linux/drivers/crypto/s5p-sss.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Cryptographic API.
   4//
   5// Support for Samsung S5PV210 and Exynos HW acceleration.
   6//
   7// Copyright (C) 2011 NetUP Inc. All rights reserved.
   8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
   9//
  10// Hash part based on omap-sham.c driver.
  11
  12#include <linux/clk.h>
  13#include <linux/crypto.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/errno.h>
  17#include <linux/init.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
  24#include <linux/scatterlist.h>
  25
  26#include <crypto/ctr.h>
  27#include <crypto/aes.h>
  28#include <crypto/algapi.h>
  29#include <crypto/scatterwalk.h>
  30
  31#include <crypto/hash.h>
  32#include <crypto/md5.h>
  33#include <crypto/sha.h>
  34#include <crypto/internal/hash.h>
  35
  36#define _SBF(s, v)                      ((v) << (s))
  37
  38/* Feed control registers */
  39#define SSS_REG_FCINTSTAT               0x0000
  40#define SSS_FCINTSTAT_HPARTINT          BIT(7)
  41#define SSS_FCINTSTAT_HDONEINT          BIT(5)
  42#define SSS_FCINTSTAT_BRDMAINT          BIT(3)
  43#define SSS_FCINTSTAT_BTDMAINT          BIT(2)
  44#define SSS_FCINTSTAT_HRDMAINT          BIT(1)
  45#define SSS_FCINTSTAT_PKDMAINT          BIT(0)
  46
  47#define SSS_REG_FCINTENSET              0x0004
  48#define SSS_FCINTENSET_HPARTINTENSET    BIT(7)
  49#define SSS_FCINTENSET_HDONEINTENSET    BIT(5)
  50#define SSS_FCINTENSET_BRDMAINTENSET    BIT(3)
  51#define SSS_FCINTENSET_BTDMAINTENSET    BIT(2)
  52#define SSS_FCINTENSET_HRDMAINTENSET    BIT(1)
  53#define SSS_FCINTENSET_PKDMAINTENSET    BIT(0)
  54
  55#define SSS_REG_FCINTENCLR              0x0008
  56#define SSS_FCINTENCLR_HPARTINTENCLR    BIT(7)
  57#define SSS_FCINTENCLR_HDONEINTENCLR    BIT(5)
  58#define SSS_FCINTENCLR_BRDMAINTENCLR    BIT(3)
  59#define SSS_FCINTENCLR_BTDMAINTENCLR    BIT(2)
  60#define SSS_FCINTENCLR_HRDMAINTENCLR    BIT(1)
  61#define SSS_FCINTENCLR_PKDMAINTENCLR    BIT(0)
  62
  63#define SSS_REG_FCINTPEND               0x000C
  64#define SSS_FCINTPEND_HPARTINTP         BIT(7)
  65#define SSS_FCINTPEND_HDONEINTP         BIT(5)
  66#define SSS_FCINTPEND_BRDMAINTP         BIT(3)
  67#define SSS_FCINTPEND_BTDMAINTP         BIT(2)
  68#define SSS_FCINTPEND_HRDMAINTP         BIT(1)
  69#define SSS_FCINTPEND_PKDMAINTP         BIT(0)
  70
  71#define SSS_REG_FCFIFOSTAT              0x0010
  72#define SSS_FCFIFOSTAT_BRFIFOFUL        BIT(7)
  73#define SSS_FCFIFOSTAT_BRFIFOEMP        BIT(6)
  74#define SSS_FCFIFOSTAT_BTFIFOFUL        BIT(5)
  75#define SSS_FCFIFOSTAT_BTFIFOEMP        BIT(4)
  76#define SSS_FCFIFOSTAT_HRFIFOFUL        BIT(3)
  77#define SSS_FCFIFOSTAT_HRFIFOEMP        BIT(2)
  78#define SSS_FCFIFOSTAT_PKFIFOFUL        BIT(1)
  79#define SSS_FCFIFOSTAT_PKFIFOEMP        BIT(0)
  80
  81#define SSS_REG_FCFIFOCTRL              0x0014
  82#define SSS_FCFIFOCTRL_DESSEL           BIT(2)
  83#define SSS_HASHIN_INDEPENDENT          _SBF(0, 0x00)
  84#define SSS_HASHIN_CIPHER_INPUT         _SBF(0, 0x01)
  85#define SSS_HASHIN_CIPHER_OUTPUT        _SBF(0, 0x02)
  86#define SSS_HASHIN_MASK                 _SBF(0, 0x03)
  87
  88#define SSS_REG_FCBRDMAS                0x0020
  89#define SSS_REG_FCBRDMAL                0x0024
  90#define SSS_REG_FCBRDMAC                0x0028
  91#define SSS_FCBRDMAC_BYTESWAP           BIT(1)
  92#define SSS_FCBRDMAC_FLUSH              BIT(0)
  93
  94#define SSS_REG_FCBTDMAS                0x0030
  95#define SSS_REG_FCBTDMAL                0x0034
  96#define SSS_REG_FCBTDMAC                0x0038
  97#define SSS_FCBTDMAC_BYTESWAP           BIT(1)
  98#define SSS_FCBTDMAC_FLUSH              BIT(0)
  99
 100#define SSS_REG_FCHRDMAS                0x0040
 101#define SSS_REG_FCHRDMAL                0x0044
 102#define SSS_REG_FCHRDMAC                0x0048
 103#define SSS_FCHRDMAC_BYTESWAP           BIT(1)
 104#define SSS_FCHRDMAC_FLUSH              BIT(0)
 105
 106#define SSS_REG_FCPKDMAS                0x0050
 107#define SSS_REG_FCPKDMAL                0x0054
 108#define SSS_REG_FCPKDMAC                0x0058
 109#define SSS_FCPKDMAC_BYTESWAP           BIT(3)
 110#define SSS_FCPKDMAC_DESCEND            BIT(2)
 111#define SSS_FCPKDMAC_TRANSMIT           BIT(1)
 112#define SSS_FCPKDMAC_FLUSH              BIT(0)
 113
 114#define SSS_REG_FCPKDMAO                0x005C
 115
 116/* AES registers */
 117#define SSS_REG_AES_CONTROL             0x00
 118#define SSS_AES_BYTESWAP_DI             BIT(11)
 119#define SSS_AES_BYTESWAP_DO             BIT(10)
 120#define SSS_AES_BYTESWAP_IV             BIT(9)
 121#define SSS_AES_BYTESWAP_CNT            BIT(8)
 122#define SSS_AES_BYTESWAP_KEY            BIT(7)
 123#define SSS_AES_KEY_CHANGE_MODE         BIT(6)
 124#define SSS_AES_KEY_SIZE_128            _SBF(4, 0x00)
 125#define SSS_AES_KEY_SIZE_192            _SBF(4, 0x01)
 126#define SSS_AES_KEY_SIZE_256            _SBF(4, 0x02)
 127#define SSS_AES_FIFO_MODE               BIT(3)
 128#define SSS_AES_CHAIN_MODE_ECB          _SBF(1, 0x00)
 129#define SSS_AES_CHAIN_MODE_CBC          _SBF(1, 0x01)
 130#define SSS_AES_CHAIN_MODE_CTR          _SBF(1, 0x02)
 131#define SSS_AES_MODE_DECRYPT            BIT(0)
 132
 133#define SSS_REG_AES_STATUS              0x04
 134#define SSS_AES_BUSY                    BIT(2)
 135#define SSS_AES_INPUT_READY             BIT(1)
 136#define SSS_AES_OUTPUT_READY            BIT(0)
 137
 138#define SSS_REG_AES_IN_DATA(s)          (0x10 + (s << 2))
 139#define SSS_REG_AES_OUT_DATA(s)         (0x20 + (s << 2))
 140#define SSS_REG_AES_IV_DATA(s)          (0x30 + (s << 2))
 141#define SSS_REG_AES_CNT_DATA(s)         (0x40 + (s << 2))
 142#define SSS_REG_AES_KEY_DATA(s)         (0x80 + (s << 2))
 143
 144#define SSS_REG(dev, reg)               ((dev)->ioaddr + (SSS_REG_##reg))
 145#define SSS_READ(dev, reg)              __raw_readl(SSS_REG(dev, reg))
 146#define SSS_WRITE(dev, reg, val)        __raw_writel((val), SSS_REG(dev, reg))
 147
 148#define SSS_AES_REG(dev, reg)           ((dev)->aes_ioaddr + SSS_REG_##reg)
 149#define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
 150                                                SSS_AES_REG(dev, reg))
 151
 152/* HW engine modes */
 153#define FLAGS_AES_DECRYPT               BIT(0)
 154#define FLAGS_AES_MODE_MASK             _SBF(1, 0x03)
 155#define FLAGS_AES_CBC                   _SBF(1, 0x01)
 156#define FLAGS_AES_CTR                   _SBF(1, 0x02)
 157
 158#define AES_KEY_LEN                     16
 159#define CRYPTO_QUEUE_LEN                1
 160
 161/* HASH registers */
 162#define SSS_REG_HASH_CTRL               0x00
 163
 164#define SSS_HASH_USER_IV_EN             BIT(5)
 165#define SSS_HASH_INIT_BIT               BIT(4)
 166#define SSS_HASH_ENGINE_SHA1            _SBF(1, 0x00)
 167#define SSS_HASH_ENGINE_MD5             _SBF(1, 0x01)
 168#define SSS_HASH_ENGINE_SHA256          _SBF(1, 0x02)
 169
 170#define SSS_HASH_ENGINE_MASK            _SBF(1, 0x03)
 171
 172#define SSS_REG_HASH_CTRL_PAUSE         0x04
 173
 174#define SSS_HASH_PAUSE                  BIT(0)
 175
 176#define SSS_REG_HASH_CTRL_FIFO          0x08
 177
 178#define SSS_HASH_FIFO_MODE_DMA          BIT(0)
 179#define SSS_HASH_FIFO_MODE_CPU          0
 180
 181#define SSS_REG_HASH_CTRL_SWAP          0x0C
 182
 183#define SSS_HASH_BYTESWAP_DI            BIT(3)
 184#define SSS_HASH_BYTESWAP_DO            BIT(2)
 185#define SSS_HASH_BYTESWAP_IV            BIT(1)
 186#define SSS_HASH_BYTESWAP_KEY           BIT(0)
 187
 188#define SSS_REG_HASH_STATUS             0x10
 189
 190#define SSS_HASH_STATUS_MSG_DONE        BIT(6)
 191#define SSS_HASH_STATUS_PARTIAL_DONE    BIT(4)
 192#define SSS_HASH_STATUS_BUFFER_READY    BIT(0)
 193
 194#define SSS_REG_HASH_MSG_SIZE_LOW       0x20
 195#define SSS_REG_HASH_MSG_SIZE_HIGH      0x24
 196
 197#define SSS_REG_HASH_PRE_MSG_SIZE_LOW   0x28
 198#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH  0x2C
 199
 200#define SSS_REG_HASH_IV(s)              (0xB0 + ((s) << 2))
 201#define SSS_REG_HASH_OUT(s)             (0x100 + ((s) << 2))
 202
 203#define HASH_BLOCK_SIZE                 64
 204#define HASH_REG_SIZEOF                 4
 205#define HASH_MD5_MAX_REG                (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
 206#define HASH_SHA1_MAX_REG               (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
 207#define HASH_SHA256_MAX_REG             (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
 208
 209/*
 210 * HASH bit numbers, used by device, setting in dev->hash_flags with
 211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
 212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
 213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
 214 */
 215#define HASH_FLAGS_BUSY         0
 216#define HASH_FLAGS_FINAL        1
 217#define HASH_FLAGS_DMA_ACTIVE   2
 218#define HASH_FLAGS_OUTPUT_READY 3
 219#define HASH_FLAGS_DMA_READY    4
 220#define HASH_FLAGS_SGS_COPIED   5
 221#define HASH_FLAGS_SGS_ALLOCED  6
 222
 223/* HASH HW constants */
 224#define BUFLEN                  HASH_BLOCK_SIZE
 225
 226#define SSS_HASH_DMA_LEN_ALIGN  8
 227#define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
 228
 229#define SSS_HASH_QUEUE_LENGTH   10
 230
 231/**
 232 * struct samsung_aes_variant - platform specific SSS driver data
 233 * @aes_offset: AES register offset from SSS module's base.
 234 * @hash_offset: HASH register offset from SSS module's base.
 235 *
 236 * Specifies platform specific configuration of SSS module.
 237 * Note: A structure for driver specific platform data is used for future
 238 * expansion of its usage.
 239 */
 240struct samsung_aes_variant {
 241        unsigned int                    aes_offset;
 242        unsigned int                    hash_offset;
 243};
 244
 245struct s5p_aes_reqctx {
 246        unsigned long                   mode;
 247};
 248
 249struct s5p_aes_ctx {
 250        struct s5p_aes_dev              *dev;
 251
 252        uint8_t                         aes_key[AES_MAX_KEY_SIZE];
 253        uint8_t                         nonce[CTR_RFC3686_NONCE_SIZE];
 254        int                             keylen;
 255};
 256
 257/**
 258 * struct s5p_aes_dev - Crypto device state container
 259 * @dev:        Associated device
 260 * @clk:        Clock for accessing hardware
 261 * @ioaddr:     Mapped IO memory region
 262 * @aes_ioaddr: Per-varian offset for AES block IO memory
 263 * @irq_fc:     Feed control interrupt line
 264 * @req:        Crypto request currently handled by the device
 265 * @ctx:        Configuration for currently handled crypto request
 266 * @sg_src:     Scatter list with source data for currently handled block
 267 *              in device.  This is DMA-mapped into device.
 268 * @sg_dst:     Scatter list with destination data for currently handled block
 269 *              in device. This is DMA-mapped into device.
 270 * @sg_src_cpy: In case of unaligned access, copied scatter list
 271 *              with source data.
 272 * @sg_dst_cpy: In case of unaligned access, copied scatter list
 273 *              with destination data.
 274 * @tasklet:    New request scheduling jib
 275 * @queue:      Crypto queue
 276 * @busy:       Indicates whether the device is currently handling some request
 277 *              thus it uses some of the fields from this state, like:
 278 *              req, ctx, sg_src/dst (and copies).  This essentially
 279 *              protects against concurrent access to these fields.
 280 * @lock:       Lock for protecting both access to device hardware registers
 281 *              and fields related to current request (including the busy field).
 282 * @res:        Resources for hash.
 283 * @io_hash_base: Per-variant offset for HASH block IO memory.
 284 * @hash_lock:  Lock for protecting hash_req, hash_queue and hash_flags
 285 *              variable.
 286 * @hash_flags: Flags for current HASH op.
 287 * @hash_queue: Async hash queue.
 288 * @hash_tasklet: New HASH request scheduling job.
 289 * @xmit_buf:   Buffer for current HASH request transfer into SSS block.
 290 * @hash_req:   Current request sending to SSS HASH block.
 291 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
 292 * @hash_sg_cnt: Counter for hash_sg_iter.
 293 *
 294 * @use_hash:   true if HASH algs enabled
 295 */
 296struct s5p_aes_dev {
 297        struct device                   *dev;
 298        struct clk                      *clk;
 299        void __iomem                    *ioaddr;
 300        void __iomem                    *aes_ioaddr;
 301        int                             irq_fc;
 302
 303        struct ablkcipher_request       *req;
 304        struct s5p_aes_ctx              *ctx;
 305        struct scatterlist              *sg_src;
 306        struct scatterlist              *sg_dst;
 307
 308        struct scatterlist              *sg_src_cpy;
 309        struct scatterlist              *sg_dst_cpy;
 310
 311        struct tasklet_struct           tasklet;
 312        struct crypto_queue             queue;
 313        bool                            busy;
 314        spinlock_t                      lock;
 315
 316        struct resource                 *res;
 317        void __iomem                    *io_hash_base;
 318
 319        spinlock_t                      hash_lock; /* protect hash_ vars */
 320        unsigned long                   hash_flags;
 321        struct crypto_queue             hash_queue;
 322        struct tasklet_struct           hash_tasklet;
 323
 324        u8                              xmit_buf[BUFLEN];
 325        struct ahash_request            *hash_req;
 326        struct scatterlist              *hash_sg_iter;
 327        unsigned int                    hash_sg_cnt;
 328
 329        bool                            use_hash;
 330};
 331
 332/**
 333 * struct s5p_hash_reqctx - HASH request context
 334 * @dd:         Associated device
 335 * @op_update:  Current request operation (OP_UPDATE or OP_FINAL)
 336 * @digcnt:     Number of bytes processed by HW (without buffer[] ones)
 337 * @digest:     Digest message or IV for partial result
 338 * @nregs:      Number of HW registers for digest or IV read/write
 339 * @engine:     Bits for selecting type of HASH in SSS block
 340 * @sg:         sg for DMA transfer
 341 * @sg_len:     Length of sg for DMA transfer
 342 * @sgl[]:      sg for joining buffer and req->src scatterlist
 343 * @skip:       Skip offset in req->src for current op
 344 * @total:      Total number of bytes for current request
 345 * @finup:      Keep state for finup or final.
 346 * @error:      Keep track of error.
 347 * @bufcnt:     Number of bytes holded in buffer[]
 348 * @buffer[]:   For byte(s) from end of req->src in UPDATE op
 349 */
 350struct s5p_hash_reqctx {
 351        struct s5p_aes_dev      *dd;
 352        bool                    op_update;
 353
 354        u64                     digcnt;
 355        u8                      digest[SHA256_DIGEST_SIZE];
 356
 357        unsigned int            nregs; /* digest_size / sizeof(reg) */
 358        u32                     engine;
 359
 360        struct scatterlist      *sg;
 361        unsigned int            sg_len;
 362        struct scatterlist      sgl[2];
 363        unsigned int            skip;
 364        unsigned int            total;
 365        bool                    finup;
 366        bool                    error;
 367
 368        u32                     bufcnt;
 369        u8                      buffer[0];
 370};
 371
 372/**
 373 * struct s5p_hash_ctx - HASH transformation context
 374 * @dd:         Associated device
 375 * @flags:      Bits for algorithm HASH.
 376 * @fallback:   Software transformation for zero message or size < BUFLEN.
 377 */
 378struct s5p_hash_ctx {
 379        struct s5p_aes_dev      *dd;
 380        unsigned long           flags;
 381        struct crypto_shash     *fallback;
 382};
 383
 384static const struct samsung_aes_variant s5p_aes_data = {
 385        .aes_offset     = 0x4000,
 386        .hash_offset    = 0x6000,
 387};
 388
 389static const struct samsung_aes_variant exynos_aes_data = {
 390        .aes_offset     = 0x200,
 391        .hash_offset    = 0x400,
 392};
 393
 394static const struct of_device_id s5p_sss_dt_match[] = {
 395        {
 396                .compatible = "samsung,s5pv210-secss",
 397                .data = &s5p_aes_data,
 398        },
 399        {
 400                .compatible = "samsung,exynos4210-secss",
 401                .data = &exynos_aes_data,
 402        },
 403        { },
 404};
 405MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
 406
 407static inline const struct samsung_aes_variant *find_s5p_sss_version
 408                                   (const struct platform_device *pdev)
 409{
 410        if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
 411                const struct of_device_id *match;
 412
 413                match = of_match_node(s5p_sss_dt_match,
 414                                        pdev->dev.of_node);
 415                return (const struct samsung_aes_variant *)match->data;
 416        }
 417        return (const struct samsung_aes_variant *)
 418                        platform_get_device_id(pdev)->driver_data;
 419}
 420
 421static struct s5p_aes_dev *s5p_dev;
 422
 423static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
 424                               const struct scatterlist *sg)
 425{
 426        SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
 427        SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
 428}
 429
 430static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
 431                                const struct scatterlist *sg)
 432{
 433        SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
 434        SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
 435}
 436
 437static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
 438{
 439        int len;
 440
 441        if (!*sg)
 442                return;
 443
 444        len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
 445        free_pages((unsigned long)sg_virt(*sg), get_order(len));
 446
 447        kfree(*sg);
 448        *sg = NULL;
 449}
 450
 451static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
 452                            unsigned int nbytes, int out)
 453{
 454        struct scatter_walk walk;
 455
 456        if (!nbytes)
 457                return;
 458
 459        scatterwalk_start(&walk, sg);
 460        scatterwalk_copychunks(buf, &walk, nbytes, out);
 461        scatterwalk_done(&walk, out, 0);
 462}
 463
 464static void s5p_sg_done(struct s5p_aes_dev *dev)
 465{
 466        if (dev->sg_dst_cpy) {
 467                dev_dbg(dev->dev,
 468                        "Copying %d bytes of output data back to original place\n",
 469                        dev->req->nbytes);
 470                s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
 471                                dev->req->nbytes, 1);
 472        }
 473        s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
 474        s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
 475}
 476
 477/* Calls the completion. Cannot be called with dev->lock hold. */
 478static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
 479{
 480        dev->req->base.complete(&dev->req->base, err);
 481}
 482
 483static void s5p_unset_outdata(struct s5p_aes_dev *dev)
 484{
 485        dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
 486}
 487
 488static void s5p_unset_indata(struct s5p_aes_dev *dev)
 489{
 490        dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
 491}
 492
 493static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
 494                            struct scatterlist **dst)
 495{
 496        void *pages;
 497        int len;
 498
 499        *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
 500        if (!*dst)
 501                return -ENOMEM;
 502
 503        len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
 504        pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
 505        if (!pages) {
 506                kfree(*dst);
 507                *dst = NULL;
 508                return -ENOMEM;
 509        }
 510
 511        s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
 512
 513        sg_init_table(*dst, 1);
 514        sg_set_buf(*dst, pages, len);
 515
 516        return 0;
 517}
 518
 519static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
 520{
 521        int err;
 522
 523        if (!sg->length) {
 524                err = -EINVAL;
 525                goto exit;
 526        }
 527
 528        err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
 529        if (!err) {
 530                err = -ENOMEM;
 531                goto exit;
 532        }
 533
 534        dev->sg_dst = sg;
 535        err = 0;
 536
 537exit:
 538        return err;
 539}
 540
 541static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
 542{
 543        int err;
 544
 545        if (!sg->length) {
 546                err = -EINVAL;
 547                goto exit;
 548        }
 549
 550        err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
 551        if (!err) {
 552                err = -ENOMEM;
 553                goto exit;
 554        }
 555
 556        dev->sg_src = sg;
 557        err = 0;
 558
 559exit:
 560        return err;
 561}
 562
 563/*
 564 * Returns -ERRNO on error (mapping of new data failed).
 565 * On success returns:
 566 *  - 0 if there is no more data,
 567 *  - 1 if new transmitting (output) data is ready and its address+length
 568 *     have to be written to device (by calling s5p_set_dma_outdata()).
 569 */
 570static int s5p_aes_tx(struct s5p_aes_dev *dev)
 571{
 572        int ret = 0;
 573
 574        s5p_unset_outdata(dev);
 575
 576        if (!sg_is_last(dev->sg_dst)) {
 577                ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
 578                if (!ret)
 579                        ret = 1;
 580        }
 581
 582        return ret;
 583}
 584
 585/*
 586 * Returns -ERRNO on error (mapping of new data failed).
 587 * On success returns:
 588 *  - 0 if there is no more data,
 589 *  - 1 if new receiving (input) data is ready and its address+length
 590 *     have to be written to device (by calling s5p_set_dma_indata()).
 591 */
 592static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
 593{
 594        int ret = 0;
 595
 596        s5p_unset_indata(dev);
 597
 598        if (!sg_is_last(dev->sg_src)) {
 599                ret = s5p_set_indata(dev, sg_next(dev->sg_src));
 600                if (!ret)
 601                        ret = 1;
 602        }
 603
 604        return ret;
 605}
 606
 607static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
 608{
 609        return __raw_readl(dd->io_hash_base + offset);
 610}
 611
 612static inline void s5p_hash_write(struct s5p_aes_dev *dd,
 613                                  u32 offset, u32 value)
 614{
 615        __raw_writel(value, dd->io_hash_base + offset);
 616}
 617
 618/**
 619 * s5p_set_dma_hashdata() - start DMA with sg
 620 * @dev:        device
 621 * @sg:         scatterlist ready to DMA transmit
 622 */
 623static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
 624                                 const struct scatterlist *sg)
 625{
 626        dev->hash_sg_cnt--;
 627        SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
 628        SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
 629}
 630
 631/**
 632 * s5p_hash_rx() - get next hash_sg_iter
 633 * @dev:        device
 634 *
 635 * Return:
 636 * 2    if there is no more data and it is UPDATE op
 637 * 1    if new receiving (input) data is ready and can be written to device
 638 * 0    if there is no more data and it is FINAL op
 639 */
 640static int s5p_hash_rx(struct s5p_aes_dev *dev)
 641{
 642        if (dev->hash_sg_cnt > 0) {
 643                dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
 644                return 1;
 645        }
 646
 647        set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
 648        if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
 649                return 0;
 650
 651        return 2;
 652}
 653
 654static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
 655{
 656        struct platform_device *pdev = dev_id;
 657        struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
 658        int err_dma_tx = 0;
 659        int err_dma_rx = 0;
 660        int err_dma_hx = 0;
 661        bool tx_end = false;
 662        bool hx_end = false;
 663        unsigned long flags;
 664        uint32_t status;
 665        u32 st_bits;
 666        int err;
 667
 668        spin_lock_irqsave(&dev->lock, flags);
 669
 670        /*
 671         * Handle rx or tx interrupt. If there is still data (scatterlist did not
 672         * reach end), then map next scatterlist entry.
 673         * In case of such mapping error, s5p_aes_complete() should be called.
 674         *
 675         * If there is no more data in tx scatter list, call s5p_aes_complete()
 676         * and schedule new tasklet.
 677         *
 678         * Handle hx interrupt. If there is still data map next entry.
 679         */
 680        status = SSS_READ(dev, FCINTSTAT);
 681        if (status & SSS_FCINTSTAT_BRDMAINT)
 682                err_dma_rx = s5p_aes_rx(dev);
 683
 684        if (status & SSS_FCINTSTAT_BTDMAINT) {
 685                if (sg_is_last(dev->sg_dst))
 686                        tx_end = true;
 687                err_dma_tx = s5p_aes_tx(dev);
 688        }
 689
 690        if (status & SSS_FCINTSTAT_HRDMAINT)
 691                err_dma_hx = s5p_hash_rx(dev);
 692
 693        st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
 694                                SSS_FCINTSTAT_HRDMAINT);
 695        /* clear DMA bits */
 696        SSS_WRITE(dev, FCINTPEND, st_bits);
 697
 698        /* clear HASH irq bits */
 699        if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
 700                /* cannot have both HPART and HDONE */
 701                if (status & SSS_FCINTSTAT_HPARTINT)
 702                        st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
 703
 704                if (status & SSS_FCINTSTAT_HDONEINT)
 705                        st_bits = SSS_HASH_STATUS_MSG_DONE;
 706
 707                set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
 708                s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
 709                hx_end = true;
 710                /* when DONE or PART, do not handle HASH DMA */
 711                err_dma_hx = 0;
 712        }
 713
 714        if (err_dma_rx < 0) {
 715                err = err_dma_rx;
 716                goto error;
 717        }
 718        if (err_dma_tx < 0) {
 719                err = err_dma_tx;
 720                goto error;
 721        }
 722
 723        if (tx_end) {
 724                s5p_sg_done(dev);
 725                if (err_dma_hx == 1)
 726                        s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 727
 728                spin_unlock_irqrestore(&dev->lock, flags);
 729
 730                s5p_aes_complete(dev, 0);
 731                /* Device is still busy */
 732                tasklet_schedule(&dev->tasklet);
 733        } else {
 734                /*
 735                 * Writing length of DMA block (either receiving or
 736                 * transmitting) will start the operation immediately, so this
 737                 * should be done at the end (even after clearing pending
 738                 * interrupts to not miss the interrupt).
 739                 */
 740                if (err_dma_tx == 1)
 741                        s5p_set_dma_outdata(dev, dev->sg_dst);
 742                if (err_dma_rx == 1)
 743                        s5p_set_dma_indata(dev, dev->sg_src);
 744                if (err_dma_hx == 1)
 745                        s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 746
 747                spin_unlock_irqrestore(&dev->lock, flags);
 748        }
 749
 750        goto hash_irq_end;
 751
 752error:
 753        s5p_sg_done(dev);
 754        dev->busy = false;
 755        if (err_dma_hx == 1)
 756                s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 757
 758        spin_unlock_irqrestore(&dev->lock, flags);
 759        s5p_aes_complete(dev, err);
 760
 761hash_irq_end:
 762        /*
 763         * Note about else if:
 764         *   when hash_sg_iter reaches end and its UPDATE op,
 765         *   issue SSS_HASH_PAUSE and wait for HPART irq
 766         */
 767        if (hx_end)
 768                tasklet_schedule(&dev->hash_tasklet);
 769        else if (err_dma_hx == 2)
 770                s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
 771                               SSS_HASH_PAUSE);
 772
 773        return IRQ_HANDLED;
 774}
 775
 776/**
 777 * s5p_hash_read_msg() - read message or IV from HW
 778 * @req:        AHASH request
 779 */
 780static void s5p_hash_read_msg(struct ahash_request *req)
 781{
 782        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 783        struct s5p_aes_dev *dd = ctx->dd;
 784        u32 *hash = (u32 *)ctx->digest;
 785        unsigned int i;
 786
 787        for (i = 0; i < ctx->nregs; i++)
 788                hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
 789}
 790
 791/**
 792 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
 793 * @dd:         device
 794 * @ctx:        request context
 795 */
 796static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
 797                                  const struct s5p_hash_reqctx *ctx)
 798{
 799        const u32 *hash = (const u32 *)ctx->digest;
 800        unsigned int i;
 801
 802        for (i = 0; i < ctx->nregs; i++)
 803                s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
 804}
 805
 806/**
 807 * s5p_hash_write_iv() - write IV for next partial/finup op.
 808 * @req:        AHASH request
 809 */
 810static void s5p_hash_write_iv(struct ahash_request *req)
 811{
 812        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 813
 814        s5p_hash_write_ctx_iv(ctx->dd, ctx);
 815}
 816
 817/**
 818 * s5p_hash_copy_result() - copy digest into req->result
 819 * @req:        AHASH request
 820 */
 821static void s5p_hash_copy_result(struct ahash_request *req)
 822{
 823        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 824
 825        if (!req->result)
 826                return;
 827
 828        memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
 829}
 830
 831/**
 832 * s5p_hash_dma_flush() - flush HASH DMA
 833 * @dev:        secss device
 834 */
 835static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
 836{
 837        SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
 838}
 839
 840/**
 841 * s5p_hash_dma_enable() - enable DMA mode for HASH
 842 * @dev:        secss device
 843 *
 844 * enable DMA mode for HASH
 845 */
 846static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
 847{
 848        s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
 849}
 850
 851/**
 852 * s5p_hash_irq_disable() - disable irq HASH signals
 853 * @dev:        secss device
 854 * @flags:      bitfield with irq's to be disabled
 855 */
 856static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
 857{
 858        SSS_WRITE(dev, FCINTENCLR, flags);
 859}
 860
 861/**
 862 * s5p_hash_irq_enable() - enable irq signals
 863 * @dev:        secss device
 864 * @flags:      bitfield with irq's to be enabled
 865 */
 866static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
 867{
 868        SSS_WRITE(dev, FCINTENSET, flags);
 869}
 870
 871/**
 872 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
 873 * @dev:        secss device
 874 * @hashflow:   HASH stream flow with/without crypto AES/DES
 875 */
 876static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
 877{
 878        unsigned long flags;
 879        u32 flow;
 880
 881        spin_lock_irqsave(&dev->lock, flags);
 882
 883        flow = SSS_READ(dev, FCFIFOCTRL);
 884        flow &= ~SSS_HASHIN_MASK;
 885        flow |= hashflow;
 886        SSS_WRITE(dev, FCFIFOCTRL, flow);
 887
 888        spin_unlock_irqrestore(&dev->lock, flags);
 889}
 890
 891/**
 892 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
 893 * @dev:        secss device
 894 * @hashflow:   HASH stream flow with/without AES/DES
 895 *
 896 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
 897 * enable HASH irq's HRDMA, HDONE, HPART
 898 */
 899static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
 900{
 901        s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
 902                             SSS_FCINTENCLR_HDONEINTENCLR |
 903                             SSS_FCINTENCLR_HPARTINTENCLR);
 904        s5p_hash_dma_flush(dev);
 905
 906        s5p_hash_dma_enable(dev);
 907        s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
 908        s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
 909                            SSS_FCINTENSET_HDONEINTENSET |
 910                            SSS_FCINTENSET_HPARTINTENSET);
 911}
 912
 913/**
 914 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
 915 * @dd:         secss device
 916 * @length:     length for request
 917 * @final:      true if final op
 918 *
 919 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
 920 * after previous updates, fill up IV words. For final, calculate and set
 921 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
 922 * length as 2^63 so it will be never reached and set to zero prelow and
 923 * prehigh.
 924 *
 925 * This function does not start DMA transfer.
 926 */
 927static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
 928                                bool final)
 929{
 930        struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
 931        u32 prelow, prehigh, low, high;
 932        u32 configflags, swapflags;
 933        u64 tmplen;
 934
 935        configflags = ctx->engine | SSS_HASH_INIT_BIT;
 936
 937        if (likely(ctx->digcnt)) {
 938                s5p_hash_write_ctx_iv(dd, ctx);
 939                configflags |= SSS_HASH_USER_IV_EN;
 940        }
 941
 942        if (final) {
 943                /* number of bytes for last part */
 944                low = length;
 945                high = 0;
 946                /* total number of bits prev hashed */
 947                tmplen = ctx->digcnt * 8;
 948                prelow = (u32)tmplen;
 949                prehigh = (u32)(tmplen >> 32);
 950        } else {
 951                prelow = 0;
 952                prehigh = 0;
 953                low = 0;
 954                high = BIT(31);
 955        }
 956
 957        swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
 958                    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
 959
 960        s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
 961        s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
 962        s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
 963        s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
 964
 965        s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
 966        s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
 967}
 968
 969/**
 970 * s5p_hash_xmit_dma() - start DMA hash processing
 971 * @dd:         secss device
 972 * @length:     length for request
 973 * @final:      true if final op
 974 *
 975 * Update digcnt here, as it is needed for finup/final op.
 976 */
 977static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
 978                             bool final)
 979{
 980        struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
 981        unsigned int cnt;
 982
 983        cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
 984        if (!cnt) {
 985                dev_err(dd->dev, "dma_map_sg error\n");
 986                ctx->error = true;
 987                return -EINVAL;
 988        }
 989
 990        set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
 991        dd->hash_sg_iter = ctx->sg;
 992        dd->hash_sg_cnt = cnt;
 993        s5p_hash_write_ctrl(dd, length, final);
 994        ctx->digcnt += length;
 995        ctx->total -= length;
 996
 997        /* catch last interrupt */
 998        if (final)
 999                set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1000
1001        s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1002
1003        return -EINPROGRESS;
1004}
1005
1006/**
1007 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1008 * @ctx:        request context
1009 * @sg:         source scatterlist request
1010 * @new_len:    number of bytes to process from sg
1011 *
1012 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1013 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1014 * with allocated buffer.
1015 *
1016 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1017 */
1018static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1019                             struct scatterlist *sg, unsigned int new_len)
1020{
1021        unsigned int pages, len;
1022        void *buf;
1023
1024        len = new_len + ctx->bufcnt;
1025        pages = get_order(len);
1026
1027        buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1028        if (!buf) {
1029                dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1030                ctx->error = true;
1031                return -ENOMEM;
1032        }
1033
1034        if (ctx->bufcnt)
1035                memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1036
1037        scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1038                                 new_len, 0);
1039        sg_init_table(ctx->sgl, 1);
1040        sg_set_buf(ctx->sgl, buf, len);
1041        ctx->sg = ctx->sgl;
1042        ctx->sg_len = 1;
1043        ctx->bufcnt = 0;
1044        ctx->skip = 0;
1045        set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1046
1047        return 0;
1048}
1049
1050/**
1051 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1052 * @ctx:        request context
1053 * @sg:         source scatterlist request
1054 * @new_len:    number of bytes to process from sg
1055 *
1056 * Allocate new scatterlist table, copy data for HASH into it. If there was
1057 * xmit_buf filled, prepare it first, then copy page, length and offset from
1058 * source sg into it, adjusting begin and/or end for skip offset and
1059 * hash_later value.
1060 *
1061 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1062 * it after irq ends processing.
1063 */
1064static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1065                                  struct scatterlist *sg, unsigned int new_len)
1066{
1067        unsigned int skip = ctx->skip, n = sg_nents(sg);
1068        struct scatterlist *tmp;
1069        unsigned int len;
1070
1071        if (ctx->bufcnt)
1072                n++;
1073
1074        ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1075        if (!ctx->sg) {
1076                ctx->error = true;
1077                return -ENOMEM;
1078        }
1079
1080        sg_init_table(ctx->sg, n);
1081
1082        tmp = ctx->sg;
1083
1084        ctx->sg_len = 0;
1085
1086        if (ctx->bufcnt) {
1087                sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1088                tmp = sg_next(tmp);
1089                ctx->sg_len++;
1090        }
1091
1092        while (sg && skip >= sg->length) {
1093                skip -= sg->length;
1094                sg = sg_next(sg);
1095        }
1096
1097        while (sg && new_len) {
1098                len = sg->length - skip;
1099                if (new_len < len)
1100                        len = new_len;
1101
1102                new_len -= len;
1103                sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1104                skip = 0;
1105                if (new_len <= 0)
1106                        sg_mark_end(tmp);
1107
1108                tmp = sg_next(tmp);
1109                ctx->sg_len++;
1110                sg = sg_next(sg);
1111        }
1112
1113        set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1114
1115        return 0;
1116}
1117
1118/**
1119 * s5p_hash_prepare_sgs() - prepare sg for processing
1120 * @ctx:        request context
1121 * @sg:         source scatterlist request
1122 * @nbytes:     number of bytes to process from sg
1123 * @final:      final flag
1124 *
1125 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1126 * sg table have good aligned elements (list_ok). If one of this checks fails,
1127 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1128 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1129 * table and prepare sg elements.
1130 *
1131 * For digest or finup all conditions can be good, and we may not need any
1132 * fixes.
1133 */
1134static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1135                                struct scatterlist *sg,
1136                                unsigned int new_len, bool final)
1137{
1138        unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1139        bool aligned = true, list_ok = true;
1140        struct scatterlist *sg_tmp = sg;
1141
1142        if (!sg || !sg->length || !new_len)
1143                return 0;
1144
1145        if (skip || !final)
1146                list_ok = false;
1147
1148        while (nbytes > 0 && sg_tmp) {
1149                n++;
1150                if (skip >= sg_tmp->length) {
1151                        skip -= sg_tmp->length;
1152                        if (!sg_tmp->length) {
1153                                aligned = false;
1154                                break;
1155                        }
1156                } else {
1157                        if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1158                                aligned = false;
1159                                break;
1160                        }
1161
1162                        if (nbytes < sg_tmp->length - skip) {
1163                                list_ok = false;
1164                                break;
1165                        }
1166
1167                        nbytes -= sg_tmp->length - skip;
1168                        skip = 0;
1169                }
1170
1171                sg_tmp = sg_next(sg_tmp);
1172        }
1173
1174        if (!aligned)
1175                return s5p_hash_copy_sgs(ctx, sg, new_len);
1176        else if (!list_ok)
1177                return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1178
1179        /*
1180         * Have aligned data from previous operation and/or current
1181         * Note: will enter here only if (digest or finup) and aligned
1182         */
1183        if (ctx->bufcnt) {
1184                ctx->sg_len = n;
1185                sg_init_table(ctx->sgl, 2);
1186                sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1187                sg_chain(ctx->sgl, 2, sg);
1188                ctx->sg = ctx->sgl;
1189                ctx->sg_len++;
1190        } else {
1191                ctx->sg = sg;
1192                ctx->sg_len = n;
1193        }
1194
1195        return 0;
1196}
1197
1198/**
1199 * s5p_hash_prepare_request() - prepare request for processing
1200 * @req:        AHASH request
1201 * @update:     true if UPDATE op
1202 *
1203 * Note 1: we can have update flag _and_ final flag at the same time.
1204 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1205 *         either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1206 *         we have final op
1207 */
1208static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1209{
1210        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1211        bool final = ctx->finup;
1212        int xmit_len, hash_later, nbytes;
1213        int ret;
1214
1215        if (update)
1216                nbytes = req->nbytes;
1217        else
1218                nbytes = 0;
1219
1220        ctx->total = nbytes + ctx->bufcnt;
1221        if (!ctx->total)
1222                return 0;
1223
1224        if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1225                /* bytes left from previous request, so fill up to BUFLEN */
1226                int len = BUFLEN - ctx->bufcnt % BUFLEN;
1227
1228                if (len > nbytes)
1229                        len = nbytes;
1230
1231                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1232                                         0, len, 0);
1233                ctx->bufcnt += len;
1234                nbytes -= len;
1235                ctx->skip = len;
1236        } else {
1237                ctx->skip = 0;
1238        }
1239
1240        if (ctx->bufcnt)
1241                memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1242
1243        xmit_len = ctx->total;
1244        if (final) {
1245                hash_later = 0;
1246        } else {
1247                if (IS_ALIGNED(xmit_len, BUFLEN))
1248                        xmit_len -= BUFLEN;
1249                else
1250                        xmit_len -= xmit_len & (BUFLEN - 1);
1251
1252                hash_later = ctx->total - xmit_len;
1253                /* copy hash_later bytes from end of req->src */
1254                /* previous bytes are in xmit_buf, so no overwrite */
1255                scatterwalk_map_and_copy(ctx->buffer, req->src,
1256                                         req->nbytes - hash_later,
1257                                         hash_later, 0);
1258        }
1259
1260        if (xmit_len > BUFLEN) {
1261                ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1262                                           final);
1263                if (ret)
1264                        return ret;
1265        } else {
1266                /* have buffered data only */
1267                if (unlikely(!ctx->bufcnt)) {
1268                        /* first update didn't fill up buffer */
1269                        scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1270                                                 0, xmit_len, 0);
1271                }
1272
1273                sg_init_table(ctx->sgl, 1);
1274                sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1275
1276                ctx->sg = ctx->sgl;
1277                ctx->sg_len = 1;
1278        }
1279
1280        ctx->bufcnt = hash_later;
1281        if (!final)
1282                ctx->total = xmit_len;
1283
1284        return 0;
1285}
1286
1287/**
1288 * s5p_hash_update_dma_stop() - unmap DMA
1289 * @dd:         secss device
1290 *
1291 * Unmap scatterlist ctx->sg.
1292 */
1293static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1294{
1295        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1296
1297        dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1298        clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1299}
1300
1301/**
1302 * s5p_hash_finish() - copy calculated digest to crypto layer
1303 * @req:        AHASH request
1304 */
1305static void s5p_hash_finish(struct ahash_request *req)
1306{
1307        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1308        struct s5p_aes_dev *dd = ctx->dd;
1309
1310        if (ctx->digcnt)
1311                s5p_hash_copy_result(req);
1312
1313        dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1314}
1315
1316/**
1317 * s5p_hash_finish_req() - finish request
1318 * @req:        AHASH request
1319 * @err:        error
1320 */
1321static void s5p_hash_finish_req(struct ahash_request *req, int err)
1322{
1323        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1324        struct s5p_aes_dev *dd = ctx->dd;
1325        unsigned long flags;
1326
1327        if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1328                free_pages((unsigned long)sg_virt(ctx->sg),
1329                           get_order(ctx->sg->length));
1330
1331        if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1332                kfree(ctx->sg);
1333
1334        ctx->sg = NULL;
1335        dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1336                            BIT(HASH_FLAGS_SGS_COPIED));
1337
1338        if (!err && !ctx->error) {
1339                s5p_hash_read_msg(req);
1340                if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1341                        s5p_hash_finish(req);
1342        } else {
1343                ctx->error = true;
1344        }
1345
1346        spin_lock_irqsave(&dd->hash_lock, flags);
1347        dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1348                            BIT(HASH_FLAGS_DMA_READY) |
1349                            BIT(HASH_FLAGS_OUTPUT_READY));
1350        spin_unlock_irqrestore(&dd->hash_lock, flags);
1351
1352        if (req->base.complete)
1353                req->base.complete(&req->base, err);
1354}
1355
1356/**
1357 * s5p_hash_handle_queue() - handle hash queue
1358 * @dd:         device s5p_aes_dev
1359 * @req:        AHASH request
1360 *
1361 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1362 * device then processes the first request from the dd->queue
1363 *
1364 * Returns: see s5p_hash_final below.
1365 */
1366static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1367                                 struct ahash_request *req)
1368{
1369        struct crypto_async_request *async_req, *backlog;
1370        struct s5p_hash_reqctx *ctx;
1371        unsigned long flags;
1372        int err = 0, ret = 0;
1373
1374retry:
1375        spin_lock_irqsave(&dd->hash_lock, flags);
1376        if (req)
1377                ret = ahash_enqueue_request(&dd->hash_queue, req);
1378
1379        if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1380                spin_unlock_irqrestore(&dd->hash_lock, flags);
1381                return ret;
1382        }
1383
1384        backlog = crypto_get_backlog(&dd->hash_queue);
1385        async_req = crypto_dequeue_request(&dd->hash_queue);
1386        if (async_req)
1387                set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1388
1389        spin_unlock_irqrestore(&dd->hash_lock, flags);
1390
1391        if (!async_req)
1392                return ret;
1393
1394        if (backlog)
1395                backlog->complete(backlog, -EINPROGRESS);
1396
1397        req = ahash_request_cast(async_req);
1398        dd->hash_req = req;
1399        ctx = ahash_request_ctx(req);
1400
1401        err = s5p_hash_prepare_request(req, ctx->op_update);
1402        if (err || !ctx->total)
1403                goto out;
1404
1405        dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1406                ctx->op_update, req->nbytes);
1407
1408        s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1409        if (ctx->digcnt)
1410                s5p_hash_write_iv(req); /* restore hash IV */
1411
1412        if (ctx->op_update) { /* HASH_OP_UPDATE */
1413                err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1414                if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1415                        /* no final() after finup() */
1416                        err = s5p_hash_xmit_dma(dd, ctx->total, true);
1417        } else { /* HASH_OP_FINAL */
1418                err = s5p_hash_xmit_dma(dd, ctx->total, true);
1419        }
1420out:
1421        if (err != -EINPROGRESS) {
1422                /* hash_tasklet_cb will not finish it, so do it here */
1423                s5p_hash_finish_req(req, err);
1424                req = NULL;
1425
1426                /*
1427                 * Execute next request immediately if there is anything
1428                 * in queue.
1429                 */
1430                goto retry;
1431        }
1432
1433        return ret;
1434}
1435
1436/**
1437 * s5p_hash_tasklet_cb() - hash tasklet
1438 * @data:       ptr to s5p_aes_dev
1439 */
1440static void s5p_hash_tasklet_cb(unsigned long data)
1441{
1442        struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1443
1444        if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1445                s5p_hash_handle_queue(dd, NULL);
1446                return;
1447        }
1448
1449        if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1450                if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1451                                       &dd->hash_flags)) {
1452                        s5p_hash_update_dma_stop(dd);
1453                }
1454
1455                if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1456                                       &dd->hash_flags)) {
1457                        /* hash or semi-hash ready */
1458                        clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1459                        goto finish;
1460                }
1461        }
1462
1463        return;
1464
1465finish:
1466        /* finish curent request */
1467        s5p_hash_finish_req(dd->hash_req, 0);
1468
1469        /* If we are not busy, process next req */
1470        if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1471                s5p_hash_handle_queue(dd, NULL);
1472}
1473
1474/**
1475 * s5p_hash_enqueue() - enqueue request
1476 * @req:        AHASH request
1477 * @op:         operation UPDATE (true) or FINAL (false)
1478 *
1479 * Returns: see s5p_hash_final below.
1480 */
1481static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1482{
1483        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1484        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1485
1486        ctx->op_update = op;
1487
1488        return s5p_hash_handle_queue(tctx->dd, req);
1489}
1490
1491/**
1492 * s5p_hash_update() - process the hash input data
1493 * @req:        AHASH request
1494 *
1495 * If request will fit in buffer, copy it and return immediately
1496 * else enqueue it with OP_UPDATE.
1497 *
1498 * Returns: see s5p_hash_final below.
1499 */
1500static int s5p_hash_update(struct ahash_request *req)
1501{
1502        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1503
1504        if (!req->nbytes)
1505                return 0;
1506
1507        if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1508                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1509                                         0, req->nbytes, 0);
1510                ctx->bufcnt += req->nbytes;
1511                return 0;
1512        }
1513
1514        return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1515}
1516
1517/**
1518 * s5p_hash_shash_digest() - calculate shash digest
1519 * @tfm:        crypto transformation
1520 * @flags:      tfm flags
1521 * @data:       input data
1522 * @len:        length of data
1523 * @out:        output buffer
1524 */
1525static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1526                                 const u8 *data, unsigned int len, u8 *out)
1527{
1528        SHASH_DESC_ON_STACK(shash, tfm);
1529
1530        shash->tfm = tfm;
1531        shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1532
1533        return crypto_shash_digest(shash, data, len, out);
1534}
1535
1536/**
1537 * s5p_hash_final_shash() - calculate shash digest
1538 * @req:        AHASH request
1539 */
1540static int s5p_hash_final_shash(struct ahash_request *req)
1541{
1542        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1543        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1544
1545        return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1546                                     ctx->buffer, ctx->bufcnt, req->result);
1547}
1548
1549/**
1550 * s5p_hash_final() - close up hash and calculate digest
1551 * @req:        AHASH request
1552 *
1553 * Note: in final req->src do not have any data, and req->nbytes can be
1554 * non-zero.
1555 *
1556 * If there were no input data processed yet and the buffered hash data is
1557 * less than BUFLEN (64) then calculate the final hash immediately by using
1558 * SW algorithm fallback.
1559 *
1560 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1561 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1562 * previous update op, so there are always some buffered bytes in ctx->buffer,
1563 * which means that ctx->bufcnt!=0
1564 *
1565 * Returns:
1566 * 0 if the request has been processed immediately,
1567 * -EINPROGRESS if the operation has been queued for later execution or is set
1568 *              to processing by HW,
1569 * -EBUSY if queue is full and request should be resubmitted later,
1570 * other negative values denotes an error.
1571 */
1572static int s5p_hash_final(struct ahash_request *req)
1573{
1574        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1575
1576        ctx->finup = true;
1577        if (ctx->error)
1578                return -EINVAL; /* uncompleted hash is not needed */
1579
1580        if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1581                return s5p_hash_final_shash(req);
1582
1583        return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1584}
1585
1586/**
1587 * s5p_hash_finup() - process last req->src and calculate digest
1588 * @req:        AHASH request containing the last update data
1589 *
1590 * Return values: see s5p_hash_final above.
1591 */
1592static int s5p_hash_finup(struct ahash_request *req)
1593{
1594        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1595        int err1, err2;
1596
1597        ctx->finup = true;
1598
1599        err1 = s5p_hash_update(req);
1600        if (err1 == -EINPROGRESS || err1 == -EBUSY)
1601                return err1;
1602
1603        /*
1604         * final() has to be always called to cleanup resources even if
1605         * update() failed, except EINPROGRESS or calculate digest for small
1606         * size
1607         */
1608        err2 = s5p_hash_final(req);
1609
1610        return err1 ?: err2;
1611}
1612
1613/**
1614 * s5p_hash_init() - initialize AHASH request contex
1615 * @req:        AHASH request
1616 *
1617 * Init async hash request context.
1618 */
1619static int s5p_hash_init(struct ahash_request *req)
1620{
1621        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1622        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1623        struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1624
1625        ctx->dd = tctx->dd;
1626        ctx->error = false;
1627        ctx->finup = false;
1628        ctx->bufcnt = 0;
1629        ctx->digcnt = 0;
1630        ctx->total = 0;
1631        ctx->skip = 0;
1632
1633        dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1634                crypto_ahash_digestsize(tfm));
1635
1636        switch (crypto_ahash_digestsize(tfm)) {
1637        case MD5_DIGEST_SIZE:
1638                ctx->engine = SSS_HASH_ENGINE_MD5;
1639                ctx->nregs = HASH_MD5_MAX_REG;
1640                break;
1641        case SHA1_DIGEST_SIZE:
1642                ctx->engine = SSS_HASH_ENGINE_SHA1;
1643                ctx->nregs = HASH_SHA1_MAX_REG;
1644                break;
1645        case SHA256_DIGEST_SIZE:
1646                ctx->engine = SSS_HASH_ENGINE_SHA256;
1647                ctx->nregs = HASH_SHA256_MAX_REG;
1648                break;
1649        default:
1650                ctx->error = true;
1651                return -EINVAL;
1652        }
1653
1654        return 0;
1655}
1656
1657/**
1658 * s5p_hash_digest - calculate digest from req->src
1659 * @req:        AHASH request
1660 *
1661 * Return values: see s5p_hash_final above.
1662 */
1663static int s5p_hash_digest(struct ahash_request *req)
1664{
1665        return s5p_hash_init(req) ?: s5p_hash_finup(req);
1666}
1667
1668/**
1669 * s5p_hash_cra_init_alg - init crypto alg transformation
1670 * @tfm:        crypto transformation
1671 */
1672static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1673{
1674        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1675        const char *alg_name = crypto_tfm_alg_name(tfm);
1676
1677        tctx->dd = s5p_dev;
1678        /* Allocate a fallback and abort if it failed. */
1679        tctx->fallback = crypto_alloc_shash(alg_name, 0,
1680                                            CRYPTO_ALG_NEED_FALLBACK);
1681        if (IS_ERR(tctx->fallback)) {
1682                pr_err("fallback alloc fails for '%s'\n", alg_name);
1683                return PTR_ERR(tctx->fallback);
1684        }
1685
1686        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1687                                 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1688
1689        return 0;
1690}
1691
1692/**
1693 * s5p_hash_cra_init - init crypto tfm
1694 * @tfm:        crypto transformation
1695 */
1696static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1697{
1698        return s5p_hash_cra_init_alg(tfm);
1699}
1700
1701/**
1702 * s5p_hash_cra_exit - exit crypto tfm
1703 * @tfm:        crypto transformation
1704 *
1705 * free allocated fallback
1706 */
1707static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1708{
1709        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1710
1711        crypto_free_shash(tctx->fallback);
1712        tctx->fallback = NULL;
1713}
1714
1715/**
1716 * s5p_hash_export - export hash state
1717 * @req:        AHASH request
1718 * @out:        buffer for exported state
1719 */
1720static int s5p_hash_export(struct ahash_request *req, void *out)
1721{
1722        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1723
1724        memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1725
1726        return 0;
1727}
1728
1729/**
1730 * s5p_hash_import - import hash state
1731 * @req:        AHASH request
1732 * @in:         buffer with state to be imported from
1733 */
1734static int s5p_hash_import(struct ahash_request *req, const void *in)
1735{
1736        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1737        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1738        struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1739        const struct s5p_hash_reqctx *ctx_in = in;
1740
1741        memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1742        if (ctx_in->bufcnt > BUFLEN) {
1743                ctx->error = true;
1744                return -EINVAL;
1745        }
1746
1747        ctx->dd = tctx->dd;
1748        ctx->error = false;
1749
1750        return 0;
1751}
1752
1753static struct ahash_alg algs_sha1_md5_sha256[] = {
1754{
1755        .init           = s5p_hash_init,
1756        .update         = s5p_hash_update,
1757        .final          = s5p_hash_final,
1758        .finup          = s5p_hash_finup,
1759        .digest         = s5p_hash_digest,
1760        .export         = s5p_hash_export,
1761        .import         = s5p_hash_import,
1762        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1763        .halg.digestsize        = SHA1_DIGEST_SIZE,
1764        .halg.base      = {
1765                .cra_name               = "sha1",
1766                .cra_driver_name        = "exynos-sha1",
1767                .cra_priority           = 100,
1768                .cra_flags              = CRYPTO_ALG_TYPE_AHASH |
1769                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1770                                          CRYPTO_ALG_ASYNC |
1771                                          CRYPTO_ALG_NEED_FALLBACK,
1772                .cra_blocksize          = HASH_BLOCK_SIZE,
1773                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1774                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1775                .cra_module             = THIS_MODULE,
1776                .cra_init               = s5p_hash_cra_init,
1777                .cra_exit               = s5p_hash_cra_exit,
1778        }
1779},
1780{
1781        .init           = s5p_hash_init,
1782        .update         = s5p_hash_update,
1783        .final          = s5p_hash_final,
1784        .finup          = s5p_hash_finup,
1785        .digest         = s5p_hash_digest,
1786        .export         = s5p_hash_export,
1787        .import         = s5p_hash_import,
1788        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1789        .halg.digestsize        = MD5_DIGEST_SIZE,
1790        .halg.base      = {
1791                .cra_name               = "md5",
1792                .cra_driver_name        = "exynos-md5",
1793                .cra_priority           = 100,
1794                .cra_flags              = CRYPTO_ALG_TYPE_AHASH |
1795                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1796                                          CRYPTO_ALG_ASYNC |
1797                                          CRYPTO_ALG_NEED_FALLBACK,
1798                .cra_blocksize          = HASH_BLOCK_SIZE,
1799                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1800                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1801                .cra_module             = THIS_MODULE,
1802                .cra_init               = s5p_hash_cra_init,
1803                .cra_exit               = s5p_hash_cra_exit,
1804        }
1805},
1806{
1807        .init           = s5p_hash_init,
1808        .update         = s5p_hash_update,
1809        .final          = s5p_hash_final,
1810        .finup          = s5p_hash_finup,
1811        .digest         = s5p_hash_digest,
1812        .export         = s5p_hash_export,
1813        .import         = s5p_hash_import,
1814        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1815        .halg.digestsize        = SHA256_DIGEST_SIZE,
1816        .halg.base      = {
1817                .cra_name               = "sha256",
1818                .cra_driver_name        = "exynos-sha256",
1819                .cra_priority           = 100,
1820                .cra_flags              = CRYPTO_ALG_TYPE_AHASH |
1821                                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1822                                          CRYPTO_ALG_ASYNC |
1823                                          CRYPTO_ALG_NEED_FALLBACK,
1824                .cra_blocksize          = HASH_BLOCK_SIZE,
1825                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1826                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1827                .cra_module             = THIS_MODULE,
1828                .cra_init               = s5p_hash_cra_init,
1829                .cra_exit               = s5p_hash_cra_exit,
1830        }
1831}
1832
1833};
1834
1835static void s5p_set_aes(struct s5p_aes_dev *dev,
1836                        const uint8_t *key, const uint8_t *iv,
1837                        unsigned int keylen)
1838{
1839        void __iomem *keystart;
1840
1841        if (iv)
1842                memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
1843
1844        if (keylen == AES_KEYSIZE_256)
1845                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1846        else if (keylen == AES_KEYSIZE_192)
1847                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1848        else
1849                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1850
1851        memcpy_toio(keystart, key, keylen);
1852}
1853
1854static bool s5p_is_sg_aligned(struct scatterlist *sg)
1855{
1856        while (sg) {
1857                if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1858                        return false;
1859                sg = sg_next(sg);
1860        }
1861
1862        return true;
1863}
1864
1865static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1866                                struct ablkcipher_request *req)
1867{
1868        struct scatterlist *sg;
1869        int err;
1870
1871        dev->sg_src_cpy = NULL;
1872        sg = req->src;
1873        if (!s5p_is_sg_aligned(sg)) {
1874                dev_dbg(dev->dev,
1875                        "At least one unaligned source scatter list, making a copy\n");
1876                err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1877                if (err)
1878                        return err;
1879
1880                sg = dev->sg_src_cpy;
1881        }
1882
1883        err = s5p_set_indata(dev, sg);
1884        if (err) {
1885                s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1886                return err;
1887        }
1888
1889        return 0;
1890}
1891
1892static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1893                                struct ablkcipher_request *req)
1894{
1895        struct scatterlist *sg;
1896        int err;
1897
1898        dev->sg_dst_cpy = NULL;
1899        sg = req->dst;
1900        if (!s5p_is_sg_aligned(sg)) {
1901                dev_dbg(dev->dev,
1902                        "At least one unaligned dest scatter list, making a copy\n");
1903                err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1904                if (err)
1905                        return err;
1906
1907                sg = dev->sg_dst_cpy;
1908        }
1909
1910        err = s5p_set_outdata(dev, sg);
1911        if (err) {
1912                s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1913                return err;
1914        }
1915
1916        return 0;
1917}
1918
1919static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1920{
1921        struct ablkcipher_request *req = dev->req;
1922        uint32_t aes_control;
1923        unsigned long flags;
1924        int err;
1925        u8 *iv;
1926
1927        aes_control = SSS_AES_KEY_CHANGE_MODE;
1928        if (mode & FLAGS_AES_DECRYPT)
1929                aes_control |= SSS_AES_MODE_DECRYPT;
1930
1931        if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1932                aes_control |= SSS_AES_CHAIN_MODE_CBC;
1933                iv = req->info;
1934        } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1935                aes_control |= SSS_AES_CHAIN_MODE_CTR;
1936                iv = req->info;
1937        } else {
1938                iv = NULL; /* AES_ECB */
1939        }
1940
1941        if (dev->ctx->keylen == AES_KEYSIZE_192)
1942                aes_control |= SSS_AES_KEY_SIZE_192;
1943        else if (dev->ctx->keylen == AES_KEYSIZE_256)
1944                aes_control |= SSS_AES_KEY_SIZE_256;
1945
1946        aes_control |= SSS_AES_FIFO_MODE;
1947
1948        /* as a variant it is possible to use byte swapping on DMA side */
1949        aes_control |= SSS_AES_BYTESWAP_DI
1950                    |  SSS_AES_BYTESWAP_DO
1951                    |  SSS_AES_BYTESWAP_IV
1952                    |  SSS_AES_BYTESWAP_KEY
1953                    |  SSS_AES_BYTESWAP_CNT;
1954
1955        spin_lock_irqsave(&dev->lock, flags);
1956
1957        SSS_WRITE(dev, FCINTENCLR,
1958                  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1959        SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1960
1961        err = s5p_set_indata_start(dev, req);
1962        if (err)
1963                goto indata_error;
1964
1965        err = s5p_set_outdata_start(dev, req);
1966        if (err)
1967                goto outdata_error;
1968
1969        SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1970        s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen);
1971
1972        s5p_set_dma_indata(dev,  dev->sg_src);
1973        s5p_set_dma_outdata(dev, dev->sg_dst);
1974
1975        SSS_WRITE(dev, FCINTENSET,
1976                  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1977
1978        spin_unlock_irqrestore(&dev->lock, flags);
1979
1980        return;
1981
1982outdata_error:
1983        s5p_unset_indata(dev);
1984
1985indata_error:
1986        s5p_sg_done(dev);
1987        dev->busy = false;
1988        spin_unlock_irqrestore(&dev->lock, flags);
1989        s5p_aes_complete(dev, err);
1990}
1991
1992static void s5p_tasklet_cb(unsigned long data)
1993{
1994        struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1995        struct crypto_async_request *async_req, *backlog;
1996        struct s5p_aes_reqctx *reqctx;
1997        unsigned long flags;
1998
1999        spin_lock_irqsave(&dev->lock, flags);
2000        backlog   = crypto_get_backlog(&dev->queue);
2001        async_req = crypto_dequeue_request(&dev->queue);
2002
2003        if (!async_req) {
2004                dev->busy = false;
2005                spin_unlock_irqrestore(&dev->lock, flags);
2006                return;
2007        }
2008        spin_unlock_irqrestore(&dev->lock, flags);
2009
2010        if (backlog)
2011                backlog->complete(backlog, -EINPROGRESS);
2012
2013        dev->req = ablkcipher_request_cast(async_req);
2014        dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2015        reqctx   = ablkcipher_request_ctx(dev->req);
2016
2017        s5p_aes_crypt_start(dev, reqctx->mode);
2018}
2019
2020static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2021                              struct ablkcipher_request *req)
2022{
2023        unsigned long flags;
2024        int err;
2025
2026        spin_lock_irqsave(&dev->lock, flags);
2027        err = ablkcipher_enqueue_request(&dev->queue, req);
2028        if (dev->busy) {
2029                spin_unlock_irqrestore(&dev->lock, flags);
2030                goto exit;
2031        }
2032        dev->busy = true;
2033
2034        spin_unlock_irqrestore(&dev->lock, flags);
2035
2036        tasklet_schedule(&dev->tasklet);
2037
2038exit:
2039        return err;
2040}
2041
2042static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2043{
2044        struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2045        struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2046        struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2047        struct s5p_aes_dev *dev = ctx->dev;
2048
2049        if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
2050                dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2051                return -EINVAL;
2052        }
2053
2054        reqctx->mode = mode;
2055
2056        return s5p_aes_handle_req(dev, req);
2057}
2058
2059static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2060                          const uint8_t *key, unsigned int keylen)
2061{
2062        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2063        struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2064
2065        if (keylen != AES_KEYSIZE_128 &&
2066            keylen != AES_KEYSIZE_192 &&
2067            keylen != AES_KEYSIZE_256)
2068                return -EINVAL;
2069
2070        memcpy(ctx->aes_key, key, keylen);
2071        ctx->keylen = keylen;
2072
2073        return 0;
2074}
2075
2076static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2077{
2078        return s5p_aes_crypt(req, 0);
2079}
2080
2081static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2082{
2083        return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2084}
2085
2086static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2087{
2088        return s5p_aes_crypt(req, FLAGS_AES_CBC);
2089}
2090
2091static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2092{
2093        return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2094}
2095
2096static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2097{
2098        struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2099
2100        ctx->dev = s5p_dev;
2101        tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2102
2103        return 0;
2104}
2105
2106static struct crypto_alg algs[] = {
2107        {
2108                .cra_name               = "ecb(aes)",
2109                .cra_driver_name        = "ecb-aes-s5p",
2110                .cra_priority           = 100,
2111                .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2112                                          CRYPTO_ALG_ASYNC |
2113                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2114                .cra_blocksize          = AES_BLOCK_SIZE,
2115                .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2116                .cra_alignmask          = 0x0f,
2117                .cra_type               = &crypto_ablkcipher_type,
2118                .cra_module             = THIS_MODULE,
2119                .cra_init               = s5p_aes_cra_init,
2120                .cra_u.ablkcipher = {
2121                        .min_keysize    = AES_MIN_KEY_SIZE,
2122                        .max_keysize    = AES_MAX_KEY_SIZE,
2123                        .setkey         = s5p_aes_setkey,
2124                        .encrypt        = s5p_aes_ecb_encrypt,
2125                        .decrypt        = s5p_aes_ecb_decrypt,
2126                }
2127        },
2128        {
2129                .cra_name               = "cbc(aes)",
2130                .cra_driver_name        = "cbc-aes-s5p",
2131                .cra_priority           = 100,
2132                .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2133                                          CRYPTO_ALG_ASYNC |
2134                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2135                .cra_blocksize          = AES_BLOCK_SIZE,
2136                .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2137                .cra_alignmask          = 0x0f,
2138                .cra_type               = &crypto_ablkcipher_type,
2139                .cra_module             = THIS_MODULE,
2140                .cra_init               = s5p_aes_cra_init,
2141                .cra_u.ablkcipher = {
2142                        .min_keysize    = AES_MIN_KEY_SIZE,
2143                        .max_keysize    = AES_MAX_KEY_SIZE,
2144                        .ivsize         = AES_BLOCK_SIZE,
2145                        .setkey         = s5p_aes_setkey,
2146                        .encrypt        = s5p_aes_cbc_encrypt,
2147                        .decrypt        = s5p_aes_cbc_decrypt,
2148                }
2149        },
2150};
2151
2152static int s5p_aes_probe(struct platform_device *pdev)
2153{
2154        struct device *dev = &pdev->dev;
2155        int i, j, err = -ENODEV;
2156        const struct samsung_aes_variant *variant;
2157        struct s5p_aes_dev *pdata;
2158        struct resource *res;
2159        unsigned int hash_i;
2160
2161        if (s5p_dev)
2162                return -EEXIST;
2163
2164        pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2165        if (!pdata)
2166                return -ENOMEM;
2167
2168        variant = find_s5p_sss_version(pdev);
2169        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2170
2171        /*
2172         * Note: HASH and PRNG uses the same registers in secss, avoid
2173         * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2174         * is enabled in config. We need larger size for HASH registers in
2175         * secss, current describe only AES/DES
2176         */
2177        if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2178                if (variant == &exynos_aes_data) {
2179                        res->end += 0x300;
2180                        pdata->use_hash = true;
2181                }
2182        }
2183
2184        pdata->res = res;
2185        pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2186        if (IS_ERR(pdata->ioaddr)) {
2187                if (!pdata->use_hash)
2188                        return PTR_ERR(pdata->ioaddr);
2189                /* try AES without HASH */
2190                res->end -= 0x300;
2191                pdata->use_hash = false;
2192                pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2193                if (IS_ERR(pdata->ioaddr))
2194                        return PTR_ERR(pdata->ioaddr);
2195        }
2196
2197        pdata->clk = devm_clk_get(dev, "secss");
2198        if (IS_ERR(pdata->clk)) {
2199                dev_err(dev, "failed to find secss clock source\n");
2200                return -ENOENT;
2201        }
2202
2203        err = clk_prepare_enable(pdata->clk);
2204        if (err < 0) {
2205                dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2206                return err;
2207        }
2208
2209        spin_lock_init(&pdata->lock);
2210        spin_lock_init(&pdata->hash_lock);
2211
2212        pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2213        pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2214
2215        pdata->irq_fc = platform_get_irq(pdev, 0);
2216        if (pdata->irq_fc < 0) {
2217                err = pdata->irq_fc;
2218                dev_warn(dev, "feed control interrupt is not available.\n");
2219                goto err_irq;
2220        }
2221        err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2222                                        s5p_aes_interrupt, IRQF_ONESHOT,
2223                                        pdev->name, pdev);
2224        if (err < 0) {
2225                dev_warn(dev, "feed control interrupt is not available.\n");
2226                goto err_irq;
2227        }
2228
2229        pdata->busy = false;
2230        pdata->dev = dev;
2231        platform_set_drvdata(pdev, pdata);
2232        s5p_dev = pdata;
2233
2234        tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2235        crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2236
2237        for (i = 0; i < ARRAY_SIZE(algs); i++) {
2238                err = crypto_register_alg(&algs[i]);
2239                if (err)
2240                        goto err_algs;
2241        }
2242
2243        if (pdata->use_hash) {
2244                tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2245                             (unsigned long)pdata);
2246                crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2247
2248                for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2249                     hash_i++) {
2250                        struct ahash_alg *alg;
2251
2252                        alg = &algs_sha1_md5_sha256[hash_i];
2253                        err = crypto_register_ahash(alg);
2254                        if (err) {
2255                                dev_err(dev, "can't register '%s': %d\n",
2256                                        alg->halg.base.cra_driver_name, err);
2257                                goto err_hash;
2258                        }
2259                }
2260        }
2261
2262        dev_info(dev, "s5p-sss driver registered\n");
2263
2264        return 0;
2265
2266err_hash:
2267        for (j = hash_i - 1; j >= 0; j--)
2268                crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2269
2270        tasklet_kill(&pdata->hash_tasklet);
2271        res->end -= 0x300;
2272
2273err_algs:
2274        if (i < ARRAY_SIZE(algs))
2275                dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2276                        err);
2277
2278        for (j = 0; j < i; j++)
2279                crypto_unregister_alg(&algs[j]);
2280
2281        tasklet_kill(&pdata->tasklet);
2282
2283err_irq:
2284        clk_disable_unprepare(pdata->clk);
2285
2286        s5p_dev = NULL;
2287
2288        return err;
2289}
2290
2291static int s5p_aes_remove(struct platform_device *pdev)
2292{
2293        struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2294        int i;
2295
2296        if (!pdata)
2297                return -ENODEV;
2298
2299        for (i = 0; i < ARRAY_SIZE(algs); i++)
2300                crypto_unregister_alg(&algs[i]);
2301
2302        tasklet_kill(&pdata->tasklet);
2303        if (pdata->use_hash) {
2304                for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2305                        crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2306
2307                pdata->res->end -= 0x300;
2308                tasklet_kill(&pdata->hash_tasklet);
2309                pdata->use_hash = false;
2310        }
2311
2312        clk_disable_unprepare(pdata->clk);
2313        s5p_dev = NULL;
2314
2315        return 0;
2316}
2317
2318static struct platform_driver s5p_aes_crypto = {
2319        .probe  = s5p_aes_probe,
2320        .remove = s5p_aes_remove,
2321        .driver = {
2322                .name   = "s5p-secss",
2323                .of_match_table = s5p_sss_dt_match,
2324        },
2325};
2326
2327module_platform_driver(s5p_aes_crypto);
2328
2329MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2330MODULE_LICENSE("GPL v2");
2331MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2332MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2333