linux/crypto/mcryptd.c
<<
>>
Prefs
   1/*
   2 * Software multibuffer async crypto daemon.
   3 *
   4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
   5 *
   6 * Adapted from crypto daemon.
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 */
  14
  15#include <crypto/algapi.h>
  16#include <crypto/internal/hash.h>
  17#include <crypto/internal/aead.h>
  18#include <crypto/mcryptd.h>
  19#include <crypto/crypto_wq.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/module.h>
  25#include <linux/scatterlist.h>
  26#include <linux/sched.h>
  27#include <linux/sched/stat.h>
  28#include <linux/slab.h>
  29
  30#define MCRYPTD_MAX_CPU_QLEN 100
  31#define MCRYPTD_BATCH 9
  32
  33static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
  34                                   unsigned int tail);
  35
  36struct mcryptd_flush_list {
  37        struct list_head list;
  38        struct mutex lock;
  39};
  40
  41static struct mcryptd_flush_list __percpu *mcryptd_flist;
  42
  43struct hashd_instance_ctx {
  44        struct crypto_ahash_spawn spawn;
  45        struct mcryptd_queue *queue;
  46};
  47
  48static void mcryptd_queue_worker(struct work_struct *work);
  49
  50void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
  51{
  52        struct mcryptd_flush_list *flist;
  53
  54        if (!cstate->flusher_engaged) {
  55                /* put the flusher on the flush list */
  56                flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
  57                mutex_lock(&flist->lock);
  58                list_add_tail(&cstate->flush_list, &flist->list);
  59                cstate->flusher_engaged = true;
  60                cstate->next_flush = jiffies + delay;
  61                queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
  62                        &cstate->flush, delay);
  63                mutex_unlock(&flist->lock);
  64        }
  65}
  66EXPORT_SYMBOL(mcryptd_arm_flusher);
  67
  68static int mcryptd_init_queue(struct mcryptd_queue *queue,
  69                             unsigned int max_cpu_qlen)
  70{
  71        int cpu;
  72        struct mcryptd_cpu_queue *cpu_queue;
  73
  74        queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
  75        pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
  76        if (!queue->cpu_queue)
  77                return -ENOMEM;
  78        for_each_possible_cpu(cpu) {
  79                cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
  80                pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
  81                crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
  82                INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
  83                spin_lock_init(&cpu_queue->q_lock);
  84        }
  85        return 0;
  86}
  87
  88static void mcryptd_fini_queue(struct mcryptd_queue *queue)
  89{
  90        int cpu;
  91        struct mcryptd_cpu_queue *cpu_queue;
  92
  93        for_each_possible_cpu(cpu) {
  94                cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
  95                BUG_ON(cpu_queue->queue.qlen);
  96        }
  97        free_percpu(queue->cpu_queue);
  98}
  99
 100static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
 101                                  struct crypto_async_request *request,
 102                                  struct mcryptd_hash_request_ctx *rctx)
 103{
 104        int cpu, err;
 105        struct mcryptd_cpu_queue *cpu_queue;
 106
 107        cpu_queue = raw_cpu_ptr(queue->cpu_queue);
 108        spin_lock(&cpu_queue->q_lock);
 109        cpu = smp_processor_id();
 110        rctx->tag.cpu = smp_processor_id();
 111
 112        err = crypto_enqueue_request(&cpu_queue->queue, request);
 113        pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
 114                 cpu, cpu_queue, request);
 115        spin_unlock(&cpu_queue->q_lock);
 116        queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
 117
 118        return err;
 119}
 120
 121/*
 122 * Try to opportunisticlly flush the partially completed jobs if
 123 * crypto daemon is the only task running.
 124 */
 125static void mcryptd_opportunistic_flush(void)
 126{
 127        struct mcryptd_flush_list *flist;
 128        struct mcryptd_alg_cstate *cstate;
 129
 130        flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
 131        while (single_task_running()) {
 132                mutex_lock(&flist->lock);
 133                cstate = list_first_entry_or_null(&flist->list,
 134                                struct mcryptd_alg_cstate, flush_list);
 135                if (!cstate || !cstate->flusher_engaged) {
 136                        mutex_unlock(&flist->lock);
 137                        return;
 138                }
 139                list_del(&cstate->flush_list);
 140                cstate->flusher_engaged = false;
 141                mutex_unlock(&flist->lock);
 142                cstate->alg_state->flusher(cstate);
 143        }
 144}
 145
 146/*
 147 * Called in workqueue context, do one real cryption work (via
 148 * req->complete) and reschedule itself if there are more work to
 149 * do.
 150 */
 151static void mcryptd_queue_worker(struct work_struct *work)
 152{
 153        struct mcryptd_cpu_queue *cpu_queue;
 154        struct crypto_async_request *req, *backlog;
 155        int i;
 156
 157        /*
 158         * Need to loop through more than once for multi-buffer to
 159         * be effective.
 160         */
 161
 162        cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
 163        i = 0;
 164        while (i < MCRYPTD_BATCH || single_task_running()) {
 165
 166                spin_lock_bh(&cpu_queue->q_lock);
 167                backlog = crypto_get_backlog(&cpu_queue->queue);
 168                req = crypto_dequeue_request(&cpu_queue->queue);
 169                spin_unlock_bh(&cpu_queue->q_lock);
 170
 171                if (!req) {
 172                        mcryptd_opportunistic_flush();
 173                        return;
 174                }
 175
 176                if (backlog)
 177                        backlog->complete(backlog, -EINPROGRESS);
 178                req->complete(req, 0);
 179                if (!cpu_queue->queue.qlen)
 180                        return;
 181                ++i;
 182        }
 183        if (cpu_queue->queue.qlen)
 184                queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
 185}
 186
 187void mcryptd_flusher(struct work_struct *__work)
 188{
 189        struct  mcryptd_alg_cstate      *alg_cpu_state;
 190        struct  mcryptd_alg_state       *alg_state;
 191        struct  mcryptd_flush_list      *flist;
 192        int     cpu;
 193
 194        cpu = smp_processor_id();
 195        alg_cpu_state = container_of(to_delayed_work(__work),
 196                                     struct mcryptd_alg_cstate, flush);
 197        alg_state = alg_cpu_state->alg_state;
 198        if (alg_cpu_state->cpu != cpu)
 199                pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
 200                                cpu, alg_cpu_state->cpu);
 201
 202        if (alg_cpu_state->flusher_engaged) {
 203                flist = per_cpu_ptr(mcryptd_flist, cpu);
 204                mutex_lock(&flist->lock);
 205                list_del(&alg_cpu_state->flush_list);
 206                alg_cpu_state->flusher_engaged = false;
 207                mutex_unlock(&flist->lock);
 208                alg_state->flusher(alg_cpu_state);
 209        }
 210}
 211EXPORT_SYMBOL_GPL(mcryptd_flusher);
 212
 213static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
 214{
 215        struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
 216        struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
 217
 218        return ictx->queue;
 219}
 220
 221static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
 222                                   unsigned int tail)
 223{
 224        char *p;
 225        struct crypto_instance *inst;
 226        int err;
 227
 228        p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
 229        if (!p)
 230                return ERR_PTR(-ENOMEM);
 231
 232        inst = (void *)(p + head);
 233
 234        err = -ENAMETOOLONG;
 235        if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
 236                    "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
 237                goto out_free_inst;
 238
 239        memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
 240
 241        inst->alg.cra_priority = alg->cra_priority + 50;
 242        inst->alg.cra_blocksize = alg->cra_blocksize;
 243        inst->alg.cra_alignmask = alg->cra_alignmask;
 244
 245out:
 246        return p;
 247
 248out_free_inst:
 249        kfree(p);
 250        p = ERR_PTR(err);
 251        goto out;
 252}
 253
 254static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
 255                                          u32 *mask)
 256{
 257        struct crypto_attr_type *algt;
 258
 259        algt = crypto_get_attr_type(tb);
 260        if (IS_ERR(algt))
 261                return false;
 262
 263        *type |= algt->type & CRYPTO_ALG_INTERNAL;
 264        *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
 265
 266        if (*type & *mask & CRYPTO_ALG_INTERNAL)
 267                return true;
 268        else
 269                return false;
 270}
 271
 272static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
 273{
 274        struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
 275        struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
 276        struct crypto_ahash_spawn *spawn = &ictx->spawn;
 277        struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 278        struct crypto_ahash *hash;
 279
 280        hash = crypto_spawn_ahash(spawn);
 281        if (IS_ERR(hash))
 282                return PTR_ERR(hash);
 283
 284        ctx->child = hash;
 285        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 286                                 sizeof(struct mcryptd_hash_request_ctx) +
 287                                 crypto_ahash_reqsize(hash));
 288        return 0;
 289}
 290
 291static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
 292{
 293        struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 294
 295        crypto_free_ahash(ctx->child);
 296}
 297
 298static int mcryptd_hash_setkey(struct crypto_ahash *parent,
 299                                   const u8 *key, unsigned int keylen)
 300{
 301        struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
 302        struct crypto_ahash *child = ctx->child;
 303        int err;
 304
 305        crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 306        crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
 307                                      CRYPTO_TFM_REQ_MASK);
 308        err = crypto_ahash_setkey(child, key, keylen);
 309        crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
 310                                       CRYPTO_TFM_RES_MASK);
 311        return err;
 312}
 313
 314static int mcryptd_hash_enqueue(struct ahash_request *req,
 315                                crypto_completion_t complete)
 316{
 317        int ret;
 318
 319        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 320        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 321        struct mcryptd_queue *queue =
 322                mcryptd_get_queue(crypto_ahash_tfm(tfm));
 323
 324        rctx->complete = req->base.complete;
 325        req->base.complete = complete;
 326
 327        ret = mcryptd_enqueue_request(queue, &req->base, rctx);
 328
 329        return ret;
 330}
 331
 332static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
 333{
 334        struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
 335        struct crypto_ahash *child = ctx->child;
 336        struct ahash_request *req = ahash_request_cast(req_async);
 337        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 338        struct ahash_request *desc = &rctx->areq;
 339
 340        if (unlikely(err == -EINPROGRESS))
 341                goto out;
 342
 343        ahash_request_set_tfm(desc, child);
 344        ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
 345                                                rctx->complete, req_async);
 346
 347        rctx->out = req->result;
 348        err = crypto_ahash_init(desc);
 349
 350out:
 351        local_bh_disable();
 352        rctx->complete(&req->base, err);
 353        local_bh_enable();
 354}
 355
 356static int mcryptd_hash_init_enqueue(struct ahash_request *req)
 357{
 358        return mcryptd_hash_enqueue(req, mcryptd_hash_init);
 359}
 360
 361static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
 362{
 363        struct ahash_request *req = ahash_request_cast(req_async);
 364        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 365
 366        if (unlikely(err == -EINPROGRESS))
 367                goto out;
 368
 369        rctx->out = req->result;
 370        err = crypto_ahash_update(&rctx->areq);
 371        if (err) {
 372                req->base.complete = rctx->complete;
 373                goto out;
 374        }
 375
 376        return;
 377out:
 378        local_bh_disable();
 379        rctx->complete(&req->base, err);
 380        local_bh_enable();
 381}
 382
 383static int mcryptd_hash_update_enqueue(struct ahash_request *req)
 384{
 385        return mcryptd_hash_enqueue(req, mcryptd_hash_update);
 386}
 387
 388static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
 389{
 390        struct ahash_request *req = ahash_request_cast(req_async);
 391        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 392
 393        if (unlikely(err == -EINPROGRESS))
 394                goto out;
 395
 396        rctx->out = req->result;
 397        err = crypto_ahash_final(&rctx->areq);
 398        if (err) {
 399                req->base.complete = rctx->complete;
 400                goto out;
 401        }
 402
 403        return;
 404out:
 405        local_bh_disable();
 406        rctx->complete(&req->base, err);
 407        local_bh_enable();
 408}
 409
 410static int mcryptd_hash_final_enqueue(struct ahash_request *req)
 411{
 412        return mcryptd_hash_enqueue(req, mcryptd_hash_final);
 413}
 414
 415static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
 416{
 417        struct ahash_request *req = ahash_request_cast(req_async);
 418        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 419
 420        if (unlikely(err == -EINPROGRESS))
 421                goto out;
 422        rctx->out = req->result;
 423        err = crypto_ahash_finup(&rctx->areq);
 424
 425        if (err) {
 426                req->base.complete = rctx->complete;
 427                goto out;
 428        }
 429
 430        return;
 431out:
 432        local_bh_disable();
 433        rctx->complete(&req->base, err);
 434        local_bh_enable();
 435}
 436
 437static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
 438{
 439        return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
 440}
 441
 442static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
 443{
 444        struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
 445        struct crypto_ahash *child = ctx->child;
 446        struct ahash_request *req = ahash_request_cast(req_async);
 447        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 448        struct ahash_request *desc = &rctx->areq;
 449
 450        if (unlikely(err == -EINPROGRESS))
 451                goto out;
 452
 453        ahash_request_set_tfm(desc, child);
 454        ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
 455                                                rctx->complete, req_async);
 456
 457        rctx->out = req->result;
 458        err = crypto_ahash_init(desc) ?: crypto_ahash_finup(desc);
 459
 460out:
 461        local_bh_disable();
 462        rctx->complete(&req->base, err);
 463        local_bh_enable();
 464}
 465
 466static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
 467{
 468        return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
 469}
 470
 471static int mcryptd_hash_export(struct ahash_request *req, void *out)
 472{
 473        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 474
 475        return crypto_ahash_export(&rctx->areq, out);
 476}
 477
 478static int mcryptd_hash_import(struct ahash_request *req, const void *in)
 479{
 480        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 481
 482        return crypto_ahash_import(&rctx->areq, in);
 483}
 484
 485static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
 486                              struct mcryptd_queue *queue)
 487{
 488        struct hashd_instance_ctx *ctx;
 489        struct ahash_instance *inst;
 490        struct hash_alg_common *halg;
 491        struct crypto_alg *alg;
 492        u32 type = 0;
 493        u32 mask = 0;
 494        int err;
 495
 496        if (!mcryptd_check_internal(tb, &type, &mask))
 497                return -EINVAL;
 498
 499        halg = ahash_attr_alg(tb[1], type, mask);
 500        if (IS_ERR(halg))
 501                return PTR_ERR(halg);
 502
 503        alg = &halg->base;
 504        pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
 505        inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
 506                                        sizeof(*ctx));
 507        err = PTR_ERR(inst);
 508        if (IS_ERR(inst))
 509                goto out_put_alg;
 510
 511        ctx = ahash_instance_ctx(inst);
 512        ctx->queue = queue;
 513
 514        err = crypto_init_ahash_spawn(&ctx->spawn, halg,
 515                                      ahash_crypto_instance(inst));
 516        if (err)
 517                goto out_free_inst;
 518
 519        inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
 520                (alg->cra_flags & (CRYPTO_ALG_INTERNAL |
 521                                   CRYPTO_ALG_OPTIONAL_KEY));
 522
 523        inst->alg.halg.digestsize = halg->digestsize;
 524        inst->alg.halg.statesize = halg->statesize;
 525        inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
 526
 527        inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
 528        inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
 529
 530        inst->alg.init   = mcryptd_hash_init_enqueue;
 531        inst->alg.update = mcryptd_hash_update_enqueue;
 532        inst->alg.final  = mcryptd_hash_final_enqueue;
 533        inst->alg.finup  = mcryptd_hash_finup_enqueue;
 534        inst->alg.export = mcryptd_hash_export;
 535        inst->alg.import = mcryptd_hash_import;
 536        if (crypto_hash_alg_has_setkey(halg))
 537                inst->alg.setkey = mcryptd_hash_setkey;
 538        inst->alg.digest = mcryptd_hash_digest_enqueue;
 539
 540        err = ahash_register_instance(tmpl, inst);
 541        if (err) {
 542                crypto_drop_ahash(&ctx->spawn);
 543out_free_inst:
 544                kfree(inst);
 545        }
 546
 547out_put_alg:
 548        crypto_mod_put(alg);
 549        return err;
 550}
 551
 552static struct mcryptd_queue mqueue;
 553
 554static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
 555{
 556        struct crypto_attr_type *algt;
 557
 558        algt = crypto_get_attr_type(tb);
 559        if (IS_ERR(algt))
 560                return PTR_ERR(algt);
 561
 562        switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
 563        case CRYPTO_ALG_TYPE_DIGEST:
 564                return mcryptd_create_hash(tmpl, tb, &mqueue);
 565        break;
 566        }
 567
 568        return -EINVAL;
 569}
 570
 571static void mcryptd_free(struct crypto_instance *inst)
 572{
 573        struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
 574        struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
 575
 576        switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
 577        case CRYPTO_ALG_TYPE_AHASH:
 578                crypto_drop_ahash(&hctx->spawn);
 579                kfree(ahash_instance(inst));
 580                return;
 581        default:
 582                crypto_drop_spawn(&ctx->spawn);
 583                kfree(inst);
 584        }
 585}
 586
 587static struct crypto_template mcryptd_tmpl = {
 588        .name = "mcryptd",
 589        .create = mcryptd_create,
 590        .free = mcryptd_free,
 591        .module = THIS_MODULE,
 592};
 593
 594struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
 595                                        u32 type, u32 mask)
 596{
 597        char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
 598        struct crypto_ahash *tfm;
 599
 600        if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
 601                     "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
 602                return ERR_PTR(-EINVAL);
 603        tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
 604        if (IS_ERR(tfm))
 605                return ERR_CAST(tfm);
 606        if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
 607                crypto_free_ahash(tfm);
 608                return ERR_PTR(-EINVAL);
 609        }
 610
 611        return __mcryptd_ahash_cast(tfm);
 612}
 613EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
 614
 615struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
 616{
 617        struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
 618
 619        return ctx->child;
 620}
 621EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
 622
 623struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
 624{
 625        struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
 626        return &rctx->areq;
 627}
 628EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
 629
 630void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
 631{
 632        crypto_free_ahash(&tfm->base);
 633}
 634EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
 635
 636static int __init mcryptd_init(void)
 637{
 638        int err, cpu;
 639        struct mcryptd_flush_list *flist;
 640
 641        mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
 642        for_each_possible_cpu(cpu) {
 643                flist = per_cpu_ptr(mcryptd_flist, cpu);
 644                INIT_LIST_HEAD(&flist->list);
 645                mutex_init(&flist->lock);
 646        }
 647
 648        err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
 649        if (err) {
 650                free_percpu(mcryptd_flist);
 651                return err;
 652        }
 653
 654        err = crypto_register_template(&mcryptd_tmpl);
 655        if (err) {
 656                mcryptd_fini_queue(&mqueue);
 657                free_percpu(mcryptd_flist);
 658        }
 659
 660        return err;
 661}
 662
 663static void __exit mcryptd_exit(void)
 664{
 665        mcryptd_fini_queue(&mqueue);
 666        crypto_unregister_template(&mcryptd_tmpl);
 667        free_percpu(mcryptd_flist);
 668}
 669
 670subsys_initcall(mcryptd_init);
 671module_exit(mcryptd_exit);
 672
 673MODULE_LICENSE("GPL");
 674MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
 675MODULE_ALIAS_CRYPTO("mcryptd");
 676