linux/drivers/clocksource/arm_arch_timer.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/clocksource/arm_arch_timer.c
   3 *
   4 *  Copyright (C) 2011 ARM Ltd.
   5 *  All Rights Reserved
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt)     "arm_arch_timer: " fmt
  13
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/device.h>
  17#include <linux/smp.h>
  18#include <linux/cpu.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/clockchips.h>
  21#include <linux/clocksource.h>
  22#include <linux/interrupt.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_address.h>
  25#include <linux/io.h>
  26#include <linux/slab.h>
  27#include <linux/sched/clock.h>
  28#include <linux/sched_clock.h>
  29#include <linux/acpi.h>
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
  36#undef pr_fmt
  37#define pr_fmt(fmt) "arch_timer: " fmt
  38
  39#define CNTTIDR         0x08
  40#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  41
  42#define CNTACR(n)       (0x40 + ((n) * 4))
  43#define CNTACR_RPCT     BIT(0)
  44#define CNTACR_RVCT     BIT(1)
  45#define CNTACR_RFRQ     BIT(2)
  46#define CNTACR_RVOFF    BIT(3)
  47#define CNTACR_RWVT     BIT(4)
  48#define CNTACR_RWPT     BIT(5)
  49
  50#define CNTVCT_LO       0x08
  51#define CNTVCT_HI       0x0c
  52#define CNTFRQ          0x10
  53#define CNTP_TVAL       0x28
  54#define CNTP_CTL        0x2c
  55#define CNTV_TVAL       0x38
  56#define CNTV_CTL        0x3c
  57
  58static unsigned arch_timers_present __initdata;
  59
  60static void __iomem *arch_counter_base;
  61
  62struct arch_timer {
  63        void __iomem *base;
  64        struct clock_event_device evt;
  65};
  66
  67#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  68
  69static u32 arch_timer_rate;
  70static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
  71
  72static struct clock_event_device __percpu *arch_timer_evt;
  73
  74static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
  75static bool arch_timer_c3stop;
  76static bool arch_timer_mem_use_virtual;
  77static bool arch_counter_suspend_stop;
  78static bool vdso_default = true;
  79
  80static cpumask_t evtstrm_available = CPU_MASK_NONE;
  81static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  82
  83static int __init early_evtstrm_cfg(char *buf)
  84{
  85        return strtobool(buf, &evtstrm_enable);
  86}
  87early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  88
  89/*
  90 * Architected system timer support.
  91 */
  92
  93static __always_inline
  94void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  95                          struct clock_event_device *clk)
  96{
  97        if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  98                struct arch_timer *timer = to_arch_timer(clk);
  99                switch (reg) {
 100                case ARCH_TIMER_REG_CTRL:
 101                        writel_relaxed(val, timer->base + CNTP_CTL);
 102                        break;
 103                case ARCH_TIMER_REG_TVAL:
 104                        writel_relaxed(val, timer->base + CNTP_TVAL);
 105                        break;
 106                }
 107        } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 108                struct arch_timer *timer = to_arch_timer(clk);
 109                switch (reg) {
 110                case ARCH_TIMER_REG_CTRL:
 111                        writel_relaxed(val, timer->base + CNTV_CTL);
 112                        break;
 113                case ARCH_TIMER_REG_TVAL:
 114                        writel_relaxed(val, timer->base + CNTV_TVAL);
 115                        break;
 116                }
 117        } else {
 118                arch_timer_reg_write_cp15(access, reg, val);
 119        }
 120}
 121
 122static __always_inline
 123u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 124                        struct clock_event_device *clk)
 125{
 126        u32 val;
 127
 128        if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 129                struct arch_timer *timer = to_arch_timer(clk);
 130                switch (reg) {
 131                case ARCH_TIMER_REG_CTRL:
 132                        val = readl_relaxed(timer->base + CNTP_CTL);
 133                        break;
 134                case ARCH_TIMER_REG_TVAL:
 135                        val = readl_relaxed(timer->base + CNTP_TVAL);
 136                        break;
 137                }
 138        } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 139                struct arch_timer *timer = to_arch_timer(clk);
 140                switch (reg) {
 141                case ARCH_TIMER_REG_CTRL:
 142                        val = readl_relaxed(timer->base + CNTV_CTL);
 143                        break;
 144                case ARCH_TIMER_REG_TVAL:
 145                        val = readl_relaxed(timer->base + CNTV_TVAL);
 146                        break;
 147                }
 148        } else {
 149                val = arch_timer_reg_read_cp15(access, reg);
 150        }
 151
 152        return val;
 153}
 154
 155/*
 156 * Default to cp15 based access because arm64 uses this function for
 157 * sched_clock() before DT is probed and the cp15 method is guaranteed
 158 * to exist on arm64. arm doesn't use this before DT is probed so even
 159 * if we don't have the cp15 accessors we won't have a problem.
 160 */
 161u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 162EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 163
 164static u64 arch_counter_read(struct clocksource *cs)
 165{
 166        return arch_timer_read_counter();
 167}
 168
 169static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 170{
 171        return arch_timer_read_counter();
 172}
 173
 174static struct clocksource clocksource_counter = {
 175        .name   = "arch_sys_counter",
 176        .rating = 400,
 177        .read   = arch_counter_read,
 178        .mask   = CLOCKSOURCE_MASK(56),
 179        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 180};
 181
 182static struct cyclecounter cyclecounter __ro_after_init = {
 183        .read   = arch_counter_read_cc,
 184        .mask   = CLOCKSOURCE_MASK(56),
 185};
 186
 187struct ate_acpi_oem_info {
 188        char oem_id[ACPI_OEM_ID_SIZE + 1];
 189        char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 190        u32 oem_revision;
 191};
 192
 193#ifdef CONFIG_FSL_ERRATUM_A008585
 194/*
 195 * The number of retries is an arbitrary value well beyond the highest number
 196 * of iterations the loop has been observed to take.
 197 */
 198#define __fsl_a008585_read_reg(reg) ({                  \
 199        u64 _old, _new;                                 \
 200        int _retries = 200;                             \
 201                                                        \
 202        do {                                            \
 203                _old = read_sysreg(reg);                \
 204                _new = read_sysreg(reg);                \
 205                _retries--;                             \
 206        } while (unlikely(_old != _new) && _retries);   \
 207                                                        \
 208        WARN_ON_ONCE(!_retries);                        \
 209        _new;                                           \
 210})
 211
 212static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 213{
 214        return __fsl_a008585_read_reg(cntp_tval_el0);
 215}
 216
 217static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 218{
 219        return __fsl_a008585_read_reg(cntv_tval_el0);
 220}
 221
 222static u64 notrace fsl_a008585_read_cntpct_el0(void)
 223{
 224        return __fsl_a008585_read_reg(cntpct_el0);
 225}
 226
 227static u64 notrace fsl_a008585_read_cntvct_el0(void)
 228{
 229        return __fsl_a008585_read_reg(cntvct_el0);
 230}
 231#endif
 232
 233#ifdef CONFIG_HISILICON_ERRATUM_161010101
 234/*
 235 * Verify whether the value of the second read is larger than the first by
 236 * less than 32 is the only way to confirm the value is correct, so clear the
 237 * lower 5 bits to check whether the difference is greater than 32 or not.
 238 * Theoretically the erratum should not occur more than twice in succession
 239 * when reading the system counter, but it is possible that some interrupts
 240 * may lead to more than twice read errors, triggering the warning, so setting
 241 * the number of retries far beyond the number of iterations the loop has been
 242 * observed to take.
 243 */
 244#define __hisi_161010101_read_reg(reg) ({                               \
 245        u64 _old, _new;                                         \
 246        int _retries = 50;                                      \
 247                                                                \
 248        do {                                                    \
 249                _old = read_sysreg(reg);                        \
 250                _new = read_sysreg(reg);                        \
 251                _retries--;                                     \
 252        } while (unlikely((_new - _old) >> 5) && _retries);     \
 253                                                                \
 254        WARN_ON_ONCE(!_retries);                                \
 255        _new;                                                   \
 256})
 257
 258static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 259{
 260        return __hisi_161010101_read_reg(cntp_tval_el0);
 261}
 262
 263static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 264{
 265        return __hisi_161010101_read_reg(cntv_tval_el0);
 266}
 267
 268static u64 notrace hisi_161010101_read_cntpct_el0(void)
 269{
 270        return __hisi_161010101_read_reg(cntpct_el0);
 271}
 272
 273static u64 notrace hisi_161010101_read_cntvct_el0(void)
 274{
 275        return __hisi_161010101_read_reg(cntvct_el0);
 276}
 277
 278static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 279        /*
 280         * Note that trailing spaces are required to properly match
 281         * the OEM table information.
 282         */
 283        {
 284                .oem_id         = "HISI  ",
 285                .oem_table_id   = "HIP05   ",
 286                .oem_revision   = 0,
 287        },
 288        {
 289                .oem_id         = "HISI  ",
 290                .oem_table_id   = "HIP06   ",
 291                .oem_revision   = 0,
 292        },
 293        {
 294                .oem_id         = "HISI  ",
 295                .oem_table_id   = "HIP07   ",
 296                .oem_revision   = 0,
 297        },
 298        { /* Sentinel indicating the end of the OEM array */ },
 299};
 300#endif
 301
 302#ifdef CONFIG_ARM64_ERRATUM_858921
 303static u64 notrace arm64_858921_read_cntpct_el0(void)
 304{
 305        u64 old, new;
 306
 307        old = read_sysreg(cntpct_el0);
 308        new = read_sysreg(cntpct_el0);
 309        return (((old ^ new) >> 32) & 1) ? old : new;
 310}
 311
 312static u64 notrace arm64_858921_read_cntvct_el0(void)
 313{
 314        u64 old, new;
 315
 316        old = read_sysreg(cntvct_el0);
 317        new = read_sysreg(cntvct_el0);
 318        return (((old ^ new) >> 32) & 1) ? old : new;
 319}
 320#endif
 321
 322#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 323DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 324EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 325
 326DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
 327EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
 328
 329static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 330                                                struct clock_event_device *clk)
 331{
 332        unsigned long ctrl;
 333        u64 cval;
 334
 335        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 336        ctrl |= ARCH_TIMER_CTRL_ENABLE;
 337        ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 338
 339        if (access == ARCH_TIMER_PHYS_ACCESS) {
 340                cval = evt + arch_counter_get_cntpct();
 341                write_sysreg(cval, cntp_cval_el0);
 342        } else {
 343                cval = evt + arch_counter_get_cntvct();
 344                write_sysreg(cval, cntv_cval_el0);
 345        }
 346
 347        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 348}
 349
 350static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 351                                            struct clock_event_device *clk)
 352{
 353        erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 354        return 0;
 355}
 356
 357static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 358                                            struct clock_event_device *clk)
 359{
 360        erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 361        return 0;
 362}
 363
 364static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 365#ifdef CONFIG_FSL_ERRATUM_A008585
 366        {
 367                .match_type = ate_match_dt,
 368                .id = "fsl,erratum-a008585",
 369                .desc = "Freescale erratum a005858",
 370                .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 371                .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 372                .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 373                .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 374                .set_next_event_phys = erratum_set_next_event_tval_phys,
 375                .set_next_event_virt = erratum_set_next_event_tval_virt,
 376        },
 377#endif
 378#ifdef CONFIG_HISILICON_ERRATUM_161010101
 379        {
 380                .match_type = ate_match_dt,
 381                .id = "hisilicon,erratum-161010101",
 382                .desc = "HiSilicon erratum 161010101",
 383                .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 384                .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 385                .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 386                .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 387                .set_next_event_phys = erratum_set_next_event_tval_phys,
 388                .set_next_event_virt = erratum_set_next_event_tval_virt,
 389        },
 390        {
 391                .match_type = ate_match_acpi_oem_info,
 392                .id = hisi_161010101_oem_info,
 393                .desc = "HiSilicon erratum 161010101",
 394                .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 395                .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 396                .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 397                .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 398                .set_next_event_phys = erratum_set_next_event_tval_phys,
 399                .set_next_event_virt = erratum_set_next_event_tval_virt,
 400        },
 401#endif
 402#ifdef CONFIG_ARM64_ERRATUM_858921
 403        {
 404                .match_type = ate_match_local_cap_id,
 405                .id = (void *)ARM64_WORKAROUND_858921,
 406                .desc = "ARM erratum 858921",
 407                .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 408                .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 409        },
 410#endif
 411};
 412
 413typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 414                               const void *);
 415
 416static
 417bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 418                                 const void *arg)
 419{
 420        const struct device_node *np = arg;
 421
 422        return of_property_read_bool(np, wa->id);
 423}
 424
 425static
 426bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 427                                        const void *arg)
 428{
 429        return this_cpu_has_cap((uintptr_t)wa->id);
 430}
 431
 432
 433static
 434bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 435                                       const void *arg)
 436{
 437        static const struct ate_acpi_oem_info empty_oem_info = {};
 438        const struct ate_acpi_oem_info *info = wa->id;
 439        const struct acpi_table_header *table = arg;
 440
 441        /* Iterate over the ACPI OEM info array, looking for a match */
 442        while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 443                if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 444                    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 445                    info->oem_revision == table->oem_revision)
 446                        return true;
 447
 448                info++;
 449        }
 450
 451        return false;
 452}
 453
 454static const struct arch_timer_erratum_workaround *
 455arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 456                          ate_match_fn_t match_fn,
 457                          void *arg)
 458{
 459        int i;
 460
 461        for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 462                if (ool_workarounds[i].match_type != type)
 463                        continue;
 464
 465                if (match_fn(&ool_workarounds[i], arg))
 466                        return &ool_workarounds[i];
 467        }
 468
 469        return NULL;
 470}
 471
 472static
 473void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 474                                  bool local)
 475{
 476        int i;
 477
 478        if (local) {
 479                __this_cpu_write(timer_unstable_counter_workaround, wa);
 480        } else {
 481                for_each_possible_cpu(i)
 482                        per_cpu(timer_unstable_counter_workaround, i) = wa;
 483        }
 484
 485        /*
 486         * Use the locked version, as we're called from the CPU
 487         * hotplug framework. Otherwise, we end-up in deadlock-land.
 488         */
 489        static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
 490
 491        /*
 492         * Don't use the vdso fastpath if errata require using the
 493         * out-of-line counter accessor. We may change our mind pretty
 494         * late in the game (with a per-CPU erratum, for example), so
 495         * change both the default value and the vdso itself.
 496         */
 497        if (wa->read_cntvct_el0) {
 498                clocksource_counter.archdata.vdso_direct = false;
 499                vdso_default = false;
 500        }
 501}
 502
 503static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 504                                            void *arg)
 505{
 506        const struct arch_timer_erratum_workaround *wa;
 507        ate_match_fn_t match_fn = NULL;
 508        bool local = false;
 509
 510        switch (type) {
 511        case ate_match_dt:
 512                match_fn = arch_timer_check_dt_erratum;
 513                break;
 514        case ate_match_local_cap_id:
 515                match_fn = arch_timer_check_local_cap_erratum;
 516                local = true;
 517                break;
 518        case ate_match_acpi_oem_info:
 519                match_fn = arch_timer_check_acpi_oem_erratum;
 520                break;
 521        default:
 522                WARN_ON(1);
 523                return;
 524        }
 525
 526        wa = arch_timer_iterate_errata(type, match_fn, arg);
 527        if (!wa)
 528                return;
 529
 530        if (needs_unstable_timer_counter_workaround()) {
 531                const struct arch_timer_erratum_workaround *__wa;
 532                __wa = __this_cpu_read(timer_unstable_counter_workaround);
 533                if (__wa && wa != __wa)
 534                        pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 535                                wa->desc, __wa->desc);
 536
 537                if (__wa)
 538                        return;
 539        }
 540
 541        arch_timer_enable_workaround(wa, local);
 542        pr_info("Enabling %s workaround for %s\n",
 543                local ? "local" : "global", wa->desc);
 544}
 545
 546#define erratum_handler(fn, r, ...)                                     \
 547({                                                                      \
 548        bool __val;                                                     \
 549        if (needs_unstable_timer_counter_workaround()) {                \
 550                const struct arch_timer_erratum_workaround *__wa;       \
 551                __wa = __this_cpu_read(timer_unstable_counter_workaround); \
 552                if (__wa && __wa->fn) {                                 \
 553                        r = __wa->fn(__VA_ARGS__);                      \
 554                        __val = true;                                   \
 555                } else {                                                \
 556                        __val = false;                                  \
 557                }                                                       \
 558        } else {                                                        \
 559                __val = false;                                          \
 560        }                                                               \
 561        __val;                                                          \
 562})
 563
 564static bool arch_timer_this_cpu_has_cntvct_wa(void)
 565{
 566        const struct arch_timer_erratum_workaround *wa;
 567
 568        wa = __this_cpu_read(timer_unstable_counter_workaround);
 569        return wa && wa->read_cntvct_el0;
 570}
 571#else
 572#define arch_timer_check_ool_workaround(t,a)            do { } while(0)
 573#define erratum_set_next_event_tval_virt(...)           ({BUG(); 0;})
 574#define erratum_set_next_event_tval_phys(...)           ({BUG(); 0;})
 575#define erratum_handler(fn, r, ...)                     ({false;})
 576#define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
 577#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 578
 579static __always_inline irqreturn_t timer_handler(const int access,
 580                                        struct clock_event_device *evt)
 581{
 582        unsigned long ctrl;
 583
 584        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 585        if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 586                ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 587                arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 588                evt->event_handler(evt);
 589                return IRQ_HANDLED;
 590        }
 591
 592        return IRQ_NONE;
 593}
 594
 595static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 596{
 597        struct clock_event_device *evt = dev_id;
 598
 599        return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 600}
 601
 602static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 603{
 604        struct clock_event_device *evt = dev_id;
 605
 606        return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 607}
 608
 609static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 610{
 611        struct clock_event_device *evt = dev_id;
 612
 613        return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 614}
 615
 616static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 617{
 618        struct clock_event_device *evt = dev_id;
 619
 620        return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 621}
 622
 623static __always_inline int timer_shutdown(const int access,
 624                                          struct clock_event_device *clk)
 625{
 626        unsigned long ctrl;
 627
 628        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 629        ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 630        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 631
 632        return 0;
 633}
 634
 635static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 636{
 637        return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 638}
 639
 640static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 641{
 642        return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 643}
 644
 645static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 646{
 647        return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 648}
 649
 650static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 651{
 652        return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 653}
 654
 655static __always_inline void set_next_event(const int access, unsigned long evt,
 656                                           struct clock_event_device *clk)
 657{
 658        unsigned long ctrl;
 659        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 660        ctrl |= ARCH_TIMER_CTRL_ENABLE;
 661        ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 662        arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 663        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 664}
 665
 666static int arch_timer_set_next_event_virt(unsigned long evt,
 667                                          struct clock_event_device *clk)
 668{
 669        int ret;
 670
 671        if (erratum_handler(set_next_event_virt, ret, evt, clk))
 672                return ret;
 673
 674        set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 675        return 0;
 676}
 677
 678static int arch_timer_set_next_event_phys(unsigned long evt,
 679                                          struct clock_event_device *clk)
 680{
 681        int ret;
 682
 683        if (erratum_handler(set_next_event_phys, ret, evt, clk))
 684                return ret;
 685
 686        set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 687        return 0;
 688}
 689
 690static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 691                                              struct clock_event_device *clk)
 692{
 693        set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 694        return 0;
 695}
 696
 697static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 698                                              struct clock_event_device *clk)
 699{
 700        set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 701        return 0;
 702}
 703
 704static void __arch_timer_setup(unsigned type,
 705                               struct clock_event_device *clk)
 706{
 707        clk->features = CLOCK_EVT_FEAT_ONESHOT;
 708
 709        if (type == ARCH_TIMER_TYPE_CP15) {
 710                if (arch_timer_c3stop)
 711                        clk->features |= CLOCK_EVT_FEAT_C3STOP;
 712                clk->name = "arch_sys_timer";
 713                clk->rating = 450;
 714                clk->cpumask = cpumask_of(smp_processor_id());
 715                clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 716                switch (arch_timer_uses_ppi) {
 717                case ARCH_TIMER_VIRT_PPI:
 718                        clk->set_state_shutdown = arch_timer_shutdown_virt;
 719                        clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 720                        clk->set_next_event = arch_timer_set_next_event_virt;
 721                        break;
 722                case ARCH_TIMER_PHYS_SECURE_PPI:
 723                case ARCH_TIMER_PHYS_NONSECURE_PPI:
 724                case ARCH_TIMER_HYP_PPI:
 725                        clk->set_state_shutdown = arch_timer_shutdown_phys;
 726                        clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 727                        clk->set_next_event = arch_timer_set_next_event_phys;
 728                        break;
 729                default:
 730                        BUG();
 731                }
 732
 733                arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 734        } else {
 735                clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 736                clk->name = "arch_mem_timer";
 737                clk->rating = 400;
 738                clk->cpumask = cpu_all_mask;
 739                if (arch_timer_mem_use_virtual) {
 740                        clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 741                        clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 742                        clk->set_next_event =
 743                                arch_timer_set_next_event_virt_mem;
 744                } else {
 745                        clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 746                        clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 747                        clk->set_next_event =
 748                                arch_timer_set_next_event_phys_mem;
 749                }
 750        }
 751
 752        clk->set_state_shutdown(clk);
 753
 754        clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 755}
 756
 757static void arch_timer_evtstrm_enable(int divider)
 758{
 759        u32 cntkctl = arch_timer_get_cntkctl();
 760
 761        cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 762        /* Set the divider and enable virtual event stream */
 763        cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 764                        | ARCH_TIMER_VIRT_EVT_EN;
 765        arch_timer_set_cntkctl(cntkctl);
 766        elf_hwcap |= HWCAP_EVTSTRM;
 767#ifdef CONFIG_COMPAT
 768        compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
 769#endif
 770        cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 771}
 772
 773static void arch_timer_configure_evtstream(void)
 774{
 775        int evt_stream_div, pos;
 776
 777        /* Find the closest power of two to the divisor */
 778        evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
 779        pos = fls(evt_stream_div);
 780        if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
 781                pos--;
 782        /* enable event stream */
 783        arch_timer_evtstrm_enable(min(pos, 15));
 784}
 785
 786static void arch_counter_set_user_access(void)
 787{
 788        u32 cntkctl = arch_timer_get_cntkctl();
 789
 790        /* Disable user access to the timers and both counters */
 791        /* Also disable virtual event stream */
 792        cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 793                        | ARCH_TIMER_USR_VT_ACCESS_EN
 794                        | ARCH_TIMER_USR_VCT_ACCESS_EN
 795                        | ARCH_TIMER_VIRT_EVT_EN
 796                        | ARCH_TIMER_USR_PCT_ACCESS_EN);
 797
 798        /*
 799         * Enable user access to the virtual counter if it doesn't
 800         * need to be workaround. The vdso may have been already
 801         * disabled though.
 802         */
 803        if (arch_timer_this_cpu_has_cntvct_wa())
 804                pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 805        else
 806                cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 807
 808        arch_timer_set_cntkctl(cntkctl);
 809}
 810
 811static bool arch_timer_has_nonsecure_ppi(void)
 812{
 813        return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 814                arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 815}
 816
 817static u32 check_ppi_trigger(int irq)
 818{
 819        u32 flags = irq_get_trigger_type(irq);
 820
 821        if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 822                pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 823                pr_warn("WARNING: Please fix your firmware\n");
 824                flags = IRQF_TRIGGER_LOW;
 825        }
 826
 827        return flags;
 828}
 829
 830static int arch_timer_starting_cpu(unsigned int cpu)
 831{
 832        struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 833        u32 flags;
 834
 835        __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 836
 837        flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 838        enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 839
 840        if (arch_timer_has_nonsecure_ppi()) {
 841                flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 842                enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 843                                  flags);
 844        }
 845
 846        arch_counter_set_user_access();
 847        if (evtstrm_enable)
 848                arch_timer_configure_evtstream();
 849
 850        return 0;
 851}
 852
 853/*
 854 * For historical reasons, when probing with DT we use whichever (non-zero)
 855 * rate was probed first, and don't verify that others match. If the first node
 856 * probed has a clock-frequency property, this overrides the HW register.
 857 */
 858static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 859{
 860        /* Who has more than one independent system counter? */
 861        if (arch_timer_rate)
 862                return;
 863
 864        if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 865                arch_timer_rate = rate;
 866
 867        /* Check the timer frequency. */
 868        if (arch_timer_rate == 0)
 869                pr_warn("frequency not available\n");
 870}
 871
 872static void arch_timer_banner(unsigned type)
 873{
 874        pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 875                type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 876                type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 877                        " and " : "",
 878                type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 879                (unsigned long)arch_timer_rate / 1000000,
 880                (unsigned long)(arch_timer_rate / 10000) % 100,
 881                type & ARCH_TIMER_TYPE_CP15 ?
 882                        (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 883                        "",
 884                type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 885                type & ARCH_TIMER_TYPE_MEM ?
 886                        arch_timer_mem_use_virtual ? "virt" : "phys" :
 887                        "");
 888}
 889
 890u32 arch_timer_get_rate(void)
 891{
 892        return arch_timer_rate;
 893}
 894
 895bool arch_timer_evtstrm_available(void)
 896{
 897        /*
 898         * We might get called from a preemptible context. This is fine
 899         * because availability of the event stream should be always the same
 900         * for a preemptible context and context where we might resume a task.
 901         */
 902        return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 903}
 904
 905static u64 arch_counter_get_cntvct_mem(void)
 906{
 907        u32 vct_lo, vct_hi, tmp_hi;
 908
 909        do {
 910                vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 911                vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 912                tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 913        } while (vct_hi != tmp_hi);
 914
 915        return ((u64) vct_hi << 32) | vct_lo;
 916}
 917
 918static struct arch_timer_kvm_info arch_timer_kvm_info;
 919
 920struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 921{
 922        return &arch_timer_kvm_info;
 923}
 924
 925static void __init arch_counter_register(unsigned type)
 926{
 927        u64 start_count;
 928
 929        /* Register the CP15 based counter if we have one */
 930        if (type & ARCH_TIMER_TYPE_CP15) {
 931                if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
 932                    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
 933                        arch_timer_read_counter = arch_counter_get_cntvct;
 934                else
 935                        arch_timer_read_counter = arch_counter_get_cntpct;
 936
 937                clocksource_counter.archdata.vdso_direct = vdso_default;
 938        } else {
 939                arch_timer_read_counter = arch_counter_get_cntvct_mem;
 940        }
 941
 942        if (!arch_counter_suspend_stop)
 943                clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
 944        start_count = arch_timer_read_counter();
 945        clocksource_register_hz(&clocksource_counter, arch_timer_rate);
 946        cyclecounter.mult = clocksource_counter.mult;
 947        cyclecounter.shift = clocksource_counter.shift;
 948        timecounter_init(&arch_timer_kvm_info.timecounter,
 949                         &cyclecounter, start_count);
 950
 951        /* 56 bits minimum, so we assume worst case rollover */
 952        sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
 953}
 954
 955static void arch_timer_stop(struct clock_event_device *clk)
 956{
 957        pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
 958
 959        disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
 960        if (arch_timer_has_nonsecure_ppi())
 961                disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 962
 963        clk->set_state_shutdown(clk);
 964}
 965
 966static int arch_timer_dying_cpu(unsigned int cpu)
 967{
 968        struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 969
 970        cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 971
 972        arch_timer_stop(clk);
 973        return 0;
 974}
 975
 976#ifdef CONFIG_CPU_PM
 977static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
 978static int arch_timer_cpu_pm_notify(struct notifier_block *self,
 979                                    unsigned long action, void *hcpu)
 980{
 981        if (action == CPU_PM_ENTER) {
 982                __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
 983
 984                cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 985        } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
 986                arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
 987
 988                if (elf_hwcap & HWCAP_EVTSTRM)
 989                        cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 990        }
 991        return NOTIFY_OK;
 992}
 993
 994static struct notifier_block arch_timer_cpu_pm_notifier = {
 995        .notifier_call = arch_timer_cpu_pm_notify,
 996};
 997
 998static int __init arch_timer_cpu_pm_init(void)
 999{
1000        return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001}
1002
1003static void __init arch_timer_cpu_pm_deinit(void)
1004{
1005        WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006}
1007
1008#else
1009static int __init arch_timer_cpu_pm_init(void)
1010{
1011        return 0;
1012}
1013
1014static void __init arch_timer_cpu_pm_deinit(void)
1015{
1016}
1017#endif
1018
1019static int __init arch_timer_register(void)
1020{
1021        int err;
1022        int ppi;
1023
1024        arch_timer_evt = alloc_percpu(struct clock_event_device);
1025        if (!arch_timer_evt) {
1026                err = -ENOMEM;
1027                goto out;
1028        }
1029
1030        ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031        switch (arch_timer_uses_ppi) {
1032        case ARCH_TIMER_VIRT_PPI:
1033                err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034                                         "arch_timer", arch_timer_evt);
1035                break;
1036        case ARCH_TIMER_PHYS_SECURE_PPI:
1037        case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038                err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039                                         "arch_timer", arch_timer_evt);
1040                if (!err && arch_timer_has_nonsecure_ppi()) {
1041                        ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042                        err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043                                                 "arch_timer", arch_timer_evt);
1044                        if (err)
1045                                free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046                                                arch_timer_evt);
1047                }
1048                break;
1049        case ARCH_TIMER_HYP_PPI:
1050                err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051                                         "arch_timer", arch_timer_evt);
1052                break;
1053        default:
1054                BUG();
1055        }
1056
1057        if (err) {
1058                pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059                goto out_free;
1060        }
1061
1062        err = arch_timer_cpu_pm_init();
1063        if (err)
1064                goto out_unreg_notify;
1065
1066        /* Register and immediately configure the timer on the boot CPU */
1067        err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068                                "clockevents/arm/arch_timer:starting",
1069                                arch_timer_starting_cpu, arch_timer_dying_cpu);
1070        if (err)
1071                goto out_unreg_cpupm;
1072        return 0;
1073
1074out_unreg_cpupm:
1075        arch_timer_cpu_pm_deinit();
1076
1077out_unreg_notify:
1078        free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079        if (arch_timer_has_nonsecure_ppi())
1080                free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081                                arch_timer_evt);
1082
1083out_free:
1084        free_percpu(arch_timer_evt);
1085out:
1086        return err;
1087}
1088
1089static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090{
1091        int ret;
1092        irq_handler_t func;
1093        struct arch_timer *t;
1094
1095        t = kzalloc(sizeof(*t), GFP_KERNEL);
1096        if (!t)
1097                return -ENOMEM;
1098
1099        t->base = base;
1100        t->evt.irq = irq;
1101        __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102
1103        if (arch_timer_mem_use_virtual)
1104                func = arch_timer_handler_virt_mem;
1105        else
1106                func = arch_timer_handler_phys_mem;
1107
1108        ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109        if (ret) {
1110                pr_err("Failed to request mem timer irq\n");
1111                kfree(t);
1112        }
1113
1114        return ret;
1115}
1116
1117static const struct of_device_id arch_timer_of_match[] __initconst = {
1118        { .compatible   = "arm,armv7-timer",    },
1119        { .compatible   = "arm,armv8-timer",    },
1120        {},
1121};
1122
1123static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124        { .compatible   = "arm,armv7-timer-mem", },
1125        {},
1126};
1127
1128static bool __init arch_timer_needs_of_probing(void)
1129{
1130        struct device_node *dn;
1131        bool needs_probing = false;
1132        unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133
1134        /* We have two timers, and both device-tree nodes are probed. */
1135        if ((arch_timers_present & mask) == mask)
1136                return false;
1137
1138        /*
1139         * Only one type of timer is probed,
1140         * check if we have another type of timer node in device-tree.
1141         */
1142        if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143                dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144        else
1145                dn = of_find_matching_node(NULL, arch_timer_of_match);
1146
1147        if (dn && of_device_is_available(dn))
1148                needs_probing = true;
1149
1150        of_node_put(dn);
1151
1152        return needs_probing;
1153}
1154
1155static int __init arch_timer_common_init(void)
1156{
1157        arch_timer_banner(arch_timers_present);
1158        arch_counter_register(arch_timers_present);
1159        return arch_timer_arch_init();
1160}
1161
1162/**
1163 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164 *
1165 * If HYP mode is available, we know that the physical timer
1166 * has been configured to be accessible from PL1. Use it, so
1167 * that a guest can use the virtual timer instead.
1168 *
1169 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170 * accesses to CNTP_*_EL1 registers are silently redirected to
1171 * their CNTHP_*_EL2 counterparts, and use a different PPI
1172 * number.
1173 *
1174 * If no interrupt provided for virtual timer, we'll have to
1175 * stick to the physical timer. It'd better be accessible...
1176 * For arm64 we never use the secure interrupt.
1177 *
1178 * Return: a suitable PPI type for the current system.
1179 */
1180static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181{
1182        if (is_kernel_in_hyp_mode())
1183                return ARCH_TIMER_HYP_PPI;
1184
1185        if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186                return ARCH_TIMER_VIRT_PPI;
1187
1188        if (IS_ENABLED(CONFIG_ARM64))
1189                return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190
1191        return ARCH_TIMER_PHYS_SECURE_PPI;
1192}
1193
1194static int __init arch_timer_of_init(struct device_node *np)
1195{
1196        int i, ret;
1197        u32 rate;
1198
1199        if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200                pr_warn("multiple nodes in dt, skipping\n");
1201                return 0;
1202        }
1203
1204        arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205        for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206                arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207
1208        arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1209
1210        rate = arch_timer_get_cntfrq();
1211        arch_timer_of_configure_rate(rate, np);
1212
1213        arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214
1215        /* Check for globally applicable workarounds */
1216        arch_timer_check_ool_workaround(ate_match_dt, np);
1217
1218        /*
1219         * If we cannot rely on firmware initializing the timer registers then
1220         * we should use the physical timers instead.
1221         */
1222        if (IS_ENABLED(CONFIG_ARM) &&
1223            of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224                arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225        else
1226                arch_timer_uses_ppi = arch_timer_select_ppi();
1227
1228        if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229                pr_err("No interrupt available, giving up\n");
1230                return -EINVAL;
1231        }
1232
1233        /* On some systems, the counter stops ticking when in suspend. */
1234        arch_counter_suspend_stop = of_property_read_bool(np,
1235                                                         "arm,no-tick-in-suspend");
1236
1237        ret = arch_timer_register();
1238        if (ret)
1239                return ret;
1240
1241        if (arch_timer_needs_of_probing())
1242                return 0;
1243
1244        return arch_timer_common_init();
1245}
1246TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248
1249static u32 __init
1250arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251{
1252        void __iomem *base;
1253        u32 rate;
1254
1255        base = ioremap(frame->cntbase, frame->size);
1256        if (!base) {
1257                pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258                return 0;
1259        }
1260
1261        rate = readl_relaxed(base + CNTFRQ);
1262
1263        iounmap(base);
1264
1265        return rate;
1266}
1267
1268static struct arch_timer_mem_frame * __init
1269arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270{
1271        struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272        void __iomem *cntctlbase;
1273        u32 cnttidr;
1274        int i;
1275
1276        cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277        if (!cntctlbase) {
1278                pr_err("Can't map CNTCTLBase @ %pa\n",
1279                        &timer_mem->cntctlbase);
1280                return NULL;
1281        }
1282
1283        cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284
1285        /*
1286         * Try to find a virtual capable frame. Otherwise fall back to a
1287         * physical capable frame.
1288         */
1289        for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290                u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291                             CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292
1293                frame = &timer_mem->frame[i];
1294                if (!frame->valid)
1295                        continue;
1296
1297                /* Try enabling everything, and see what sticks */
1298                writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299                cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300
1301                if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302                    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303                        best_frame = frame;
1304                        arch_timer_mem_use_virtual = true;
1305                        break;
1306                }
1307
1308                if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309                        continue;
1310
1311                best_frame = frame;
1312        }
1313
1314        iounmap(cntctlbase);
1315
1316        return best_frame;
1317}
1318
1319static int __init
1320arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321{
1322        void __iomem *base;
1323        int ret, irq = 0;
1324
1325        if (arch_timer_mem_use_virtual)
1326                irq = frame->virt_irq;
1327        else
1328                irq = frame->phys_irq;
1329
1330        if (!irq) {
1331                pr_err("Frame missing %s irq.\n",
1332                       arch_timer_mem_use_virtual ? "virt" : "phys");
1333                return -EINVAL;
1334        }
1335
1336        if (!request_mem_region(frame->cntbase, frame->size,
1337                                "arch_mem_timer"))
1338                return -EBUSY;
1339
1340        base = ioremap(frame->cntbase, frame->size);
1341        if (!base) {
1342                pr_err("Can't map frame's registers\n");
1343                return -ENXIO;
1344        }
1345
1346        ret = arch_timer_mem_register(base, irq);
1347        if (ret) {
1348                iounmap(base);
1349                return ret;
1350        }
1351
1352        arch_counter_base = base;
1353        arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354
1355        return 0;
1356}
1357
1358static int __init arch_timer_mem_of_init(struct device_node *np)
1359{
1360        struct arch_timer_mem *timer_mem;
1361        struct arch_timer_mem_frame *frame;
1362        struct device_node *frame_node;
1363        struct resource res;
1364        int ret = -EINVAL;
1365        u32 rate;
1366
1367        timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368        if (!timer_mem)
1369                return -ENOMEM;
1370
1371        if (of_address_to_resource(np, 0, &res))
1372                goto out;
1373        timer_mem->cntctlbase = res.start;
1374        timer_mem->size = resource_size(&res);
1375
1376        for_each_available_child_of_node(np, frame_node) {
1377                u32 n;
1378                struct arch_timer_mem_frame *frame;
1379
1380                if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381                        pr_err(FW_BUG "Missing frame-number.\n");
1382                        of_node_put(frame_node);
1383                        goto out;
1384                }
1385                if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386                        pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387                               ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388                        of_node_put(frame_node);
1389                        goto out;
1390                }
1391                frame = &timer_mem->frame[n];
1392
1393                if (frame->valid) {
1394                        pr_err(FW_BUG "Duplicated frame-number.\n");
1395                        of_node_put(frame_node);
1396                        goto out;
1397                }
1398
1399                if (of_address_to_resource(frame_node, 0, &res)) {
1400                        of_node_put(frame_node);
1401                        goto out;
1402                }
1403                frame->cntbase = res.start;
1404                frame->size = resource_size(&res);
1405
1406                frame->virt_irq = irq_of_parse_and_map(frame_node,
1407                                                       ARCH_TIMER_VIRT_SPI);
1408                frame->phys_irq = irq_of_parse_and_map(frame_node,
1409                                                       ARCH_TIMER_PHYS_SPI);
1410
1411                frame->valid = true;
1412        }
1413
1414        frame = arch_timer_mem_find_best_frame(timer_mem);
1415        if (!frame) {
1416                pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417                        &timer_mem->cntctlbase);
1418                ret = -EINVAL;
1419                goto out;
1420        }
1421
1422        rate = arch_timer_mem_frame_get_cntfrq(frame);
1423        arch_timer_of_configure_rate(rate, np);
1424
1425        ret = arch_timer_mem_frame_register(frame);
1426        if (!ret && !arch_timer_needs_of_probing())
1427                ret = arch_timer_common_init();
1428out:
1429        kfree(timer_mem);
1430        return ret;
1431}
1432TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433                       arch_timer_mem_of_init);
1434
1435#ifdef CONFIG_ACPI_GTDT
1436static int __init
1437arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438{
1439        struct arch_timer_mem_frame *frame;
1440        u32 rate;
1441        int i;
1442
1443        for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444                frame = &timer_mem->frame[i];
1445
1446                if (!frame->valid)
1447                        continue;
1448
1449                rate = arch_timer_mem_frame_get_cntfrq(frame);
1450                if (rate == arch_timer_rate)
1451                        continue;
1452
1453                pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454                        &frame->cntbase,
1455                        (unsigned long)rate, (unsigned long)arch_timer_rate);
1456
1457                return -EINVAL;
1458        }
1459
1460        return 0;
1461}
1462
1463static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464{
1465        struct arch_timer_mem *timers, *timer;
1466        struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467        int timer_count, i, ret = 0;
1468
1469        timers = kcalloc(platform_timer_count, sizeof(*timers),
1470                            GFP_KERNEL);
1471        if (!timers)
1472                return -ENOMEM;
1473
1474        ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475        if (ret || !timer_count)
1476                goto out;
1477
1478        /*
1479         * While unlikely, it's theoretically possible that none of the frames
1480         * in a timer expose the combination of feature we want.
1481         */
1482        for (i = 0; i < timer_count; i++) {
1483                timer = &timers[i];
1484
1485                frame = arch_timer_mem_find_best_frame(timer);
1486                if (!best_frame)
1487                        best_frame = frame;
1488
1489                ret = arch_timer_mem_verify_cntfrq(timer);
1490                if (ret) {
1491                        pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492                        goto out;
1493                }
1494
1495                if (!best_frame) /* implies !frame */
1496                        /*
1497                         * Only complain about missing suitable frames if we
1498                         * haven't already found one in a previous iteration.
1499                         */
1500                        pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501                                &timer->cntctlbase);
1502        }
1503
1504        if (best_frame)
1505                ret = arch_timer_mem_frame_register(best_frame);
1506out:
1507        kfree(timers);
1508        return ret;
1509}
1510
1511/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1512static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513{
1514        int ret, platform_timer_count;
1515
1516        if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517                pr_warn("already initialized, skipping\n");
1518                return -EINVAL;
1519        }
1520
1521        arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522
1523        ret = acpi_gtdt_init(table, &platform_timer_count);
1524        if (ret) {
1525                pr_err("Failed to init GTDT table.\n");
1526                return ret;
1527        }
1528
1529        arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530                acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531
1532        arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533                acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534
1535        arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536                acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537
1538        arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539
1540        /*
1541         * When probing via ACPI, we have no mechanism to override the sysreg
1542         * CNTFRQ value. This *must* be correct.
1543         */
1544        arch_timer_rate = arch_timer_get_cntfrq();
1545        if (!arch_timer_rate) {
1546                pr_err(FW_BUG "frequency not available.\n");
1547                return -EINVAL;
1548        }
1549
1550        arch_timer_uses_ppi = arch_timer_select_ppi();
1551        if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552                pr_err("No interrupt available, giving up\n");
1553                return -EINVAL;
1554        }
1555
1556        /* Always-on capability */
1557        arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558
1559        /* Check for globally applicable workarounds */
1560        arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561
1562        ret = arch_timer_register();
1563        if (ret)
1564                return ret;
1565
1566        if (platform_timer_count &&
1567            arch_timer_mem_acpi_init(platform_timer_count))
1568                pr_err("Failed to initialize memory-mapped timer.\n");
1569
1570        return arch_timer_common_init();
1571}
1572TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573#endif
1574