linux/drivers/clocksource/exynos_mct.c
<<
>>
Prefs
   1/* linux/arch/arm/mach-exynos4/mct.c
   2 *
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *              http://www.samsung.com
   5 *
   6 * EXYNOS4 MCT(Multi-Core Timer) support
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11*/
  12
  13#include <linux/sched.h>
  14#include <linux/interrupt.h>
  15#include <linux/irq.h>
  16#include <linux/err.h>
  17#include <linux/clk.h>
  18#include <linux/clockchips.h>
  19#include <linux/cpu.h>
  20#include <linux/platform_device.h>
  21#include <linux/delay.h>
  22#include <linux/percpu.h>
  23#include <linux/of.h>
  24#include <linux/of_irq.h>
  25#include <linux/of_address.h>
  26#include <linux/clocksource.h>
  27#include <linux/sched_clock.h>
  28
  29#define EXYNOS4_MCTREG(x)               (x)
  30#define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
  31#define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
  32#define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
  33#define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
  34#define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
  35#define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
  36#define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
  37#define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
  38#define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
  39#define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
  40#define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
  41#define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  42#define EXYNOS4_MCT_L_MASK              (0xffffff00)
  43
  44#define MCT_L_TCNTB_OFFSET              (0x00)
  45#define MCT_L_ICNTB_OFFSET              (0x08)
  46#define MCT_L_TCON_OFFSET               (0x20)
  47#define MCT_L_INT_CSTAT_OFFSET          (0x30)
  48#define MCT_L_INT_ENB_OFFSET            (0x34)
  49#define MCT_L_WSTAT_OFFSET              (0x40)
  50#define MCT_G_TCON_START                (1 << 8)
  51#define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
  52#define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
  53#define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
  54#define MCT_L_TCON_INT_START            (1 << 1)
  55#define MCT_L_TCON_TIMER_START          (1 << 0)
  56
  57#define TICK_BASE_CNT   1
  58
  59enum {
  60        MCT_INT_SPI,
  61        MCT_INT_PPI
  62};
  63
  64enum {
  65        MCT_G0_IRQ,
  66        MCT_G1_IRQ,
  67        MCT_G2_IRQ,
  68        MCT_G3_IRQ,
  69        MCT_L0_IRQ,
  70        MCT_L1_IRQ,
  71        MCT_L2_IRQ,
  72        MCT_L3_IRQ,
  73        MCT_L4_IRQ,
  74        MCT_L5_IRQ,
  75        MCT_L6_IRQ,
  76        MCT_L7_IRQ,
  77        MCT_NR_IRQS,
  78};
  79
  80static void __iomem *reg_base;
  81static unsigned long clk_rate;
  82static unsigned int mct_int_type;
  83static int mct_irqs[MCT_NR_IRQS];
  84
  85struct mct_clock_event_device {
  86        struct clock_event_device evt;
  87        unsigned long base;
  88        char name[10];
  89};
  90
  91static void exynos4_mct_write(unsigned int value, unsigned long offset)
  92{
  93        unsigned long stat_addr;
  94        u32 mask;
  95        u32 i;
  96
  97        writel_relaxed(value, reg_base + offset);
  98
  99        if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
 100                stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
 101                switch (offset & ~EXYNOS4_MCT_L_MASK) {
 102                case MCT_L_TCON_OFFSET:
 103                        mask = 1 << 3;          /* L_TCON write status */
 104                        break;
 105                case MCT_L_ICNTB_OFFSET:
 106                        mask = 1 << 1;          /* L_ICNTB write status */
 107                        break;
 108                case MCT_L_TCNTB_OFFSET:
 109                        mask = 1 << 0;          /* L_TCNTB write status */
 110                        break;
 111                default:
 112                        return;
 113                }
 114        } else {
 115                switch (offset) {
 116                case EXYNOS4_MCT_G_TCON:
 117                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 118                        mask = 1 << 16;         /* G_TCON write status */
 119                        break;
 120                case EXYNOS4_MCT_G_COMP0_L:
 121                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 122                        mask = 1 << 0;          /* G_COMP0_L write status */
 123                        break;
 124                case EXYNOS4_MCT_G_COMP0_U:
 125                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 126                        mask = 1 << 1;          /* G_COMP0_U write status */
 127                        break;
 128                case EXYNOS4_MCT_G_COMP0_ADD_INCR:
 129                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 130                        mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
 131                        break;
 132                case EXYNOS4_MCT_G_CNT_L:
 133                        stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 134                        mask = 1 << 0;          /* G_CNT_L write status */
 135                        break;
 136                case EXYNOS4_MCT_G_CNT_U:
 137                        stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 138                        mask = 1 << 1;          /* G_CNT_U write status */
 139                        break;
 140                default:
 141                        return;
 142                }
 143        }
 144
 145        /* Wait maximum 1 ms until written values are applied */
 146        for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
 147                if (readl_relaxed(reg_base + stat_addr) & mask) {
 148                        writel_relaxed(mask, reg_base + stat_addr);
 149                        return;
 150                }
 151
 152        panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
 153}
 154
 155/* Clocksource handling */
 156static void exynos4_mct_frc_start(void)
 157{
 158        u32 reg;
 159
 160        reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 161        reg |= MCT_G_TCON_START;
 162        exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
 163}
 164
 165/**
 166 * exynos4_read_count_64 - Read all 64-bits of the global counter
 167 *
 168 * This will read all 64-bits of the global counter taking care to make sure
 169 * that the upper and lower half match.  Note that reading the MCT can be quite
 170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
 171 * only) version when possible.
 172 *
 173 * Returns the number of cycles in the global counter.
 174 */
 175static u64 exynos4_read_count_64(void)
 176{
 177        unsigned int lo, hi;
 178        u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 179
 180        do {
 181                hi = hi2;
 182                lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 183                hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 184        } while (hi != hi2);
 185
 186        return ((u64)hi << 32) | lo;
 187}
 188
 189/**
 190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
 191 *
 192 * This will read just the lower 32-bits of the global counter.  This is marked
 193 * as notrace so it can be used by the scheduler clock.
 194 *
 195 * Returns the number of cycles in the global counter (lower 32 bits).
 196 */
 197static u32 notrace exynos4_read_count_32(void)
 198{
 199        return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 200}
 201
 202static u64 exynos4_frc_read(struct clocksource *cs)
 203{
 204        return exynos4_read_count_32();
 205}
 206
 207static void exynos4_frc_resume(struct clocksource *cs)
 208{
 209        exynos4_mct_frc_start();
 210}
 211
 212static struct clocksource mct_frc = {
 213        .name           = "mct-frc",
 214        .rating         = 400,
 215        .read           = exynos4_frc_read,
 216        .mask           = CLOCKSOURCE_MASK(32),
 217        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 218        .resume         = exynos4_frc_resume,
 219};
 220
 221static u64 notrace exynos4_read_sched_clock(void)
 222{
 223        return exynos4_read_count_32();
 224}
 225
 226#if defined(CONFIG_ARM)
 227static struct delay_timer exynos4_delay_timer;
 228
 229static cycles_t exynos4_read_current_timer(void)
 230{
 231        BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
 232                         "cycles_t needs to move to 32-bit for ARM64 usage");
 233        return exynos4_read_count_32();
 234}
 235#endif
 236
 237static int __init exynos4_clocksource_init(void)
 238{
 239        exynos4_mct_frc_start();
 240
 241#if defined(CONFIG_ARM)
 242        exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
 243        exynos4_delay_timer.freq = clk_rate;
 244        register_current_timer_delay(&exynos4_delay_timer);
 245#endif
 246
 247        if (clocksource_register_hz(&mct_frc, clk_rate))
 248                panic("%s: can't register clocksource\n", mct_frc.name);
 249
 250        sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
 251
 252        return 0;
 253}
 254
 255static void exynos4_mct_comp0_stop(void)
 256{
 257        unsigned int tcon;
 258
 259        tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 260        tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
 261
 262        exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
 263        exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
 264}
 265
 266static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
 267{
 268        unsigned int tcon;
 269        u64 comp_cycle;
 270
 271        tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 272
 273        if (periodic) {
 274                tcon |= MCT_G_TCON_COMP0_AUTO_INC;
 275                exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
 276        }
 277
 278        comp_cycle = exynos4_read_count_64() + cycles;
 279        exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
 280        exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
 281
 282        exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
 283
 284        tcon |= MCT_G_TCON_COMP0_ENABLE;
 285        exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
 286}
 287
 288static int exynos4_comp_set_next_event(unsigned long cycles,
 289                                       struct clock_event_device *evt)
 290{
 291        exynos4_mct_comp0_start(false, cycles);
 292
 293        return 0;
 294}
 295
 296static int mct_set_state_shutdown(struct clock_event_device *evt)
 297{
 298        exynos4_mct_comp0_stop();
 299        return 0;
 300}
 301
 302static int mct_set_state_periodic(struct clock_event_device *evt)
 303{
 304        unsigned long cycles_per_jiffy;
 305
 306        cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 307                            >> evt->shift);
 308        exynos4_mct_comp0_stop();
 309        exynos4_mct_comp0_start(true, cycles_per_jiffy);
 310        return 0;
 311}
 312
 313static struct clock_event_device mct_comp_device = {
 314        .name                   = "mct-comp",
 315        .features               = CLOCK_EVT_FEAT_PERIODIC |
 316                                  CLOCK_EVT_FEAT_ONESHOT,
 317        .rating                 = 250,
 318        .set_next_event         = exynos4_comp_set_next_event,
 319        .set_state_periodic     = mct_set_state_periodic,
 320        .set_state_shutdown     = mct_set_state_shutdown,
 321        .set_state_oneshot      = mct_set_state_shutdown,
 322        .set_state_oneshot_stopped = mct_set_state_shutdown,
 323        .tick_resume            = mct_set_state_shutdown,
 324};
 325
 326static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
 327{
 328        struct clock_event_device *evt = dev_id;
 329
 330        exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
 331
 332        evt->event_handler(evt);
 333
 334        return IRQ_HANDLED;
 335}
 336
 337static struct irqaction mct_comp_event_irq = {
 338        .name           = "mct_comp_irq",
 339        .flags          = IRQF_TIMER | IRQF_IRQPOLL,
 340        .handler        = exynos4_mct_comp_isr,
 341        .dev_id         = &mct_comp_device,
 342};
 343
 344static int exynos4_clockevent_init(void)
 345{
 346        mct_comp_device.cpumask = cpumask_of(0);
 347        clockevents_config_and_register(&mct_comp_device, clk_rate,
 348                                        0xf, 0xffffffff);
 349        setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
 350
 351        return 0;
 352}
 353
 354static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
 355
 356/* Clock event handling */
 357static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
 358{
 359        unsigned long tmp;
 360        unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
 361        unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
 362
 363        tmp = readl_relaxed(reg_base + offset);
 364        if (tmp & mask) {
 365                tmp &= ~mask;
 366                exynos4_mct_write(tmp, offset);
 367        }
 368}
 369
 370static void exynos4_mct_tick_start(unsigned long cycles,
 371                                   struct mct_clock_event_device *mevt)
 372{
 373        unsigned long tmp;
 374
 375        exynos4_mct_tick_stop(mevt);
 376
 377        tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
 378
 379        /* update interrupt count buffer */
 380        exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
 381
 382        /* enable MCT tick interrupt */
 383        exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
 384
 385        tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
 386        tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
 387               MCT_L_TCON_INTERVAL_MODE;
 388        exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
 389}
 390
 391static int exynos4_tick_set_next_event(unsigned long cycles,
 392                                       struct clock_event_device *evt)
 393{
 394        struct mct_clock_event_device *mevt;
 395
 396        mevt = container_of(evt, struct mct_clock_event_device, evt);
 397        exynos4_mct_tick_start(cycles, mevt);
 398        return 0;
 399}
 400
 401static int set_state_shutdown(struct clock_event_device *evt)
 402{
 403        struct mct_clock_event_device *mevt;
 404
 405        mevt = container_of(evt, struct mct_clock_event_device, evt);
 406        exynos4_mct_tick_stop(mevt);
 407        return 0;
 408}
 409
 410static int set_state_periodic(struct clock_event_device *evt)
 411{
 412        struct mct_clock_event_device *mevt;
 413        unsigned long cycles_per_jiffy;
 414
 415        mevt = container_of(evt, struct mct_clock_event_device, evt);
 416        cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 417                            >> evt->shift);
 418        exynos4_mct_tick_stop(mevt);
 419        exynos4_mct_tick_start(cycles_per_jiffy, mevt);
 420        return 0;
 421}
 422
 423static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
 424{
 425        /*
 426         * This is for supporting oneshot mode.
 427         * Mct would generate interrupt periodically
 428         * without explicit stopping.
 429         */
 430        if (!clockevent_state_periodic(&mevt->evt))
 431                exynos4_mct_tick_stop(mevt);
 432
 433        /* Clear the MCT tick interrupt */
 434        if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
 435                exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
 436}
 437
 438static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
 439{
 440        struct mct_clock_event_device *mevt = dev_id;
 441        struct clock_event_device *evt = &mevt->evt;
 442
 443        exynos4_mct_tick_clear(mevt);
 444
 445        evt->event_handler(evt);
 446
 447        return IRQ_HANDLED;
 448}
 449
 450static int exynos4_mct_starting_cpu(unsigned int cpu)
 451{
 452        struct mct_clock_event_device *mevt =
 453                per_cpu_ptr(&percpu_mct_tick, cpu);
 454        struct clock_event_device *evt = &mevt->evt;
 455
 456        mevt->base = EXYNOS4_MCT_L_BASE(cpu);
 457        snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
 458
 459        evt->name = mevt->name;
 460        evt->cpumask = cpumask_of(cpu);
 461        evt->set_next_event = exynos4_tick_set_next_event;
 462        evt->set_state_periodic = set_state_periodic;
 463        evt->set_state_shutdown = set_state_shutdown;
 464        evt->set_state_oneshot = set_state_shutdown;
 465        evt->set_state_oneshot_stopped = set_state_shutdown;
 466        evt->tick_resume = set_state_shutdown;
 467        evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
 468        evt->rating = 450;
 469
 470        exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
 471
 472        if (mct_int_type == MCT_INT_SPI) {
 473
 474                if (evt->irq == -1)
 475                        return -EIO;
 476
 477                irq_force_affinity(evt->irq, cpumask_of(cpu));
 478                enable_irq(evt->irq);
 479        } else {
 480                enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
 481        }
 482        clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
 483                                        0xf, 0x7fffffff);
 484
 485        return 0;
 486}
 487
 488static int exynos4_mct_dying_cpu(unsigned int cpu)
 489{
 490        struct mct_clock_event_device *mevt =
 491                per_cpu_ptr(&percpu_mct_tick, cpu);
 492        struct clock_event_device *evt = &mevt->evt;
 493
 494        evt->set_state_shutdown(evt);
 495        if (mct_int_type == MCT_INT_SPI) {
 496                if (evt->irq != -1)
 497                        disable_irq_nosync(evt->irq);
 498                exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
 499        } else {
 500                disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
 501        }
 502        return 0;
 503}
 504
 505static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
 506{
 507        int err, cpu;
 508        struct clk *mct_clk, *tick_clk;
 509
 510        tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
 511                                clk_get(NULL, "fin_pll");
 512        if (IS_ERR(tick_clk))
 513                panic("%s: unable to determine tick clock rate\n", __func__);
 514        clk_rate = clk_get_rate(tick_clk);
 515
 516        mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
 517        if (IS_ERR(mct_clk))
 518                panic("%s: unable to retrieve mct clock instance\n", __func__);
 519        clk_prepare_enable(mct_clk);
 520
 521        reg_base = base;
 522        if (!reg_base)
 523                panic("%s: unable to ioremap mct address space\n", __func__);
 524
 525        if (mct_int_type == MCT_INT_PPI) {
 526
 527                err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
 528                                         exynos4_mct_tick_isr, "MCT",
 529                                         &percpu_mct_tick);
 530                WARN(err, "MCT: can't request IRQ %d (%d)\n",
 531                     mct_irqs[MCT_L0_IRQ], err);
 532        } else {
 533                for_each_possible_cpu(cpu) {
 534                        int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
 535                        struct mct_clock_event_device *pcpu_mevt =
 536                                per_cpu_ptr(&percpu_mct_tick, cpu);
 537
 538                        pcpu_mevt->evt.irq = -1;
 539
 540                        irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
 541                        if (request_irq(mct_irq,
 542                                        exynos4_mct_tick_isr,
 543                                        IRQF_TIMER | IRQF_NOBALANCING,
 544                                        pcpu_mevt->name, pcpu_mevt)) {
 545                                pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
 546                                                                        cpu);
 547
 548                                continue;
 549                        }
 550                        pcpu_mevt->evt.irq = mct_irq;
 551                }
 552        }
 553
 554        /* Install hotplug callbacks which configure the timer on this CPU */
 555        err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
 556                                "clockevents/exynos4/mct_timer:starting",
 557                                exynos4_mct_starting_cpu,
 558                                exynos4_mct_dying_cpu);
 559        if (err)
 560                goto out_irq;
 561
 562        return 0;
 563
 564out_irq:
 565        free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
 566        return err;
 567}
 568
 569static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
 570{
 571        u32 nr_irqs, i;
 572        int ret;
 573
 574        mct_int_type = int_type;
 575
 576        /* This driver uses only one global timer interrupt */
 577        mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
 578
 579        /*
 580         * Find out the number of local irqs specified. The local
 581         * timer irqs are specified after the four global timer
 582         * irqs are specified.
 583         */
 584#ifdef CONFIG_OF
 585        nr_irqs = of_irq_count(np);
 586#else
 587        nr_irqs = 0;
 588#endif
 589        for (i = MCT_L0_IRQ; i < nr_irqs; i++)
 590                mct_irqs[i] = irq_of_parse_and_map(np, i);
 591
 592        ret = exynos4_timer_resources(np, of_iomap(np, 0));
 593        if (ret)
 594                return ret;
 595
 596        ret = exynos4_clocksource_init();
 597        if (ret)
 598                return ret;
 599
 600        return exynos4_clockevent_init();
 601}
 602
 603
 604static int __init mct_init_spi(struct device_node *np)
 605{
 606        return mct_init_dt(np, MCT_INT_SPI);
 607}
 608
 609static int __init mct_init_ppi(struct device_node *np)
 610{
 611        return mct_init_dt(np, MCT_INT_PPI);
 612}
 613TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
 614TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
 615