linux/drivers/clocksource/sh_tmu.c
<<
>>
Prefs
   1/*
   2 * SuperH Timer Support - TMU
   3 *
   4 *  Copyright (C) 2009 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/platform_device.h>
  29#include <linux/pm_domain.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sh_timer.h>
  32#include <linux/slab.h>
  33#include <linux/spinlock.h>
  34
  35enum sh_tmu_model {
  36        SH_TMU,
  37        SH_TMU_SH3,
  38};
  39
  40struct sh_tmu_device;
  41
  42struct sh_tmu_channel {
  43        struct sh_tmu_device *tmu;
  44        unsigned int index;
  45
  46        void __iomem *base;
  47        int irq;
  48
  49        unsigned long periodic;
  50        struct clock_event_device ced;
  51        struct clocksource cs;
  52        bool cs_enabled;
  53        unsigned int enable_count;
  54};
  55
  56struct sh_tmu_device {
  57        struct platform_device *pdev;
  58
  59        void __iomem *mapbase;
  60        struct clk *clk;
  61        unsigned long rate;
  62
  63        enum sh_tmu_model model;
  64
  65        raw_spinlock_t lock; /* Protect the shared start/stop register */
  66
  67        struct sh_tmu_channel *channels;
  68        unsigned int num_channels;
  69
  70        bool has_clockevent;
  71        bool has_clocksource;
  72};
  73
  74#define TSTR -1 /* shared register */
  75#define TCOR  0 /* channel register */
  76#define TCNT 1 /* channel register */
  77#define TCR 2 /* channel register */
  78
  79#define TCR_UNF                 (1 << 8)
  80#define TCR_UNIE                (1 << 5)
  81#define TCR_TPSC_CLK4           (0 << 0)
  82#define TCR_TPSC_CLK16          (1 << 0)
  83#define TCR_TPSC_CLK64          (2 << 0)
  84#define TCR_TPSC_CLK256         (3 << 0)
  85#define TCR_TPSC_CLK1024        (4 << 0)
  86#define TCR_TPSC_MASK           (7 << 0)
  87
  88static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
  89{
  90        unsigned long offs;
  91
  92        if (reg_nr == TSTR) {
  93                switch (ch->tmu->model) {
  94                case SH_TMU_SH3:
  95                        return ioread8(ch->tmu->mapbase + 2);
  96                case SH_TMU:
  97                        return ioread8(ch->tmu->mapbase + 4);
  98                }
  99        }
 100
 101        offs = reg_nr << 2;
 102
 103        if (reg_nr == TCR)
 104                return ioread16(ch->base + offs);
 105        else
 106                return ioread32(ch->base + offs);
 107}
 108
 109static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
 110                                unsigned long value)
 111{
 112        unsigned long offs;
 113
 114        if (reg_nr == TSTR) {
 115                switch (ch->tmu->model) {
 116                case SH_TMU_SH3:
 117                        return iowrite8(value, ch->tmu->mapbase + 2);
 118                case SH_TMU:
 119                        return iowrite8(value, ch->tmu->mapbase + 4);
 120                }
 121        }
 122
 123        offs = reg_nr << 2;
 124
 125        if (reg_nr == TCR)
 126                iowrite16(value, ch->base + offs);
 127        else
 128                iowrite32(value, ch->base + offs);
 129}
 130
 131static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
 132{
 133        unsigned long flags, value;
 134
 135        /* start stop register shared by multiple timer channels */
 136        raw_spin_lock_irqsave(&ch->tmu->lock, flags);
 137        value = sh_tmu_read(ch, TSTR);
 138
 139        if (start)
 140                value |= 1 << ch->index;
 141        else
 142                value &= ~(1 << ch->index);
 143
 144        sh_tmu_write(ch, TSTR, value);
 145        raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
 146}
 147
 148static int __sh_tmu_enable(struct sh_tmu_channel *ch)
 149{
 150        int ret;
 151
 152        /* enable clock */
 153        ret = clk_enable(ch->tmu->clk);
 154        if (ret) {
 155                dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
 156                        ch->index);
 157                return ret;
 158        }
 159
 160        /* make sure channel is disabled */
 161        sh_tmu_start_stop_ch(ch, 0);
 162
 163        /* maximum timeout */
 164        sh_tmu_write(ch, TCOR, 0xffffffff);
 165        sh_tmu_write(ch, TCNT, 0xffffffff);
 166
 167        /* configure channel to parent clock / 4, irq off */
 168        sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 169
 170        /* enable channel */
 171        sh_tmu_start_stop_ch(ch, 1);
 172
 173        return 0;
 174}
 175
 176static int sh_tmu_enable(struct sh_tmu_channel *ch)
 177{
 178        if (ch->enable_count++ > 0)
 179                return 0;
 180
 181        pm_runtime_get_sync(&ch->tmu->pdev->dev);
 182        dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
 183
 184        return __sh_tmu_enable(ch);
 185}
 186
 187static void __sh_tmu_disable(struct sh_tmu_channel *ch)
 188{
 189        /* disable channel */
 190        sh_tmu_start_stop_ch(ch, 0);
 191
 192        /* disable interrupts in TMU block */
 193        sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 194
 195        /* stop clock */
 196        clk_disable(ch->tmu->clk);
 197}
 198
 199static void sh_tmu_disable(struct sh_tmu_channel *ch)
 200{
 201        if (WARN_ON(ch->enable_count == 0))
 202                return;
 203
 204        if (--ch->enable_count > 0)
 205                return;
 206
 207        __sh_tmu_disable(ch);
 208
 209        dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
 210        pm_runtime_put(&ch->tmu->pdev->dev);
 211}
 212
 213static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
 214                            int periodic)
 215{
 216        /* stop timer */
 217        sh_tmu_start_stop_ch(ch, 0);
 218
 219        /* acknowledge interrupt */
 220        sh_tmu_read(ch, TCR);
 221
 222        /* enable interrupt */
 223        sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
 224
 225        /* reload delta value in case of periodic timer */
 226        if (periodic)
 227                sh_tmu_write(ch, TCOR, delta);
 228        else
 229                sh_tmu_write(ch, TCOR, 0xffffffff);
 230
 231        sh_tmu_write(ch, TCNT, delta);
 232
 233        /* start timer */
 234        sh_tmu_start_stop_ch(ch, 1);
 235}
 236
 237static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
 238{
 239        struct sh_tmu_channel *ch = dev_id;
 240
 241        /* disable or acknowledge interrupt */
 242        if (clockevent_state_oneshot(&ch->ced))
 243                sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 244        else
 245                sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
 246
 247        /* notify clockevent layer */
 248        ch->ced.event_handler(&ch->ced);
 249        return IRQ_HANDLED;
 250}
 251
 252static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
 253{
 254        return container_of(cs, struct sh_tmu_channel, cs);
 255}
 256
 257static u64 sh_tmu_clocksource_read(struct clocksource *cs)
 258{
 259        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 260
 261        return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
 262}
 263
 264static int sh_tmu_clocksource_enable(struct clocksource *cs)
 265{
 266        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 267        int ret;
 268
 269        if (WARN_ON(ch->cs_enabled))
 270                return 0;
 271
 272        ret = sh_tmu_enable(ch);
 273        if (!ret)
 274                ch->cs_enabled = true;
 275
 276        return ret;
 277}
 278
 279static void sh_tmu_clocksource_disable(struct clocksource *cs)
 280{
 281        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 282
 283        if (WARN_ON(!ch->cs_enabled))
 284                return;
 285
 286        sh_tmu_disable(ch);
 287        ch->cs_enabled = false;
 288}
 289
 290static void sh_tmu_clocksource_suspend(struct clocksource *cs)
 291{
 292        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 293
 294        if (!ch->cs_enabled)
 295                return;
 296
 297        if (--ch->enable_count == 0) {
 298                __sh_tmu_disable(ch);
 299                pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
 300        }
 301}
 302
 303static void sh_tmu_clocksource_resume(struct clocksource *cs)
 304{
 305        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 306
 307        if (!ch->cs_enabled)
 308                return;
 309
 310        if (ch->enable_count++ == 0) {
 311                pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
 312                __sh_tmu_enable(ch);
 313        }
 314}
 315
 316static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
 317                                       const char *name)
 318{
 319        struct clocksource *cs = &ch->cs;
 320
 321        cs->name = name;
 322        cs->rating = 200;
 323        cs->read = sh_tmu_clocksource_read;
 324        cs->enable = sh_tmu_clocksource_enable;
 325        cs->disable = sh_tmu_clocksource_disable;
 326        cs->suspend = sh_tmu_clocksource_suspend;
 327        cs->resume = sh_tmu_clocksource_resume;
 328        cs->mask = CLOCKSOURCE_MASK(32);
 329        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 330
 331        dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
 332                 ch->index);
 333
 334        clocksource_register_hz(cs, ch->tmu->rate);
 335        return 0;
 336}
 337
 338static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
 339{
 340        return container_of(ced, struct sh_tmu_channel, ced);
 341}
 342
 343static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
 344{
 345        sh_tmu_enable(ch);
 346
 347        if (periodic) {
 348                ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
 349                sh_tmu_set_next(ch, ch->periodic, 1);
 350        }
 351}
 352
 353static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
 354{
 355        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 356
 357        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 358                sh_tmu_disable(ch);
 359        return 0;
 360}
 361
 362static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
 363                                        int periodic)
 364{
 365        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 366
 367        /* deal with old setting first */
 368        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 369                sh_tmu_disable(ch);
 370
 371        dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
 372                 ch->index, periodic ? "periodic" : "oneshot");
 373        sh_tmu_clock_event_start(ch, periodic);
 374        return 0;
 375}
 376
 377static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
 378{
 379        return sh_tmu_clock_event_set_state(ced, 0);
 380}
 381
 382static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
 383{
 384        return sh_tmu_clock_event_set_state(ced, 1);
 385}
 386
 387static int sh_tmu_clock_event_next(unsigned long delta,
 388                                   struct clock_event_device *ced)
 389{
 390        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 391
 392        BUG_ON(!clockevent_state_oneshot(ced));
 393
 394        /* program new delta value */
 395        sh_tmu_set_next(ch, delta, 0);
 396        return 0;
 397}
 398
 399static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
 400{
 401        pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
 402}
 403
 404static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
 405{
 406        pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
 407}
 408
 409static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
 410                                       const char *name)
 411{
 412        struct clock_event_device *ced = &ch->ced;
 413        int ret;
 414
 415        ced->name = name;
 416        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 417        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 418        ced->rating = 200;
 419        ced->cpumask = cpu_possible_mask;
 420        ced->set_next_event = sh_tmu_clock_event_next;
 421        ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
 422        ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
 423        ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
 424        ced->suspend = sh_tmu_clock_event_suspend;
 425        ced->resume = sh_tmu_clock_event_resume;
 426
 427        dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
 428                 ch->index);
 429
 430        clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
 431
 432        ret = request_irq(ch->irq, sh_tmu_interrupt,
 433                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 434                          dev_name(&ch->tmu->pdev->dev), ch);
 435        if (ret) {
 436                dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
 437                        ch->index, ch->irq);
 438                return;
 439        }
 440}
 441
 442static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
 443                           bool clockevent, bool clocksource)
 444{
 445        if (clockevent) {
 446                ch->tmu->has_clockevent = true;
 447                sh_tmu_register_clockevent(ch, name);
 448        } else if (clocksource) {
 449                ch->tmu->has_clocksource = true;
 450                sh_tmu_register_clocksource(ch, name);
 451        }
 452
 453        return 0;
 454}
 455
 456static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
 457                                bool clockevent, bool clocksource,
 458                                struct sh_tmu_device *tmu)
 459{
 460        /* Skip unused channels. */
 461        if (!clockevent && !clocksource)
 462                return 0;
 463
 464        ch->tmu = tmu;
 465        ch->index = index;
 466
 467        if (tmu->model == SH_TMU_SH3)
 468                ch->base = tmu->mapbase + 4 + ch->index * 12;
 469        else
 470                ch->base = tmu->mapbase + 8 + ch->index * 12;
 471
 472        ch->irq = platform_get_irq(tmu->pdev, index);
 473        if (ch->irq < 0) {
 474                dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
 475                        ch->index);
 476                return ch->irq;
 477        }
 478
 479        ch->cs_enabled = false;
 480        ch->enable_count = 0;
 481
 482        return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
 483                               clockevent, clocksource);
 484}
 485
 486static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
 487{
 488        struct resource *res;
 489
 490        res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
 491        if (!res) {
 492                dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
 493                return -ENXIO;
 494        }
 495
 496        tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
 497        if (tmu->mapbase == NULL)
 498                return -ENXIO;
 499
 500        return 0;
 501}
 502
 503static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
 504{
 505        struct device_node *np = tmu->pdev->dev.of_node;
 506
 507        tmu->model = SH_TMU;
 508        tmu->num_channels = 3;
 509
 510        of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
 511
 512        if (tmu->num_channels != 2 && tmu->num_channels != 3) {
 513                dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
 514                        tmu->num_channels);
 515                return -EINVAL;
 516        }
 517
 518        return 0;
 519}
 520
 521static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
 522{
 523        unsigned int i;
 524        int ret;
 525
 526        tmu->pdev = pdev;
 527
 528        raw_spin_lock_init(&tmu->lock);
 529
 530        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 531                ret = sh_tmu_parse_dt(tmu);
 532                if (ret < 0)
 533                        return ret;
 534        } else if (pdev->dev.platform_data) {
 535                const struct platform_device_id *id = pdev->id_entry;
 536                struct sh_timer_config *cfg = pdev->dev.platform_data;
 537
 538                tmu->model = id->driver_data;
 539                tmu->num_channels = hweight8(cfg->channels_mask);
 540        } else {
 541                dev_err(&tmu->pdev->dev, "missing platform data\n");
 542                return -ENXIO;
 543        }
 544
 545        /* Get hold of clock. */
 546        tmu->clk = clk_get(&tmu->pdev->dev, "fck");
 547        if (IS_ERR(tmu->clk)) {
 548                dev_err(&tmu->pdev->dev, "cannot get clock\n");
 549                return PTR_ERR(tmu->clk);
 550        }
 551
 552        ret = clk_prepare(tmu->clk);
 553        if (ret < 0)
 554                goto err_clk_put;
 555
 556        /* Determine clock rate. */
 557        ret = clk_enable(tmu->clk);
 558        if (ret < 0)
 559                goto err_clk_unprepare;
 560
 561        tmu->rate = clk_get_rate(tmu->clk) / 4;
 562        clk_disable(tmu->clk);
 563
 564        /* Map the memory resource. */
 565        ret = sh_tmu_map_memory(tmu);
 566        if (ret < 0) {
 567                dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
 568                goto err_clk_unprepare;
 569        }
 570
 571        /* Allocate and setup the channels. */
 572        tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
 573                                GFP_KERNEL);
 574        if (tmu->channels == NULL) {
 575                ret = -ENOMEM;
 576                goto err_unmap;
 577        }
 578
 579        /*
 580         * Use the first channel as a clock event device and the second channel
 581         * as a clock source.
 582         */
 583        for (i = 0; i < tmu->num_channels; ++i) {
 584                ret = sh_tmu_channel_setup(&tmu->channels[i], i,
 585                                           i == 0, i == 1, tmu);
 586                if (ret < 0)
 587                        goto err_unmap;
 588        }
 589
 590        platform_set_drvdata(pdev, tmu);
 591
 592        return 0;
 593
 594err_unmap:
 595        kfree(tmu->channels);
 596        iounmap(tmu->mapbase);
 597err_clk_unprepare:
 598        clk_unprepare(tmu->clk);
 599err_clk_put:
 600        clk_put(tmu->clk);
 601        return ret;
 602}
 603
 604static int sh_tmu_probe(struct platform_device *pdev)
 605{
 606        struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
 607        int ret;
 608
 609        if (!is_early_platform_device(pdev)) {
 610                pm_runtime_set_active(&pdev->dev);
 611                pm_runtime_enable(&pdev->dev);
 612        }
 613
 614        if (tmu) {
 615                dev_info(&pdev->dev, "kept as earlytimer\n");
 616                goto out;
 617        }
 618
 619        tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
 620        if (tmu == NULL)
 621                return -ENOMEM;
 622
 623        ret = sh_tmu_setup(tmu, pdev);
 624        if (ret) {
 625                kfree(tmu);
 626                pm_runtime_idle(&pdev->dev);
 627                return ret;
 628        }
 629        if (is_early_platform_device(pdev))
 630                return 0;
 631
 632 out:
 633        if (tmu->has_clockevent || tmu->has_clocksource)
 634                pm_runtime_irq_safe(&pdev->dev);
 635        else
 636                pm_runtime_idle(&pdev->dev);
 637
 638        return 0;
 639}
 640
 641static int sh_tmu_remove(struct platform_device *pdev)
 642{
 643        return -EBUSY; /* cannot unregister clockevent and clocksource */
 644}
 645
 646static const struct platform_device_id sh_tmu_id_table[] = {
 647        { "sh-tmu", SH_TMU },
 648        { "sh-tmu-sh3", SH_TMU_SH3 },
 649        { }
 650};
 651MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
 652
 653static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
 654        { .compatible = "renesas,tmu" },
 655        { }
 656};
 657MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
 658
 659static struct platform_driver sh_tmu_device_driver = {
 660        .probe          = sh_tmu_probe,
 661        .remove         = sh_tmu_remove,
 662        .driver         = {
 663                .name   = "sh_tmu",
 664                .of_match_table = of_match_ptr(sh_tmu_of_table),
 665        },
 666        .id_table       = sh_tmu_id_table,
 667};
 668
 669static int __init sh_tmu_init(void)
 670{
 671        return platform_driver_register(&sh_tmu_device_driver);
 672}
 673
 674static void __exit sh_tmu_exit(void)
 675{
 676        platform_driver_unregister(&sh_tmu_device_driver);
 677}
 678
 679early_platform_init("earlytimer", &sh_tmu_device_driver);
 680subsys_initcall(sh_tmu_init);
 681module_exit(sh_tmu_exit);
 682
 683MODULE_AUTHOR("Magnus Damm");
 684MODULE_DESCRIPTION("SuperH TMU Timer Driver");
 685MODULE_LICENSE("GPL v2");
 686