linux/drivers/crypto/atmel-ecc.c
<<
>>
Prefs
   1/*
   2 * Microchip / Atmel ECC (I2C) driver.
   3 *
   4 * Copyright (c) 2017, Microchip Technology Inc.
   5 * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
   6 *
   7 * This software is licensed under the terms of the GNU General Public
   8 * License version 2, as published by the Free Software Foundation, and
   9 * may be copied, distributed, and modified under those terms.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 */
  17
  18#include <linux/bitrev.h>
  19#include <linux/crc16.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/err.h>
  23#include <linux/errno.h>
  24#include <linux/i2c.h>
  25#include <linux/init.h>
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/of_device.h>
  29#include <linux/scatterlist.h>
  30#include <linux/slab.h>
  31#include <linux/workqueue.h>
  32#include <crypto/internal/kpp.h>
  33#include <crypto/ecdh.h>
  34#include <crypto/kpp.h>
  35#include "atmel-ecc.h"
  36
  37/* Used for binding tfm objects to i2c clients. */
  38struct atmel_ecc_driver_data {
  39        struct list_head i2c_client_list;
  40        spinlock_t i2c_list_lock;
  41} ____cacheline_aligned;
  42
  43static struct atmel_ecc_driver_data driver_data;
  44
  45/**
  46 * atmel_ecc_i2c_client_priv - i2c_client private data
  47 * @client              : pointer to i2c client device
  48 * @i2c_client_list_node: part of i2c_client_list
  49 * @lock                : lock for sending i2c commands
  50 * @wake_token          : wake token array of zeros
  51 * @wake_token_sz       : size in bytes of the wake_token
  52 * @tfm_count           : number of active crypto transformations on i2c client
  53 *
  54 * Reads and writes from/to the i2c client are sequential. The first byte
  55 * transmitted to the device is treated as the byte size. Any attempt to send
  56 * more than this number of bytes will cause the device to not ACK those bytes.
  57 * After the host writes a single command byte to the input buffer, reads are
  58 * prohibited until after the device completes command execution. Use a mutex
  59 * when sending i2c commands.
  60 */
  61struct atmel_ecc_i2c_client_priv {
  62        struct i2c_client *client;
  63        struct list_head i2c_client_list_node;
  64        struct mutex lock;
  65        u8 wake_token[WAKE_TOKEN_MAX_SIZE];
  66        size_t wake_token_sz;
  67        atomic_t tfm_count ____cacheline_aligned;
  68};
  69
  70/**
  71 * atmel_ecdh_ctx - transformation context
  72 * @client     : pointer to i2c client device
  73 * @fallback   : used for unsupported curves or when user wants to use its own
  74 *               private key.
  75 * @public_key : generated when calling set_secret(). It's the responsibility
  76 *               of the user to not call set_secret() while
  77 *               generate_public_key() or compute_shared_secret() are in flight.
  78 * @curve_id   : elliptic curve id
  79 * @n_sz       : size in bytes of the n prime
  80 * @do_fallback: true when the device doesn't support the curve or when the user
  81 *               wants to use its own private key.
  82 */
  83struct atmel_ecdh_ctx {
  84        struct i2c_client *client;
  85        struct crypto_kpp *fallback;
  86        const u8 *public_key;
  87        unsigned int curve_id;
  88        size_t n_sz;
  89        bool do_fallback;
  90};
  91
  92/**
  93 * atmel_ecc_work_data - data structure representing the work
  94 * @ctx : transformation context.
  95 * @cbk : pointer to a callback function to be invoked upon completion of this
  96 *        request. This has the form:
  97 *        callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
  98 *        where:
  99 *        @work_data: data structure representing the work
 100 *        @areq     : optional pointer to an argument passed with the original
 101 *                    request.
 102 *        @status   : status returned from the i2c client device or i2c error.
 103 * @areq: optional pointer to a user argument for use at callback time.
 104 * @work: describes the task to be executed.
 105 * @cmd : structure used for communicating with the device.
 106 */
 107struct atmel_ecc_work_data {
 108        struct atmel_ecdh_ctx *ctx;
 109        void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
 110                    int status);
 111        void *areq;
 112        struct work_struct work;
 113        struct atmel_ecc_cmd cmd;
 114};
 115
 116static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
 117{
 118        return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
 119}
 120
 121/**
 122 * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
 123 * CRC16 verification of the count, opcode, param1, param2 and data bytes.
 124 * The checksum is saved in little-endian format in the least significant
 125 * two bytes of the command. CRC polynomial is 0x8005 and the initial register
 126 * value should be zero.
 127 *
 128 * @cmd : structure used for communicating with the device.
 129 */
 130static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
 131{
 132        u8 *data = &cmd->count;
 133        size_t len = cmd->count - CRC_SIZE;
 134        u16 *crc16 = (u16 *)(data + len);
 135
 136        *crc16 = atmel_ecc_crc16(0, data, len);
 137}
 138
 139static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
 140{
 141        cmd->word_addr = COMMAND;
 142        cmd->opcode = OPCODE_READ;
 143        /*
 144         * Read the word from Configuration zone that contains the lock bytes
 145         * (UserExtra, Selector, LockValue, LockConfig).
 146         */
 147        cmd->param1 = CONFIG_ZONE;
 148        cmd->param2 = DEVICE_LOCK_ADDR;
 149        cmd->count = READ_COUNT;
 150
 151        atmel_ecc_checksum(cmd);
 152
 153        cmd->msecs = MAX_EXEC_TIME_READ;
 154        cmd->rxsize = READ_RSP_SIZE;
 155}
 156
 157static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
 158{
 159        cmd->word_addr = COMMAND;
 160        cmd->count = GENKEY_COUNT;
 161        cmd->opcode = OPCODE_GENKEY;
 162        cmd->param1 = GENKEY_MODE_PRIVATE;
 163        /* a random private key will be generated and stored in slot keyID */
 164        cmd->param2 = cpu_to_le16(keyid);
 165
 166        atmel_ecc_checksum(cmd);
 167
 168        cmd->msecs = MAX_EXEC_TIME_GENKEY;
 169        cmd->rxsize = GENKEY_RSP_SIZE;
 170}
 171
 172static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
 173                                   struct scatterlist *pubkey)
 174{
 175        size_t copied;
 176
 177        cmd->word_addr = COMMAND;
 178        cmd->count = ECDH_COUNT;
 179        cmd->opcode = OPCODE_ECDH;
 180        cmd->param1 = ECDH_PREFIX_MODE;
 181        /* private key slot */
 182        cmd->param2 = cpu_to_le16(DATA_SLOT_2);
 183
 184        /*
 185         * The device only supports NIST P256 ECC keys. The public key size will
 186         * always be the same. Use a macro for the key size to avoid unnecessary
 187         * computations.
 188         */
 189        copied = sg_copy_to_buffer(pubkey, 1, cmd->data, ATMEL_ECC_PUBKEY_SIZE);
 190        if (copied != ATMEL_ECC_PUBKEY_SIZE)
 191                return -EINVAL;
 192
 193        atmel_ecc_checksum(cmd);
 194
 195        cmd->msecs = MAX_EXEC_TIME_ECDH;
 196        cmd->rxsize = ECDH_RSP_SIZE;
 197
 198        return 0;
 199}
 200
 201/*
 202 * After wake and after execution of a command, there will be error, status, or
 203 * result bytes in the device's output register that can be retrieved by the
 204 * system. When the length of that group is four bytes, the codes returned are
 205 * detailed in error_list.
 206 */
 207static int atmel_ecc_status(struct device *dev, u8 *status)
 208{
 209        size_t err_list_len = ARRAY_SIZE(error_list);
 210        int i;
 211        u8 err_id = status[1];
 212
 213        if (*status != STATUS_SIZE)
 214                return 0;
 215
 216        if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
 217                return 0;
 218
 219        for (i = 0; i < err_list_len; i++)
 220                if (error_list[i].value == err_id)
 221                        break;
 222
 223        /* if err_id is not in the error_list then ignore it */
 224        if (i != err_list_len) {
 225                dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
 226                return err_id;
 227        }
 228
 229        return 0;
 230}
 231
 232static int atmel_ecc_wakeup(struct i2c_client *client)
 233{
 234        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 235        u8 status[STATUS_RSP_SIZE];
 236        int ret;
 237
 238        /*
 239         * The device ignores any levels or transitions on the SCL pin when the
 240         * device is idle, asleep or during waking up. Don't check for error
 241         * when waking up the device.
 242         */
 243        i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
 244
 245        /*
 246         * Wait to wake the device. Typical execution times for ecdh and genkey
 247         * are around tens of milliseconds. Delta is chosen to 50 microseconds.
 248         */
 249        usleep_range(TWHI_MIN, TWHI_MAX);
 250
 251        ret = i2c_master_recv(client, status, STATUS_SIZE);
 252        if (ret < 0)
 253                return ret;
 254
 255        return atmel_ecc_status(&client->dev, status);
 256}
 257
 258static int atmel_ecc_sleep(struct i2c_client *client)
 259{
 260        u8 sleep = SLEEP_TOKEN;
 261
 262        return i2c_master_send(client, &sleep, 1);
 263}
 264
 265static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
 266                            int status)
 267{
 268        struct kpp_request *req = areq;
 269        struct atmel_ecdh_ctx *ctx = work_data->ctx;
 270        struct atmel_ecc_cmd *cmd = &work_data->cmd;
 271        size_t copied;
 272        size_t n_sz = ctx->n_sz;
 273
 274        if (status)
 275                goto free_work_data;
 276
 277        /* copy the shared secret */
 278        copied = sg_copy_from_buffer(req->dst, 1, &cmd->data[RSP_DATA_IDX],
 279                                     n_sz);
 280        if (copied != n_sz)
 281                status = -EINVAL;
 282
 283        /* fall through */
 284free_work_data:
 285        kzfree(work_data);
 286        kpp_request_complete(req, status);
 287}
 288
 289/*
 290 * atmel_ecc_send_receive() - send a command to the device and receive its
 291 *                            response.
 292 * @client: i2c client device
 293 * @cmd   : structure used to communicate with the device
 294 *
 295 * After the device receives a Wake token, a watchdog counter starts within the
 296 * device. After the watchdog timer expires, the device enters sleep mode
 297 * regardless of whether some I/O transmission or command execution is in
 298 * progress. If a command is attempted when insufficient time remains prior to
 299 * watchdog timer execution, the device will return the watchdog timeout error
 300 * code without attempting to execute the command. There is no way to reset the
 301 * counter other than to put the device into sleep or idle mode and then
 302 * wake it up again.
 303 */
 304static int atmel_ecc_send_receive(struct i2c_client *client,
 305                                  struct atmel_ecc_cmd *cmd)
 306{
 307        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 308        int ret;
 309
 310        mutex_lock(&i2c_priv->lock);
 311
 312        ret = atmel_ecc_wakeup(client);
 313        if (ret)
 314                goto err;
 315
 316        /* send the command */
 317        ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
 318        if (ret < 0)
 319                goto err;
 320
 321        /* delay the appropriate amount of time for command to execute */
 322        msleep(cmd->msecs);
 323
 324        /* receive the response */
 325        ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
 326        if (ret < 0)
 327                goto err;
 328
 329        /* put the device into low-power mode */
 330        ret = atmel_ecc_sleep(client);
 331        if (ret < 0)
 332                goto err;
 333
 334        mutex_unlock(&i2c_priv->lock);
 335        return atmel_ecc_status(&client->dev, cmd->data);
 336err:
 337        mutex_unlock(&i2c_priv->lock);
 338        return ret;
 339}
 340
 341static void atmel_ecc_work_handler(struct work_struct *work)
 342{
 343        struct atmel_ecc_work_data *work_data =
 344                        container_of(work, struct atmel_ecc_work_data, work);
 345        struct atmel_ecc_cmd *cmd = &work_data->cmd;
 346        struct i2c_client *client = work_data->ctx->client;
 347        int status;
 348
 349        status = atmel_ecc_send_receive(client, cmd);
 350        work_data->cbk(work_data, work_data->areq, status);
 351}
 352
 353static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
 354                              void (*cbk)(struct atmel_ecc_work_data *work_data,
 355                                          void *areq, int status),
 356                              void *areq)
 357{
 358        work_data->cbk = (void *)cbk;
 359        work_data->areq = areq;
 360
 361        INIT_WORK(&work_data->work, atmel_ecc_work_handler);
 362        schedule_work(&work_data->work);
 363}
 364
 365static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
 366{
 367        if (curve_id == ECC_CURVE_NIST_P256)
 368                return ATMEL_ECC_NIST_P256_N_SIZE;
 369
 370        return 0;
 371}
 372
 373/*
 374 * A random private key is generated and stored in the device. The device
 375 * returns the pair public key.
 376 */
 377static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
 378                                 unsigned int len)
 379{
 380        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 381        struct atmel_ecc_cmd *cmd;
 382        void *public_key;
 383        struct ecdh params;
 384        int ret = -ENOMEM;
 385
 386        /* free the old public key, if any */
 387        kfree(ctx->public_key);
 388        /* make sure you don't free the old public key twice */
 389        ctx->public_key = NULL;
 390
 391        if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
 392                dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
 393                return -EINVAL;
 394        }
 395
 396        ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
 397        if (!ctx->n_sz || params.key_size) {
 398                /* fallback to ecdh software implementation */
 399                ctx->do_fallback = true;
 400                return crypto_kpp_set_secret(ctx->fallback, buf, len);
 401        }
 402
 403        cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
 404        if (!cmd)
 405                return -ENOMEM;
 406
 407        /*
 408         * The device only supports NIST P256 ECC keys. The public key size will
 409         * always be the same. Use a macro for the key size to avoid unnecessary
 410         * computations.
 411         */
 412        public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
 413        if (!public_key)
 414                goto free_cmd;
 415
 416        ctx->do_fallback = false;
 417        ctx->curve_id = params.curve_id;
 418
 419        atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);
 420
 421        ret = atmel_ecc_send_receive(ctx->client, cmd);
 422        if (ret)
 423                goto free_public_key;
 424
 425        /* save the public key */
 426        memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
 427        ctx->public_key = public_key;
 428
 429        kfree(cmd);
 430        return 0;
 431
 432free_public_key:
 433        kfree(public_key);
 434free_cmd:
 435        kfree(cmd);
 436        return ret;
 437}
 438
 439static int atmel_ecdh_generate_public_key(struct kpp_request *req)
 440{
 441        struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
 442        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 443        size_t copied;
 444        int ret = 0;
 445
 446        if (ctx->do_fallback) {
 447                kpp_request_set_tfm(req, ctx->fallback);
 448                return crypto_kpp_generate_public_key(req);
 449        }
 450
 451        /* public key was saved at private key generation */
 452        copied = sg_copy_from_buffer(req->dst, 1, ctx->public_key,
 453                                     ATMEL_ECC_PUBKEY_SIZE);
 454        if (copied != ATMEL_ECC_PUBKEY_SIZE)
 455                ret = -EINVAL;
 456
 457        return ret;
 458}
 459
 460static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
 461{
 462        struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
 463        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 464        struct atmel_ecc_work_data *work_data;
 465        gfp_t gfp;
 466        int ret;
 467
 468        if (ctx->do_fallback) {
 469                kpp_request_set_tfm(req, ctx->fallback);
 470                return crypto_kpp_compute_shared_secret(req);
 471        }
 472
 473        gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
 474                                                             GFP_ATOMIC;
 475
 476        work_data = kmalloc(sizeof(*work_data), gfp);
 477        if (!work_data)
 478                return -ENOMEM;
 479
 480        work_data->ctx = ctx;
 481
 482        ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
 483        if (ret)
 484                goto free_work_data;
 485
 486        atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);
 487
 488        return -EINPROGRESS;
 489
 490free_work_data:
 491        kfree(work_data);
 492        return ret;
 493}
 494
 495static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
 496{
 497        struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
 498        struct i2c_client *client = ERR_PTR(-ENODEV);
 499        int min_tfm_cnt = INT_MAX;
 500        int tfm_cnt;
 501
 502        spin_lock(&driver_data.i2c_list_lock);
 503
 504        if (list_empty(&driver_data.i2c_client_list)) {
 505                spin_unlock(&driver_data.i2c_list_lock);
 506                return ERR_PTR(-ENODEV);
 507        }
 508
 509        list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
 510                            i2c_client_list_node) {
 511                tfm_cnt = atomic_read(&i2c_priv->tfm_count);
 512                if (tfm_cnt < min_tfm_cnt) {
 513                        min_tfm_cnt = tfm_cnt;
 514                        min_i2c_priv = i2c_priv;
 515                }
 516                if (!min_tfm_cnt)
 517                        break;
 518        }
 519
 520        if (min_i2c_priv) {
 521                atomic_inc(&min_i2c_priv->tfm_count);
 522                client = min_i2c_priv->client;
 523        }
 524
 525        spin_unlock(&driver_data.i2c_list_lock);
 526
 527        return client;
 528}
 529
 530static void atmel_ecc_i2c_client_free(struct i2c_client *client)
 531{
 532        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 533
 534        atomic_dec(&i2c_priv->tfm_count);
 535}
 536
 537static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
 538{
 539        const char *alg = kpp_alg_name(tfm);
 540        struct crypto_kpp *fallback;
 541        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 542
 543        ctx->client = atmel_ecc_i2c_client_alloc();
 544        if (IS_ERR(ctx->client)) {
 545                pr_err("tfm - i2c_client binding failed\n");
 546                return PTR_ERR(ctx->client);
 547        }
 548
 549        fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
 550        if (IS_ERR(fallback)) {
 551                dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
 552                        alg, PTR_ERR(fallback));
 553                return PTR_ERR(fallback);
 554        }
 555
 556        crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
 557
 558        dev_info(&ctx->client->dev, "Using '%s' as fallback implementation.\n",
 559                 crypto_tfm_alg_driver_name(crypto_kpp_tfm(fallback)));
 560
 561        ctx->fallback = fallback;
 562
 563        return 0;
 564}
 565
 566static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
 567{
 568        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 569
 570        kfree(ctx->public_key);
 571        crypto_free_kpp(ctx->fallback);
 572        atmel_ecc_i2c_client_free(ctx->client);
 573}
 574
 575static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
 576{
 577        struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
 578
 579        if (ctx->fallback)
 580                return crypto_kpp_maxsize(ctx->fallback);
 581
 582        /*
 583         * The device only supports NIST P256 ECC keys. The public key size will
 584         * always be the same. Use a macro for the key size to avoid unnecessary
 585         * computations.
 586         */
 587        return ATMEL_ECC_PUBKEY_SIZE;
 588}
 589
 590static struct kpp_alg atmel_ecdh = {
 591        .set_secret = atmel_ecdh_set_secret,
 592        .generate_public_key = atmel_ecdh_generate_public_key,
 593        .compute_shared_secret = atmel_ecdh_compute_shared_secret,
 594        .init = atmel_ecdh_init_tfm,
 595        .exit = atmel_ecdh_exit_tfm,
 596        .max_size = atmel_ecdh_max_size,
 597        .base = {
 598                .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
 599                .cra_name = "ecdh",
 600                .cra_driver_name = "atmel-ecdh",
 601                .cra_priority = ATMEL_ECC_PRIORITY,
 602                .cra_module = THIS_MODULE,
 603                .cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
 604        },
 605};
 606
 607static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
 608{
 609        u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
 610
 611        /* return the size of the wake_token in bytes */
 612        return DIV_ROUND_UP(no_of_bits, 8);
 613}
 614
 615static int device_sanity_check(struct i2c_client *client)
 616{
 617        struct atmel_ecc_cmd *cmd;
 618        int ret;
 619
 620        cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
 621        if (!cmd)
 622                return -ENOMEM;
 623
 624        atmel_ecc_init_read_cmd(cmd);
 625
 626        ret = atmel_ecc_send_receive(client, cmd);
 627        if (ret)
 628                goto free_cmd;
 629
 630        /*
 631         * It is vital that the Configuration, Data and OTP zones be locked
 632         * prior to release into the field of the system containing the device.
 633         * Failure to lock these zones may permit modification of any secret
 634         * keys and may lead to other security problems.
 635         */
 636        if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
 637                dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
 638                ret = -ENOTSUPP;
 639        }
 640
 641        /* fall through */
 642free_cmd:
 643        kfree(cmd);
 644        return ret;
 645}
 646
 647static int atmel_ecc_probe(struct i2c_client *client,
 648                           const struct i2c_device_id *id)
 649{
 650        struct atmel_ecc_i2c_client_priv *i2c_priv;
 651        struct device *dev = &client->dev;
 652        int ret;
 653        u32 bus_clk_rate;
 654
 655        if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
 656                dev_err(dev, "I2C_FUNC_I2C not supported\n");
 657                return -ENODEV;
 658        }
 659
 660        ret = of_property_read_u32(client->adapter->dev.of_node,
 661                                   "clock-frequency", &bus_clk_rate);
 662        if (ret) {
 663                dev_err(dev, "of: failed to read clock-frequency property\n");
 664                return ret;
 665        }
 666
 667        if (bus_clk_rate > 1000000L) {
 668                dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
 669                        bus_clk_rate);
 670                return -EINVAL;
 671        }
 672
 673        i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
 674        if (!i2c_priv)
 675                return -ENOMEM;
 676
 677        i2c_priv->client = client;
 678        mutex_init(&i2c_priv->lock);
 679
 680        /*
 681         * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
 682         * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
 683         * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
 684         */
 685        i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);
 686
 687        memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
 688
 689        atomic_set(&i2c_priv->tfm_count, 0);
 690
 691        i2c_set_clientdata(client, i2c_priv);
 692
 693        ret = device_sanity_check(client);
 694        if (ret)
 695                return ret;
 696
 697        spin_lock(&driver_data.i2c_list_lock);
 698        list_add_tail(&i2c_priv->i2c_client_list_node,
 699                      &driver_data.i2c_client_list);
 700        spin_unlock(&driver_data.i2c_list_lock);
 701
 702        ret = crypto_register_kpp(&atmel_ecdh);
 703        if (ret) {
 704                spin_lock(&driver_data.i2c_list_lock);
 705                list_del(&i2c_priv->i2c_client_list_node);
 706                spin_unlock(&driver_data.i2c_list_lock);
 707
 708                dev_err(dev, "%s alg registration failed\n",
 709                        atmel_ecdh.base.cra_driver_name);
 710        } else {
 711                dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
 712        }
 713
 714        return ret;
 715}
 716
 717static int atmel_ecc_remove(struct i2c_client *client)
 718{
 719        struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
 720
 721        /* Return EBUSY if i2c client already allocated. */
 722        if (atomic_read(&i2c_priv->tfm_count)) {
 723                dev_err(&client->dev, "Device is busy\n");
 724                return -EBUSY;
 725        }
 726
 727        crypto_unregister_kpp(&atmel_ecdh);
 728
 729        spin_lock(&driver_data.i2c_list_lock);
 730        list_del(&i2c_priv->i2c_client_list_node);
 731        spin_unlock(&driver_data.i2c_list_lock);
 732
 733        return 0;
 734}
 735
 736#ifdef CONFIG_OF
 737static const struct of_device_id atmel_ecc_dt_ids[] = {
 738        {
 739                .compatible = "atmel,atecc508a",
 740        }, {
 741                /* sentinel */
 742        }
 743};
 744MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
 745#endif
 746
 747static const struct i2c_device_id atmel_ecc_id[] = {
 748        { "atecc508a", 0 },
 749        { }
 750};
 751MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
 752
 753static struct i2c_driver atmel_ecc_driver = {
 754        .driver = {
 755                .name   = "atmel-ecc",
 756                .of_match_table = of_match_ptr(atmel_ecc_dt_ids),
 757        },
 758        .probe          = atmel_ecc_probe,
 759        .remove         = atmel_ecc_remove,
 760        .id_table       = atmel_ecc_id,
 761};
 762
 763static int __init atmel_ecc_init(void)
 764{
 765        spin_lock_init(&driver_data.i2c_list_lock);
 766        INIT_LIST_HEAD(&driver_data.i2c_client_list);
 767        return i2c_add_driver(&atmel_ecc_driver);
 768}
 769
 770static void __exit atmel_ecc_exit(void)
 771{
 772        flush_scheduled_work();
 773        i2c_del_driver(&atmel_ecc_driver);
 774}
 775
 776module_init(atmel_ecc_init);
 777module_exit(atmel_ecc_exit);
 778
 779MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
 780MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
 781MODULE_LICENSE("GPL v2");
 782