linux/drivers/base/power/main.c
<<
>>
Prefs
   1/*
   2 * drivers/base/power/main.c - Where the driver meets power management.
   3 *
   4 * Copyright (c) 2003 Patrick Mochel
   5 * Copyright (c) 2003 Open Source Development Lab
   6 *
   7 * This file is released under the GPLv2
   8 *
   9 *
  10 * The driver model core calls device_pm_add() when a device is registered.
  11 * This will initialize the embedded device_pm_info object in the device
  12 * and add it to the list of power-controlled devices. sysfs entries for
  13 * controlling device power management will also be added.
  14 *
  15 * A separate list is used for keeping track of power info, because the power
  16 * domain dependencies may differ from the ancestral dependencies that the
  17 * subsystem list maintains.
  18 */
  19
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
  35#include <linux/timer.h>
  36
  37#include "../base.h"
  38#include "power.h"
  39
  40typedef int (*pm_callback_t)(struct device *);
  41
  42/*
  43 * The entries in the dpm_list list are in a depth first order, simply
  44 * because children are guaranteed to be discovered after parents, and
  45 * are inserted at the back of the list on discovery.
  46 *
  47 * Since device_pm_add() may be called with a device lock held,
  48 * we must never try to acquire a device lock while holding
  49 * dpm_list_mutex.
  50 */
  51
  52LIST_HEAD(dpm_list);
  53static LIST_HEAD(dpm_prepared_list);
  54static LIST_HEAD(dpm_suspended_list);
  55static LIST_HEAD(dpm_late_early_list);
  56static LIST_HEAD(dpm_noirq_list);
  57
  58struct suspend_stats suspend_stats;
  59static DEFINE_MUTEX(dpm_list_mtx);
  60static pm_message_t pm_transition;
  61
  62static int async_error;
  63
  64static const char *pm_verb(int event)
  65{
  66        switch (event) {
  67        case PM_EVENT_SUSPEND:
  68                return "suspend";
  69        case PM_EVENT_RESUME:
  70                return "resume";
  71        case PM_EVENT_FREEZE:
  72                return "freeze";
  73        case PM_EVENT_QUIESCE:
  74                return "quiesce";
  75        case PM_EVENT_HIBERNATE:
  76                return "hibernate";
  77        case PM_EVENT_THAW:
  78                return "thaw";
  79        case PM_EVENT_RESTORE:
  80                return "restore";
  81        case PM_EVENT_RECOVER:
  82                return "recover";
  83        default:
  84                return "(unknown PM event)";
  85        }
  86}
  87
  88/**
  89 * device_pm_sleep_init - Initialize system suspend-related device fields.
  90 * @dev: Device object being initialized.
  91 */
  92void device_pm_sleep_init(struct device *dev)
  93{
  94        dev->power.is_prepared = false;
  95        dev->power.is_suspended = false;
  96        dev->power.is_noirq_suspended = false;
  97        dev->power.is_late_suspended = false;
  98        init_completion(&dev->power.completion);
  99        complete_all(&dev->power.completion);
 100        dev->power.wakeup = NULL;
 101        INIT_LIST_HEAD(&dev->power.entry);
 102}
 103
 104/**
 105 * device_pm_lock - Lock the list of active devices used by the PM core.
 106 */
 107void device_pm_lock(void)
 108{
 109        mutex_lock(&dpm_list_mtx);
 110}
 111
 112/**
 113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 114 */
 115void device_pm_unlock(void)
 116{
 117        mutex_unlock(&dpm_list_mtx);
 118}
 119
 120/**
 121 * device_pm_add - Add a device to the PM core's list of active devices.
 122 * @dev: Device to add to the list.
 123 */
 124void device_pm_add(struct device *dev)
 125{
 126        pr_debug("PM: Adding info for %s:%s\n",
 127                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 128        device_pm_check_callbacks(dev);
 129        mutex_lock(&dpm_list_mtx);
 130        if (dev->parent && dev->parent->power.is_prepared)
 131                dev_warn(dev, "parent %s should not be sleeping\n",
 132                        dev_name(dev->parent));
 133        list_add_tail(&dev->power.entry, &dpm_list);
 134        dev->power.in_dpm_list = true;
 135        mutex_unlock(&dpm_list_mtx);
 136}
 137
 138/**
 139 * device_pm_remove - Remove a device from the PM core's list of active devices.
 140 * @dev: Device to be removed from the list.
 141 */
 142void device_pm_remove(struct device *dev)
 143{
 144        pr_debug("PM: Removing info for %s:%s\n",
 145                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 146        complete_all(&dev->power.completion);
 147        mutex_lock(&dpm_list_mtx);
 148        list_del_init(&dev->power.entry);
 149        dev->power.in_dpm_list = false;
 150        mutex_unlock(&dpm_list_mtx);
 151        device_wakeup_disable(dev);
 152        pm_runtime_remove(dev);
 153        device_pm_check_callbacks(dev);
 154}
 155
 156/**
 157 * device_pm_move_before - Move device in the PM core's list of active devices.
 158 * @deva: Device to move in dpm_list.
 159 * @devb: Device @deva should come before.
 160 */
 161void device_pm_move_before(struct device *deva, struct device *devb)
 162{
 163        pr_debug("PM: Moving %s:%s before %s:%s\n",
 164                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 165                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 166        /* Delete deva from dpm_list and reinsert before devb. */
 167        list_move_tail(&deva->power.entry, &devb->power.entry);
 168}
 169
 170/**
 171 * device_pm_move_after - Move device in the PM core's list of active devices.
 172 * @deva: Device to move in dpm_list.
 173 * @devb: Device @deva should come after.
 174 */
 175void device_pm_move_after(struct device *deva, struct device *devb)
 176{
 177        pr_debug("PM: Moving %s:%s after %s:%s\n",
 178                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 179                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 180        /* Delete deva from dpm_list and reinsert after devb. */
 181        list_move(&deva->power.entry, &devb->power.entry);
 182}
 183
 184/**
 185 * device_pm_move_last - Move device to end of the PM core's list of devices.
 186 * @dev: Device to move in dpm_list.
 187 */
 188void device_pm_move_last(struct device *dev)
 189{
 190        pr_debug("PM: Moving %s:%s to end of list\n",
 191                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 192        list_move_tail(&dev->power.entry, &dpm_list);
 193}
 194
 195static ktime_t initcall_debug_start(struct device *dev)
 196{
 197        ktime_t calltime = 0;
 198
 199        if (pm_print_times_enabled) {
 200                pr_info("calling  %s+ @ %i, parent: %s\n",
 201                        dev_name(dev), task_pid_nr(current),
 202                        dev->parent ? dev_name(dev->parent) : "none");
 203                calltime = ktime_get();
 204        }
 205
 206        return calltime;
 207}
 208
 209static void initcall_debug_report(struct device *dev, ktime_t calltime,
 210                                  int error, pm_message_t state,
 211                                  const char *info)
 212{
 213        ktime_t rettime;
 214        s64 nsecs;
 215
 216        rettime = ktime_get();
 217        nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 218
 219        if (pm_print_times_enabled) {
 220                pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
 221                        error, (unsigned long long)nsecs >> 10);
 222        }
 223}
 224
 225/**
 226 * dpm_wait - Wait for a PM operation to complete.
 227 * @dev: Device to wait for.
 228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 229 */
 230static void dpm_wait(struct device *dev, bool async)
 231{
 232        if (!dev)
 233                return;
 234
 235        if (async || (pm_async_enabled && dev->power.async_suspend))
 236                wait_for_completion(&dev->power.completion);
 237}
 238
 239static int dpm_wait_fn(struct device *dev, void *async_ptr)
 240{
 241        dpm_wait(dev, *((bool *)async_ptr));
 242        return 0;
 243}
 244
 245static void dpm_wait_for_children(struct device *dev, bool async)
 246{
 247       device_for_each_child(dev, &async, dpm_wait_fn);
 248}
 249
 250static void dpm_wait_for_suppliers(struct device *dev, bool async)
 251{
 252        struct device_link *link;
 253        int idx;
 254
 255        idx = device_links_read_lock();
 256
 257        /*
 258         * If the supplier goes away right after we've checked the link to it,
 259         * we'll wait for its completion to change the state, but that's fine,
 260         * because the only things that will block as a result are the SRCU
 261         * callbacks freeing the link objects for the links in the list we're
 262         * walking.
 263         */
 264        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 265                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 266                        dpm_wait(link->supplier, async);
 267
 268        device_links_read_unlock(idx);
 269}
 270
 271static void dpm_wait_for_superior(struct device *dev, bool async)
 272{
 273        dpm_wait(dev->parent, async);
 274        dpm_wait_for_suppliers(dev, async);
 275}
 276
 277static void dpm_wait_for_consumers(struct device *dev, bool async)
 278{
 279        struct device_link *link;
 280        int idx;
 281
 282        idx = device_links_read_lock();
 283
 284        /*
 285         * The status of a device link can only be changed from "dormant" by a
 286         * probe, but that cannot happen during system suspend/resume.  In
 287         * theory it can change to "dormant" at that time, but then it is
 288         * reasonable to wait for the target device anyway (eg. if it goes
 289         * away, it's better to wait for it to go away completely and then
 290         * continue instead of trying to continue in parallel with its
 291         * unregistration).
 292         */
 293        list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 294                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 295                        dpm_wait(link->consumer, async);
 296
 297        device_links_read_unlock(idx);
 298}
 299
 300static void dpm_wait_for_subordinate(struct device *dev, bool async)
 301{
 302        dpm_wait_for_children(dev, async);
 303        dpm_wait_for_consumers(dev, async);
 304}
 305
 306/**
 307 * pm_op - Return the PM operation appropriate for given PM event.
 308 * @ops: PM operations to choose from.
 309 * @state: PM transition of the system being carried out.
 310 */
 311static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 312{
 313        switch (state.event) {
 314#ifdef CONFIG_SUSPEND
 315        case PM_EVENT_SUSPEND:
 316                return ops->suspend;
 317        case PM_EVENT_RESUME:
 318                return ops->resume;
 319#endif /* CONFIG_SUSPEND */
 320#ifdef CONFIG_HIBERNATE_CALLBACKS
 321        case PM_EVENT_FREEZE:
 322        case PM_EVENT_QUIESCE:
 323                return ops->freeze;
 324        case PM_EVENT_HIBERNATE:
 325                return ops->poweroff;
 326        case PM_EVENT_THAW:
 327        case PM_EVENT_RECOVER:
 328                return ops->thaw;
 329                break;
 330        case PM_EVENT_RESTORE:
 331                return ops->restore;
 332#endif /* CONFIG_HIBERNATE_CALLBACKS */
 333        }
 334
 335        return NULL;
 336}
 337
 338/**
 339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 340 * @ops: PM operations to choose from.
 341 * @state: PM transition of the system being carried out.
 342 *
 343 * Runtime PM is disabled for @dev while this function is being executed.
 344 */
 345static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 346                                      pm_message_t state)
 347{
 348        switch (state.event) {
 349#ifdef CONFIG_SUSPEND
 350        case PM_EVENT_SUSPEND:
 351                return ops->suspend_late;
 352        case PM_EVENT_RESUME:
 353                return ops->resume_early;
 354#endif /* CONFIG_SUSPEND */
 355#ifdef CONFIG_HIBERNATE_CALLBACKS
 356        case PM_EVENT_FREEZE:
 357        case PM_EVENT_QUIESCE:
 358                return ops->freeze_late;
 359        case PM_EVENT_HIBERNATE:
 360                return ops->poweroff_late;
 361        case PM_EVENT_THAW:
 362        case PM_EVENT_RECOVER:
 363                return ops->thaw_early;
 364        case PM_EVENT_RESTORE:
 365                return ops->restore_early;
 366#endif /* CONFIG_HIBERNATE_CALLBACKS */
 367        }
 368
 369        return NULL;
 370}
 371
 372/**
 373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 374 * @ops: PM operations to choose from.
 375 * @state: PM transition of the system being carried out.
 376 *
 377 * The driver of @dev will not receive interrupts while this function is being
 378 * executed.
 379 */
 380static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 381{
 382        switch (state.event) {
 383#ifdef CONFIG_SUSPEND
 384        case PM_EVENT_SUSPEND:
 385                return ops->suspend_noirq;
 386        case PM_EVENT_RESUME:
 387                return ops->resume_noirq;
 388#endif /* CONFIG_SUSPEND */
 389#ifdef CONFIG_HIBERNATE_CALLBACKS
 390        case PM_EVENT_FREEZE:
 391        case PM_EVENT_QUIESCE:
 392                return ops->freeze_noirq;
 393        case PM_EVENT_HIBERNATE:
 394                return ops->poweroff_noirq;
 395        case PM_EVENT_THAW:
 396        case PM_EVENT_RECOVER:
 397                return ops->thaw_noirq;
 398        case PM_EVENT_RESTORE:
 399                return ops->restore_noirq;
 400#endif /* CONFIG_HIBERNATE_CALLBACKS */
 401        }
 402
 403        return NULL;
 404}
 405
 406static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 407{
 408        dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 409                ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 410                ", may wakeup" : "");
 411}
 412
 413static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 414                        int error)
 415{
 416        printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
 417                dev_name(dev), pm_verb(state.event), info, error);
 418}
 419
 420static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 421                          const char *info)
 422{
 423        ktime_t calltime;
 424        u64 usecs64;
 425        int usecs;
 426
 427        calltime = ktime_get();
 428        usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 429        do_div(usecs64, NSEC_PER_USEC);
 430        usecs = usecs64;
 431        if (usecs == 0)
 432                usecs = 1;
 433
 434        pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 435                  info ?: "", info ? " " : "", pm_verb(state.event),
 436                  error ? "aborted" : "complete",
 437                  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 438}
 439
 440static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 441                            pm_message_t state, const char *info)
 442{
 443        ktime_t calltime;
 444        int error;
 445
 446        if (!cb)
 447                return 0;
 448
 449        calltime = initcall_debug_start(dev);
 450
 451        pm_dev_dbg(dev, state, info);
 452        trace_device_pm_callback_start(dev, info, state.event);
 453        error = cb(dev);
 454        trace_device_pm_callback_end(dev, error);
 455        suspend_report_result(cb, error);
 456
 457        initcall_debug_report(dev, calltime, error, state, info);
 458
 459        return error;
 460}
 461
 462#ifdef CONFIG_DPM_WATCHDOG
 463struct dpm_watchdog {
 464        struct device           *dev;
 465        struct task_struct      *tsk;
 466        struct timer_list       timer;
 467};
 468
 469#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 470        struct dpm_watchdog wd
 471
 472/**
 473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 474 * @data: Watchdog object address.
 475 *
 476 * Called when a driver has timed out suspending or resuming.
 477 * There's not much we can do here to recover so panic() to
 478 * capture a crash-dump in pstore.
 479 */
 480static void dpm_watchdog_handler(struct timer_list *t)
 481{
 482        struct dpm_watchdog *wd = from_timer(wd, t, timer);
 483
 484        dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 485        show_stack(wd->tsk, NULL);
 486        panic("%s %s: unrecoverable failure\n",
 487                dev_driver_string(wd->dev), dev_name(wd->dev));
 488}
 489
 490/**
 491 * dpm_watchdog_set - Enable pm watchdog for given device.
 492 * @wd: Watchdog. Must be allocated on the stack.
 493 * @dev: Device to handle.
 494 */
 495static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 496{
 497        struct timer_list *timer = &wd->timer;
 498
 499        wd->dev = dev;
 500        wd->tsk = current;
 501
 502        timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 503        /* use same timeout value for both suspend and resume */
 504        timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 505        add_timer(timer);
 506}
 507
 508/**
 509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 510 * @wd: Watchdog to disable.
 511 */
 512static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 513{
 514        struct timer_list *timer = &wd->timer;
 515
 516        del_timer_sync(timer);
 517        destroy_timer_on_stack(timer);
 518}
 519#else
 520#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 521#define dpm_watchdog_set(x, y)
 522#define dpm_watchdog_clear(x)
 523#endif
 524
 525/*------------------------- Resume routines -------------------------*/
 526
 527/**
 528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
 529 * @dev: Target device.
 530 *
 531 * Make the core skip the "early resume" and "resume" phases for @dev.
 532 *
 533 * This function can be called by middle-layer code during the "noirq" phase of
 534 * system resume if necessary, but not by device drivers.
 535 */
 536void dev_pm_skip_next_resume_phases(struct device *dev)
 537{
 538        dev->power.is_late_suspended = false;
 539        dev->power.is_suspended = false;
 540}
 541
 542/**
 543 * suspend_event - Return a "suspend" message for given "resume" one.
 544 * @resume_msg: PM message representing a system-wide resume transition.
 545 */
 546static pm_message_t suspend_event(pm_message_t resume_msg)
 547{
 548        switch (resume_msg.event) {
 549        case PM_EVENT_RESUME:
 550                return PMSG_SUSPEND;
 551        case PM_EVENT_THAW:
 552        case PM_EVENT_RESTORE:
 553                return PMSG_FREEZE;
 554        case PM_EVENT_RECOVER:
 555                return PMSG_HIBERNATE;
 556        }
 557        return PMSG_ON;
 558}
 559
 560/**
 561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 562 * @dev: Target device.
 563 *
 564 * Checks whether or not the device may be left in suspend after a system-wide
 565 * transition to the working state.
 566 */
 567bool dev_pm_may_skip_resume(struct device *dev)
 568{
 569        return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 570}
 571
 572static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 573                                                pm_message_t state,
 574                                                const char **info_p)
 575{
 576        pm_callback_t callback;
 577        const char *info;
 578
 579        if (dev->pm_domain) {
 580                info = "noirq power domain ";
 581                callback = pm_noirq_op(&dev->pm_domain->ops, state);
 582        } else if (dev->type && dev->type->pm) {
 583                info = "noirq type ";
 584                callback = pm_noirq_op(dev->type->pm, state);
 585        } else if (dev->class && dev->class->pm) {
 586                info = "noirq class ";
 587                callback = pm_noirq_op(dev->class->pm, state);
 588        } else if (dev->bus && dev->bus->pm) {
 589                info = "noirq bus ";
 590                callback = pm_noirq_op(dev->bus->pm, state);
 591        } else {
 592                return NULL;
 593        }
 594
 595        if (info_p)
 596                *info_p = info;
 597
 598        return callback;
 599}
 600
 601static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 602                                                 pm_message_t state,
 603                                                 const char **info_p);
 604
 605static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 606                                                pm_message_t state,
 607                                                const char **info_p);
 608
 609/**
 610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 611 * @dev: Device to handle.
 612 * @state: PM transition of the system being carried out.
 613 * @async: If true, the device is being resumed asynchronously.
 614 *
 615 * The driver of @dev will not receive interrupts while this function is being
 616 * executed.
 617 */
 618static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 619{
 620        pm_callback_t callback;
 621        const char *info;
 622        bool skip_resume;
 623        int error = 0;
 624
 625        TRACE_DEVICE(dev);
 626        TRACE_RESUME(0);
 627
 628        if (dev->power.syscore || dev->power.direct_complete)
 629                goto Out;
 630
 631        if (!dev->power.is_noirq_suspended)
 632                goto Out;
 633
 634        dpm_wait_for_superior(dev, async);
 635
 636        skip_resume = dev_pm_may_skip_resume(dev);
 637
 638        callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 639        if (callback)
 640                goto Run;
 641
 642        if (skip_resume)
 643                goto Skip;
 644
 645        if (dev_pm_smart_suspend_and_suspended(dev)) {
 646                pm_message_t suspend_msg = suspend_event(state);
 647
 648                /*
 649                 * If "freeze" callbacks have been skipped during a transition
 650                 * related to hibernation, the subsequent "thaw" callbacks must
 651                 * be skipped too or bad things may happen.  Otherwise, resume
 652                 * callbacks are going to be run for the device, so its runtime
 653                 * PM status must be changed to reflect the new state after the
 654                 * transition under way.
 655                 */
 656                if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 657                    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 658                        if (state.event == PM_EVENT_THAW) {
 659                                skip_resume = true;
 660                                goto Skip;
 661                        } else {
 662                                pm_runtime_set_active(dev);
 663                        }
 664                }
 665        }
 666
 667        if (dev->driver && dev->driver->pm) {
 668                info = "noirq driver ";
 669                callback = pm_noirq_op(dev->driver->pm, state);
 670        }
 671
 672Run:
 673        error = dpm_run_callback(callback, dev, state, info);
 674
 675Skip:
 676        dev->power.is_noirq_suspended = false;
 677
 678        if (skip_resume) {
 679                /*
 680                 * The device is going to be left in suspend, but it might not
 681                 * have been in runtime suspend before the system suspended, so
 682                 * its runtime PM status needs to be updated to avoid confusing
 683                 * the runtime PM framework when runtime PM is enabled for the
 684                 * device again.
 685                 */
 686                pm_runtime_set_suspended(dev);
 687                dev_pm_skip_next_resume_phases(dev);
 688        }
 689
 690Out:
 691        complete_all(&dev->power.completion);
 692        TRACE_RESUME(error);
 693        return error;
 694}
 695
 696static bool is_async(struct device *dev)
 697{
 698        return dev->power.async_suspend && pm_async_enabled
 699                && !pm_trace_is_enabled();
 700}
 701
 702static void async_resume_noirq(void *data, async_cookie_t cookie)
 703{
 704        struct device *dev = (struct device *)data;
 705        int error;
 706
 707        error = device_resume_noirq(dev, pm_transition, true);
 708        if (error)
 709                pm_dev_err(dev, pm_transition, " async", error);
 710
 711        put_device(dev);
 712}
 713
 714void dpm_noirq_resume_devices(pm_message_t state)
 715{
 716        struct device *dev;
 717        ktime_t starttime = ktime_get();
 718
 719        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 720        mutex_lock(&dpm_list_mtx);
 721        pm_transition = state;
 722
 723        /*
 724         * Advanced the async threads upfront,
 725         * in case the starting of async threads is
 726         * delayed by non-async resuming devices.
 727         */
 728        list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
 729                reinit_completion(&dev->power.completion);
 730                if (is_async(dev)) {
 731                        get_device(dev);
 732                        async_schedule(async_resume_noirq, dev);
 733                }
 734        }
 735
 736        while (!list_empty(&dpm_noirq_list)) {
 737                dev = to_device(dpm_noirq_list.next);
 738                get_device(dev);
 739                list_move_tail(&dev->power.entry, &dpm_late_early_list);
 740                mutex_unlock(&dpm_list_mtx);
 741
 742                if (!is_async(dev)) {
 743                        int error;
 744
 745                        error = device_resume_noirq(dev, state, false);
 746                        if (error) {
 747                                suspend_stats.failed_resume_noirq++;
 748                                dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749                                dpm_save_failed_dev(dev_name(dev));
 750                                pm_dev_err(dev, state, " noirq", error);
 751                        }
 752                }
 753
 754                mutex_lock(&dpm_list_mtx);
 755                put_device(dev);
 756        }
 757        mutex_unlock(&dpm_list_mtx);
 758        async_synchronize_full();
 759        dpm_show_time(starttime, state, 0, "noirq");
 760        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 763void dpm_noirq_end(void)
 764{
 765        resume_device_irqs();
 766        device_wakeup_disarm_wake_irqs();
 767        cpuidle_resume();
 768}
 769
 770/**
 771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 772 * @state: PM transition of the system being carried out.
 773 *
 774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 775 * allow device drivers' interrupt handlers to be called.
 776 */
 777void dpm_resume_noirq(pm_message_t state)
 778{
 779        dpm_noirq_resume_devices(state);
 780        dpm_noirq_end();
 781}
 782
 783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 784                                                pm_message_t state,
 785                                                const char **info_p)
 786{
 787        pm_callback_t callback;
 788        const char *info;
 789
 790        if (dev->pm_domain) {
 791                info = "early power domain ";
 792                callback = pm_late_early_op(&dev->pm_domain->ops, state);
 793        } else if (dev->type && dev->type->pm) {
 794                info = "early type ";
 795                callback = pm_late_early_op(dev->type->pm, state);
 796        } else if (dev->class && dev->class->pm) {
 797                info = "early class ";
 798                callback = pm_late_early_op(dev->class->pm, state);
 799        } else if (dev->bus && dev->bus->pm) {
 800                info = "early bus ";
 801                callback = pm_late_early_op(dev->bus->pm, state);
 802        } else {
 803                return NULL;
 804        }
 805
 806        if (info_p)
 807                *info_p = info;
 808
 809        return callback;
 810}
 811
 812/**
 813 * device_resume_early - Execute an "early resume" callback for given device.
 814 * @dev: Device to handle.
 815 * @state: PM transition of the system being carried out.
 816 * @async: If true, the device is being resumed asynchronously.
 817 *
 818 * Runtime PM is disabled for @dev while this function is being executed.
 819 */
 820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 821{
 822        pm_callback_t callback;
 823        const char *info;
 824        int error = 0;
 825
 826        TRACE_DEVICE(dev);
 827        TRACE_RESUME(0);
 828
 829        if (dev->power.syscore || dev->power.direct_complete)
 830                goto Out;
 831
 832        if (!dev->power.is_late_suspended)
 833                goto Out;
 834
 835        dpm_wait_for_superior(dev, async);
 836
 837        callback = dpm_subsys_resume_early_cb(dev, state, &info);
 838
 839        if (!callback && dev->driver && dev->driver->pm) {
 840                info = "early driver ";
 841                callback = pm_late_early_op(dev->driver->pm, state);
 842        }
 843
 844        error = dpm_run_callback(callback, dev, state, info);
 845        dev->power.is_late_suspended = false;
 846
 847 Out:
 848        TRACE_RESUME(error);
 849
 850        pm_runtime_enable(dev);
 851        complete_all(&dev->power.completion);
 852        return error;
 853}
 854
 855static void async_resume_early(void *data, async_cookie_t cookie)
 856{
 857        struct device *dev = (struct device *)data;
 858        int error;
 859
 860        error = device_resume_early(dev, pm_transition, true);
 861        if (error)
 862                pm_dev_err(dev, pm_transition, " async", error);
 863
 864        put_device(dev);
 865}
 866
 867/**
 868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 869 * @state: PM transition of the system being carried out.
 870 */
 871void dpm_resume_early(pm_message_t state)
 872{
 873        struct device *dev;
 874        ktime_t starttime = ktime_get();
 875
 876        trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 877        mutex_lock(&dpm_list_mtx);
 878        pm_transition = state;
 879
 880        /*
 881         * Advanced the async threads upfront,
 882         * in case the starting of async threads is
 883         * delayed by non-async resuming devices.
 884         */
 885        list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
 886                reinit_completion(&dev->power.completion);
 887                if (is_async(dev)) {
 888                        get_device(dev);
 889                        async_schedule(async_resume_early, dev);
 890                }
 891        }
 892
 893        while (!list_empty(&dpm_late_early_list)) {
 894                dev = to_device(dpm_late_early_list.next);
 895                get_device(dev);
 896                list_move_tail(&dev->power.entry, &dpm_suspended_list);
 897                mutex_unlock(&dpm_list_mtx);
 898
 899                if (!is_async(dev)) {
 900                        int error;
 901
 902                        error = device_resume_early(dev, state, false);
 903                        if (error) {
 904                                suspend_stats.failed_resume_early++;
 905                                dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 906                                dpm_save_failed_dev(dev_name(dev));
 907                                pm_dev_err(dev, state, " early", error);
 908                        }
 909                }
 910                mutex_lock(&dpm_list_mtx);
 911                put_device(dev);
 912        }
 913        mutex_unlock(&dpm_list_mtx);
 914        async_synchronize_full();
 915        dpm_show_time(starttime, state, 0, "early");
 916        trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 917}
 918
 919/**
 920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 921 * @state: PM transition of the system being carried out.
 922 */
 923void dpm_resume_start(pm_message_t state)
 924{
 925        dpm_resume_noirq(state);
 926        dpm_resume_early(state);
 927}
 928EXPORT_SYMBOL_GPL(dpm_resume_start);
 929
 930/**
 931 * device_resume - Execute "resume" callbacks for given device.
 932 * @dev: Device to handle.
 933 * @state: PM transition of the system being carried out.
 934 * @async: If true, the device is being resumed asynchronously.
 935 */
 936static int device_resume(struct device *dev, pm_message_t state, bool async)
 937{
 938        pm_callback_t callback = NULL;
 939        const char *info = NULL;
 940        int error = 0;
 941        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 942
 943        TRACE_DEVICE(dev);
 944        TRACE_RESUME(0);
 945
 946        if (dev->power.syscore)
 947                goto Complete;
 948
 949        if (dev->power.direct_complete) {
 950                /* Match the pm_runtime_disable() in __device_suspend(). */
 951                pm_runtime_enable(dev);
 952                goto Complete;
 953        }
 954
 955        dpm_wait_for_superior(dev, async);
 956        dpm_watchdog_set(&wd, dev);
 957        device_lock(dev);
 958
 959        /*
 960         * This is a fib.  But we'll allow new children to be added below
 961         * a resumed device, even if the device hasn't been completed yet.
 962         */
 963        dev->power.is_prepared = false;
 964
 965        if (!dev->power.is_suspended)
 966                goto Unlock;
 967
 968        if (dev->pm_domain) {
 969                info = "power domain ";
 970                callback = pm_op(&dev->pm_domain->ops, state);
 971                goto Driver;
 972        }
 973
 974        if (dev->type && dev->type->pm) {
 975                info = "type ";
 976                callback = pm_op(dev->type->pm, state);
 977                goto Driver;
 978        }
 979
 980        if (dev->class && dev->class->pm) {
 981                info = "class ";
 982                callback = pm_op(dev->class->pm, state);
 983                goto Driver;
 984        }
 985
 986        if (dev->bus) {
 987                if (dev->bus->pm) {
 988                        info = "bus ";
 989                        callback = pm_op(dev->bus->pm, state);
 990                } else if (dev->bus->resume) {
 991                        info = "legacy bus ";
 992                        callback = dev->bus->resume;
 993                        goto End;
 994                }
 995        }
 996
 997 Driver:
 998        if (!callback && dev->driver && dev->driver->pm) {
 999                info = "driver ";
1000                callback = pm_op(dev->driver->pm, state);
1001        }
1002
1003 End:
1004        error = dpm_run_callback(callback, dev, state, info);
1005        dev->power.is_suspended = false;
1006
1007 Unlock:
1008        device_unlock(dev);
1009        dpm_watchdog_clear(&wd);
1010
1011 Complete:
1012        complete_all(&dev->power.completion);
1013
1014        TRACE_RESUME(error);
1015
1016        return error;
1017}
1018
1019static void async_resume(void *data, async_cookie_t cookie)
1020{
1021        struct device *dev = (struct device *)data;
1022        int error;
1023
1024        error = device_resume(dev, pm_transition, true);
1025        if (error)
1026                pm_dev_err(dev, pm_transition, " async", error);
1027        put_device(dev);
1028}
1029
1030/**
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1033 *
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1036 */
1037void dpm_resume(pm_message_t state)
1038{
1039        struct device *dev;
1040        ktime_t starttime = ktime_get();
1041
1042        trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043        might_sleep();
1044
1045        mutex_lock(&dpm_list_mtx);
1046        pm_transition = state;
1047        async_error = 0;
1048
1049        list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050                reinit_completion(&dev->power.completion);
1051                if (is_async(dev)) {
1052                        get_device(dev);
1053                        async_schedule(async_resume, dev);
1054                }
1055        }
1056
1057        while (!list_empty(&dpm_suspended_list)) {
1058                dev = to_device(dpm_suspended_list.next);
1059                get_device(dev);
1060                if (!is_async(dev)) {
1061                        int error;
1062
1063                        mutex_unlock(&dpm_list_mtx);
1064
1065                        error = device_resume(dev, state, false);
1066                        if (error) {
1067                                suspend_stats.failed_resume++;
1068                                dpm_save_failed_step(SUSPEND_RESUME);
1069                                dpm_save_failed_dev(dev_name(dev));
1070                                pm_dev_err(dev, state, "", error);
1071                        }
1072
1073                        mutex_lock(&dpm_list_mtx);
1074                }
1075                if (!list_empty(&dev->power.entry))
1076                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077                put_device(dev);
1078        }
1079        mutex_unlock(&dpm_list_mtx);
1080        async_synchronize_full();
1081        dpm_show_time(starttime, state, 0, NULL);
1082
1083        cpufreq_resume();
1084        trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085}
1086
1087/**
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1091 */
1092static void device_complete(struct device *dev, pm_message_t state)
1093{
1094        void (*callback)(struct device *) = NULL;
1095        const char *info = NULL;
1096
1097        if (dev->power.syscore)
1098                return;
1099
1100        device_lock(dev);
1101
1102        if (dev->pm_domain) {
1103                info = "completing power domain ";
1104                callback = dev->pm_domain->ops.complete;
1105        } else if (dev->type && dev->type->pm) {
1106                info = "completing type ";
1107                callback = dev->type->pm->complete;
1108        } else if (dev->class && dev->class->pm) {
1109                info = "completing class ";
1110                callback = dev->class->pm->complete;
1111        } else if (dev->bus && dev->bus->pm) {
1112                info = "completing bus ";
1113                callback = dev->bus->pm->complete;
1114        }
1115
1116        if (!callback && dev->driver && dev->driver->pm) {
1117                info = "completing driver ";
1118                callback = dev->driver->pm->complete;
1119        }
1120
1121        if (callback) {
1122                pm_dev_dbg(dev, state, info);
1123                callback(dev);
1124        }
1125
1126        device_unlock(dev);
1127
1128        pm_runtime_put(dev);
1129}
1130
1131/**
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1134 *
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1137 */
1138void dpm_complete(pm_message_t state)
1139{
1140        struct list_head list;
1141
1142        trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143        might_sleep();
1144
1145        INIT_LIST_HEAD(&list);
1146        mutex_lock(&dpm_list_mtx);
1147        while (!list_empty(&dpm_prepared_list)) {
1148                struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150                get_device(dev);
1151                dev->power.is_prepared = false;
1152                list_move(&dev->power.entry, &list);
1153                mutex_unlock(&dpm_list_mtx);
1154
1155                trace_device_pm_callback_start(dev, "", state.event);
1156                device_complete(dev, state);
1157                trace_device_pm_callback_end(dev, 0);
1158
1159                mutex_lock(&dpm_list_mtx);
1160                put_device(dev);
1161        }
1162        list_splice(&list, &dpm_list);
1163        mutex_unlock(&dpm_list_mtx);
1164
1165        /* Allow device probing and trigger re-probing of deferred devices */
1166        device_unblock_probing();
1167        trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168}
1169
1170/**
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1173 *
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1176 */
1177void dpm_resume_end(pm_message_t state)
1178{
1179        dpm_resume(state);
1180        dpm_complete(state);
1181}
1182EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185/*------------------------- Suspend routines -------------------------*/
1186
1187/**
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1190 *
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1193 */
1194static pm_message_t resume_event(pm_message_t sleep_state)
1195{
1196        switch (sleep_state.event) {
1197        case PM_EVENT_SUSPEND:
1198                return PMSG_RESUME;
1199        case PM_EVENT_FREEZE:
1200        case PM_EVENT_QUIESCE:
1201                return PMSG_RECOVER;
1202        case PM_EVENT_HIBERNATE:
1203                return PMSG_RESTORE;
1204        }
1205        return PMSG_ON;
1206}
1207
1208static void dpm_superior_set_must_resume(struct device *dev)
1209{
1210        struct device_link *link;
1211        int idx;
1212
1213        if (dev->parent)
1214                dev->parent->power.must_resume = true;
1215
1216        idx = device_links_read_lock();
1217
1218        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219                link->supplier->power.must_resume = true;
1220
1221        device_links_read_unlock(idx);
1222}
1223
1224static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225                                                 pm_message_t state,
1226                                                 const char **info_p)
1227{
1228        pm_callback_t callback;
1229        const char *info;
1230
1231        if (dev->pm_domain) {
1232                info = "noirq power domain ";
1233                callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234        } else if (dev->type && dev->type->pm) {
1235                info = "noirq type ";
1236                callback = pm_noirq_op(dev->type->pm, state);
1237        } else if (dev->class && dev->class->pm) {
1238                info = "noirq class ";
1239                callback = pm_noirq_op(dev->class->pm, state);
1240        } else if (dev->bus && dev->bus->pm) {
1241                info = "noirq bus ";
1242                callback = pm_noirq_op(dev->bus->pm, state);
1243        } else {
1244                return NULL;
1245        }
1246
1247        if (info_p)
1248                *info_p = info;
1249
1250        return callback;
1251}
1252
1253static bool device_must_resume(struct device *dev, pm_message_t state,
1254                               bool no_subsys_suspend_noirq)
1255{
1256        pm_message_t resume_msg = resume_event(state);
1257
1258        /*
1259         * If all of the device driver's "noirq", "late" and "early" callbacks
1260         * are invoked directly by the core, the decision to allow the device to
1261         * stay in suspend can be based on its current runtime PM status and its
1262         * wakeup settings.
1263         */
1264        if (no_subsys_suspend_noirq &&
1265            !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266            !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267            !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268                return !pm_runtime_status_suspended(dev) &&
1269                        (resume_msg.event != PM_EVENT_RESUME ||
1270                         (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272        /*
1273         * The only safe strategy here is to require that if the device may not
1274         * be left in suspend, resume callbacks must be invoked for it.
1275         */
1276        return !dev->power.may_skip_resume;
1277}
1278
1279/**
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1284 *
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1287 */
1288static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289{
1290        pm_callback_t callback;
1291        const char *info;
1292        bool no_subsys_cb = false;
1293        int error = 0;
1294
1295        TRACE_DEVICE(dev);
1296        TRACE_SUSPEND(0);
1297
1298        dpm_wait_for_subordinate(dev, async);
1299
1300        if (async_error)
1301                goto Complete;
1302
1303        if (pm_wakeup_pending()) {
1304                async_error = -EBUSY;
1305                goto Complete;
1306        }
1307
1308        if (dev->power.syscore || dev->power.direct_complete)
1309                goto Complete;
1310
1311        callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312        if (callback)
1313                goto Run;
1314
1315        no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317        if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318                goto Skip;
1319
1320        if (dev->driver && dev->driver->pm) {
1321                info = "noirq driver ";
1322                callback = pm_noirq_op(dev->driver->pm, state);
1323        }
1324
1325Run:
1326        error = dpm_run_callback(callback, dev, state, info);
1327        if (error) {
1328                async_error = error;
1329                goto Complete;
1330        }
1331
1332Skip:
1333        dev->power.is_noirq_suspended = true;
1334
1335        if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336                dev->power.must_resume = dev->power.must_resume ||
1337                                atomic_read(&dev->power.usage_count) > 1 ||
1338                                device_must_resume(dev, state, no_subsys_cb);
1339        } else {
1340                dev->power.must_resume = true;
1341        }
1342
1343        if (dev->power.must_resume)
1344                dpm_superior_set_must_resume(dev);
1345
1346Complete:
1347        complete_all(&dev->power.completion);
1348        TRACE_SUSPEND(error);
1349        return error;
1350}
1351
1352static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353{
1354        struct device *dev = (struct device *)data;
1355        int error;
1356
1357        error = __device_suspend_noirq(dev, pm_transition, true);
1358        if (error) {
1359                dpm_save_failed_dev(dev_name(dev));
1360                pm_dev_err(dev, pm_transition, " async", error);
1361        }
1362
1363        put_device(dev);
1364}
1365
1366static int device_suspend_noirq(struct device *dev)
1367{
1368        reinit_completion(&dev->power.completion);
1369
1370        if (is_async(dev)) {
1371                get_device(dev);
1372                async_schedule(async_suspend_noirq, dev);
1373                return 0;
1374        }
1375        return __device_suspend_noirq(dev, pm_transition, false);
1376}
1377
1378void dpm_noirq_begin(void)
1379{
1380        cpuidle_pause();
1381        device_wakeup_arm_wake_irqs();
1382        suspend_device_irqs();
1383}
1384
1385int dpm_noirq_suspend_devices(pm_message_t state)
1386{
1387        ktime_t starttime = ktime_get();
1388        int error = 0;
1389
1390        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391        mutex_lock(&dpm_list_mtx);
1392        pm_transition = state;
1393        async_error = 0;
1394
1395        while (!list_empty(&dpm_late_early_list)) {
1396                struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398                get_device(dev);
1399                mutex_unlock(&dpm_list_mtx);
1400
1401                error = device_suspend_noirq(dev);
1402
1403                mutex_lock(&dpm_list_mtx);
1404                if (error) {
1405                        pm_dev_err(dev, state, " noirq", error);
1406                        dpm_save_failed_dev(dev_name(dev));
1407                        put_device(dev);
1408                        break;
1409                }
1410                if (!list_empty(&dev->power.entry))
1411                        list_move(&dev->power.entry, &dpm_noirq_list);
1412                put_device(dev);
1413
1414                if (async_error)
1415                        break;
1416        }
1417        mutex_unlock(&dpm_list_mtx);
1418        async_synchronize_full();
1419        if (!error)
1420                error = async_error;
1421
1422        if (error) {
1423                suspend_stats.failed_suspend_noirq++;
1424                dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425        }
1426        dpm_show_time(starttime, state, error, "noirq");
1427        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428        return error;
1429}
1430
1431/**
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1434 *
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1437 */
1438int dpm_suspend_noirq(pm_message_t state)
1439{
1440        int ret;
1441
1442        dpm_noirq_begin();
1443        ret = dpm_noirq_suspend_devices(state);
1444        if (ret)
1445                dpm_resume_noirq(resume_event(state));
1446
1447        return ret;
1448}
1449
1450static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451{
1452        struct device *parent = dev->parent;
1453
1454        if (!parent)
1455                return;
1456
1457        spin_lock_irq(&parent->power.lock);
1458
1459        if (dev->power.wakeup_path && !parent->power.ignore_children)
1460                parent->power.wakeup_path = true;
1461
1462        spin_unlock_irq(&parent->power.lock);
1463}
1464
1465static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466                                                pm_message_t state,
1467                                                const char **info_p)
1468{
1469        pm_callback_t callback;
1470        const char *info;
1471
1472        if (dev->pm_domain) {
1473                info = "late power domain ";
1474                callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475        } else if (dev->type && dev->type->pm) {
1476                info = "late type ";
1477                callback = pm_late_early_op(dev->type->pm, state);
1478        } else if (dev->class && dev->class->pm) {
1479                info = "late class ";
1480                callback = pm_late_early_op(dev->class->pm, state);
1481        } else if (dev->bus && dev->bus->pm) {
1482                info = "late bus ";
1483                callback = pm_late_early_op(dev->bus->pm, state);
1484        } else {
1485                return NULL;
1486        }
1487
1488        if (info_p)
1489                *info_p = info;
1490
1491        return callback;
1492}
1493
1494/**
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1499 *
1500 * Runtime PM is disabled for @dev while this function is being executed.
1501 */
1502static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503{
1504        pm_callback_t callback;
1505        const char *info;
1506        int error = 0;
1507
1508        TRACE_DEVICE(dev);
1509        TRACE_SUSPEND(0);
1510
1511        __pm_runtime_disable(dev, false);
1512
1513        dpm_wait_for_subordinate(dev, async);
1514
1515        if (async_error)
1516                goto Complete;
1517
1518        if (pm_wakeup_pending()) {
1519                async_error = -EBUSY;
1520                goto Complete;
1521        }
1522
1523        if (dev->power.syscore || dev->power.direct_complete)
1524                goto Complete;
1525
1526        callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527        if (callback)
1528                goto Run;
1529
1530        if (dev_pm_smart_suspend_and_suspended(dev) &&
1531            !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532                goto Skip;
1533
1534        if (dev->driver && dev->driver->pm) {
1535                info = "late driver ";
1536                callback = pm_late_early_op(dev->driver->pm, state);
1537        }
1538
1539Run:
1540        error = dpm_run_callback(callback, dev, state, info);
1541        if (error) {
1542                async_error = error;
1543                goto Complete;
1544        }
1545        dpm_propagate_wakeup_to_parent(dev);
1546
1547Skip:
1548        dev->power.is_late_suspended = true;
1549
1550Complete:
1551        TRACE_SUSPEND(error);
1552        complete_all(&dev->power.completion);
1553        return error;
1554}
1555
1556static void async_suspend_late(void *data, async_cookie_t cookie)
1557{
1558        struct device *dev = (struct device *)data;
1559        int error;
1560
1561        error = __device_suspend_late(dev, pm_transition, true);
1562        if (error) {
1563                dpm_save_failed_dev(dev_name(dev));
1564                pm_dev_err(dev, pm_transition, " async", error);
1565        }
1566        put_device(dev);
1567}
1568
1569static int device_suspend_late(struct device *dev)
1570{
1571        reinit_completion(&dev->power.completion);
1572
1573        if (is_async(dev)) {
1574                get_device(dev);
1575                async_schedule(async_suspend_late, dev);
1576                return 0;
1577        }
1578
1579        return __device_suspend_late(dev, pm_transition, false);
1580}
1581
1582/**
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1585 */
1586int dpm_suspend_late(pm_message_t state)
1587{
1588        ktime_t starttime = ktime_get();
1589        int error = 0;
1590
1591        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592        mutex_lock(&dpm_list_mtx);
1593        pm_transition = state;
1594        async_error = 0;
1595
1596        while (!list_empty(&dpm_suspended_list)) {
1597                struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599                get_device(dev);
1600                mutex_unlock(&dpm_list_mtx);
1601
1602                error = device_suspend_late(dev);
1603
1604                mutex_lock(&dpm_list_mtx);
1605                if (!list_empty(&dev->power.entry))
1606                        list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608                if (error) {
1609                        pm_dev_err(dev, state, " late", error);
1610                        dpm_save_failed_dev(dev_name(dev));
1611                        put_device(dev);
1612                        break;
1613                }
1614                put_device(dev);
1615
1616                if (async_error)
1617                        break;
1618        }
1619        mutex_unlock(&dpm_list_mtx);
1620        async_synchronize_full();
1621        if (!error)
1622                error = async_error;
1623        if (error) {
1624                suspend_stats.failed_suspend_late++;
1625                dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626                dpm_resume_early(resume_event(state));
1627        }
1628        dpm_show_time(starttime, state, error, "late");
1629        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630        return error;
1631}
1632
1633/**
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1636 */
1637int dpm_suspend_end(pm_message_t state)
1638{
1639        int error = dpm_suspend_late(state);
1640        if (error)
1641                return error;
1642
1643        error = dpm_suspend_noirq(state);
1644        if (error) {
1645                dpm_resume_early(resume_event(state));
1646                return error;
1647        }
1648
1649        return 0;
1650}
1651EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653/**
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1659 */
1660static int legacy_suspend(struct device *dev, pm_message_t state,
1661                          int (*cb)(struct device *dev, pm_message_t state),
1662                          const char *info)
1663{
1664        int error;
1665        ktime_t calltime;
1666
1667        calltime = initcall_debug_start(dev);
1668
1669        trace_device_pm_callback_start(dev, info, state.event);
1670        error = cb(dev, state);
1671        trace_device_pm_callback_end(dev, error);
1672        suspend_report_result(cb, error);
1673
1674        initcall_debug_report(dev, calltime, error, state, info);
1675
1676        return error;
1677}
1678
1679static void dpm_clear_superiors_direct_complete(struct device *dev)
1680{
1681        struct device_link *link;
1682        int idx;
1683
1684        if (dev->parent) {
1685                spin_lock_irq(&dev->parent->power.lock);
1686                dev->parent->power.direct_complete = false;
1687                spin_unlock_irq(&dev->parent->power.lock);
1688        }
1689
1690        idx = device_links_read_lock();
1691
1692        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693                spin_lock_irq(&link->supplier->power.lock);
1694                link->supplier->power.direct_complete = false;
1695                spin_unlock_irq(&link->supplier->power.lock);
1696        }
1697
1698        device_links_read_unlock(idx);
1699}
1700
1701/**
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1706 */
1707static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708{
1709        pm_callback_t callback = NULL;
1710        const char *info = NULL;
1711        int error = 0;
1712        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714        TRACE_DEVICE(dev);
1715        TRACE_SUSPEND(0);
1716
1717        dpm_wait_for_subordinate(dev, async);
1718
1719        if (async_error)
1720                goto Complete;
1721
1722        /*
1723         * If a device configured to wake up the system from sleep states
1724         * has been suspended at run time and there's a resume request pending
1725         * for it, this is equivalent to the device signaling wakeup, so the
1726         * system suspend operation should be aborted.
1727         */
1728        if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729                pm_wakeup_event(dev, 0);
1730
1731        if (pm_wakeup_pending()) {
1732                async_error = -EBUSY;
1733                goto Complete;
1734        }
1735
1736        if (dev->power.syscore)
1737                goto Complete;
1738
1739        if (dev->power.direct_complete) {
1740                if (pm_runtime_status_suspended(dev)) {
1741                        pm_runtime_disable(dev);
1742                        if (pm_runtime_status_suspended(dev))
1743                                goto Complete;
1744
1745                        pm_runtime_enable(dev);
1746                }
1747                dev->power.direct_complete = false;
1748        }
1749
1750        dev->power.may_skip_resume = false;
1751        dev->power.must_resume = false;
1752
1753        dpm_watchdog_set(&wd, dev);
1754        device_lock(dev);
1755
1756        if (dev->pm_domain) {
1757                info = "power domain ";
1758                callback = pm_op(&dev->pm_domain->ops, state);
1759                goto Run;
1760        }
1761
1762        if (dev->type && dev->type->pm) {
1763                info = "type ";
1764                callback = pm_op(dev->type->pm, state);
1765                goto Run;
1766        }
1767
1768        if (dev->class && dev->class->pm) {
1769                info = "class ";
1770                callback = pm_op(dev->class->pm, state);
1771                goto Run;
1772        }
1773
1774        if (dev->bus) {
1775                if (dev->bus->pm) {
1776                        info = "bus ";
1777                        callback = pm_op(dev->bus->pm, state);
1778                } else if (dev->bus->suspend) {
1779                        pm_dev_dbg(dev, state, "legacy bus ");
1780                        error = legacy_suspend(dev, state, dev->bus->suspend,
1781                                                "legacy bus ");
1782                        goto End;
1783                }
1784        }
1785
1786 Run:
1787        if (!callback && dev->driver && dev->driver->pm) {
1788                info = "driver ";
1789                callback = pm_op(dev->driver->pm, state);
1790        }
1791
1792        error = dpm_run_callback(callback, dev, state, info);
1793
1794 End:
1795        if (!error) {
1796                dev->power.is_suspended = true;
1797                if (device_may_wakeup(dev))
1798                        dev->power.wakeup_path = true;
1799
1800                dpm_propagate_wakeup_to_parent(dev);
1801                dpm_clear_superiors_direct_complete(dev);
1802        }
1803
1804        device_unlock(dev);
1805        dpm_watchdog_clear(&wd);
1806
1807 Complete:
1808        if (error)
1809                async_error = error;
1810
1811        complete_all(&dev->power.completion);
1812        TRACE_SUSPEND(error);
1813        return error;
1814}
1815
1816static void async_suspend(void *data, async_cookie_t cookie)
1817{
1818        struct device *dev = (struct device *)data;
1819        int error;
1820
1821        error = __device_suspend(dev, pm_transition, true);
1822        if (error) {
1823                dpm_save_failed_dev(dev_name(dev));
1824                pm_dev_err(dev, pm_transition, " async", error);
1825        }
1826
1827        put_device(dev);
1828}
1829
1830static int device_suspend(struct device *dev)
1831{
1832        reinit_completion(&dev->power.completion);
1833
1834        if (is_async(dev)) {
1835                get_device(dev);
1836                async_schedule(async_suspend, dev);
1837                return 0;
1838        }
1839
1840        return __device_suspend(dev, pm_transition, false);
1841}
1842
1843/**
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1846 */
1847int dpm_suspend(pm_message_t state)
1848{
1849        ktime_t starttime = ktime_get();
1850        int error = 0;
1851
1852        trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853        might_sleep();
1854
1855        cpufreq_suspend();
1856
1857        mutex_lock(&dpm_list_mtx);
1858        pm_transition = state;
1859        async_error = 0;
1860        while (!list_empty(&dpm_prepared_list)) {
1861                struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863                get_device(dev);
1864                mutex_unlock(&dpm_list_mtx);
1865
1866                error = device_suspend(dev);
1867
1868                mutex_lock(&dpm_list_mtx);
1869                if (error) {
1870                        pm_dev_err(dev, state, "", error);
1871                        dpm_save_failed_dev(dev_name(dev));
1872                        put_device(dev);
1873                        break;
1874                }
1875                if (!list_empty(&dev->power.entry))
1876                        list_move(&dev->power.entry, &dpm_suspended_list);
1877                put_device(dev);
1878                if (async_error)
1879                        break;
1880        }
1881        mutex_unlock(&dpm_list_mtx);
1882        async_synchronize_full();
1883        if (!error)
1884                error = async_error;
1885        if (error) {
1886                suspend_stats.failed_suspend++;
1887                dpm_save_failed_step(SUSPEND_SUSPEND);
1888        }
1889        dpm_show_time(starttime, state, error, NULL);
1890        trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891        return error;
1892}
1893
1894/**
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1898 *
1899 * Execute the ->prepare() callback(s) for given device.  No new children of the
1900 * device may be registered after this function has returned.
1901 */
1902static int device_prepare(struct device *dev, pm_message_t state)
1903{
1904        int (*callback)(struct device *) = NULL;
1905        int ret = 0;
1906
1907        if (dev->power.syscore)
1908                return 0;
1909
1910        WARN_ON(!pm_runtime_enabled(dev) &&
1911                dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912                                              DPM_FLAG_LEAVE_SUSPENDED));
1913
1914        /*
1915         * If a device's parent goes into runtime suspend at the wrong time,
1916         * it won't be possible to resume the device.  To prevent this we
1917         * block runtime suspend here, during the prepare phase, and allow
1918         * it again during the complete phase.
1919         */
1920        pm_runtime_get_noresume(dev);
1921
1922        device_lock(dev);
1923
1924        dev->power.wakeup_path = false;
1925
1926        if (dev->power.no_pm_callbacks)
1927                goto unlock;
1928
1929        if (dev->pm_domain)
1930                callback = dev->pm_domain->ops.prepare;
1931        else if (dev->type && dev->type->pm)
1932                callback = dev->type->pm->prepare;
1933        else if (dev->class && dev->class->pm)
1934                callback = dev->class->pm->prepare;
1935        else if (dev->bus && dev->bus->pm)
1936                callback = dev->bus->pm->prepare;
1937
1938        if (!callback && dev->driver && dev->driver->pm)
1939                callback = dev->driver->pm->prepare;
1940
1941        if (callback)
1942                ret = callback(dev);
1943
1944unlock:
1945        device_unlock(dev);
1946
1947        if (ret < 0) {
1948                suspend_report_result(callback, ret);
1949                pm_runtime_put(dev);
1950                return ret;
1951        }
1952        /*
1953         * A positive return value from ->prepare() means "this device appears
1954         * to be runtime-suspended and its state is fine, so if it really is
1955         * runtime-suspended, you can leave it in that state provided that you
1956         * will do the same thing with all of its descendants".  This only
1957         * applies to suspend transitions, however.
1958         */
1959        spin_lock_irq(&dev->power.lock);
1960        dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1961                ((pm_runtime_suspended(dev) && ret > 0) ||
1962                 dev->power.no_pm_callbacks) &&
1963                !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1964        spin_unlock_irq(&dev->power.lock);
1965        return 0;
1966}
1967
1968/**
1969 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1970 * @state: PM transition of the system being carried out.
1971 *
1972 * Execute the ->prepare() callback(s) for all devices.
1973 */
1974int dpm_prepare(pm_message_t state)
1975{
1976        int error = 0;
1977
1978        trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1979        might_sleep();
1980
1981        /*
1982         * Give a chance for the known devices to complete their probes, before
1983         * disable probing of devices. This sync point is important at least
1984         * at boot time + hibernation restore.
1985         */
1986        wait_for_device_probe();
1987        /*
1988         * It is unsafe if probing of devices will happen during suspend or
1989         * hibernation and system behavior will be unpredictable in this case.
1990         * So, let's prohibit device's probing here and defer their probes
1991         * instead. The normal behavior will be restored in dpm_complete().
1992         */
1993        device_block_probing();
1994
1995        mutex_lock(&dpm_list_mtx);
1996        while (!list_empty(&dpm_list)) {
1997                struct device *dev = to_device(dpm_list.next);
1998
1999                get_device(dev);
2000                mutex_unlock(&dpm_list_mtx);
2001
2002                trace_device_pm_callback_start(dev, "", state.event);
2003                error = device_prepare(dev, state);
2004                trace_device_pm_callback_end(dev, error);
2005
2006                mutex_lock(&dpm_list_mtx);
2007                if (error) {
2008                        if (error == -EAGAIN) {
2009                                put_device(dev);
2010                                error = 0;
2011                                continue;
2012                        }
2013                        printk(KERN_INFO "PM: Device %s not prepared "
2014                                "for power transition: code %d\n",
2015                                dev_name(dev), error);
2016                        put_device(dev);
2017                        break;
2018                }
2019                dev->power.is_prepared = true;
2020                if (!list_empty(&dev->power.entry))
2021                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
2022                put_device(dev);
2023        }
2024        mutex_unlock(&dpm_list_mtx);
2025        trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2026        return error;
2027}
2028
2029/**
2030 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2031 * @state: PM transition of the system being carried out.
2032 *
2033 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2034 * callbacks for them.
2035 */
2036int dpm_suspend_start(pm_message_t state)
2037{
2038        int error;
2039
2040        error = dpm_prepare(state);
2041        if (error) {
2042                suspend_stats.failed_prepare++;
2043                dpm_save_failed_step(SUSPEND_PREPARE);
2044        } else
2045                error = dpm_suspend(state);
2046        return error;
2047}
2048EXPORT_SYMBOL_GPL(dpm_suspend_start);
2049
2050void __suspend_report_result(const char *function, void *fn, int ret)
2051{
2052        if (ret)
2053                printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2054}
2055EXPORT_SYMBOL_GPL(__suspend_report_result);
2056
2057/**
2058 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2059 * @dev: Device to wait for.
2060 * @subordinate: Device that needs to wait for @dev.
2061 */
2062int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2063{
2064        dpm_wait(dev, subordinate->power.async_suspend);
2065        return async_error;
2066}
2067EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2068
2069/**
2070 * dpm_for_each_dev - device iterator.
2071 * @data: data for the callback.
2072 * @fn: function to be called for each device.
2073 *
2074 * Iterate over devices in dpm_list, and call @fn for each device,
2075 * passing it @data.
2076 */
2077void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2078{
2079        struct device *dev;
2080
2081        if (!fn)
2082                return;
2083
2084        device_pm_lock();
2085        list_for_each_entry(dev, &dpm_list, power.entry)
2086                fn(dev, data);
2087        device_pm_unlock();
2088}
2089EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2090
2091static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2092{
2093        if (!ops)
2094                return true;
2095
2096        return !ops->prepare &&
2097               !ops->suspend &&
2098               !ops->suspend_late &&
2099               !ops->suspend_noirq &&
2100               !ops->resume_noirq &&
2101               !ops->resume_early &&
2102               !ops->resume &&
2103               !ops->complete;
2104}
2105
2106void device_pm_check_callbacks(struct device *dev)
2107{
2108        spin_lock_irq(&dev->power.lock);
2109        dev->power.no_pm_callbacks =
2110                (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2111                 !dev->bus->suspend && !dev->bus->resume)) &&
2112                (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2113                (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2114                (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2115                (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2116                 !dev->driver->suspend && !dev->driver->resume));
2117        spin_unlock_irq(&dev->power.lock);
2118}
2119
2120bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2121{
2122        return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2123                pm_runtime_status_suspended(dev);
2124}
2125