
 173
 174                err = skcipher_walk_done(&w, avail);
 175        }
 176
 177        rctx->left -= subreq->cryptlen;
 178
 179        if (err || !rctx->left)
 180                goto out;
 181
 182        rctx->dst = rctx->dstbuf;
 183
 184        scatterwalk_done(&w.out, 0, 1);
 185        sg = w.out.sg;
 186        offset = w.out.offset;
 187
 188        if (rctx->dst != sg) {
 189                rctx->dst[0] = *sg;
 190                sg_unmark_end(rctx->dst);
 191                scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
 192        }
 193        rctx->dst[0].length -= offset - sg->offset;
 194        rctx->dst[0].offset = offset;
 195
 196out:
 197        return err;
 198}
 199
 200static int pre_crypt(struct skcipher_request *req)
 201{
 202        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 203        struct rctx *rctx = skcipher_request_ctx(req);
 204        struct priv *ctx = crypto_skcipher_ctx(tfm);
 205        be128 *buf = rctx->ext ?: rctx->buf;
 206        struct skcipher_request *subreq;
 207        const int bs = LRW_BLOCK_SIZE;
 208        struct skcipher_walk w;
 209        struct scatterlist *sg;
 210        unsigned cryptlen;
 211        unsigned offset;
 212        be128 *iv;
 213        bool more;
 214        int err;
 215
 216        subreq = &rctx->subreq;
 217        skcipher_request_set_tfm(subreq, tfm);
 218
 219        cryptlen = subreq->cryptlen;
 220        more = rctx->left > cryptlen;
 221        if (!more)
 222                cryptlen = rctx->left;
 223
 224        skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
 225                                   cryptlen, req->iv);
 226
 227        err = skcipher_walk_virt(&w, subreq, false);
 228        iv = w.iv;
 229
 230        while (w.nbytes) {
 231                unsigned int avail = w.nbytes;
 232                be128 *wsrc;
 233                be128 *wdst;
 234
 235                wsrc = w.src.virt.addr;
 236                wdst = w.dst.virt.addr;
 237
 238                do {
 239                        *buf++ = rctx->t;
 240                        be128_xor(wdst++, &rctx->t, wsrc++);
 241
 242                        /* T <- I*Key2, using the optimization
 243                         * discussed in the specification */
 244                        be128_xor(&rctx->t, &rctx->t,
 245                                  &ctx->mulinc[get_index128(iv)]);
 246                        inc(iv);
 247                } while ((avail -= bs) >= bs);
 248
 249                err = skcipher_walk_done(&w, avail);
 250        }
 251
 252        skcipher_request_set_tfm(subreq, ctx->child);
 253        skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
 254                                   cryptlen, NULL);
 255
 256        if (err || !more)
 257                goto out;
 258
 259        rctx->src = rctx->srcbuf;
 260
 261        scatterwalk_done(&w.in, 0, 1);
 262        sg = w.in.sg;
 263        offset = w.in.offset;
 264
 265        if (rctx->src != sg) {
 266                rctx->src[0] = *sg;
 267                sg_unmark_end(rctx->src);
 268                scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
 269        }
 270        rctx->src[0].length -= offset - sg->offset;
 271        rctx->src[0].offset = offset;
 272
 273out:
 274        return err;
 275}
 276
 277static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
 278{
 279        struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
 280        struct rctx *rctx = skcipher_request_ctx(req);
 281        struct skcipher_request *subreq;
 282        gfp_t gfp;
 283
 284        subreq = &rctx->subreq;
 285        skcipher_request_set_callback(subreq, req->base.flags, done, req);
 286
 287        gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
 288                                                           GFP_ATOMIC;
 289        rctx->ext = NULL;
 290
 291        subreq->cryptlen = LRW_BUFFER_SIZE;
 292        if (req->cryptlen > LRW_BUFFER_SIZE) {
 293                unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
 294
 295                rctx->ext = kmalloc(n, gfp);
 296                if (rctx->ext)
 297                        subreq->cryptlen = n;
 298        }
 299
 300        rctx->src = req->src;
 301        rctx->dst = req->dst;
 302        rctx->left = req->cryptlen;
 303
 304        /* calculate first value of T */
 305        memcpy(&rctx->t, req->iv, sizeof(rctx->t));
 306
 307        /* T <- I*Key2 */
 308        gf128mul_64k_bbe(&rctx->t, ctx->table);
 309
 310        return 0;
 311}
 312
 313static void exit_crypt(struct skcipher_request *req)
 314{
 315        struct rctx *rctx = skcipher_request_ctx(req);
 316
 317        rctx->left = 0;
 318
 319        if (rctx->ext)
 320                kzfree(rctx->ext);
 321}
 322
 323static int do_encrypt(struct skcipher_request *req, int err)
 324{
 325        struct rctx *rctx = skcipher_request_ctx(req);
 326        struct skcipher_request *subreq;
 327
 328        subreq = &rctx->subreq;
 329
 330        while (!err && rctx->left) {
 331                err = pre_crypt(req) ?:
 332                      crypto_skcipher_encrypt(subreq) ?:
 333                      post_crypt(req);
 334
 335                if (err == -EINPROGRESS || err == -EBUSY)
 336                        return err;
 337        }
 338
 339        exit_crypt(req);
 340        return err;
 341}
 342
 343static void encrypt_done(struct crypto_async_request *areq, int err)
 344{
 345        struct skcipher_request *req = areq->data;
 346        struct skcipher_request *subreq;
 347        struct rctx *rctx;
 348
 349        rctx = skcipher_request_ctx(req);
 350
 351        if (err == -EINPROGRESS) {
 352                if (rctx->left != req->cryptlen)
 353                        return;
 354                goto out;
 355        }
 356
 357        subreq = &rctx->subreq;
 358        subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
 359
 360        err = do_encrypt(req, err ?: post_crypt(req));
 361        if (rctx->left)
 362                return;
 363
 364out:
 365        skcipher_request_complete(req, err);
 366}
 367
 368static int encrypt(struct skcipher_request *req)
 369{
 370        return do_encrypt(req, init_crypt(req, encrypt_done));
 371}
 372
 373static int do_decrypt(struct skcipher_request *req, int err)
 374{
 375        struct rctx *rctx = skcipher_request_ctx(req);
 376        struct skcipher_request *subreq;
 377
 378        subreq = &rctx->subreq;
 379
 380        while (!err && rctx->left) {
 381                err = pre_crypt(req) ?:
 382                      crypto_skcipher_decrypt(subreq) ?:
 383                      post_crypt(req);
 384
 385                if (err == -EINPROGRESS || err == -EBUSY)
 386                        return err;
 387        }
 388
 389        exit_crypt(req);
 390        return err;
 391}
 392
 393static void decrypt_done(struct crypto_async_request *areq, int err)
 394{
 395        struct skcipher_request *req = areq->data;
 396        struct skcipher_request *subreq;
 397        struct rctx *rctx;
 398
 399        rctx = skcipher_request_ctx(req);
 400
 401        if (err == -EINPROGRESS) {
 402                if (rctx->left != req->cryptlen)
 403                        return;
 404                goto out;
 405        }
 406
 407        subreq = &rctx->subreq;
 408        subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
 409
 410        err = do_decrypt(req, err ?: post_crypt(req));
 411        if (rctx->left)
 412                return;
 413
 414out:
 415        skcipher_request_complete(req, err);
 416}
 417
 418static int decrypt(struct skcipher_request *req)
 419{
 420        return do_decrypt(req, init_crypt(req, decrypt_done));
 421}
 422
 423static int init_tfm(struct crypto_skcipher *tfm)
 424{
 425        struct skcipher_instance *inst = skcipher_alg_instance(tfm);
 426        struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
 427        struct priv *ctx = crypto_skcipher_ctx(tfm);
 428        struct crypto_skcipher *cipher;
 429
 430        cipher = crypto_spawn_skcipher(spawn);
 431        if (IS_ERR(cipher))
 432                return PTR_ERR(cipher);
 433
 434        ctx->child = cipher;
 435
 436        crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
 437                                         sizeof(struct rctx));
 438
 439        return 0;
 440}
 441
 442static void exit_tfm(struct crypto_skcipher *tfm)
 443{
 444        struct priv *ctx = crypto_skcipher_ctx(tfm);
 445
 446        if (ctx->table)
 447                gf128mul_free_64k(ctx->table);
 448        crypto_free_skcipher(ctx->child);
 449}
 450
 451static void free(struct skcipher_instance *inst)
 452{
 453        crypto_drop_skcipher(skcipher_instance_ctx(inst));
 454        kfree(inst);
 455}
 456
 457static int create(struct crypto_template *tmpl, struct rtattr **tb)
 458{
 459        struct crypto_skcipher_spawn *spawn;
 460        struct skcipher_instance *inst;
 461        struct crypto_attr_type *algt;
 462        struct skcipher_alg *alg;
 463        const char *cipher_name;
 464        char ecb_name[CRYPTO_MAX_ALG_NAME];
 465        int err;
 466
 467        algt = crypto_get_attr_type(tb);
 468        if (IS_ERR(algt))
 469                return PTR_ERR(algt);
 470
 471        if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
 472                return -EINVAL;
 473
 474        cipher_name = crypto_attr_alg_name(tb[1]);
 475        if (IS_ERR(cipher_name))
 476                return PTR_ERR(cipher_name);
 477
 478        inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 479        if (!inst)
 480                return -ENOMEM;
 481
 482        spawn = skcipher_instance_ctx(inst);
 483
 484        crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
 485        err = crypto_grab_skcipher(spawn, cipher_name, 0,
 486                                   crypto_requires_sync(algt->type,
 487                                                        algt->mask));
 488        if (err == -ENOENT) {
 489                err = -ENAMETOOLONG;
 490                if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
 491                             cipher_name) >= CRYPTO_MAX_ALG_NAME)
 492                        goto err_free_inst;
 493
 494                err = crypto_grab_skcipher(spawn, ecb_name, 0,
 495                                           crypto_requires_sync(algt->type,
 496                                                                algt->mask));
 497        }
 498
 499        if (err)
 500                goto err_free_inst;
 501
 502        alg = crypto_skcipher_spawn_alg(spawn);
 503
 504        err = -EINVAL;
 505        if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
 506                goto err_drop_spawn;
 507
 508        if (crypto_skcipher_alg_ivsize(alg))
 509                goto err_drop_spawn;
 510
 511        err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
 512                                  &alg->base);
 513        if (err)
 514                goto err_drop_spawn;
 515
 516        err = -EINVAL;
 517        cipher_name = alg->base.cra_name;
 518
 519        /* Alas we screwed up the naming so we have to mangle the
 520         * cipher name.
 521         */
 522        if (!strncmp(cipher_name, "ecb(", 4)) {
 523                unsigned len;
 524
 525                len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
 526                if (len < 2 || len >= sizeof(ecb_name))
 527                        goto err_drop_spawn;
 528
 529                if (ecb_name[len - 1] != ')')
 530                        goto err_drop_spawn;
 531
 532                ecb_name[len - 1] = 0;
 533
 534                if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
 535                             "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
 536                        err = -ENAMETOOLONG;
 537                        goto err_drop_spawn;
 538                }
 539        } else
 540                goto err_drop_spawn;
 541
 542        inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
 543        inst->alg.base.cra_priority = alg->base.cra_priority;
 544        inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
 545        inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
 546                                       (__alignof__(u64) - 1);
 547
 548        inst->alg.ivsize = LRW_BLOCK_SIZE;
 549        inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
 550                                LRW_BLOCK_SIZE;
 551        inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
 552                                LRW_BLOCK_SIZE;
 553
 554        inst->alg.base.cra_ctxsize = sizeof(struct priv);
 555
 556        inst->alg.init = init_tfm;
 557        inst->alg.exit = exit_tfm;
 558
 559        inst->alg.setkey = setkey;
 560        inst->alg.encrypt = encrypt;
 561        inst->alg.decrypt = decrypt;
 562
 563        inst->free = free;
 564
 565        err = skcipher_register_instance(tmpl, inst);
 566        if (err)
 567                goto err_drop_spawn;
 568
 569out:
 570        return err;
 571
 572err_drop_spawn:
 573        crypto_drop_skcipher(spawn);
 574err_free_inst:
 575        kfree(inst);
 576        goto out;
 577}
 578
 579static struct crypto_template crypto_tmpl = {
 580        .name = "lrw",
 581        .create = create,
 582        .module = THIS_MODULE,
 583};
 584
 585static int __init crypto_module_init(void)
 586{
 587        return crypto_register_template(&crypto_tmpl);
 588}
 589
 590static void __exit crypto_module_exit(void)
 591{
 592        crypto_unregister_template(&crypto_tmpl);
 593}
 594
 595module_init(crypto_module_init);
 596module_exit(crypto_module_exit);
 597
 598MODULE_LICENSE("GPL");
 599MODULE_DESCRIPTION("LRW block cipher mode");
 600MODULE_ALIAS_CRYPTO("lrw");
 601