linux/drivers/cpufreq/cpufreq.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *      Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *      Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/tick.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
  37{
  38        return cpumask_empty(policy->cpus);
  39}
  40
  41/* Macros to iterate over CPU policies */
  42#define for_each_suitable_policy(__policy, __active)                     \
  43        list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  44                if ((__active) == !policy_is_inactive(__policy))
  45
  46#define for_each_active_policy(__policy)                \
  47        for_each_suitable_policy(__policy, true)
  48#define for_each_inactive_policy(__policy)              \
  49        for_each_suitable_policy(__policy, false)
  50
  51#define for_each_policy(__policy)                       \
  52        list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  53
  54/* Iterate over governors */
  55static LIST_HEAD(cpufreq_governor_list);
  56#define for_each_governor(__governor)                           \
  57        list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  58
  59/**
  60 * The "cpufreq driver" - the arch- or hardware-dependent low
  61 * level driver of CPUFreq support, and its spinlock. This lock
  62 * also protects the cpufreq_cpu_data array.
  63 */
  64static struct cpufreq_driver *cpufreq_driver;
  65static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  66static DEFINE_RWLOCK(cpufreq_driver_lock);
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73        return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76/* internal prototypes */
  77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  78static int cpufreq_init_governor(struct cpufreq_policy *policy);
  79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  80static int cpufreq_start_governor(struct cpufreq_policy *policy);
  81static void cpufreq_stop_governor(struct cpufreq_policy *policy);
  82static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  83
  84/**
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92static struct srcu_notifier_head cpufreq_transition_notifier_list;
  93
  94static bool init_cpufreq_transition_notifier_list_called;
  95static int __init init_cpufreq_transition_notifier_list(void)
  96{
  97        srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  98        init_cpufreq_transition_notifier_list_called = true;
  99        return 0;
 100}
 101pure_initcall(init_cpufreq_transition_notifier_list);
 102
 103static int off __read_mostly;
 104static int cpufreq_disabled(void)
 105{
 106        return off;
 107}
 108void disable_cpufreq(void)
 109{
 110        off = 1;
 111}
 112static DEFINE_MUTEX(cpufreq_governor_mutex);
 113
 114bool have_governor_per_policy(void)
 115{
 116        return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 117}
 118EXPORT_SYMBOL_GPL(have_governor_per_policy);
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122        if (have_governor_per_policy())
 123                return &policy->kobj;
 124        else
 125                return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131        u64 idle_time;
 132        u64 cur_wall_time;
 133        u64 busy_time;
 134
 135        cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 136
 137        busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 138        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 139        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 140        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 141        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 142        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 143
 144        idle_time = cur_wall_time - busy_time;
 145        if (wall)
 146                *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 147
 148        return div_u64(idle_time, NSEC_PER_USEC);
 149}
 150
 151u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 152{
 153        u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 154
 155        if (idle_time == -1ULL)
 156                return get_cpu_idle_time_jiffy(cpu, wall);
 157        else if (!io_busy)
 158                idle_time += get_cpu_iowait_time_us(cpu, wall);
 159
 160        return idle_time;
 161}
 162EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 163
 164__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 165                unsigned long max_freq)
 166{
 167}
 168EXPORT_SYMBOL_GPL(arch_set_freq_scale);
 169
 170/*
 171 * This is a generic cpufreq init() routine which can be used by cpufreq
 172 * drivers of SMP systems. It will do following:
 173 * - validate & show freq table passed
 174 * - set policies transition latency
 175 * - policy->cpus with all possible CPUs
 176 */
 177int cpufreq_generic_init(struct cpufreq_policy *policy,
 178                struct cpufreq_frequency_table *table,
 179                unsigned int transition_latency)
 180{
 181        policy->freq_table = table;
 182        policy->cpuinfo.transition_latency = transition_latency;
 183
 184        /*
 185         * The driver only supports the SMP configuration where all processors
 186         * share the clock and voltage and clock.
 187         */
 188        cpumask_setall(policy->cpus);
 189
 190        return 0;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 193
 194struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 195{
 196        struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 197
 198        return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 199}
 200EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 201
 202unsigned int cpufreq_generic_get(unsigned int cpu)
 203{
 204        struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 205
 206        if (!policy || IS_ERR(policy->clk)) {
 207                pr_err("%s: No %s associated to cpu: %d\n",
 208                       __func__, policy ? "clk" : "policy", cpu);
 209                return 0;
 210        }
 211
 212        return clk_get_rate(policy->clk) / 1000;
 213}
 214EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 215
 216/**
 217 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
 218 *
 219 * @cpu: cpu to find policy for.
 220 *
 221 * This returns policy for 'cpu', returns NULL if it doesn't exist.
 222 * It also increments the kobject reference count to mark it busy and so would
 223 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
 224 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
 225 * freed as that depends on the kobj count.
 226 *
 227 * Return: A valid policy on success, otherwise NULL on failure.
 228 */
 229struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 230{
 231        struct cpufreq_policy *policy = NULL;
 232        unsigned long flags;
 233
 234        if (WARN_ON(cpu >= nr_cpu_ids))
 235                return NULL;
 236
 237        /* get the cpufreq driver */
 238        read_lock_irqsave(&cpufreq_driver_lock, flags);
 239
 240        if (cpufreq_driver) {
 241                /* get the CPU */
 242                policy = cpufreq_cpu_get_raw(cpu);
 243                if (policy)
 244                        kobject_get(&policy->kobj);
 245        }
 246
 247        read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 248
 249        return policy;
 250}
 251EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 252
 253/**
 254 * cpufreq_cpu_put: Decrements the usage count of a policy
 255 *
 256 * @policy: policy earlier returned by cpufreq_cpu_get().
 257 *
 258 * This decrements the kobject reference count incremented earlier by calling
 259 * cpufreq_cpu_get().
 260 */
 261void cpufreq_cpu_put(struct cpufreq_policy *policy)
 262{
 263        kobject_put(&policy->kobj);
 264}
 265EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 266
 267/*********************************************************************
 268 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 269 *********************************************************************/
 270
 271/**
 272 * adjust_jiffies - adjust the system "loops_per_jiffy"
 273 *
 274 * This function alters the system "loops_per_jiffy" for the clock
 275 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 276 * systems as each CPU might be scaled differently. So, use the arch
 277 * per-CPU loops_per_jiffy value wherever possible.
 278 */
 279static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 280{
 281#ifndef CONFIG_SMP
 282        static unsigned long l_p_j_ref;
 283        static unsigned int l_p_j_ref_freq;
 284
 285        if (ci->flags & CPUFREQ_CONST_LOOPS)
 286                return;
 287
 288        if (!l_p_j_ref_freq) {
 289                l_p_j_ref = loops_per_jiffy;
 290                l_p_j_ref_freq = ci->old;
 291                pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 292                         l_p_j_ref, l_p_j_ref_freq);
 293        }
 294        if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 295                loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 296                                                                ci->new);
 297                pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 298                         loops_per_jiffy, ci->new);
 299        }
 300#endif
 301}
 302
 303static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 304                struct cpufreq_freqs *freqs, unsigned int state)
 305{
 306        BUG_ON(irqs_disabled());
 307
 308        if (cpufreq_disabled())
 309                return;
 310
 311        freqs->flags = cpufreq_driver->flags;
 312        pr_debug("notification %u of frequency transition to %u kHz\n",
 313                 state, freqs->new);
 314
 315        switch (state) {
 316
 317        case CPUFREQ_PRECHANGE:
 318                /* detect if the driver reported a value as "old frequency"
 319                 * which is not equal to what the cpufreq core thinks is
 320                 * "old frequency".
 321                 */
 322                if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 323                        if ((policy) && (policy->cpu == freqs->cpu) &&
 324                            (policy->cur) && (policy->cur != freqs->old)) {
 325                                pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 326                                         freqs->old, policy->cur);
 327                                freqs->old = policy->cur;
 328                        }
 329                }
 330                srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 331                                CPUFREQ_PRECHANGE, freqs);
 332                adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 333                break;
 334
 335        case CPUFREQ_POSTCHANGE:
 336                adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 337                pr_debug("FREQ: %lu - CPU: %lu\n",
 338                         (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 339                trace_cpu_frequency(freqs->new, freqs->cpu);
 340                cpufreq_stats_record_transition(policy, freqs->new);
 341                srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 342                                CPUFREQ_POSTCHANGE, freqs);
 343                if (likely(policy) && likely(policy->cpu == freqs->cpu))
 344                        policy->cur = freqs->new;
 345                break;
 346        }
 347}
 348
 349/**
 350 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 351 * on frequency transition.
 352 *
 353 * This function calls the transition notifiers and the "adjust_jiffies"
 354 * function. It is called twice on all CPU frequency changes that have
 355 * external effects.
 356 */
 357static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 358                struct cpufreq_freqs *freqs, unsigned int state)
 359{
 360        for_each_cpu(freqs->cpu, policy->cpus)
 361                __cpufreq_notify_transition(policy, freqs, state);
 362}
 363
 364/* Do post notifications when there are chances that transition has failed */
 365static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 366                struct cpufreq_freqs *freqs, int transition_failed)
 367{
 368        cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 369        if (!transition_failed)
 370                return;
 371
 372        swap(freqs->old, freqs->new);
 373        cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 374        cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 375}
 376
 377void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 378                struct cpufreq_freqs *freqs)
 379{
 380
 381        /*
 382         * Catch double invocations of _begin() which lead to self-deadlock.
 383         * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 384         * doesn't invoke _begin() on their behalf, and hence the chances of
 385         * double invocations are very low. Moreover, there are scenarios
 386         * where these checks can emit false-positive warnings in these
 387         * drivers; so we avoid that by skipping them altogether.
 388         */
 389        WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 390                                && current == policy->transition_task);
 391
 392wait:
 393        wait_event(policy->transition_wait, !policy->transition_ongoing);
 394
 395        spin_lock(&policy->transition_lock);
 396
 397        if (unlikely(policy->transition_ongoing)) {
 398                spin_unlock(&policy->transition_lock);
 399                goto wait;
 400        }
 401
 402        policy->transition_ongoing = true;
 403        policy->transition_task = current;
 404
 405        spin_unlock(&policy->transition_lock);
 406
 407        cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 408}
 409EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 410
 411void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 412                struct cpufreq_freqs *freqs, int transition_failed)
 413{
 414        if (unlikely(WARN_ON(!policy->transition_ongoing)))
 415                return;
 416
 417        cpufreq_notify_post_transition(policy, freqs, transition_failed);
 418
 419        policy->transition_ongoing = false;
 420        policy->transition_task = NULL;
 421
 422        wake_up(&policy->transition_wait);
 423}
 424EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 425
 426/*
 427 * Fast frequency switching status count.  Positive means "enabled", negative
 428 * means "disabled" and 0 means "not decided yet".
 429 */
 430static int cpufreq_fast_switch_count;
 431static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 432
 433static void cpufreq_list_transition_notifiers(void)
 434{
 435        struct notifier_block *nb;
 436
 437        pr_info("Registered transition notifiers:\n");
 438
 439        mutex_lock(&cpufreq_transition_notifier_list.mutex);
 440
 441        for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 442                pr_info("%pF\n", nb->notifier_call);
 443
 444        mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 445}
 446
 447/**
 448 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 449 * @policy: cpufreq policy to enable fast frequency switching for.
 450 *
 451 * Try to enable fast frequency switching for @policy.
 452 *
 453 * The attempt will fail if there is at least one transition notifier registered
 454 * at this point, as fast frequency switching is quite fundamentally at odds
 455 * with transition notifiers.  Thus if successful, it will make registration of
 456 * transition notifiers fail going forward.
 457 */
 458void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 459{
 460        lockdep_assert_held(&policy->rwsem);
 461
 462        if (!policy->fast_switch_possible)
 463                return;
 464
 465        mutex_lock(&cpufreq_fast_switch_lock);
 466        if (cpufreq_fast_switch_count >= 0) {
 467                cpufreq_fast_switch_count++;
 468                policy->fast_switch_enabled = true;
 469        } else {
 470                pr_warn("CPU%u: Fast frequency switching not enabled\n",
 471                        policy->cpu);
 472                cpufreq_list_transition_notifiers();
 473        }
 474        mutex_unlock(&cpufreq_fast_switch_lock);
 475}
 476EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 477
 478/**
 479 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 480 * @policy: cpufreq policy to disable fast frequency switching for.
 481 */
 482void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 483{
 484        mutex_lock(&cpufreq_fast_switch_lock);
 485        if (policy->fast_switch_enabled) {
 486                policy->fast_switch_enabled = false;
 487                if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 488                        cpufreq_fast_switch_count--;
 489        }
 490        mutex_unlock(&cpufreq_fast_switch_lock);
 491}
 492EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 493
 494/**
 495 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 496 * one.
 497 * @target_freq: target frequency to resolve.
 498 *
 499 * The target to driver frequency mapping is cached in the policy.
 500 *
 501 * Return: Lowest driver-supported frequency greater than or equal to the
 502 * given target_freq, subject to policy (min/max) and driver limitations.
 503 */
 504unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 505                                         unsigned int target_freq)
 506{
 507        target_freq = clamp_val(target_freq, policy->min, policy->max);
 508        policy->cached_target_freq = target_freq;
 509
 510        if (cpufreq_driver->target_index) {
 511                int idx;
 512
 513                idx = cpufreq_frequency_table_target(policy, target_freq,
 514                                                     CPUFREQ_RELATION_L);
 515                policy->cached_resolved_idx = idx;
 516                return policy->freq_table[idx].frequency;
 517        }
 518
 519        if (cpufreq_driver->resolve_freq)
 520                return cpufreq_driver->resolve_freq(policy, target_freq);
 521
 522        return target_freq;
 523}
 524EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 525
 526unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 527{
 528        unsigned int latency;
 529
 530        if (policy->transition_delay_us)
 531                return policy->transition_delay_us;
 532
 533        latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 534        if (latency) {
 535                /*
 536                 * For platforms that can change the frequency very fast (< 10
 537                 * us), the above formula gives a decent transition delay. But
 538                 * for platforms where transition_latency is in milliseconds, it
 539                 * ends up giving unrealistic values.
 540                 *
 541                 * Cap the default transition delay to 10 ms, which seems to be
 542                 * a reasonable amount of time after which we should reevaluate
 543                 * the frequency.
 544                 */
 545                return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 546        }
 547
 548        return LATENCY_MULTIPLIER;
 549}
 550EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 551
 552/*********************************************************************
 553 *                          SYSFS INTERFACE                          *
 554 *********************************************************************/
 555static ssize_t show_boost(struct kobject *kobj,
 556                                 struct attribute *attr, char *buf)
 557{
 558        return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 559}
 560
 561static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 562                                  const char *buf, size_t count)
 563{
 564        int ret, enable;
 565
 566        ret = sscanf(buf, "%d", &enable);
 567        if (ret != 1 || enable < 0 || enable > 1)
 568                return -EINVAL;
 569
 570        if (cpufreq_boost_trigger_state(enable)) {
 571                pr_err("%s: Cannot %s BOOST!\n",
 572                       __func__, enable ? "enable" : "disable");
 573                return -EINVAL;
 574        }
 575
 576        pr_debug("%s: cpufreq BOOST %s\n",
 577                 __func__, enable ? "enabled" : "disabled");
 578
 579        return count;
 580}
 581define_one_global_rw(boost);
 582
 583static struct cpufreq_governor *find_governor(const char *str_governor)
 584{
 585        struct cpufreq_governor *t;
 586
 587        for_each_governor(t)
 588                if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 589                        return t;
 590
 591        return NULL;
 592}
 593
 594/**
 595 * cpufreq_parse_governor - parse a governor string
 596 */
 597static int cpufreq_parse_governor(char *str_governor,
 598                                  struct cpufreq_policy *policy)
 599{
 600        if (cpufreq_driver->setpolicy) {
 601                if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 602                        policy->policy = CPUFREQ_POLICY_PERFORMANCE;
 603                        return 0;
 604                }
 605
 606                if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
 607                        policy->policy = CPUFREQ_POLICY_POWERSAVE;
 608                        return 0;
 609                }
 610        } else {
 611                struct cpufreq_governor *t;
 612
 613                mutex_lock(&cpufreq_governor_mutex);
 614
 615                t = find_governor(str_governor);
 616                if (!t) {
 617                        int ret;
 618
 619                        mutex_unlock(&cpufreq_governor_mutex);
 620
 621                        ret = request_module("cpufreq_%s", str_governor);
 622                        if (ret)
 623                                return -EINVAL;
 624
 625                        mutex_lock(&cpufreq_governor_mutex);
 626
 627                        t = find_governor(str_governor);
 628                }
 629                if (t && !try_module_get(t->owner))
 630                        t = NULL;
 631
 632                mutex_unlock(&cpufreq_governor_mutex);
 633
 634                if (t) {
 635                        policy->governor = t;
 636                        return 0;
 637                }
 638        }
 639
 640        return -EINVAL;
 641}
 642
 643/**
 644 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 645 * print out cpufreq information
 646 *
 647 * Write out information from cpufreq_driver->policy[cpu]; object must be
 648 * "unsigned int".
 649 */
 650
 651#define show_one(file_name, object)                     \
 652static ssize_t show_##file_name                         \
 653(struct cpufreq_policy *policy, char *buf)              \
 654{                                                       \
 655        return sprintf(buf, "%u\n", policy->object);    \
 656}
 657
 658show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 659show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 660show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 661show_one(scaling_min_freq, min);
 662show_one(scaling_max_freq, max);
 663
 664__weak unsigned int arch_freq_get_on_cpu(int cpu)
 665{
 666        return 0;
 667}
 668
 669static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 670{
 671        ssize_t ret;
 672        unsigned int freq;
 673
 674        freq = arch_freq_get_on_cpu(policy->cpu);
 675        if (freq)
 676                ret = sprintf(buf, "%u\n", freq);
 677        else if (cpufreq_driver && cpufreq_driver->setpolicy &&
 678                        cpufreq_driver->get)
 679                ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 680        else
 681                ret = sprintf(buf, "%u\n", policy->cur);
 682        return ret;
 683}
 684
 685static int cpufreq_set_policy(struct cpufreq_policy *policy,
 686                                struct cpufreq_policy *new_policy);
 687
 688/**
 689 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 690 */
 691#define store_one(file_name, object)                    \
 692static ssize_t store_##file_name                                        \
 693(struct cpufreq_policy *policy, const char *buf, size_t count)          \
 694{                                                                       \
 695        int ret, temp;                                                  \
 696        struct cpufreq_policy new_policy;                               \
 697                                                                        \
 698        memcpy(&new_policy, policy, sizeof(*policy));                   \
 699                                                                        \
 700        ret = sscanf(buf, "%u", &new_policy.object);                    \
 701        if (ret != 1)                                                   \
 702                return -EINVAL;                                         \
 703                                                                        \
 704        temp = new_policy.object;                                       \
 705        ret = cpufreq_set_policy(policy, &new_policy);          \
 706        if (!ret)                                                       \
 707                policy->user_policy.object = temp;                      \
 708                                                                        \
 709        return ret ? ret : count;                                       \
 710}
 711
 712store_one(scaling_min_freq, min);
 713store_one(scaling_max_freq, max);
 714
 715/**
 716 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 717 */
 718static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 719                                        char *buf)
 720{
 721        unsigned int cur_freq = __cpufreq_get(policy);
 722
 723        if (cur_freq)
 724                return sprintf(buf, "%u\n", cur_freq);
 725
 726        return sprintf(buf, "<unknown>\n");
 727}
 728
 729/**
 730 * show_scaling_governor - show the current policy for the specified CPU
 731 */
 732static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 733{
 734        if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 735                return sprintf(buf, "powersave\n");
 736        else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 737                return sprintf(buf, "performance\n");
 738        else if (policy->governor)
 739                return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 740                                policy->governor->name);
 741        return -EINVAL;
 742}
 743
 744/**
 745 * store_scaling_governor - store policy for the specified CPU
 746 */
 747static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 748                                        const char *buf, size_t count)
 749{
 750        int ret;
 751        char    str_governor[16];
 752        struct cpufreq_policy new_policy;
 753
 754        memcpy(&new_policy, policy, sizeof(*policy));
 755
 756        ret = sscanf(buf, "%15s", str_governor);
 757        if (ret != 1)
 758                return -EINVAL;
 759
 760        if (cpufreq_parse_governor(str_governor, &new_policy))
 761                return -EINVAL;
 762
 763        ret = cpufreq_set_policy(policy, &new_policy);
 764
 765        if (new_policy.governor)
 766                module_put(new_policy.governor->owner);
 767
 768        return ret ? ret : count;
 769}
 770
 771/**
 772 * show_scaling_driver - show the cpufreq driver currently loaded
 773 */
 774static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 775{
 776        return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 777}
 778
 779/**
 780 * show_scaling_available_governors - show the available CPUfreq governors
 781 */
 782static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 783                                                char *buf)
 784{
 785        ssize_t i = 0;
 786        struct cpufreq_governor *t;
 787
 788        if (!has_target()) {
 789                i += sprintf(buf, "performance powersave");
 790                goto out;
 791        }
 792
 793        for_each_governor(t) {
 794                if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 795                    - (CPUFREQ_NAME_LEN + 2)))
 796                        goto out;
 797                i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 798        }
 799out:
 800        i += sprintf(&buf[i], "\n");
 801        return i;
 802}
 803
 804ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 805{
 806        ssize_t i = 0;
 807        unsigned int cpu;
 808
 809        for_each_cpu(cpu, mask) {
 810                if (i)
 811                        i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 812                i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 813                if (i >= (PAGE_SIZE - 5))
 814                        break;
 815        }
 816        i += sprintf(&buf[i], "\n");
 817        return i;
 818}
 819EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 820
 821/**
 822 * show_related_cpus - show the CPUs affected by each transition even if
 823 * hw coordination is in use
 824 */
 825static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 826{
 827        return cpufreq_show_cpus(policy->related_cpus, buf);
 828}
 829
 830/**
 831 * show_affected_cpus - show the CPUs affected by each transition
 832 */
 833static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 834{
 835        return cpufreq_show_cpus(policy->cpus, buf);
 836}
 837
 838static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 839                                        const char *buf, size_t count)
 840{
 841        unsigned int freq = 0;
 842        unsigned int ret;
 843
 844        if (!policy->governor || !policy->governor->store_setspeed)
 845                return -EINVAL;
 846
 847        ret = sscanf(buf, "%u", &freq);
 848        if (ret != 1)
 849                return -EINVAL;
 850
 851        policy->governor->store_setspeed(policy, freq);
 852
 853        return count;
 854}
 855
 856static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 857{
 858        if (!policy->governor || !policy->governor->show_setspeed)
 859                return sprintf(buf, "<unsupported>\n");
 860
 861        return policy->governor->show_setspeed(policy, buf);
 862}
 863
 864/**
 865 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 866 */
 867static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 868{
 869        unsigned int limit;
 870        int ret;
 871        if (cpufreq_driver->bios_limit) {
 872                ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 873                if (!ret)
 874                        return sprintf(buf, "%u\n", limit);
 875        }
 876        return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 877}
 878
 879cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 880cpufreq_freq_attr_ro(cpuinfo_min_freq);
 881cpufreq_freq_attr_ro(cpuinfo_max_freq);
 882cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 883cpufreq_freq_attr_ro(scaling_available_governors);
 884cpufreq_freq_attr_ro(scaling_driver);
 885cpufreq_freq_attr_ro(scaling_cur_freq);
 886cpufreq_freq_attr_ro(bios_limit);
 887cpufreq_freq_attr_ro(related_cpus);
 888cpufreq_freq_attr_ro(affected_cpus);
 889cpufreq_freq_attr_rw(scaling_min_freq);
 890cpufreq_freq_attr_rw(scaling_max_freq);
 891cpufreq_freq_attr_rw(scaling_governor);
 892cpufreq_freq_attr_rw(scaling_setspeed);
 893
 894static struct attribute *default_attrs[] = {
 895        &cpuinfo_min_freq.attr,
 896        &cpuinfo_max_freq.attr,
 897        &cpuinfo_transition_latency.attr,
 898        &scaling_min_freq.attr,
 899        &scaling_max_freq.attr,
 900        &affected_cpus.attr,
 901        &related_cpus.attr,
 902        &scaling_governor.attr,
 903        &scaling_driver.attr,
 904        &scaling_available_governors.attr,
 905        &scaling_setspeed.attr,
 906        NULL
 907};
 908
 909#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 910#define to_attr(a) container_of(a, struct freq_attr, attr)
 911
 912static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 913{
 914        struct cpufreq_policy *policy = to_policy(kobj);
 915        struct freq_attr *fattr = to_attr(attr);
 916        ssize_t ret;
 917
 918        down_read(&policy->rwsem);
 919        ret = fattr->show(policy, buf);
 920        up_read(&policy->rwsem);
 921
 922        return ret;
 923}
 924
 925static ssize_t store(struct kobject *kobj, struct attribute *attr,
 926                     const char *buf, size_t count)
 927{
 928        struct cpufreq_policy *policy = to_policy(kobj);
 929        struct freq_attr *fattr = to_attr(attr);
 930        ssize_t ret = -EINVAL;
 931
 932        cpus_read_lock();
 933
 934        if (cpu_online(policy->cpu)) {
 935                down_write(&policy->rwsem);
 936                ret = fattr->store(policy, buf, count);
 937                up_write(&policy->rwsem);
 938        }
 939
 940        cpus_read_unlock();
 941
 942        return ret;
 943}
 944
 945static void cpufreq_sysfs_release(struct kobject *kobj)
 946{
 947        struct cpufreq_policy *policy = to_policy(kobj);
 948        pr_debug("last reference is dropped\n");
 949        complete(&policy->kobj_unregister);
 950}
 951
 952static const struct sysfs_ops sysfs_ops = {
 953        .show   = show,
 954        .store  = store,
 955};
 956
 957static struct kobj_type ktype_cpufreq = {
 958        .sysfs_ops      = &sysfs_ops,
 959        .default_attrs  = default_attrs,
 960        .release        = cpufreq_sysfs_release,
 961};
 962
 963static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 964{
 965        struct device *dev = get_cpu_device(cpu);
 966
 967        if (!dev)
 968                return;
 969
 970        if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
 971                return;
 972
 973        dev_dbg(dev, "%s: Adding symlink\n", __func__);
 974        if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
 975                dev_err(dev, "cpufreq symlink creation failed\n");
 976}
 977
 978static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
 979                                   struct device *dev)
 980{
 981        dev_dbg(dev, "%s: Removing symlink\n", __func__);
 982        sysfs_remove_link(&dev->kobj, "cpufreq");
 983}
 984
 985static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 986{
 987        struct freq_attr **drv_attr;
 988        int ret = 0;
 989
 990        /* set up files for this cpu device */
 991        drv_attr = cpufreq_driver->attr;
 992        while (drv_attr && *drv_attr) {
 993                ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 994                if (ret)
 995                        return ret;
 996                drv_attr++;
 997        }
 998        if (cpufreq_driver->get) {
 999                ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1000                if (ret)
1001                        return ret;
1002        }
1003
1004        ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1005        if (ret)
1006                return ret;
1007
1008        if (cpufreq_driver->bios_limit) {
1009                ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1010                if (ret)
1011                        return ret;
1012        }
1013
1014        return 0;
1015}
1016
1017__weak struct cpufreq_governor *cpufreq_default_governor(void)
1018{
1019        return NULL;
1020}
1021
1022static int cpufreq_init_policy(struct cpufreq_policy *policy)
1023{
1024        struct cpufreq_governor *gov = NULL;
1025        struct cpufreq_policy new_policy;
1026
1027        memcpy(&new_policy, policy, sizeof(*policy));
1028
1029        /* Update governor of new_policy to the governor used before hotplug */
1030        gov = find_governor(policy->last_governor);
1031        if (gov) {
1032                pr_debug("Restoring governor %s for cpu %d\n",
1033                                policy->governor->name, policy->cpu);
1034        } else {
1035                gov = cpufreq_default_governor();
1036                if (!gov)
1037                        return -ENODATA;
1038        }
1039
1040        new_policy.governor = gov;
1041
1042        /* Use the default policy if there is no last_policy. */
1043        if (cpufreq_driver->setpolicy) {
1044                if (policy->last_policy)
1045                        new_policy.policy = policy->last_policy;
1046                else
1047                        cpufreq_parse_governor(gov->name, &new_policy);
1048        }
1049        /* set default policy */
1050        return cpufreq_set_policy(policy, &new_policy);
1051}
1052
1053static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1054{
1055        int ret = 0;
1056
1057        /* Has this CPU been taken care of already? */
1058        if (cpumask_test_cpu(cpu, policy->cpus))
1059                return 0;
1060
1061        down_write(&policy->rwsem);
1062        if (has_target())
1063                cpufreq_stop_governor(policy);
1064
1065        cpumask_set_cpu(cpu, policy->cpus);
1066
1067        if (has_target()) {
1068                ret = cpufreq_start_governor(policy);
1069                if (ret)
1070                        pr_err("%s: Failed to start governor\n", __func__);
1071        }
1072        up_write(&policy->rwsem);
1073        return ret;
1074}
1075
1076static void handle_update(struct work_struct *work)
1077{
1078        struct cpufreq_policy *policy =
1079                container_of(work, struct cpufreq_policy, update);
1080        unsigned int cpu = policy->cpu;
1081        pr_debug("handle_update for cpu %u called\n", cpu);
1082        cpufreq_update_policy(cpu);
1083}
1084
1085static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1086{
1087        struct cpufreq_policy *policy;
1088        int ret;
1089
1090        policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1091        if (!policy)
1092                return NULL;
1093
1094        if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1095                goto err_free_policy;
1096
1097        if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1098                goto err_free_cpumask;
1099
1100        if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1101                goto err_free_rcpumask;
1102
1103        ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1104                                   cpufreq_global_kobject, "policy%u", cpu);
1105        if (ret) {
1106                pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1107                goto err_free_real_cpus;
1108        }
1109
1110        INIT_LIST_HEAD(&policy->policy_list);
1111        init_rwsem(&policy->rwsem);
1112        spin_lock_init(&policy->transition_lock);
1113        init_waitqueue_head(&policy->transition_wait);
1114        init_completion(&policy->kobj_unregister);
1115        INIT_WORK(&policy->update, handle_update);
1116
1117        policy->cpu = cpu;
1118        return policy;
1119
1120err_free_real_cpus:
1121        free_cpumask_var(policy->real_cpus);
1122err_free_rcpumask:
1123        free_cpumask_var(policy->related_cpus);
1124err_free_cpumask:
1125        free_cpumask_var(policy->cpus);
1126err_free_policy:
1127        kfree(policy);
1128
1129        return NULL;
1130}
1131
1132static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1133{
1134        struct kobject *kobj;
1135        struct completion *cmp;
1136
1137        down_write(&policy->rwsem);
1138        cpufreq_stats_free_table(policy);
1139        kobj = &policy->kobj;
1140        cmp = &policy->kobj_unregister;
1141        up_write(&policy->rwsem);
1142        kobject_put(kobj);
1143
1144        /*
1145         * We need to make sure that the underlying kobj is
1146         * actually not referenced anymore by anybody before we
1147         * proceed with unloading.
1148         */
1149        pr_debug("waiting for dropping of refcount\n");
1150        wait_for_completion(cmp);
1151        pr_debug("wait complete\n");
1152}
1153
1154static void cpufreq_policy_free(struct cpufreq_policy *policy)
1155{
1156        unsigned long flags;
1157        int cpu;
1158
1159        /* Remove policy from list */
1160        write_lock_irqsave(&cpufreq_driver_lock, flags);
1161        list_del(&policy->policy_list);
1162
1163        for_each_cpu(cpu, policy->related_cpus)
1164                per_cpu(cpufreq_cpu_data, cpu) = NULL;
1165        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1166
1167        cpufreq_policy_put_kobj(policy);
1168        free_cpumask_var(policy->real_cpus);
1169        free_cpumask_var(policy->related_cpus);
1170        free_cpumask_var(policy->cpus);
1171        kfree(policy);
1172}
1173
1174static int cpufreq_online(unsigned int cpu)
1175{
1176        struct cpufreq_policy *policy;
1177        bool new_policy;
1178        unsigned long flags;
1179        unsigned int j;
1180        int ret;
1181
1182        pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1183
1184        /* Check if this CPU already has a policy to manage it */
1185        policy = per_cpu(cpufreq_cpu_data, cpu);
1186        if (policy) {
1187                WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1188                if (!policy_is_inactive(policy))
1189                        return cpufreq_add_policy_cpu(policy, cpu);
1190
1191                /* This is the only online CPU for the policy.  Start over. */
1192                new_policy = false;
1193                down_write(&policy->rwsem);
1194                policy->cpu = cpu;
1195                policy->governor = NULL;
1196                up_write(&policy->rwsem);
1197        } else {
1198                new_policy = true;
1199                policy = cpufreq_policy_alloc(cpu);
1200                if (!policy)
1201                        return -ENOMEM;
1202        }
1203
1204        cpumask_copy(policy->cpus, cpumask_of(cpu));
1205
1206        /* call driver. From then on the cpufreq must be able
1207         * to accept all calls to ->verify and ->setpolicy for this CPU
1208         */
1209        ret = cpufreq_driver->init(policy);
1210        if (ret) {
1211                pr_debug("initialization failed\n");
1212                goto out_free_policy;
1213        }
1214
1215        ret = cpufreq_table_validate_and_sort(policy);
1216        if (ret)
1217                goto out_exit_policy;
1218
1219        down_write(&policy->rwsem);
1220
1221        if (new_policy) {
1222                /* related_cpus should at least include policy->cpus. */
1223                cpumask_copy(policy->related_cpus, policy->cpus);
1224        }
1225
1226        /*
1227         * affected cpus must always be the one, which are online. We aren't
1228         * managing offline cpus here.
1229         */
1230        cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1231
1232        if (new_policy) {
1233                policy->user_policy.min = policy->min;
1234                policy->user_policy.max = policy->max;
1235
1236                for_each_cpu(j, policy->related_cpus) {
1237                        per_cpu(cpufreq_cpu_data, j) = policy;
1238                        add_cpu_dev_symlink(policy, j);
1239                }
1240        } else {
1241                policy->min = policy->user_policy.min;
1242                policy->max = policy->user_policy.max;
1243        }
1244
1245        if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1246                policy->cur = cpufreq_driver->get(policy->cpu);
1247                if (!policy->cur) {
1248                        pr_err("%s: ->get() failed\n", __func__);
1249                        goto out_destroy_policy;
1250                }
1251        }
1252
1253        /*
1254         * Sometimes boot loaders set CPU frequency to a value outside of
1255         * frequency table present with cpufreq core. In such cases CPU might be
1256         * unstable if it has to run on that frequency for long duration of time
1257         * and so its better to set it to a frequency which is specified in
1258         * freq-table. This also makes cpufreq stats inconsistent as
1259         * cpufreq-stats would fail to register because current frequency of CPU
1260         * isn't found in freq-table.
1261         *
1262         * Because we don't want this change to effect boot process badly, we go
1263         * for the next freq which is >= policy->cur ('cur' must be set by now,
1264         * otherwise we will end up setting freq to lowest of the table as 'cur'
1265         * is initialized to zero).
1266         *
1267         * We are passing target-freq as "policy->cur - 1" otherwise
1268         * __cpufreq_driver_target() would simply fail, as policy->cur will be
1269         * equal to target-freq.
1270         */
1271        if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1272            && has_target()) {
1273                /* Are we running at unknown frequency ? */
1274                ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1275                if (ret == -EINVAL) {
1276                        /* Warn user and fix it */
1277                        pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1278                                __func__, policy->cpu, policy->cur);
1279                        ret = __cpufreq_driver_target(policy, policy->cur - 1,
1280                                CPUFREQ_RELATION_L);
1281
1282                        /*
1283                         * Reaching here after boot in a few seconds may not
1284                         * mean that system will remain stable at "unknown"
1285                         * frequency for longer duration. Hence, a BUG_ON().
1286                         */
1287                        BUG_ON(ret);
1288                        pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1289                                __func__, policy->cpu, policy->cur);
1290                }
1291        }
1292
1293        if (new_policy) {
1294                ret = cpufreq_add_dev_interface(policy);
1295                if (ret)
1296                        goto out_destroy_policy;
1297
1298                cpufreq_stats_create_table(policy);
1299
1300                write_lock_irqsave(&cpufreq_driver_lock, flags);
1301                list_add(&policy->policy_list, &cpufreq_policy_list);
1302                write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1303        }
1304
1305        ret = cpufreq_init_policy(policy);
1306        if (ret) {
1307                pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1308                       __func__, cpu, ret);
1309                /* cpufreq_policy_free() will notify based on this */
1310                new_policy = false;
1311                goto out_destroy_policy;
1312        }
1313
1314        up_write(&policy->rwsem);
1315
1316        kobject_uevent(&policy->kobj, KOBJ_ADD);
1317
1318        /* Callback for handling stuff after policy is ready */
1319        if (cpufreq_driver->ready)
1320                cpufreq_driver->ready(policy);
1321
1322        pr_debug("initialization complete\n");
1323
1324        return 0;
1325
1326out_destroy_policy:
1327        for_each_cpu(j, policy->real_cpus)
1328                remove_cpu_dev_symlink(policy, get_cpu_device(j));
1329
1330        up_write(&policy->rwsem);
1331
1332out_exit_policy:
1333        if (cpufreq_driver->exit)
1334                cpufreq_driver->exit(policy);
1335
1336out_free_policy:
1337        cpufreq_policy_free(policy);
1338        return ret;
1339}
1340
1341/**
1342 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1343 * @dev: CPU device.
1344 * @sif: Subsystem interface structure pointer (not used)
1345 */
1346static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1347{
1348        struct cpufreq_policy *policy;
1349        unsigned cpu = dev->id;
1350        int ret;
1351
1352        dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1353
1354        if (cpu_online(cpu)) {
1355                ret = cpufreq_online(cpu);
1356                if (ret)
1357                        return ret;
1358        }
1359
1360        /* Create sysfs link on CPU registration */
1361        policy = per_cpu(cpufreq_cpu_data, cpu);
1362        if (policy)
1363                add_cpu_dev_symlink(policy, cpu);
1364
1365        return 0;
1366}
1367
1368static int cpufreq_offline(unsigned int cpu)
1369{
1370        struct cpufreq_policy *policy;
1371        int ret;
1372
1373        pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1374
1375        policy = cpufreq_cpu_get_raw(cpu);
1376        if (!policy) {
1377                pr_debug("%s: No cpu_data found\n", __func__);
1378                return 0;
1379        }
1380
1381        down_write(&policy->rwsem);
1382        if (has_target())
1383                cpufreq_stop_governor(policy);
1384
1385        cpumask_clear_cpu(cpu, policy->cpus);
1386
1387        if (policy_is_inactive(policy)) {
1388                if (has_target())
1389                        strncpy(policy->last_governor, policy->governor->name,
1390                                CPUFREQ_NAME_LEN);
1391                else
1392                        policy->last_policy = policy->policy;
1393        } else if (cpu == policy->cpu) {
1394                /* Nominate new CPU */
1395                policy->cpu = cpumask_any(policy->cpus);
1396        }
1397
1398        /* Start governor again for active policy */
1399        if (!policy_is_inactive(policy)) {
1400                if (has_target()) {
1401                        ret = cpufreq_start_governor(policy);
1402                        if (ret)
1403                                pr_err("%s: Failed to start governor\n", __func__);
1404                }
1405
1406                goto unlock;
1407        }
1408
1409        if (cpufreq_driver->stop_cpu)
1410                cpufreq_driver->stop_cpu(policy);
1411
1412        if (has_target())
1413                cpufreq_exit_governor(policy);
1414
1415        /*
1416         * Perform the ->exit() even during light-weight tear-down,
1417         * since this is a core component, and is essential for the
1418         * subsequent light-weight ->init() to succeed.
1419         */
1420        if (cpufreq_driver->exit) {
1421                cpufreq_driver->exit(policy);
1422                policy->freq_table = NULL;
1423        }
1424
1425unlock:
1426        up_write(&policy->rwsem);
1427        return 0;
1428}
1429
1430/**
1431 * cpufreq_remove_dev - remove a CPU device
1432 *
1433 * Removes the cpufreq interface for a CPU device.
1434 */
1435static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1436{
1437        unsigned int cpu = dev->id;
1438        struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1439
1440        if (!policy)
1441                return;
1442
1443        if (cpu_online(cpu))
1444                cpufreq_offline(cpu);
1445
1446        cpumask_clear_cpu(cpu, policy->real_cpus);
1447        remove_cpu_dev_symlink(policy, dev);
1448
1449        if (cpumask_empty(policy->real_cpus))
1450                cpufreq_policy_free(policy);
1451}
1452
1453/**
1454 *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1455 *      in deep trouble.
1456 *      @policy: policy managing CPUs
1457 *      @new_freq: CPU frequency the CPU actually runs at
1458 *
1459 *      We adjust to current frequency first, and need to clean up later.
1460 *      So either call to cpufreq_update_policy() or schedule handle_update()).
1461 */
1462static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1463                                unsigned int new_freq)
1464{
1465        struct cpufreq_freqs freqs;
1466
1467        pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1468                 policy->cur, new_freq);
1469
1470        freqs.old = policy->cur;
1471        freqs.new = new_freq;
1472
1473        cpufreq_freq_transition_begin(policy, &freqs);
1474        cpufreq_freq_transition_end(policy, &freqs, 0);
1475}
1476
1477/**
1478 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1479 * @cpu: CPU number
1480 *
1481 * This is the last known freq, without actually getting it from the driver.
1482 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1483 */
1484unsigned int cpufreq_quick_get(unsigned int cpu)
1485{
1486        struct cpufreq_policy *policy;
1487        unsigned int ret_freq = 0;
1488        unsigned long flags;
1489
1490        read_lock_irqsave(&cpufreq_driver_lock, flags);
1491
1492        if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1493                ret_freq = cpufreq_driver->get(cpu);
1494                read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1495                return ret_freq;
1496        }
1497
1498        read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1499
1500        policy = cpufreq_cpu_get(cpu);
1501        if (policy) {
1502                ret_freq = policy->cur;
1503                cpufreq_cpu_put(policy);
1504        }
1505
1506        return ret_freq;
1507}
1508EXPORT_SYMBOL(cpufreq_quick_get);
1509
1510/**
1511 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1512 * @cpu: CPU number
1513 *
1514 * Just return the max possible frequency for a given CPU.
1515 */
1516unsigned int cpufreq_quick_get_max(unsigned int cpu)
1517{
1518        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1519        unsigned int ret_freq = 0;
1520
1521        if (policy) {
1522                ret_freq = policy->max;
1523                cpufreq_cpu_put(policy);
1524        }
1525
1526        return ret_freq;
1527}
1528EXPORT_SYMBOL(cpufreq_quick_get_max);
1529
1530static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1531{
1532        unsigned int ret_freq = 0;
1533
1534        if (!cpufreq_driver->get)
1535                return ret_freq;
1536
1537        ret_freq = cpufreq_driver->get(policy->cpu);
1538
1539        /*
1540         * Updating inactive policies is invalid, so avoid doing that.  Also
1541         * if fast frequency switching is used with the given policy, the check
1542         * against policy->cur is pointless, so skip it in that case too.
1543         */
1544        if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1545                return ret_freq;
1546
1547        if (ret_freq && policy->cur &&
1548                !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1549                /* verify no discrepancy between actual and
1550                                        saved value exists */
1551                if (unlikely(ret_freq != policy->cur)) {
1552                        cpufreq_out_of_sync(policy, ret_freq);
1553                        schedule_work(&policy->update);
1554                }
1555        }
1556
1557        return ret_freq;
1558}
1559
1560/**
1561 * cpufreq_get - get the current CPU frequency (in kHz)
1562 * @cpu: CPU number
1563 *
1564 * Get the CPU current (static) CPU frequency
1565 */
1566unsigned int cpufreq_get(unsigned int cpu)
1567{
1568        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1569        unsigned int ret_freq = 0;
1570
1571        if (policy) {
1572                down_read(&policy->rwsem);
1573
1574                if (!policy_is_inactive(policy))
1575                        ret_freq = __cpufreq_get(policy);
1576
1577                up_read(&policy->rwsem);
1578
1579                cpufreq_cpu_put(policy);
1580        }
1581
1582        return ret_freq;
1583}
1584EXPORT_SYMBOL(cpufreq_get);
1585
1586static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1587{
1588        unsigned int new_freq;
1589
1590        new_freq = cpufreq_driver->get(policy->cpu);
1591        if (!new_freq)
1592                return 0;
1593
1594        if (!policy->cur) {
1595                pr_debug("cpufreq: Driver did not initialize current freq\n");
1596                policy->cur = new_freq;
1597        } else if (policy->cur != new_freq && has_target()) {
1598                cpufreq_out_of_sync(policy, new_freq);
1599        }
1600
1601        return new_freq;
1602}
1603
1604static struct subsys_interface cpufreq_interface = {
1605        .name           = "cpufreq",
1606        .subsys         = &cpu_subsys,
1607        .add_dev        = cpufreq_add_dev,
1608        .remove_dev     = cpufreq_remove_dev,
1609};
1610
1611/*
1612 * In case platform wants some specific frequency to be configured
1613 * during suspend..
1614 */
1615int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1616{
1617        int ret;
1618
1619        if (!policy->suspend_freq) {
1620                pr_debug("%s: suspend_freq not defined\n", __func__);
1621                return 0;
1622        }
1623
1624        pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1625                        policy->suspend_freq);
1626
1627        ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1628                        CPUFREQ_RELATION_H);
1629        if (ret)
1630                pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1631                                __func__, policy->suspend_freq, ret);
1632
1633        return ret;
1634}
1635EXPORT_SYMBOL(cpufreq_generic_suspend);
1636
1637/**
1638 * cpufreq_suspend() - Suspend CPUFreq governors
1639 *
1640 * Called during system wide Suspend/Hibernate cycles for suspending governors
1641 * as some platforms can't change frequency after this point in suspend cycle.
1642 * Because some of the devices (like: i2c, regulators, etc) they use for
1643 * changing frequency are suspended quickly after this point.
1644 */
1645void cpufreq_suspend(void)
1646{
1647        struct cpufreq_policy *policy;
1648
1649        if (!cpufreq_driver)
1650                return;
1651
1652        if (!has_target() && !cpufreq_driver->suspend)
1653                goto suspend;
1654
1655        pr_debug("%s: Suspending Governors\n", __func__);
1656
1657        for_each_active_policy(policy) {
1658                if (has_target()) {
1659                        down_write(&policy->rwsem);
1660                        cpufreq_stop_governor(policy);
1661                        up_write(&policy->rwsem);
1662                }
1663
1664                if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1665                        pr_err("%s: Failed to suspend driver: %p\n", __func__,
1666                                policy);
1667        }
1668
1669suspend:
1670        cpufreq_suspended = true;
1671}
1672
1673/**
1674 * cpufreq_resume() - Resume CPUFreq governors
1675 *
1676 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1677 * are suspended with cpufreq_suspend().
1678 */
1679void cpufreq_resume(void)
1680{
1681        struct cpufreq_policy *policy;
1682        int ret;
1683
1684        if (!cpufreq_driver)
1685                return;
1686
1687        if (unlikely(!cpufreq_suspended))
1688                return;
1689
1690        cpufreq_suspended = false;
1691
1692        if (!has_target() && !cpufreq_driver->resume)
1693                return;
1694
1695        pr_debug("%s: Resuming Governors\n", __func__);
1696
1697        for_each_active_policy(policy) {
1698                if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1699                        pr_err("%s: Failed to resume driver: %p\n", __func__,
1700                                policy);
1701                } else if (has_target()) {
1702                        down_write(&policy->rwsem);
1703                        ret = cpufreq_start_governor(policy);
1704                        up_write(&policy->rwsem);
1705
1706                        if (ret)
1707                                pr_err("%s: Failed to start governor for policy: %p\n",
1708                                       __func__, policy);
1709                }
1710        }
1711}
1712
1713/**
1714 *      cpufreq_get_current_driver - return current driver's name
1715 *
1716 *      Return the name string of the currently loaded cpufreq driver
1717 *      or NULL, if none.
1718 */
1719const char *cpufreq_get_current_driver(void)
1720{
1721        if (cpufreq_driver)
1722                return cpufreq_driver->name;
1723
1724        return NULL;
1725}
1726EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1727
1728/**
1729 *      cpufreq_get_driver_data - return current driver data
1730 *
1731 *      Return the private data of the currently loaded cpufreq
1732 *      driver, or NULL if no cpufreq driver is loaded.
1733 */
1734void *cpufreq_get_driver_data(void)
1735{
1736        if (cpufreq_driver)
1737                return cpufreq_driver->driver_data;
1738
1739        return NULL;
1740}
1741EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1742
1743/*********************************************************************
1744 *                     NOTIFIER LISTS INTERFACE                      *
1745 *********************************************************************/
1746
1747/**
1748 *      cpufreq_register_notifier - register a driver with cpufreq
1749 *      @nb: notifier function to register
1750 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1751 *
1752 *      Add a driver to one of two lists: either a list of drivers that
1753 *      are notified about clock rate changes (once before and once after
1754 *      the transition), or a list of drivers that are notified about
1755 *      changes in cpufreq policy.
1756 *
1757 *      This function may sleep, and has the same return conditions as
1758 *      blocking_notifier_chain_register.
1759 */
1760int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1761{
1762        int ret;
1763
1764        if (cpufreq_disabled())
1765                return -EINVAL;
1766
1767        WARN_ON(!init_cpufreq_transition_notifier_list_called);
1768
1769        switch (list) {
1770        case CPUFREQ_TRANSITION_NOTIFIER:
1771                mutex_lock(&cpufreq_fast_switch_lock);
1772
1773                if (cpufreq_fast_switch_count > 0) {
1774                        mutex_unlock(&cpufreq_fast_switch_lock);
1775                        return -EBUSY;
1776                }
1777                ret = srcu_notifier_chain_register(
1778                                &cpufreq_transition_notifier_list, nb);
1779                if (!ret)
1780                        cpufreq_fast_switch_count--;
1781
1782                mutex_unlock(&cpufreq_fast_switch_lock);
1783                break;
1784        case CPUFREQ_POLICY_NOTIFIER:
1785                ret = blocking_notifier_chain_register(
1786                                &cpufreq_policy_notifier_list, nb);
1787                break;
1788        default:
1789                ret = -EINVAL;
1790        }
1791
1792        return ret;
1793}
1794EXPORT_SYMBOL(cpufreq_register_notifier);
1795
1796/**
1797 *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1798 *      @nb: notifier block to be unregistered
1799 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1800 *
1801 *      Remove a driver from the CPU frequency notifier list.
1802 *
1803 *      This function may sleep, and has the same return conditions as
1804 *      blocking_notifier_chain_unregister.
1805 */
1806int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1807{
1808        int ret;
1809
1810        if (cpufreq_disabled())
1811                return -EINVAL;
1812
1813        switch (list) {
1814        case CPUFREQ_TRANSITION_NOTIFIER:
1815                mutex_lock(&cpufreq_fast_switch_lock);
1816
1817                ret = srcu_notifier_chain_unregister(
1818                                &cpufreq_transition_notifier_list, nb);
1819                if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1820                        cpufreq_fast_switch_count++;
1821
1822                mutex_unlock(&cpufreq_fast_switch_lock);
1823                break;
1824        case CPUFREQ_POLICY_NOTIFIER:
1825                ret = blocking_notifier_chain_unregister(
1826                                &cpufreq_policy_notifier_list, nb);
1827                break;
1828        default:
1829                ret = -EINVAL;
1830        }
1831
1832        return ret;
1833}
1834EXPORT_SYMBOL(cpufreq_unregister_notifier);
1835
1836
1837/*********************************************************************
1838 *                              GOVERNORS                            *
1839 *********************************************************************/
1840
1841/**
1842 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1843 * @policy: cpufreq policy to switch the frequency for.
1844 * @target_freq: New frequency to set (may be approximate).
1845 *
1846 * Carry out a fast frequency switch without sleeping.
1847 *
1848 * The driver's ->fast_switch() callback invoked by this function must be
1849 * suitable for being called from within RCU-sched read-side critical sections
1850 * and it is expected to select the minimum available frequency greater than or
1851 * equal to @target_freq (CPUFREQ_RELATION_L).
1852 *
1853 * This function must not be called if policy->fast_switch_enabled is unset.
1854 *
1855 * Governors calling this function must guarantee that it will never be invoked
1856 * twice in parallel for the same policy and that it will never be called in
1857 * parallel with either ->target() or ->target_index() for the same policy.
1858 *
1859 * Returns the actual frequency set for the CPU.
1860 *
1861 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1862 * error condition, the hardware configuration must be preserved.
1863 */
1864unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1865                                        unsigned int target_freq)
1866{
1867        target_freq = clamp_val(target_freq, policy->min, policy->max);
1868
1869        return cpufreq_driver->fast_switch(policy, target_freq);
1870}
1871EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1872
1873/* Must set freqs->new to intermediate frequency */
1874static int __target_intermediate(struct cpufreq_policy *policy,
1875                                 struct cpufreq_freqs *freqs, int index)
1876{
1877        int ret;
1878
1879        freqs->new = cpufreq_driver->get_intermediate(policy, index);
1880
1881        /* We don't need to switch to intermediate freq */
1882        if (!freqs->new)
1883                return 0;
1884
1885        pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1886                 __func__, policy->cpu, freqs->old, freqs->new);
1887
1888        cpufreq_freq_transition_begin(policy, freqs);
1889        ret = cpufreq_driver->target_intermediate(policy, index);
1890        cpufreq_freq_transition_end(policy, freqs, ret);
1891
1892        if (ret)
1893                pr_err("%s: Failed to change to intermediate frequency: %d\n",
1894                       __func__, ret);
1895
1896        return ret;
1897}
1898
1899static int __target_index(struct cpufreq_policy *policy, int index)
1900{
1901        struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1902        unsigned int intermediate_freq = 0;
1903        unsigned int newfreq = policy->freq_table[index].frequency;
1904        int retval = -EINVAL;
1905        bool notify;
1906
1907        if (newfreq == policy->cur)
1908                return 0;
1909
1910        notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1911        if (notify) {
1912                /* Handle switching to intermediate frequency */
1913                if (cpufreq_driver->get_intermediate) {
1914                        retval = __target_intermediate(policy, &freqs, index);
1915                        if (retval)
1916                                return retval;
1917
1918                        intermediate_freq = freqs.new;
1919                        /* Set old freq to intermediate */
1920                        if (intermediate_freq)
1921                                freqs.old = freqs.new;
1922                }
1923
1924                freqs.new = newfreq;
1925                pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1926                         __func__, policy->cpu, freqs.old, freqs.new);
1927
1928                cpufreq_freq_transition_begin(policy, &freqs);
1929        }
1930
1931        retval = cpufreq_driver->target_index(policy, index);
1932        if (retval)
1933                pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1934                       retval);
1935
1936        if (notify) {
1937                cpufreq_freq_transition_end(policy, &freqs, retval);
1938
1939                /*
1940                 * Failed after setting to intermediate freq? Driver should have
1941                 * reverted back to initial frequency and so should we. Check
1942                 * here for intermediate_freq instead of get_intermediate, in
1943                 * case we haven't switched to intermediate freq at all.
1944                 */
1945                if (unlikely(retval && intermediate_freq)) {
1946                        freqs.old = intermediate_freq;
1947                        freqs.new = policy->restore_freq;
1948                        cpufreq_freq_transition_begin(policy, &freqs);
1949                        cpufreq_freq_transition_end(policy, &freqs, 0);
1950                }
1951        }
1952
1953        return retval;
1954}
1955
1956int __cpufreq_driver_target(struct cpufreq_policy *policy,
1957                            unsigned int target_freq,
1958                            unsigned int relation)
1959{
1960        unsigned int old_target_freq = target_freq;
1961        int index;
1962
1963        if (cpufreq_disabled())
1964                return -ENODEV;
1965
1966        /* Make sure that target_freq is within supported range */
1967        target_freq = clamp_val(target_freq, policy->min, policy->max);
1968
1969        pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1970                 policy->cpu, target_freq, relation, old_target_freq);
1971
1972        /*
1973         * This might look like a redundant call as we are checking it again
1974         * after finding index. But it is left intentionally for cases where
1975         * exactly same freq is called again and so we can save on few function
1976         * calls.
1977         */
1978        if (target_freq == policy->cur)
1979                return 0;
1980
1981        /* Save last value to restore later on errors */
1982        policy->restore_freq = policy->cur;
1983
1984        if (cpufreq_driver->target)
1985                return cpufreq_driver->target(policy, target_freq, relation);
1986
1987        if (!cpufreq_driver->target_index)
1988                return -EINVAL;
1989
1990        index = cpufreq_frequency_table_target(policy, target_freq, relation);
1991
1992        return __target_index(policy, index);
1993}
1994EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1995
1996int cpufreq_driver_target(struct cpufreq_policy *policy,
1997                          unsigned int target_freq,
1998                          unsigned int relation)
1999{
2000        int ret = -EINVAL;
2001
2002        down_write(&policy->rwsem);
2003
2004        ret = __cpufreq_driver_target(policy, target_freq, relation);
2005
2006        up_write(&policy->rwsem);
2007
2008        return ret;
2009}
2010EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2011
2012__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2013{
2014        return NULL;
2015}
2016
2017static int cpufreq_init_governor(struct cpufreq_policy *policy)
2018{
2019        int ret;
2020
2021        /* Don't start any governor operations if we are entering suspend */
2022        if (cpufreq_suspended)
2023                return 0;
2024        /*
2025         * Governor might not be initiated here if ACPI _PPC changed
2026         * notification happened, so check it.
2027         */
2028        if (!policy->governor)
2029                return -EINVAL;
2030
2031        /* Platform doesn't want dynamic frequency switching ? */
2032        if (policy->governor->dynamic_switching &&
2033            cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2034                struct cpufreq_governor *gov = cpufreq_fallback_governor();
2035
2036                if (gov) {
2037                        pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2038                                policy->governor->name, gov->name);
2039                        policy->governor = gov;
2040                } else {
2041                        return -EINVAL;
2042                }
2043        }
2044
2045        if (!try_module_get(policy->governor->owner))
2046                return -EINVAL;
2047
2048        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2049
2050        if (policy->governor->init) {
2051                ret = policy->governor->init(policy);
2052                if (ret) {
2053                        module_put(policy->governor->owner);
2054                        return ret;
2055                }
2056        }
2057
2058        return 0;
2059}
2060
2061static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2062{
2063        if (cpufreq_suspended || !policy->governor)
2064                return;
2065
2066        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2067
2068        if (policy->governor->exit)
2069                policy->governor->exit(policy);
2070
2071        module_put(policy->governor->owner);
2072}
2073
2074static int cpufreq_start_governor(struct cpufreq_policy *policy)
2075{
2076        int ret;
2077
2078        if (cpufreq_suspended)
2079                return 0;
2080
2081        if (!policy->governor)
2082                return -EINVAL;
2083
2084        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2085
2086        if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2087                cpufreq_update_current_freq(policy);
2088
2089        if (policy->governor->start) {
2090                ret = policy->governor->start(policy);
2091                if (ret)
2092                        return ret;
2093        }
2094
2095        if (policy->governor->limits)
2096                policy->governor->limits(policy);
2097
2098        return 0;
2099}
2100
2101static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2102{
2103        if (cpufreq_suspended || !policy->governor)
2104                return;
2105
2106        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2107
2108        if (policy->governor->stop)
2109                policy->governor->stop(policy);
2110}
2111
2112static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2113{
2114        if (cpufreq_suspended || !policy->governor)
2115                return;
2116
2117        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2118
2119        if (policy->governor->limits)
2120                policy->governor->limits(policy);
2121}
2122
2123int cpufreq_register_governor(struct cpufreq_governor *governor)
2124{
2125        int err;
2126
2127        if (!governor)
2128                return -EINVAL;
2129
2130        if (cpufreq_disabled())
2131                return -ENODEV;
2132
2133        mutex_lock(&cpufreq_governor_mutex);
2134
2135        err = -EBUSY;
2136        if (!find_governor(governor->name)) {
2137                err = 0;
2138                list_add(&governor->governor_list, &cpufreq_governor_list);
2139        }
2140
2141        mutex_unlock(&cpufreq_governor_mutex);
2142        return err;
2143}
2144EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2145
2146void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2147{
2148        struct cpufreq_policy *policy;
2149        unsigned long flags;
2150
2151        if (!governor)
2152                return;
2153
2154        if (cpufreq_disabled())
2155                return;
2156
2157        /* clear last_governor for all inactive policies */
2158        read_lock_irqsave(&cpufreq_driver_lock, flags);
2159        for_each_inactive_policy(policy) {
2160                if (!strcmp(policy->last_governor, governor->name)) {
2161                        policy->governor = NULL;
2162                        strcpy(policy->last_governor, "\0");
2163                }
2164        }
2165        read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2166
2167        mutex_lock(&cpufreq_governor_mutex);
2168        list_del(&governor->governor_list);
2169        mutex_unlock(&cpufreq_governor_mutex);
2170}
2171EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2172
2173
2174/*********************************************************************
2175 *                          POLICY INTERFACE                         *
2176 *********************************************************************/
2177
2178/**
2179 * cpufreq_get_policy - get the current cpufreq_policy
2180 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2181 *      is written
2182 *
2183 * Reads the current cpufreq policy.
2184 */
2185int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2186{
2187        struct cpufreq_policy *cpu_policy;
2188        if (!policy)
2189                return -EINVAL;
2190
2191        cpu_policy = cpufreq_cpu_get(cpu);
2192        if (!cpu_policy)
2193                return -EINVAL;
2194
2195        memcpy(policy, cpu_policy, sizeof(*policy));
2196
2197        cpufreq_cpu_put(cpu_policy);
2198        return 0;
2199}
2200EXPORT_SYMBOL(cpufreq_get_policy);
2201
2202/*
2203 * policy : current policy.
2204 * new_policy: policy to be set.
2205 */
2206static int cpufreq_set_policy(struct cpufreq_policy *policy,
2207                                struct cpufreq_policy *new_policy)
2208{
2209        struct cpufreq_governor *old_gov;
2210        int ret;
2211
2212        pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2213                 new_policy->cpu, new_policy->min, new_policy->max);
2214
2215        memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2216
2217        /*
2218        * This check works well when we store new min/max freq attributes,
2219        * because new_policy is a copy of policy with one field updated.
2220        */
2221        if (new_policy->min > new_policy->max)
2222                return -EINVAL;
2223
2224        /* verify the cpu speed can be set within this limit */
2225        ret = cpufreq_driver->verify(new_policy);
2226        if (ret)
2227                return ret;
2228
2229        /* adjust if necessary - all reasons */
2230        blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231                        CPUFREQ_ADJUST, new_policy);
2232
2233        /*
2234         * verify the cpu speed can be set within this limit, which might be
2235         * different to the first one
2236         */
2237        ret = cpufreq_driver->verify(new_policy);
2238        if (ret)
2239                return ret;
2240
2241        /* notification of the new policy */
2242        blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2243                        CPUFREQ_NOTIFY, new_policy);
2244
2245        policy->min = new_policy->min;
2246        policy->max = new_policy->max;
2247
2248        policy->cached_target_freq = UINT_MAX;
2249
2250        pr_debug("new min and max freqs are %u - %u kHz\n",
2251                 policy->min, policy->max);
2252
2253        if (cpufreq_driver->setpolicy) {
2254                policy->policy = new_policy->policy;
2255                pr_debug("setting range\n");
2256                return cpufreq_driver->setpolicy(new_policy);
2257        }
2258
2259        if (new_policy->governor == policy->governor) {
2260                pr_debug("cpufreq: governor limits update\n");
2261                cpufreq_governor_limits(policy);
2262                return 0;
2263        }
2264
2265        pr_debug("governor switch\n");
2266
2267        /* save old, working values */
2268        old_gov = policy->governor;
2269        /* end old governor */
2270        if (old_gov) {
2271                cpufreq_stop_governor(policy);
2272                cpufreq_exit_governor(policy);
2273        }
2274
2275        /* start new governor */
2276        policy->governor = new_policy->governor;
2277        ret = cpufreq_init_governor(policy);
2278        if (!ret) {
2279                ret = cpufreq_start_governor(policy);
2280                if (!ret) {
2281                        pr_debug("cpufreq: governor change\n");
2282                        return 0;
2283                }
2284                cpufreq_exit_governor(policy);
2285        }
2286
2287        /* new governor failed, so re-start old one */
2288        pr_debug("starting governor %s failed\n", policy->governor->name);
2289        if (old_gov) {
2290                policy->governor = old_gov;
2291                if (cpufreq_init_governor(policy))
2292                        policy->governor = NULL;
2293                else
2294                        cpufreq_start_governor(policy);
2295        }
2296
2297        return ret;
2298}
2299
2300/**
2301 *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
2302 *      @cpu: CPU which shall be re-evaluated
2303 *
2304 *      Useful for policy notifiers which have different necessities
2305 *      at different times.
2306 */
2307void cpufreq_update_policy(unsigned int cpu)
2308{
2309        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2310        struct cpufreq_policy new_policy;
2311
2312        if (!policy)
2313                return;
2314
2315        down_write(&policy->rwsem);
2316
2317        if (policy_is_inactive(policy))
2318                goto unlock;
2319
2320        pr_debug("updating policy for CPU %u\n", cpu);
2321        memcpy(&new_policy, policy, sizeof(*policy));
2322        new_policy.min = policy->user_policy.min;
2323        new_policy.max = policy->user_policy.max;
2324
2325        /*
2326         * BIOS might change freq behind our back
2327         * -> ask driver for current freq and notify governors about a change
2328         */
2329        if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2330                if (cpufreq_suspended)
2331                        goto unlock;
2332
2333                new_policy.cur = cpufreq_update_current_freq(policy);
2334                if (WARN_ON(!new_policy.cur))
2335                        goto unlock;
2336        }
2337
2338        cpufreq_set_policy(policy, &new_policy);
2339
2340unlock:
2341        up_write(&policy->rwsem);
2342
2343        cpufreq_cpu_put(policy);
2344}
2345EXPORT_SYMBOL(cpufreq_update_policy);
2346
2347/*********************************************************************
2348 *               BOOST                                               *
2349 *********************************************************************/
2350static int cpufreq_boost_set_sw(int state)
2351{
2352        struct cpufreq_policy *policy;
2353        int ret = -EINVAL;
2354
2355        for_each_active_policy(policy) {
2356                if (!policy->freq_table)
2357                        continue;
2358
2359                ret = cpufreq_frequency_table_cpuinfo(policy,
2360                                                      policy->freq_table);
2361                if (ret) {
2362                        pr_err("%s: Policy frequency update failed\n",
2363                               __func__);
2364                        break;
2365                }
2366
2367                down_write(&policy->rwsem);
2368                policy->user_policy.max = policy->max;
2369                cpufreq_governor_limits(policy);
2370                up_write(&policy->rwsem);
2371        }
2372
2373        return ret;
2374}
2375
2376int cpufreq_boost_trigger_state(int state)
2377{
2378        unsigned long flags;
2379        int ret = 0;
2380
2381        if (cpufreq_driver->boost_enabled == state)
2382                return 0;
2383
2384        write_lock_irqsave(&cpufreq_driver_lock, flags);
2385        cpufreq_driver->boost_enabled = state;
2386        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2387
2388        ret = cpufreq_driver->set_boost(state);
2389        if (ret) {
2390                write_lock_irqsave(&cpufreq_driver_lock, flags);
2391                cpufreq_driver->boost_enabled = !state;
2392                write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2393
2394                pr_err("%s: Cannot %s BOOST\n",
2395                       __func__, state ? "enable" : "disable");
2396        }
2397
2398        return ret;
2399}
2400
2401static bool cpufreq_boost_supported(void)
2402{
2403        return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2404}
2405
2406static int create_boost_sysfs_file(void)
2407{
2408        int ret;
2409
2410        ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2411        if (ret)
2412                pr_err("%s: cannot register global BOOST sysfs file\n",
2413                       __func__);
2414
2415        return ret;
2416}
2417
2418static void remove_boost_sysfs_file(void)
2419{
2420        if (cpufreq_boost_supported())
2421                sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2422}
2423
2424int cpufreq_enable_boost_support(void)
2425{
2426        if (!cpufreq_driver)
2427                return -EINVAL;
2428
2429        if (cpufreq_boost_supported())
2430                return 0;
2431
2432        cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2433
2434        /* This will get removed on driver unregister */
2435        return create_boost_sysfs_file();
2436}
2437EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2438
2439int cpufreq_boost_enabled(void)
2440{
2441        return cpufreq_driver->boost_enabled;
2442}
2443EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2444
2445/*********************************************************************
2446 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2447 *********************************************************************/
2448static enum cpuhp_state hp_online;
2449
2450static int cpuhp_cpufreq_online(unsigned int cpu)
2451{
2452        cpufreq_online(cpu);
2453
2454        return 0;
2455}
2456
2457static int cpuhp_cpufreq_offline(unsigned int cpu)
2458{
2459        cpufreq_offline(cpu);
2460
2461        return 0;
2462}
2463
2464/**
2465 * cpufreq_register_driver - register a CPU Frequency driver
2466 * @driver_data: A struct cpufreq_driver containing the values#
2467 * submitted by the CPU Frequency driver.
2468 *
2469 * Registers a CPU Frequency driver to this core code. This code
2470 * returns zero on success, -EEXIST when another driver got here first
2471 * (and isn't unregistered in the meantime).
2472 *
2473 */
2474int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2475{
2476        unsigned long flags;
2477        int ret;
2478
2479        if (cpufreq_disabled())
2480                return -ENODEV;
2481
2482        if (!driver_data || !driver_data->verify || !driver_data->init ||
2483            !(driver_data->setpolicy || driver_data->target_index ||
2484                    driver_data->target) ||
2485             (driver_data->setpolicy && (driver_data->target_index ||
2486                    driver_data->target)) ||
2487             (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2488                return -EINVAL;
2489
2490        pr_debug("trying to register driver %s\n", driver_data->name);
2491
2492        /* Protect against concurrent CPU online/offline. */
2493        cpus_read_lock();
2494
2495        write_lock_irqsave(&cpufreq_driver_lock, flags);
2496        if (cpufreq_driver) {
2497                write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2498                ret = -EEXIST;
2499                goto out;
2500        }
2501        cpufreq_driver = driver_data;
2502        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2503
2504        if (driver_data->setpolicy)
2505                driver_data->flags |= CPUFREQ_CONST_LOOPS;
2506
2507        if (cpufreq_boost_supported()) {
2508                ret = create_boost_sysfs_file();
2509                if (ret)
2510                        goto err_null_driver;
2511        }
2512
2513        ret = subsys_interface_register(&cpufreq_interface);
2514        if (ret)
2515                goto err_boost_unreg;
2516
2517        if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2518            list_empty(&cpufreq_policy_list)) {
2519                /* if all ->init() calls failed, unregister */
2520                ret = -ENODEV;
2521                pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2522                         driver_data->name);
2523                goto err_if_unreg;
2524        }
2525
2526        ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2527                                                   "cpufreq:online",
2528                                                   cpuhp_cpufreq_online,
2529                                                   cpuhp_cpufreq_offline);
2530        if (ret < 0)
2531                goto err_if_unreg;
2532        hp_online = ret;
2533        ret = 0;
2534
2535        pr_debug("driver %s up and running\n", driver_data->name);
2536        goto out;
2537
2538err_if_unreg:
2539        subsys_interface_unregister(&cpufreq_interface);
2540err_boost_unreg:
2541        remove_boost_sysfs_file();
2542err_null_driver:
2543        write_lock_irqsave(&cpufreq_driver_lock, flags);
2544        cpufreq_driver = NULL;
2545        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2546out:
2547        cpus_read_unlock();
2548        return ret;
2549}
2550EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2551
2552/**
2553 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2554 *
2555 * Unregister the current CPUFreq driver. Only call this if you have
2556 * the right to do so, i.e. if you have succeeded in initialising before!
2557 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2558 * currently not initialised.
2559 */
2560int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2561{
2562        unsigned long flags;
2563
2564        if (!cpufreq_driver || (driver != cpufreq_driver))
2565                return -EINVAL;
2566
2567        pr_debug("unregistering driver %s\n", driver->name);
2568
2569        /* Protect against concurrent cpu hotplug */
2570        cpus_read_lock();
2571        subsys_interface_unregister(&cpufreq_interface);
2572        remove_boost_sysfs_file();
2573        cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2574
2575        write_lock_irqsave(&cpufreq_driver_lock, flags);
2576
2577        cpufreq_driver = NULL;
2578
2579        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2580        cpus_read_unlock();
2581
2582        return 0;
2583}
2584EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2585
2586/*
2587 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2588 * or mutexes when secondary CPUs are halted.
2589 */
2590static struct syscore_ops cpufreq_syscore_ops = {
2591        .shutdown = cpufreq_suspend,
2592};
2593
2594struct kobject *cpufreq_global_kobject;
2595EXPORT_SYMBOL(cpufreq_global_kobject);
2596
2597static int __init cpufreq_core_init(void)
2598{
2599        if (cpufreq_disabled())
2600                return -ENODEV;
2601
2602        cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2603        BUG_ON(!cpufreq_global_kobject);
2604
2605        register_syscore_ops(&cpufreq_syscore_ops);
2606
2607        return 0;
2608}
2609module_param(off, int, 0444);
2610core_initcall(cpufreq_core_init);
2611