linux/drivers/dma/ppc4xx/adma.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2006-2009 DENX Software Engineering.
   3 *
   4 * Author: Yuri Tikhonov <yur@emcraft.com>
   5 *
   6 * Further porting to arch/powerpc by
   7 *      Anatolij Gustschin <agust@denx.de>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * The full GNU General Public License is included in this distribution in the
  20 * file called COPYING.
  21 */
  22
  23/*
  24 * This driver supports the asynchrounous DMA copy and RAID engines available
  25 * on the AMCC PPC440SPe Processors.
  26 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  27 * ADMA driver written by D.Williams.
  28 */
  29
  30#include <linux/init.h>
  31#include <linux/module.h>
  32#include <linux/async_tx.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/spinlock.h>
  36#include <linux/interrupt.h>
  37#include <linux/slab.h>
  38#include <linux/uaccess.h>
  39#include <linux/proc_fs.h>
  40#include <linux/of.h>
  41#include <linux/of_address.h>
  42#include <linux/of_irq.h>
  43#include <linux/of_platform.h>
  44#include <asm/dcr.h>
  45#include <asm/dcr-regs.h>
  46#include "adma.h"
  47#include "../dmaengine.h"
  48
  49enum ppc_adma_init_code {
  50        PPC_ADMA_INIT_OK = 0,
  51        PPC_ADMA_INIT_MEMRES,
  52        PPC_ADMA_INIT_MEMREG,
  53        PPC_ADMA_INIT_ALLOC,
  54        PPC_ADMA_INIT_COHERENT,
  55        PPC_ADMA_INIT_CHANNEL,
  56        PPC_ADMA_INIT_IRQ1,
  57        PPC_ADMA_INIT_IRQ2,
  58        PPC_ADMA_INIT_REGISTER
  59};
  60
  61static char *ppc_adma_errors[] = {
  62        [PPC_ADMA_INIT_OK] = "ok",
  63        [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  64        [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  65        [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  66                                "structure",
  67        [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  68                                   "hardware descriptors",
  69        [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  70        [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  71        [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  72        [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  73};
  74
  75static enum ppc_adma_init_code
  76ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  77
  78struct ppc_dma_chan_ref {
  79        struct dma_chan *chan;
  80        struct list_head node;
  81};
  82
  83/* The list of channels exported by ppc440spe ADMA */
  84struct list_head
  85ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  86
  87/* This flag is set when want to refetch the xor chain in the interrupt
  88 * handler
  89 */
  90static u32 do_xor_refetch;
  91
  92/* Pointer to DMA0, DMA1 CP/CS FIFO */
  93static void *ppc440spe_dma_fifo_buf;
  94
  95/* Pointers to last submitted to DMA0, DMA1 CDBs */
  96static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  97static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  98
  99/* Pointer to last linked and submitted xor CB */
 100static struct ppc440spe_adma_desc_slot *xor_last_linked;
 101static struct ppc440spe_adma_desc_slot *xor_last_submit;
 102
 103/* This array is used in data-check operations for storing a pattern */
 104static char ppc440spe_qword[16];
 105
 106static atomic_t ppc440spe_adma_err_irq_ref;
 107static dcr_host_t ppc440spe_mq_dcr_host;
 108static unsigned int ppc440spe_mq_dcr_len;
 109
 110/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
 111 * the block size in transactions, then we do not allow to activate more than
 112 * only one RXOR transactions simultaneously. So use this var to store
 113 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
 114 * set) or not (PPC440SPE_RXOR_RUN is clear).
 115 */
 116static unsigned long ppc440spe_rxor_state;
 117
 118/* These are used in enable & check routines
 119 */
 120static u32 ppc440spe_r6_enabled;
 121static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
 122static struct completion ppc440spe_r6_test_comp;
 123
 124static int ppc440spe_adma_dma2rxor_prep_src(
 125                struct ppc440spe_adma_desc_slot *desc,
 126                struct ppc440spe_rxor *cursor, int index,
 127                int src_cnt, u32 addr);
 128static void ppc440spe_adma_dma2rxor_set_src(
 129                struct ppc440spe_adma_desc_slot *desc,
 130                int index, dma_addr_t addr);
 131static void ppc440spe_adma_dma2rxor_set_mult(
 132                struct ppc440spe_adma_desc_slot *desc,
 133                int index, u8 mult);
 134
 135#ifdef ADMA_LL_DEBUG
 136#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
 137#else
 138#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
 139#endif
 140
 141static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
 142{
 143        struct dma_cdb *cdb;
 144        struct xor_cb *cb;
 145        int i;
 146
 147        switch (chan->device->id) {
 148        case 0:
 149        case 1:
 150                cdb = block;
 151
 152                pr_debug("CDB at %p [%d]:\n"
 153                        "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
 154                        "\t sg1u 0x%08x sg1l 0x%08x\n"
 155                        "\t sg2u 0x%08x sg2l 0x%08x\n"
 156                        "\t sg3u 0x%08x sg3l 0x%08x\n",
 157                        cdb, chan->device->id,
 158                        cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
 159                        le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
 160                        le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
 161                        le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
 162                );
 163                break;
 164        case 2:
 165                cb = block;
 166
 167                pr_debug("CB at %p [%d]:\n"
 168                        "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
 169                        "\t cbtah 0x%08x cbtal 0x%08x\n"
 170                        "\t cblah 0x%08x cblal 0x%08x\n",
 171                        cb, chan->device->id,
 172                        cb->cbc, cb->cbbc, cb->cbs,
 173                        cb->cbtah, cb->cbtal,
 174                        cb->cblah, cb->cblal);
 175                for (i = 0; i < 16; i++) {
 176                        if (i && !cb->ops[i].h && !cb->ops[i].l)
 177                                continue;
 178                        pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
 179                                i, cb->ops[i].h, cb->ops[i].l);
 180                }
 181                break;
 182        }
 183}
 184
 185static void print_cb_list(struct ppc440spe_adma_chan *chan,
 186                          struct ppc440spe_adma_desc_slot *iter)
 187{
 188        for (; iter; iter = iter->hw_next)
 189                print_cb(chan, iter->hw_desc);
 190}
 191
 192static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
 193                             unsigned int src_cnt)
 194{
 195        int i;
 196
 197        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 198        for (i = 0; i < src_cnt; i++)
 199                pr_debug("\t0x%016llx ", src[i]);
 200        pr_debug("dst:\n\t0x%016llx\n", dst);
 201}
 202
 203static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
 204                            unsigned int src_cnt)
 205{
 206        int i;
 207
 208        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 209        for (i = 0; i < src_cnt; i++)
 210                pr_debug("\t0x%016llx ", src[i]);
 211        pr_debug("dst: ");
 212        for (i = 0; i < 2; i++)
 213                pr_debug("\t0x%016llx ", dst[i]);
 214}
 215
 216static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
 217                                    unsigned int src_cnt,
 218                                    const unsigned char *scf)
 219{
 220        int i;
 221
 222        pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
 223        if (scf) {
 224                for (i = 0; i < src_cnt; i++)
 225                        pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
 226        } else {
 227                for (i = 0; i < src_cnt; i++)
 228                        pr_debug("\t0x%016llx(no) ", src[i]);
 229        }
 230
 231        pr_debug("dst: ");
 232        for (i = 0; i < 2; i++)
 233                pr_debug("\t0x%016llx ", src[src_cnt + i]);
 234}
 235
 236/******************************************************************************
 237 * Command (Descriptor) Blocks low-level routines
 238 ******************************************************************************/
 239/**
 240 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
 241 * pseudo operation
 242 */
 243static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
 244                                          struct ppc440spe_adma_chan *chan)
 245{
 246        struct xor_cb *p;
 247
 248        switch (chan->device->id) {
 249        case PPC440SPE_XOR_ID:
 250                p = desc->hw_desc;
 251                memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 252                /* NOP with Command Block Complete Enable */
 253                p->cbc = XOR_CBCR_CBCE_BIT;
 254                break;
 255        case PPC440SPE_DMA0_ID:
 256        case PPC440SPE_DMA1_ID:
 257                memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 258                /* NOP with interrupt */
 259                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 260                break;
 261        default:
 262                printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
 263                                __func__);
 264                break;
 265        }
 266}
 267
 268/**
 269 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
 270 * pseudo operation
 271 */
 272static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
 273{
 274        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 275        desc->hw_next = NULL;
 276        desc->src_cnt = 0;
 277        desc->dst_cnt = 1;
 278}
 279
 280/**
 281 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
 282 */
 283static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
 284                                         int src_cnt, unsigned long flags)
 285{
 286        struct xor_cb *hw_desc = desc->hw_desc;
 287
 288        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 289        desc->hw_next = NULL;
 290        desc->src_cnt = src_cnt;
 291        desc->dst_cnt = 1;
 292
 293        hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
 294        if (flags & DMA_PREP_INTERRUPT)
 295                /* Enable interrupt on completion */
 296                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 297}
 298
 299/**
 300 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
 301 * operation in DMA2 controller
 302 */
 303static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
 304                int dst_cnt, int src_cnt, unsigned long flags)
 305{
 306        struct xor_cb *hw_desc = desc->hw_desc;
 307
 308        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 309        desc->hw_next = NULL;
 310        desc->src_cnt = src_cnt;
 311        desc->dst_cnt = dst_cnt;
 312        memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
 313        desc->descs_per_op = 0;
 314
 315        hw_desc->cbc = XOR_CBCR_TGT_BIT;
 316        if (flags & DMA_PREP_INTERRUPT)
 317                /* Enable interrupt on completion */
 318                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 319}
 320
 321#define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
 322#define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
 323#define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
 324
 325/**
 326 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
 327 * with DMA0/1
 328 */
 329static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
 330                                int dst_cnt, int src_cnt, unsigned long flags,
 331                                unsigned long op)
 332{
 333        struct dma_cdb *hw_desc;
 334        struct ppc440spe_adma_desc_slot *iter;
 335        u8 dopc;
 336
 337        /* Common initialization of a PQ descriptors chain */
 338        set_bits(op, &desc->flags);
 339        desc->src_cnt = src_cnt;
 340        desc->dst_cnt = dst_cnt;
 341
 342        /* WXOR MULTICAST if both P and Q are being computed
 343         * MV_SG1_SG2 if Q only
 344         */
 345        dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
 346                DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
 347
 348        list_for_each_entry(iter, &desc->group_list, chain_node) {
 349                hw_desc = iter->hw_desc;
 350                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 351
 352                if (likely(!list_is_last(&iter->chain_node,
 353                                &desc->group_list))) {
 354                        /* set 'next' pointer */
 355                        iter->hw_next = list_entry(iter->chain_node.next,
 356                                struct ppc440spe_adma_desc_slot, chain_node);
 357                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 358                } else {
 359                        /* this is the last descriptor.
 360                         * this slot will be pasted from ADMA level
 361                         * each time it wants to configure parameters
 362                         * of the transaction (src, dst, ...)
 363                         */
 364                        iter->hw_next = NULL;
 365                        if (flags & DMA_PREP_INTERRUPT)
 366                                set_bit(PPC440SPE_DESC_INT, &iter->flags);
 367                        else
 368                                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 369                }
 370        }
 371
 372        /* Set OPS depending on WXOR/RXOR type of operation */
 373        if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
 374                /* This is a WXOR only chain:
 375                 * - first descriptors are for zeroing destinations
 376                 *   if PPC440SPE_ZERO_P/Q set;
 377                 * - descriptors remained are for GF-XOR operations.
 378                 */
 379                iter = list_first_entry(&desc->group_list,
 380                                        struct ppc440spe_adma_desc_slot,
 381                                        chain_node);
 382
 383                if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
 384                        hw_desc = iter->hw_desc;
 385                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 386                        iter = list_first_entry(&iter->chain_node,
 387                                        struct ppc440spe_adma_desc_slot,
 388                                        chain_node);
 389                }
 390
 391                if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
 392                        hw_desc = iter->hw_desc;
 393                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 394                        iter = list_first_entry(&iter->chain_node,
 395                                        struct ppc440spe_adma_desc_slot,
 396                                        chain_node);
 397                }
 398
 399                list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 400                        hw_desc = iter->hw_desc;
 401                        hw_desc->opc = dopc;
 402                }
 403        } else {
 404                /* This is either RXOR-only or mixed RXOR/WXOR */
 405
 406                /* The first 1 or 2 slots in chain are always RXOR,
 407                 * if need to calculate P & Q, then there are two
 408                 * RXOR slots; if only P or only Q, then there is one
 409                 */
 410                iter = list_first_entry(&desc->group_list,
 411                                        struct ppc440spe_adma_desc_slot,
 412                                        chain_node);
 413                hw_desc = iter->hw_desc;
 414                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 415
 416                if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
 417                        iter = list_first_entry(&iter->chain_node,
 418                                                struct ppc440spe_adma_desc_slot,
 419                                                chain_node);
 420                        hw_desc = iter->hw_desc;
 421                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 422                }
 423
 424                /* The remaining descs (if any) are WXORs */
 425                if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
 426                        iter = list_first_entry(&iter->chain_node,
 427                                                struct ppc440spe_adma_desc_slot,
 428                                                chain_node);
 429                        list_for_each_entry_from(iter, &desc->group_list,
 430                                                chain_node) {
 431                                hw_desc = iter->hw_desc;
 432                                hw_desc->opc = dopc;
 433                        }
 434                }
 435        }
 436}
 437
 438/**
 439 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
 440 * for PQ_ZERO_SUM operation
 441 */
 442static void ppc440spe_desc_init_dma01pqzero_sum(
 443                                struct ppc440spe_adma_desc_slot *desc,
 444                                int dst_cnt, int src_cnt)
 445{
 446        struct dma_cdb *hw_desc;
 447        struct ppc440spe_adma_desc_slot *iter;
 448        int i = 0;
 449        u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
 450                                   DMA_CDB_OPC_MV_SG1_SG2;
 451        /*
 452         * Initialize starting from 2nd or 3rd descriptor dependent
 453         * on dst_cnt. First one or two slots are for cloning P
 454         * and/or Q to chan->pdest and/or chan->qdest as we have
 455         * to preserve original P/Q.
 456         */
 457        iter = list_first_entry(&desc->group_list,
 458                                struct ppc440spe_adma_desc_slot, chain_node);
 459        iter = list_entry(iter->chain_node.next,
 460                          struct ppc440spe_adma_desc_slot, chain_node);
 461
 462        if (dst_cnt > 1) {
 463                iter = list_entry(iter->chain_node.next,
 464                                  struct ppc440spe_adma_desc_slot, chain_node);
 465        }
 466        /* initialize each source descriptor in chain */
 467        list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 468                hw_desc = iter->hw_desc;
 469                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 470                iter->src_cnt = 0;
 471                iter->dst_cnt = 0;
 472
 473                /* This is a ZERO_SUM operation:
 474                 * - <src_cnt> descriptors starting from 2nd or 3rd
 475                 *   descriptor are for GF-XOR operations;
 476                 * - remaining <dst_cnt> descriptors are for checking the result
 477                 */
 478                if (i++ < src_cnt)
 479                        /* MV_SG1_SG2 if only Q is being verified
 480                         * MULTICAST if both P and Q are being verified
 481                         */
 482                        hw_desc->opc = dopc;
 483                else
 484                        /* DMA_CDB_OPC_DCHECK128 operation */
 485                        hw_desc->opc = DMA_CDB_OPC_DCHECK128;
 486
 487                if (likely(!list_is_last(&iter->chain_node,
 488                                         &desc->group_list))) {
 489                        /* set 'next' pointer */
 490                        iter->hw_next = list_entry(iter->chain_node.next,
 491                                                struct ppc440spe_adma_desc_slot,
 492                                                chain_node);
 493                } else {
 494                        /* this is the last descriptor.
 495                         * this slot will be pasted from ADMA level
 496                         * each time it wants to configure parameters
 497                         * of the transaction (src, dst, ...)
 498                         */
 499                        iter->hw_next = NULL;
 500                        /* always enable interrupt generation since we get
 501                         * the status of pqzero from the handler
 502                         */
 503                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
 504                }
 505        }
 506        desc->src_cnt = src_cnt;
 507        desc->dst_cnt = dst_cnt;
 508}
 509
 510/**
 511 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
 512 */
 513static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
 514                                        unsigned long flags)
 515{
 516        struct dma_cdb *hw_desc = desc->hw_desc;
 517
 518        memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 519        desc->hw_next = NULL;
 520        desc->src_cnt = 1;
 521        desc->dst_cnt = 1;
 522
 523        if (flags & DMA_PREP_INTERRUPT)
 524                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 525        else
 526                clear_bit(PPC440SPE_DESC_INT, &desc->flags);
 527
 528        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 529}
 530
 531/**
 532 * ppc440spe_desc_set_src_addr - set source address into the descriptor
 533 */
 534static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
 535                                        struct ppc440spe_adma_chan *chan,
 536                                        int src_idx, dma_addr_t addrh,
 537                                        dma_addr_t addrl)
 538{
 539        struct dma_cdb *dma_hw_desc;
 540        struct xor_cb *xor_hw_desc;
 541        phys_addr_t addr64, tmplow, tmphi;
 542
 543        switch (chan->device->id) {
 544        case PPC440SPE_DMA0_ID:
 545        case PPC440SPE_DMA1_ID:
 546                if (!addrh) {
 547                        addr64 = addrl;
 548                        tmphi = (addr64 >> 32);
 549                        tmplow = (addr64 & 0xFFFFFFFF);
 550                } else {
 551                        tmphi = addrh;
 552                        tmplow = addrl;
 553                }
 554                dma_hw_desc = desc->hw_desc;
 555                dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
 556                dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
 557                break;
 558        case PPC440SPE_XOR_ID:
 559                xor_hw_desc = desc->hw_desc;
 560                xor_hw_desc->ops[src_idx].l = addrl;
 561                xor_hw_desc->ops[src_idx].h |= addrh;
 562                break;
 563        }
 564}
 565
 566/**
 567 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
 568 */
 569static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
 570                        struct ppc440spe_adma_chan *chan, u32 mult_index,
 571                        int sg_index, unsigned char mult_value)
 572{
 573        struct dma_cdb *dma_hw_desc;
 574        struct xor_cb *xor_hw_desc;
 575        u32 *psgu;
 576
 577        switch (chan->device->id) {
 578        case PPC440SPE_DMA0_ID:
 579        case PPC440SPE_DMA1_ID:
 580                dma_hw_desc = desc->hw_desc;
 581
 582                switch (sg_index) {
 583                /* for RXOR operations set multiplier
 584                 * into source cued address
 585                 */
 586                case DMA_CDB_SG_SRC:
 587                        psgu = &dma_hw_desc->sg1u;
 588                        break;
 589                /* for WXOR operations set multiplier
 590                 * into destination cued address(es)
 591                 */
 592                case DMA_CDB_SG_DST1:
 593                        psgu = &dma_hw_desc->sg2u;
 594                        break;
 595                case DMA_CDB_SG_DST2:
 596                        psgu = &dma_hw_desc->sg3u;
 597                        break;
 598                default:
 599                        BUG();
 600                }
 601
 602                *psgu |= cpu_to_le32(mult_value << mult_index);
 603                break;
 604        case PPC440SPE_XOR_ID:
 605                xor_hw_desc = desc->hw_desc;
 606                break;
 607        default:
 608                BUG();
 609        }
 610}
 611
 612/**
 613 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
 614 */
 615static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
 616                                struct ppc440spe_adma_chan *chan,
 617                                dma_addr_t addrh, dma_addr_t addrl,
 618                                u32 dst_idx)
 619{
 620        struct dma_cdb *dma_hw_desc;
 621        struct xor_cb *xor_hw_desc;
 622        phys_addr_t addr64, tmphi, tmplow;
 623        u32 *psgu, *psgl;
 624
 625        switch (chan->device->id) {
 626        case PPC440SPE_DMA0_ID:
 627        case PPC440SPE_DMA1_ID:
 628                if (!addrh) {
 629                        addr64 = addrl;
 630                        tmphi = (addr64 >> 32);
 631                        tmplow = (addr64 & 0xFFFFFFFF);
 632                } else {
 633                        tmphi = addrh;
 634                        tmplow = addrl;
 635                }
 636                dma_hw_desc = desc->hw_desc;
 637
 638                psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
 639                psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
 640
 641                *psgl = cpu_to_le32((u32)tmplow);
 642                *psgu |= cpu_to_le32((u32)tmphi);
 643                break;
 644        case PPC440SPE_XOR_ID:
 645                xor_hw_desc = desc->hw_desc;
 646                xor_hw_desc->cbtal = addrl;
 647                xor_hw_desc->cbtah |= addrh;
 648                break;
 649        }
 650}
 651
 652/**
 653 * ppc440spe_desc_set_byte_count - set number of data bytes involved
 654 * into the operation
 655 */
 656static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
 657                                struct ppc440spe_adma_chan *chan,
 658                                u32 byte_count)
 659{
 660        struct dma_cdb *dma_hw_desc;
 661        struct xor_cb *xor_hw_desc;
 662
 663        switch (chan->device->id) {
 664        case PPC440SPE_DMA0_ID:
 665        case PPC440SPE_DMA1_ID:
 666                dma_hw_desc = desc->hw_desc;
 667                dma_hw_desc->cnt = cpu_to_le32(byte_count);
 668                break;
 669        case PPC440SPE_XOR_ID:
 670                xor_hw_desc = desc->hw_desc;
 671                xor_hw_desc->cbbc = byte_count;
 672                break;
 673        }
 674}
 675
 676/**
 677 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
 678 */
 679static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
 680{
 681        /* assume that byte_count is aligned on the 512-boundary;
 682         * thus write it directly to the register (bits 23:31 are
 683         * reserved there).
 684         */
 685        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
 686}
 687
 688/**
 689 * ppc440spe_desc_set_dcheck - set CHECK pattern
 690 */
 691static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
 692                                struct ppc440spe_adma_chan *chan, u8 *qword)
 693{
 694        struct dma_cdb *dma_hw_desc;
 695
 696        switch (chan->device->id) {
 697        case PPC440SPE_DMA0_ID:
 698        case PPC440SPE_DMA1_ID:
 699                dma_hw_desc = desc->hw_desc;
 700                iowrite32(qword[0], &dma_hw_desc->sg3l);
 701                iowrite32(qword[4], &dma_hw_desc->sg3u);
 702                iowrite32(qword[8], &dma_hw_desc->sg2l);
 703                iowrite32(qword[12], &dma_hw_desc->sg2u);
 704                break;
 705        default:
 706                BUG();
 707        }
 708}
 709
 710/**
 711 * ppc440spe_xor_set_link - set link address in xor CB
 712 */
 713static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
 714                                struct ppc440spe_adma_desc_slot *next_desc)
 715{
 716        struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
 717
 718        if (unlikely(!next_desc || !(next_desc->phys))) {
 719                printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
 720                        __func__, next_desc,
 721                        next_desc ? next_desc->phys : 0);
 722                BUG();
 723        }
 724
 725        xor_hw_desc->cbs = 0;
 726        xor_hw_desc->cblal = next_desc->phys;
 727        xor_hw_desc->cblah = 0;
 728        xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
 729}
 730
 731/**
 732 * ppc440spe_desc_set_link - set the address of descriptor following this
 733 * descriptor in chain
 734 */
 735static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
 736                                struct ppc440spe_adma_desc_slot *prev_desc,
 737                                struct ppc440spe_adma_desc_slot *next_desc)
 738{
 739        unsigned long flags;
 740        struct ppc440spe_adma_desc_slot *tail = next_desc;
 741
 742        if (unlikely(!prev_desc || !next_desc ||
 743                (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
 744                /* If previous next is overwritten something is wrong.
 745                 * though we may refetch from append to initiate list
 746                 * processing; in this case - it's ok.
 747                 */
 748                printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
 749                        "prev->hw_next=0x%p\n", __func__, prev_desc,
 750                        next_desc, prev_desc ? prev_desc->hw_next : 0);
 751                BUG();
 752        }
 753
 754        local_irq_save(flags);
 755
 756        /* do s/w chaining both for DMA and XOR descriptors */
 757        prev_desc->hw_next = next_desc;
 758
 759        switch (chan->device->id) {
 760        case PPC440SPE_DMA0_ID:
 761        case PPC440SPE_DMA1_ID:
 762                break;
 763        case PPC440SPE_XOR_ID:
 764                /* bind descriptor to the chain */
 765                while (tail->hw_next)
 766                        tail = tail->hw_next;
 767                xor_last_linked = tail;
 768
 769                if (prev_desc == xor_last_submit)
 770                        /* do not link to the last submitted CB */
 771                        break;
 772                ppc440spe_xor_set_link(prev_desc, next_desc);
 773                break;
 774        }
 775
 776        local_irq_restore(flags);
 777}
 778
 779/**
 780 * ppc440spe_desc_get_link - get the address of the descriptor that
 781 * follows this one
 782 */
 783static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
 784                                        struct ppc440spe_adma_chan *chan)
 785{
 786        if (!desc->hw_next)
 787                return 0;
 788
 789        return desc->hw_next->phys;
 790}
 791
 792/**
 793 * ppc440spe_desc_is_aligned - check alignment
 794 */
 795static inline int ppc440spe_desc_is_aligned(
 796        struct ppc440spe_adma_desc_slot *desc, int num_slots)
 797{
 798        return (desc->idx & (num_slots - 1)) ? 0 : 1;
 799}
 800
 801/**
 802 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
 803 * XOR operation
 804 */
 805static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
 806                        int *slots_per_op)
 807{
 808        int slot_cnt;
 809
 810        /* each XOR descriptor provides up to 16 source operands */
 811        slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
 812
 813        if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
 814                return slot_cnt;
 815
 816        printk(KERN_ERR "%s: len %d > max %d !!\n",
 817                __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
 818        BUG();
 819        return slot_cnt;
 820}
 821
 822/**
 823 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
 824 * DMA2 PQ operation
 825 */
 826static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
 827                int src_cnt, size_t len)
 828{
 829        signed long long order = 0;
 830        int state = 0;
 831        int addr_count = 0;
 832        int i;
 833        for (i = 1; i < src_cnt; i++) {
 834                dma_addr_t cur_addr = srcs[i];
 835                dma_addr_t old_addr = srcs[i-1];
 836                switch (state) {
 837                case 0:
 838                        if (cur_addr == old_addr + len) {
 839                                /* direct RXOR */
 840                                order = 1;
 841                                state = 1;
 842                                if (i == src_cnt-1)
 843                                        addr_count++;
 844                        } else if (old_addr == cur_addr + len) {
 845                                /* reverse RXOR */
 846                                order = -1;
 847                                state = 1;
 848                                if (i == src_cnt-1)
 849                                        addr_count++;
 850                        } else {
 851                                state = 3;
 852                        }
 853                        break;
 854                case 1:
 855                        if (i == src_cnt-2 || (order == -1
 856                                && cur_addr != old_addr - len)) {
 857                                order = 0;
 858                                state = 0;
 859                                addr_count++;
 860                        } else if (cur_addr == old_addr + len*order) {
 861                                state = 2;
 862                                if (i == src_cnt-1)
 863                                        addr_count++;
 864                        } else if (cur_addr == old_addr + 2*len) {
 865                                state = 2;
 866                                if (i == src_cnt-1)
 867                                        addr_count++;
 868                        } else if (cur_addr == old_addr + 3*len) {
 869                                state = 2;
 870                                if (i == src_cnt-1)
 871                                        addr_count++;
 872                        } else {
 873                                order = 0;
 874                                state = 0;
 875                                addr_count++;
 876                        }
 877                        break;
 878                case 2:
 879                        order = 0;
 880                        state = 0;
 881                        addr_count++;
 882                                break;
 883                }
 884                if (state == 3)
 885                        break;
 886        }
 887        if (src_cnt <= 1 || (state != 1 && state != 2)) {
 888                pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
 889                        __func__, src_cnt, state, addr_count, order);
 890                for (i = 0; i < src_cnt; i++)
 891                        pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
 892                BUG();
 893        }
 894
 895        return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
 896}
 897
 898
 899/******************************************************************************
 900 * ADMA channel low-level routines
 901 ******************************************************************************/
 902
 903static u32
 904ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
 905static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
 906
 907/**
 908 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
 909 */
 910static void ppc440spe_adma_device_clear_eot_status(
 911                                        struct ppc440spe_adma_chan *chan)
 912{
 913        struct dma_regs *dma_reg;
 914        struct xor_regs *xor_reg;
 915        u8 *p = chan->device->dma_desc_pool_virt;
 916        struct dma_cdb *cdb;
 917        u32 rv, i;
 918
 919        switch (chan->device->id) {
 920        case PPC440SPE_DMA0_ID:
 921        case PPC440SPE_DMA1_ID:
 922                /* read FIFO to ack */
 923                dma_reg = chan->device->dma_reg;
 924                while ((rv = ioread32(&dma_reg->csfpl))) {
 925                        i = rv & DMA_CDB_ADDR_MSK;
 926                        cdb = (struct dma_cdb *)&p[i -
 927                            (u32)chan->device->dma_desc_pool];
 928
 929                        /* Clear opcode to ack. This is necessary for
 930                         * ZeroSum operations only
 931                         */
 932                        cdb->opc = 0;
 933
 934                        if (test_bit(PPC440SPE_RXOR_RUN,
 935                            &ppc440spe_rxor_state)) {
 936                                /* probably this is a completed RXOR op,
 937                                 * get pointer to CDB using the fact that
 938                                 * physical and virtual addresses of CDB
 939                                 * in pools have the same offsets
 940                                 */
 941                                if (le32_to_cpu(cdb->sg1u) &
 942                                    DMA_CUED_XOR_BASE) {
 943                                        /* this is a RXOR */
 944                                        clear_bit(PPC440SPE_RXOR_RUN,
 945                                                  &ppc440spe_rxor_state);
 946                                }
 947                        }
 948
 949                        if (rv & DMA_CDB_STATUS_MSK) {
 950                                /* ZeroSum check failed
 951                                 */
 952                                struct ppc440spe_adma_desc_slot *iter;
 953                                dma_addr_t phys = rv & ~DMA_CDB_MSK;
 954
 955                                /*
 956                                 * Update the status of corresponding
 957                                 * descriptor.
 958                                 */
 959                                list_for_each_entry(iter, &chan->chain,
 960                                    chain_node) {
 961                                        if (iter->phys == phys)
 962                                                break;
 963                                }
 964                                /*
 965                                 * if cannot find the corresponding
 966                                 * slot it's a bug
 967                                 */
 968                                BUG_ON(&iter->chain_node == &chan->chain);
 969
 970                                if (iter->xor_check_result) {
 971                                        if (test_bit(PPC440SPE_DESC_PCHECK,
 972                                                     &iter->flags)) {
 973                                                *iter->xor_check_result |=
 974                                                        SUM_CHECK_P_RESULT;
 975                                        } else
 976                                        if (test_bit(PPC440SPE_DESC_QCHECK,
 977                                                     &iter->flags)) {
 978                                                *iter->xor_check_result |=
 979                                                        SUM_CHECK_Q_RESULT;
 980                                        } else
 981                                                BUG();
 982                                }
 983                        }
 984                }
 985
 986                rv = ioread32(&dma_reg->dsts);
 987                if (rv) {
 988                        pr_err("DMA%d err status: 0x%x\n",
 989                               chan->device->id, rv);
 990                        /* write back to clear */
 991                        iowrite32(rv, &dma_reg->dsts);
 992                }
 993                break;
 994        case PPC440SPE_XOR_ID:
 995                /* reset status bits to ack */
 996                xor_reg = chan->device->xor_reg;
 997                rv = ioread32be(&xor_reg->sr);
 998                iowrite32be(rv, &xor_reg->sr);
 999
1000                if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1001                        if (rv & XOR_IE_RPTIE_BIT) {
1002                                /* Read PLB Timeout Error.
1003                                 * Try to resubmit the CB
1004                                 */
1005                                u32 val = ioread32be(&xor_reg->ccbalr);
1006
1007                                iowrite32be(val, &xor_reg->cblalr);
1008
1009                                val = ioread32be(&xor_reg->crsr);
1010                                iowrite32be(val | XOR_CRSR_XAE_BIT,
1011                                            &xor_reg->crsr);
1012                        } else
1013                                pr_err("XOR ERR 0x%x status\n", rv);
1014                        break;
1015                }
1016
1017                /*  if the XORcore is idle, but there are unprocessed CBs
1018                 * then refetch the s/w chain here
1019                 */
1020                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1021                    do_xor_refetch)
1022                        ppc440spe_chan_append(chan);
1023                break;
1024        }
1025}
1026
1027/**
1028 * ppc440spe_chan_is_busy - get the channel status
1029 */
1030static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1031{
1032        struct dma_regs *dma_reg;
1033        struct xor_regs *xor_reg;
1034        int busy = 0;
1035
1036        switch (chan->device->id) {
1037        case PPC440SPE_DMA0_ID:
1038        case PPC440SPE_DMA1_ID:
1039                dma_reg = chan->device->dma_reg;
1040                /*  if command FIFO's head and tail pointers are equal and
1041                 * status tail is the same as command, then channel is free
1042                 */
1043                if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1044                    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1045                        busy = 1;
1046                break;
1047        case PPC440SPE_XOR_ID:
1048                /* use the special status bit for the XORcore
1049                 */
1050                xor_reg = chan->device->xor_reg;
1051                busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1052                break;
1053        }
1054
1055        return busy;
1056}
1057
1058/**
1059 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1060 */
1061static void ppc440spe_chan_set_first_xor_descriptor(
1062                                struct ppc440spe_adma_chan *chan,
1063                                struct ppc440spe_adma_desc_slot *next_desc)
1064{
1065        struct xor_regs *xor_reg = chan->device->xor_reg;
1066
1067        if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1068                printk(KERN_INFO "%s: Warn: XORcore is running "
1069                        "when try to set the first CDB!\n",
1070                        __func__);
1071
1072        xor_last_submit = xor_last_linked = next_desc;
1073
1074        iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1075
1076        iowrite32be(next_desc->phys, &xor_reg->cblalr);
1077        iowrite32be(0, &xor_reg->cblahr);
1078        iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1079                    &xor_reg->cbcr);
1080
1081        chan->hw_chain_inited = 1;
1082}
1083
1084/**
1085 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1086 * called with irqs disabled
1087 */
1088static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1089                struct ppc440spe_adma_desc_slot *desc)
1090{
1091        u32 pcdb;
1092        struct dma_regs *dma_reg = chan->device->dma_reg;
1093
1094        pcdb = desc->phys;
1095        if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1096                pcdb |= DMA_CDB_NO_INT;
1097
1098        chan_last_sub[chan->device->id] = desc;
1099
1100        ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1101
1102        iowrite32(pcdb, &dma_reg->cpfpl);
1103}
1104
1105/**
1106 * ppc440spe_chan_append - update the h/w chain in the channel
1107 */
1108static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1109{
1110        struct xor_regs *xor_reg;
1111        struct ppc440spe_adma_desc_slot *iter;
1112        struct xor_cb *xcb;
1113        u32 cur_desc;
1114        unsigned long flags;
1115
1116        local_irq_save(flags);
1117
1118        switch (chan->device->id) {
1119        case PPC440SPE_DMA0_ID:
1120        case PPC440SPE_DMA1_ID:
1121                cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1122
1123                if (likely(cur_desc)) {
1124                        iter = chan_last_sub[chan->device->id];
1125                        BUG_ON(!iter);
1126                } else {
1127                        /* first peer */
1128                        iter = chan_first_cdb[chan->device->id];
1129                        BUG_ON(!iter);
1130                        ppc440spe_dma_put_desc(chan, iter);
1131                        chan->hw_chain_inited = 1;
1132                }
1133
1134                /* is there something new to append */
1135                if (!iter->hw_next)
1136                        break;
1137
1138                /* flush descriptors from the s/w queue to fifo */
1139                list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1140                        ppc440spe_dma_put_desc(chan, iter);
1141                        if (!iter->hw_next)
1142                                break;
1143                }
1144                break;
1145        case PPC440SPE_XOR_ID:
1146                /* update h/w links and refetch */
1147                if (!xor_last_submit->hw_next)
1148                        break;
1149
1150                xor_reg = chan->device->xor_reg;
1151                /* the last linked CDB has to generate an interrupt
1152                 * that we'd be able to append the next lists to h/w
1153                 * regardless of the XOR engine state at the moment of
1154                 * appending of these next lists
1155                 */
1156                xcb = xor_last_linked->hw_desc;
1157                xcb->cbc |= XOR_CBCR_CBCE_BIT;
1158
1159                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1160                        /* XORcore is idle. Refetch now */
1161                        do_xor_refetch = 0;
1162                        ppc440spe_xor_set_link(xor_last_submit,
1163                                xor_last_submit->hw_next);
1164
1165                        ADMA_LL_DBG(print_cb_list(chan,
1166                                xor_last_submit->hw_next));
1167
1168                        xor_last_submit = xor_last_linked;
1169                        iowrite32be(ioread32be(&xor_reg->crsr) |
1170                                    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1171                                    &xor_reg->crsr);
1172                } else {
1173                        /* XORcore is running. Refetch later in the handler */
1174                        do_xor_refetch = 1;
1175                }
1176
1177                break;
1178        }
1179
1180        local_irq_restore(flags);
1181}
1182
1183/**
1184 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1185 */
1186static u32
1187ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1188{
1189        struct dma_regs *dma_reg;
1190        struct xor_regs *xor_reg;
1191
1192        if (unlikely(!chan->hw_chain_inited))
1193                /* h/w descriptor chain is not initialized yet */
1194                return 0;
1195
1196        switch (chan->device->id) {
1197        case PPC440SPE_DMA0_ID:
1198        case PPC440SPE_DMA1_ID:
1199                dma_reg = chan->device->dma_reg;
1200                return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1201        case PPC440SPE_XOR_ID:
1202                xor_reg = chan->device->xor_reg;
1203                return ioread32be(&xor_reg->ccbalr);
1204        }
1205        return 0;
1206}
1207
1208/**
1209 * ppc440spe_chan_run - enable the channel
1210 */
1211static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1212{
1213        struct xor_regs *xor_reg;
1214
1215        switch (chan->device->id) {
1216        case PPC440SPE_DMA0_ID:
1217        case PPC440SPE_DMA1_ID:
1218                /* DMAs are always enabled, do nothing */
1219                break;
1220        case PPC440SPE_XOR_ID:
1221                /* drain write buffer */
1222                xor_reg = chan->device->xor_reg;
1223
1224                /* fetch descriptor pointed to in <link> */
1225                iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1226                            &xor_reg->crsr);
1227                break;
1228        }
1229}
1230
1231/******************************************************************************
1232 * ADMA device level
1233 ******************************************************************************/
1234
1235static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1236static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1237
1238static dma_cookie_t
1239ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1240
1241static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1242                                    dma_addr_t addr, int index);
1243static void
1244ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1245                                  dma_addr_t addr, int index);
1246
1247static void
1248ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1249                           dma_addr_t *paddr, unsigned long flags);
1250static void
1251ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1252                          dma_addr_t addr, int index);
1253static void
1254ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1255                               unsigned char mult, int index, int dst_pos);
1256static void
1257ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1258                                   dma_addr_t paddr, dma_addr_t qaddr);
1259
1260static struct page *ppc440spe_rxor_srcs[32];
1261
1262/**
1263 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1264 */
1265static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1266{
1267        int i, order = 0, state = 0;
1268        int idx = 0;
1269
1270        if (unlikely(!(src_cnt > 1)))
1271                return 0;
1272
1273        BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1274
1275        /* Skip holes in the source list before checking */
1276        for (i = 0; i < src_cnt; i++) {
1277                if (!srcs[i])
1278                        continue;
1279                ppc440spe_rxor_srcs[idx++] = srcs[i];
1280        }
1281        src_cnt = idx;
1282
1283        for (i = 1; i < src_cnt; i++) {
1284                char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1285                char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1286
1287                switch (state) {
1288                case 0:
1289                        if (cur_addr == old_addr + len) {
1290                                /* direct RXOR */
1291                                order = 1;
1292                                state = 1;
1293                        } else if (old_addr == cur_addr + len) {
1294                                /* reverse RXOR */
1295                                order = -1;
1296                                state = 1;
1297                        } else
1298                                goto out;
1299                        break;
1300                case 1:
1301                        if ((i == src_cnt - 2) ||
1302                            (order == -1 && cur_addr != old_addr - len)) {
1303                                order = 0;
1304                                state = 0;
1305                        } else if ((cur_addr == old_addr + len * order) ||
1306                                   (cur_addr == old_addr + 2 * len) ||
1307                                   (cur_addr == old_addr + 3 * len)) {
1308                                state = 2;
1309                        } else {
1310                                order = 0;
1311                                state = 0;
1312                        }
1313                        break;
1314                case 2:
1315                        order = 0;
1316                        state = 0;
1317                        break;
1318                }
1319        }
1320
1321out:
1322        if (state == 1 || state == 2)
1323                return 1;
1324
1325        return 0;
1326}
1327
1328/**
1329 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1330 *      the operation given on this channel. It's assumed that 'chan' is
1331 *      capable to process 'cap' type of operation.
1332 * @chan: channel to use
1333 * @cap: type of transaction
1334 * @dst_lst: array of destination pointers
1335 * @dst_cnt: number of destination operands
1336 * @src_lst: array of source pointers
1337 * @src_cnt: number of source operands
1338 * @src_sz: size of each source operand
1339 */
1340static int ppc440spe_adma_estimate(struct dma_chan *chan,
1341        enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1342        struct page **src_lst, int src_cnt, size_t src_sz)
1343{
1344        int ef = 1;
1345
1346        if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1347                /* If RAID-6 capabilities were not activated don't try
1348                 * to use them
1349                 */
1350                if (unlikely(!ppc440spe_r6_enabled))
1351                        return -1;
1352        }
1353        /*  In the current implementation of ppc440spe ADMA driver it
1354         * makes sense to pick out only pq case, because it may be
1355         * processed:
1356         * (1) either using Biskup method on DMA2;
1357         * (2) or on DMA0/1.
1358         *  Thus we give a favour to (1) if the sources are suitable;
1359         * else let it be processed on one of the DMA0/1 engines.
1360         *  In the sum_product case where destination is also the
1361         * source process it on DMA0/1 only.
1362         */
1363        if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1364
1365                if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1366                        ef = 0; /* sum_product case, process on DMA0/1 */
1367                else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1368                        ef = 3; /* override (DMA0/1 + idle) */
1369                else
1370                        ef = 0; /* can't process on DMA2 if !rxor */
1371        }
1372
1373        /* channel idleness increases the priority */
1374        if (likely(ef) &&
1375            !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1376                ef++;
1377
1378        return ef;
1379}
1380
1381struct dma_chan *
1382ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1383        struct page **dst_lst, int dst_cnt, struct page **src_lst,
1384        int src_cnt, size_t src_sz)
1385{
1386        struct dma_chan *best_chan = NULL;
1387        struct ppc_dma_chan_ref *ref;
1388        int best_rank = -1;
1389
1390        if (unlikely(!src_sz))
1391                return NULL;
1392        if (src_sz > PAGE_SIZE) {
1393                /*
1394                 * should a user of the api ever pass > PAGE_SIZE requests
1395                 * we sort out cases where temporary page-sized buffers
1396                 * are used.
1397                 */
1398                switch (cap) {
1399                case DMA_PQ:
1400                        if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1401                                return NULL;
1402                        if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1403                                return NULL;
1404                        break;
1405                case DMA_PQ_VAL:
1406                case DMA_XOR_VAL:
1407                        return NULL;
1408                default:
1409                        break;
1410                }
1411        }
1412
1413        list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1414                if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1415                        int rank;
1416
1417                        rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1418                                        dst_cnt, src_lst, src_cnt, src_sz);
1419                        if (rank > best_rank) {
1420                                best_rank = rank;
1421                                best_chan = ref->chan;
1422                        }
1423                }
1424        }
1425
1426        return best_chan;
1427}
1428EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1429
1430/**
1431 * ppc440spe_get_group_entry - get group entry with index idx
1432 * @tdesc: is the last allocated slot in the group.
1433 */
1434static struct ppc440spe_adma_desc_slot *
1435ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1436{
1437        struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1438        int i = 0;
1439
1440        if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1441                printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1442                        __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1443                BUG();
1444        }
1445
1446        list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1447                if (i++ == entry_idx)
1448                        break;
1449        }
1450        return iter;
1451}
1452
1453/**
1454 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1455 * @slot: Slot to free
1456 * Caller must hold &ppc440spe_chan->lock while calling this function
1457 */
1458static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1459                                      struct ppc440spe_adma_chan *chan)
1460{
1461        int stride = slot->slots_per_op;
1462
1463        while (stride--) {
1464                slot->slots_per_op = 0;
1465                slot = list_entry(slot->slot_node.next,
1466                                struct ppc440spe_adma_desc_slot,
1467                                slot_node);
1468        }
1469}
1470
1471/**
1472 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1473 * upon completion
1474 */
1475static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1476                struct ppc440spe_adma_desc_slot *desc,
1477                struct ppc440spe_adma_chan *chan,
1478                dma_cookie_t cookie)
1479{
1480        BUG_ON(desc->async_tx.cookie < 0);
1481        if (desc->async_tx.cookie > 0) {
1482                cookie = desc->async_tx.cookie;
1483                desc->async_tx.cookie = 0;
1484
1485                dma_descriptor_unmap(&desc->async_tx);
1486                /* call the callback (must not sleep or submit new
1487                 * operations to this channel)
1488                 */
1489                dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
1490        }
1491
1492        /* run dependent operations */
1493        dma_run_dependencies(&desc->async_tx);
1494
1495        return cookie;
1496}
1497
1498/**
1499 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1500 */
1501static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1502                struct ppc440spe_adma_chan *chan)
1503{
1504        /* the client is allowed to attach dependent operations
1505         * until 'ack' is set
1506         */
1507        if (!async_tx_test_ack(&desc->async_tx))
1508                return 0;
1509
1510        /* leave the last descriptor in the chain
1511         * so we can append to it
1512         */
1513        if (list_is_last(&desc->chain_node, &chan->chain) ||
1514            desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1515                return 1;
1516
1517        if (chan->device->id != PPC440SPE_XOR_ID) {
1518                /* our DMA interrupt handler clears opc field of
1519                 * each processed descriptor. For all types of
1520                 * operations except for ZeroSum we do not actually
1521                 * need ack from the interrupt handler. ZeroSum is a
1522                 * special case since the result of this operation
1523                 * is available from the handler only, so if we see
1524                 * such type of descriptor (which is unprocessed yet)
1525                 * then leave it in chain.
1526                 */
1527                struct dma_cdb *cdb = desc->hw_desc;
1528                if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1529                        return 1;
1530        }
1531
1532        dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1533                desc->phys, desc->idx, desc->slots_per_op);
1534
1535        list_del(&desc->chain_node);
1536        ppc440spe_adma_free_slots(desc, chan);
1537        return 0;
1538}
1539
1540/**
1541 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1542 *      which runs through the channel CDBs list until reach the descriptor
1543 *      currently processed. When routine determines that all CDBs of group
1544 *      are completed then corresponding callbacks (if any) are called and slots
1545 *      are freed.
1546 */
1547static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1548{
1549        struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1550        dma_cookie_t cookie = 0;
1551        u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1552        int busy = ppc440spe_chan_is_busy(chan);
1553        int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1554
1555        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1556                chan->device->id, __func__);
1557
1558        if (!current_desc) {
1559                /*  There were no transactions yet, so
1560                 * nothing to clean
1561                 */
1562                return;
1563        }
1564
1565        /* free completed slots from the chain starting with
1566         * the oldest descriptor
1567         */
1568        list_for_each_entry_safe(iter, _iter, &chan->chain,
1569                                        chain_node) {
1570                dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1571                    "busy: %d this_desc: %#llx next_desc: %#x "
1572                    "cur: %#x ack: %d\n",
1573                    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1574                    ppc440spe_desc_get_link(iter, chan), current_desc,
1575                    async_tx_test_ack(&iter->async_tx));
1576                prefetch(_iter);
1577                prefetch(&_iter->async_tx);
1578
1579                /* do not advance past the current descriptor loaded into the
1580                 * hardware channel,subsequent descriptors are either in process
1581                 * or have not been submitted
1582                 */
1583                if (seen_current)
1584                        break;
1585
1586                /* stop the search if we reach the current descriptor and the
1587                 * channel is busy, or if it appears that the current descriptor
1588                 * needs to be re-read (i.e. has been appended to)
1589                 */
1590                if (iter->phys == current_desc) {
1591                        BUG_ON(seen_current++);
1592                        if (busy || ppc440spe_desc_get_link(iter, chan)) {
1593                                /* not all descriptors of the group have
1594                                 * been completed; exit.
1595                                 */
1596                                break;
1597                        }
1598                }
1599
1600                /* detect the start of a group transaction */
1601                if (!slot_cnt && !slots_per_op) {
1602                        slot_cnt = iter->slot_cnt;
1603                        slots_per_op = iter->slots_per_op;
1604                        if (slot_cnt <= slots_per_op) {
1605                                slot_cnt = 0;
1606                                slots_per_op = 0;
1607                        }
1608                }
1609
1610                if (slot_cnt) {
1611                        if (!group_start)
1612                                group_start = iter;
1613                        slot_cnt -= slots_per_op;
1614                }
1615
1616                /* all the members of a group are complete */
1617                if (slots_per_op != 0 && slot_cnt == 0) {
1618                        struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1619                        int end_of_chain = 0;
1620
1621                        /* clean up the group */
1622                        slot_cnt = group_start->slot_cnt;
1623                        grp_iter = group_start;
1624                        list_for_each_entry_safe_from(grp_iter, _grp_iter,
1625                                &chan->chain, chain_node) {
1626
1627                                cookie = ppc440spe_adma_run_tx_complete_actions(
1628                                        grp_iter, chan, cookie);
1629
1630                                slot_cnt -= slots_per_op;
1631                                end_of_chain = ppc440spe_adma_clean_slot(
1632                                    grp_iter, chan);
1633                                if (end_of_chain && slot_cnt) {
1634                                        /* Should wait for ZeroSum completion */
1635                                        if (cookie > 0)
1636                                                chan->common.completed_cookie = cookie;
1637                                        return;
1638                                }
1639
1640                                if (slot_cnt == 0 || end_of_chain)
1641                                        break;
1642                        }
1643
1644                        /* the group should be complete at this point */
1645                        BUG_ON(slot_cnt);
1646
1647                        slots_per_op = 0;
1648                        group_start = NULL;
1649                        if (end_of_chain)
1650                                break;
1651                        else
1652                                continue;
1653                } else if (slots_per_op) /* wait for group completion */
1654                        continue;
1655
1656                cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1657                    cookie);
1658
1659                if (ppc440spe_adma_clean_slot(iter, chan))
1660                        break;
1661        }
1662
1663        BUG_ON(!seen_current);
1664
1665        if (cookie > 0) {
1666                chan->common.completed_cookie = cookie;
1667                pr_debug("\tcompleted cookie %d\n", cookie);
1668        }
1669
1670}
1671
1672/**
1673 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1674 */
1675static void ppc440spe_adma_tasklet(unsigned long data)
1676{
1677        struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1678
1679        spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1680        __ppc440spe_adma_slot_cleanup(chan);
1681        spin_unlock(&chan->lock);
1682}
1683
1684/**
1685 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1686 */
1687static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1688{
1689        spin_lock_bh(&chan->lock);
1690        __ppc440spe_adma_slot_cleanup(chan);
1691        spin_unlock_bh(&chan->lock);
1692}
1693
1694/**
1695 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1696 */
1697static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1698                struct ppc440spe_adma_chan *chan, int num_slots,
1699                int slots_per_op)
1700{
1701        struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1702        struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1703        struct list_head chain = LIST_HEAD_INIT(chain);
1704        int slots_found, retry = 0;
1705
1706
1707        BUG_ON(!num_slots || !slots_per_op);
1708        /* start search from the last allocated descrtiptor
1709         * if a contiguous allocation can not be found start searching
1710         * from the beginning of the list
1711         */
1712retry:
1713        slots_found = 0;
1714        if (retry == 0)
1715                iter = chan->last_used;
1716        else
1717                iter = list_entry(&chan->all_slots,
1718                                  struct ppc440spe_adma_desc_slot,
1719                                  slot_node);
1720        list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1721            slot_node) {
1722                prefetch(_iter);
1723                prefetch(&_iter->async_tx);
1724                if (iter->slots_per_op) {
1725                        slots_found = 0;
1726                        continue;
1727                }
1728
1729                /* start the allocation if the slot is correctly aligned */
1730                if (!slots_found++)
1731                        alloc_start = iter;
1732
1733                if (slots_found == num_slots) {
1734                        struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1735                        struct ppc440spe_adma_desc_slot *last_used = NULL;
1736
1737                        iter = alloc_start;
1738                        while (num_slots) {
1739                                int i;
1740                                /* pre-ack all but the last descriptor */
1741                                if (num_slots != slots_per_op)
1742                                        async_tx_ack(&iter->async_tx);
1743
1744                                list_add_tail(&iter->chain_node, &chain);
1745                                alloc_tail = iter;
1746                                iter->async_tx.cookie = 0;
1747                                iter->hw_next = NULL;
1748                                iter->flags = 0;
1749                                iter->slot_cnt = num_slots;
1750                                iter->xor_check_result = NULL;
1751                                for (i = 0; i < slots_per_op; i++) {
1752                                        iter->slots_per_op = slots_per_op - i;
1753                                        last_used = iter;
1754                                        iter = list_entry(iter->slot_node.next,
1755                                                struct ppc440spe_adma_desc_slot,
1756                                                slot_node);
1757                                }
1758                                num_slots -= slots_per_op;
1759                        }
1760                        alloc_tail->group_head = alloc_start;
1761                        alloc_tail->async_tx.cookie = -EBUSY;
1762                        list_splice(&chain, &alloc_tail->group_list);
1763                        chan->last_used = last_used;
1764                        return alloc_tail;
1765                }
1766        }
1767        if (!retry++)
1768                goto retry;
1769
1770        /* try to free some slots if the allocation fails */
1771        tasklet_schedule(&chan->irq_tasklet);
1772        return NULL;
1773}
1774
1775/**
1776 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1777 */
1778static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1779{
1780        struct ppc440spe_adma_chan *ppc440spe_chan;
1781        struct ppc440spe_adma_desc_slot *slot = NULL;
1782        char *hw_desc;
1783        int i, db_sz;
1784        int init;
1785
1786        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1787        init = ppc440spe_chan->slots_allocated ? 0 : 1;
1788        chan->chan_id = ppc440spe_chan->device->id;
1789
1790        /* Allocate descriptor slots */
1791        i = ppc440spe_chan->slots_allocated;
1792        if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1793                db_sz = sizeof(struct dma_cdb);
1794        else
1795                db_sz = sizeof(struct xor_cb);
1796
1797        for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1798                slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1799                               GFP_KERNEL);
1800                if (!slot) {
1801                        printk(KERN_INFO "SPE ADMA Channel only initialized"
1802                                " %d descriptor slots", i--);
1803                        break;
1804                }
1805
1806                hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1807                slot->hw_desc = (void *) &hw_desc[i * db_sz];
1808                dma_async_tx_descriptor_init(&slot->async_tx, chan);
1809                slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1810                INIT_LIST_HEAD(&slot->chain_node);
1811                INIT_LIST_HEAD(&slot->slot_node);
1812                INIT_LIST_HEAD(&slot->group_list);
1813                slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1814                slot->idx = i;
1815
1816                spin_lock_bh(&ppc440spe_chan->lock);
1817                ppc440spe_chan->slots_allocated++;
1818                list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1819                spin_unlock_bh(&ppc440spe_chan->lock);
1820        }
1821
1822        if (i && !ppc440spe_chan->last_used) {
1823                ppc440spe_chan->last_used =
1824                        list_entry(ppc440spe_chan->all_slots.next,
1825                                struct ppc440spe_adma_desc_slot,
1826                                slot_node);
1827        }
1828
1829        dev_dbg(ppc440spe_chan->device->common.dev,
1830                "ppc440spe adma%d: allocated %d descriptor slots\n",
1831                ppc440spe_chan->device->id, i);
1832
1833        /* initialize the channel and the chain with a null operation */
1834        if (init) {
1835                switch (ppc440spe_chan->device->id) {
1836                case PPC440SPE_DMA0_ID:
1837                case PPC440SPE_DMA1_ID:
1838                        ppc440spe_chan->hw_chain_inited = 0;
1839                        /* Use WXOR for self-testing */
1840                        if (!ppc440spe_r6_tchan)
1841                                ppc440spe_r6_tchan = ppc440spe_chan;
1842                        break;
1843                case PPC440SPE_XOR_ID:
1844                        ppc440spe_chan_start_null_xor(ppc440spe_chan);
1845                        break;
1846                default:
1847                        BUG();
1848                }
1849                ppc440spe_chan->needs_unmap = 1;
1850        }
1851
1852        return (i > 0) ? i : -ENOMEM;
1853}
1854
1855/**
1856 * ppc440spe_rxor_set_region_data -
1857 */
1858static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1859        u8 xor_arg_no, u32 mask)
1860{
1861        struct xor_cb *xcb = desc->hw_desc;
1862
1863        xcb->ops[xor_arg_no].h |= mask;
1864}
1865
1866/**
1867 * ppc440spe_rxor_set_src -
1868 */
1869static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1870        u8 xor_arg_no, dma_addr_t addr)
1871{
1872        struct xor_cb *xcb = desc->hw_desc;
1873
1874        xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1875        xcb->ops[xor_arg_no].l = addr;
1876}
1877
1878/**
1879 * ppc440spe_rxor_set_mult -
1880 */
1881static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1882        u8 xor_arg_no, u8 idx, u8 mult)
1883{
1884        struct xor_cb *xcb = desc->hw_desc;
1885
1886        xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1887}
1888
1889/**
1890 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1891 *      has been achieved
1892 */
1893static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1894{
1895        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1896                chan->device->id, chan->pending);
1897
1898        if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1899                chan->pending = 0;
1900                ppc440spe_chan_append(chan);
1901        }
1902}
1903
1904/**
1905 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1906 *      (it's not necessary that descriptors will be submitted to the h/w
1907 *      chains too right now)
1908 */
1909static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1910{
1911        struct ppc440spe_adma_desc_slot *sw_desc;
1912        struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1913        struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1914        int slot_cnt;
1915        int slots_per_op;
1916        dma_cookie_t cookie;
1917
1918        sw_desc = tx_to_ppc440spe_adma_slot(tx);
1919
1920        group_start = sw_desc->group_head;
1921        slot_cnt = group_start->slot_cnt;
1922        slots_per_op = group_start->slots_per_op;
1923
1924        spin_lock_bh(&chan->lock);
1925        cookie = dma_cookie_assign(tx);
1926
1927        if (unlikely(list_empty(&chan->chain))) {
1928                /* first peer */
1929                list_splice_init(&sw_desc->group_list, &chan->chain);
1930                chan_first_cdb[chan->device->id] = group_start;
1931        } else {
1932                /* isn't first peer, bind CDBs to chain */
1933                old_chain_tail = list_entry(chan->chain.prev,
1934                                        struct ppc440spe_adma_desc_slot,
1935                                        chain_node);
1936                list_splice_init(&sw_desc->group_list,
1937                    &old_chain_tail->chain_node);
1938                /* fix up the hardware chain */
1939                ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1940        }
1941
1942        /* increment the pending count by the number of operations */
1943        chan->pending += slot_cnt / slots_per_op;
1944        ppc440spe_adma_check_threshold(chan);
1945        spin_unlock_bh(&chan->lock);
1946
1947        dev_dbg(chan->device->common.dev,
1948                "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1949                chan->device->id, __func__,
1950                sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1951
1952        return cookie;
1953}
1954
1955/**
1956 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1957 */
1958static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1959                struct dma_chan *chan, unsigned long flags)
1960{
1961        struct ppc440spe_adma_chan *ppc440spe_chan;
1962        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1963        int slot_cnt, slots_per_op;
1964
1965        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1966
1967        dev_dbg(ppc440spe_chan->device->common.dev,
1968                "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1969                __func__);
1970
1971        spin_lock_bh(&ppc440spe_chan->lock);
1972        slot_cnt = slots_per_op = 1;
1973        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1974                        slots_per_op);
1975        if (sw_desc) {
1976                group_start = sw_desc->group_head;
1977                ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1978                group_start->unmap_len = 0;
1979                sw_desc->async_tx.flags = flags;
1980        }
1981        spin_unlock_bh(&ppc440spe_chan->lock);
1982
1983        return sw_desc ? &sw_desc->async_tx : NULL;
1984}
1985
1986/**
1987 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1988 */
1989static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1990                struct dma_chan *chan, dma_addr_t dma_dest,
1991                dma_addr_t dma_src, size_t len, unsigned long flags)
1992{
1993        struct ppc440spe_adma_chan *ppc440spe_chan;
1994        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1995        int slot_cnt, slots_per_op;
1996
1997        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1998
1999        if (unlikely(!len))
2000                return NULL;
2001
2002        BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2003
2004        spin_lock_bh(&ppc440spe_chan->lock);
2005
2006        dev_dbg(ppc440spe_chan->device->common.dev,
2007                "ppc440spe adma%d: %s len: %u int_en %d\n",
2008                ppc440spe_chan->device->id, __func__, len,
2009                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2010        slot_cnt = slots_per_op = 1;
2011        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2012                slots_per_op);
2013        if (sw_desc) {
2014                group_start = sw_desc->group_head;
2015                ppc440spe_desc_init_memcpy(group_start, flags);
2016                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2017                ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2018                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2019                sw_desc->unmap_len = len;
2020                sw_desc->async_tx.flags = flags;
2021        }
2022        spin_unlock_bh(&ppc440spe_chan->lock);
2023
2024        return sw_desc ? &sw_desc->async_tx : NULL;
2025}
2026
2027/**
2028 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2029 */
2030static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2031                struct dma_chan *chan, dma_addr_t dma_dest,
2032                dma_addr_t *dma_src, u32 src_cnt, size_t len,
2033                unsigned long flags)
2034{
2035        struct ppc440spe_adma_chan *ppc440spe_chan;
2036        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2037        int slot_cnt, slots_per_op;
2038
2039        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2040
2041        ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2042                                     dma_dest, dma_src, src_cnt));
2043        if (unlikely(!len))
2044                return NULL;
2045        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2046
2047        dev_dbg(ppc440spe_chan->device->common.dev,
2048                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2049                ppc440spe_chan->device->id, __func__, src_cnt, len,
2050                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2051
2052        spin_lock_bh(&ppc440spe_chan->lock);
2053        slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2054        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2055                        slots_per_op);
2056        if (sw_desc) {
2057                group_start = sw_desc->group_head;
2058                ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2059                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2060                while (src_cnt--)
2061                        ppc440spe_adma_memcpy_xor_set_src(group_start,
2062                                dma_src[src_cnt], src_cnt);
2063                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2064                sw_desc->unmap_len = len;
2065                sw_desc->async_tx.flags = flags;
2066        }
2067        spin_unlock_bh(&ppc440spe_chan->lock);
2068
2069        return sw_desc ? &sw_desc->async_tx : NULL;
2070}
2071
2072static inline void
2073ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2074                                int src_cnt);
2075static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2076
2077/**
2078 * ppc440spe_adma_init_dma2rxor_slot -
2079 */
2080static void ppc440spe_adma_init_dma2rxor_slot(
2081                struct ppc440spe_adma_desc_slot *desc,
2082                dma_addr_t *src, int src_cnt)
2083{
2084        int i;
2085
2086        /* initialize CDB */
2087        for (i = 0; i < src_cnt; i++) {
2088                ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2089                                                 desc->src_cnt, (u32)src[i]);
2090        }
2091}
2092
2093/**
2094 * ppc440spe_dma01_prep_mult -
2095 * for Q operation where destination is also the source
2096 */
2097static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2098                struct ppc440spe_adma_chan *ppc440spe_chan,
2099                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2100                const unsigned char *scf, size_t len, unsigned long flags)
2101{
2102        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2103        unsigned long op = 0;
2104        int slot_cnt;
2105
2106        set_bit(PPC440SPE_DESC_WXOR, &op);
2107        slot_cnt = 2;
2108
2109        spin_lock_bh(&ppc440spe_chan->lock);
2110
2111        /* use WXOR, each descriptor occupies one slot */
2112        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2113        if (sw_desc) {
2114                struct ppc440spe_adma_chan *chan;
2115                struct ppc440spe_adma_desc_slot *iter;
2116                struct dma_cdb *hw_desc;
2117
2118                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2119                set_bits(op, &sw_desc->flags);
2120                sw_desc->src_cnt = src_cnt;
2121                sw_desc->dst_cnt = dst_cnt;
2122                /* First descriptor, zero data in the destination and copy it
2123                 * to q page using MULTICAST transfer.
2124                 */
2125                iter = list_first_entry(&sw_desc->group_list,
2126                                        struct ppc440spe_adma_desc_slot,
2127                                        chain_node);
2128                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2129                /* set 'next' pointer */
2130                iter->hw_next = list_entry(iter->chain_node.next,
2131                                           struct ppc440spe_adma_desc_slot,
2132                                           chain_node);
2133                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2134                hw_desc = iter->hw_desc;
2135                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2136
2137                ppc440spe_desc_set_dest_addr(iter, chan,
2138                                             DMA_CUED_XOR_BASE, dst[0], 0);
2139                ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2140                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2141                                            src[0]);
2142                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2143                iter->unmap_len = len;
2144
2145                /*
2146                 * Second descriptor, multiply data from the q page
2147                 * and store the result in real destination.
2148                 */
2149                iter = list_first_entry(&iter->chain_node,
2150                                        struct ppc440spe_adma_desc_slot,
2151                                        chain_node);
2152                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2153                iter->hw_next = NULL;
2154                if (flags & DMA_PREP_INTERRUPT)
2155                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2156                else
2157                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2158
2159                hw_desc = iter->hw_desc;
2160                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2161                ppc440spe_desc_set_src_addr(iter, chan, 0,
2162                                            DMA_CUED_XOR_HB, dst[1]);
2163                ppc440spe_desc_set_dest_addr(iter, chan,
2164                                             DMA_CUED_XOR_BASE, dst[0], 0);
2165
2166                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2167                                            DMA_CDB_SG_DST1, scf[0]);
2168                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2169                iter->unmap_len = len;
2170                sw_desc->async_tx.flags = flags;
2171        }
2172
2173        spin_unlock_bh(&ppc440spe_chan->lock);
2174
2175        return sw_desc;
2176}
2177
2178/**
2179 * ppc440spe_dma01_prep_sum_product -
2180 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2181 * the source.
2182 */
2183static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2184                struct ppc440spe_adma_chan *ppc440spe_chan,
2185                dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2186                const unsigned char *scf, size_t len, unsigned long flags)
2187{
2188        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2189        unsigned long op = 0;
2190        int slot_cnt;
2191
2192        set_bit(PPC440SPE_DESC_WXOR, &op);
2193        slot_cnt = 3;
2194
2195        spin_lock_bh(&ppc440spe_chan->lock);
2196
2197        /* WXOR, each descriptor occupies one slot */
2198        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2199        if (sw_desc) {
2200                struct ppc440spe_adma_chan *chan;
2201                struct ppc440spe_adma_desc_slot *iter;
2202                struct dma_cdb *hw_desc;
2203
2204                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2205                set_bits(op, &sw_desc->flags);
2206                sw_desc->src_cnt = src_cnt;
2207                sw_desc->dst_cnt = 1;
2208                /* 1st descriptor, src[1] data to q page and zero destination */
2209                iter = list_first_entry(&sw_desc->group_list,
2210                                        struct ppc440spe_adma_desc_slot,
2211                                        chain_node);
2212                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2213                iter->hw_next = list_entry(iter->chain_node.next,
2214                                           struct ppc440spe_adma_desc_slot,
2215                                           chain_node);
2216                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2217                hw_desc = iter->hw_desc;
2218                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2219
2220                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2221                                             *dst, 0);
2222                ppc440spe_desc_set_dest_addr(iter, chan, 0,
2223                                             ppc440spe_chan->qdest, 1);
2224                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2225                                            src[1]);
2226                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2227                iter->unmap_len = len;
2228
2229                /* 2nd descriptor, multiply src[1] data and store the
2230                 * result in destination */
2231                iter = list_first_entry(&iter->chain_node,
2232                                        struct ppc440spe_adma_desc_slot,
2233                                        chain_node);
2234                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2235                /* set 'next' pointer */
2236                iter->hw_next = list_entry(iter->chain_node.next,
2237                                           struct ppc440spe_adma_desc_slot,
2238                                           chain_node);
2239                if (flags & DMA_PREP_INTERRUPT)
2240                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2241                else
2242                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2243
2244                hw_desc = iter->hw_desc;
2245                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2246                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2247                                            ppc440spe_chan->qdest);
2248                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2249                                             *dst, 0);
2250                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2251                                            DMA_CDB_SG_DST1, scf[1]);
2252                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2253                iter->unmap_len = len;
2254
2255                /*
2256                 * 3rd descriptor, multiply src[0] data and xor it
2257                 * with destination
2258                 */
2259                iter = list_first_entry(&iter->chain_node,
2260                                        struct ppc440spe_adma_desc_slot,
2261                                        chain_node);
2262                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2263                iter->hw_next = NULL;
2264                if (flags & DMA_PREP_INTERRUPT)
2265                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2266                else
2267                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2268
2269                hw_desc = iter->hw_desc;
2270                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2271                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2272                                            src[0]);
2273                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2274                                             *dst, 0);
2275                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2276                                            DMA_CDB_SG_DST1, scf[0]);
2277                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2278                iter->unmap_len = len;
2279                sw_desc->async_tx.flags = flags;
2280        }
2281
2282        spin_unlock_bh(&ppc440spe_chan->lock);
2283
2284        return sw_desc;
2285}
2286
2287static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2288                struct ppc440spe_adma_chan *ppc440spe_chan,
2289                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2290                const unsigned char *scf, size_t len, unsigned long flags)
2291{
2292        int slot_cnt;
2293        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2294        unsigned long op = 0;
2295        unsigned char mult = 1;
2296
2297        pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2298                 __func__, dst_cnt, src_cnt, len);
2299        /*  select operations WXOR/RXOR depending on the
2300         * source addresses of operators and the number
2301         * of destinations (RXOR support only Q-parity calculations)
2302         */
2303        set_bit(PPC440SPE_DESC_WXOR, &op);
2304        if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2305                /* no active RXOR;
2306                 * do RXOR if:
2307                 * - there are more than 1 source,
2308                 * - len is aligned on 512-byte boundary,
2309                 * - source addresses fit to one of 4 possible regions.
2310                 */
2311                if (src_cnt > 1 &&
2312                    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2313                    (src[0] + len) == src[1]) {
2314                        /* may do RXOR R1 R2 */
2315                        set_bit(PPC440SPE_DESC_RXOR, &op);
2316                        if (src_cnt != 2) {
2317                                /* may try to enhance region of RXOR */
2318                                if ((src[1] + len) == src[2]) {
2319                                        /* do RXOR R1 R2 R3 */
2320                                        set_bit(PPC440SPE_DESC_RXOR123,
2321                                                &op);
2322                                } else if ((src[1] + len * 2) == src[2]) {
2323                                        /* do RXOR R1 R2 R4 */
2324                                        set_bit(PPC440SPE_DESC_RXOR124, &op);
2325                                } else if ((src[1] + len * 3) == src[2]) {
2326                                        /* do RXOR R1 R2 R5 */
2327                                        set_bit(PPC440SPE_DESC_RXOR125,
2328                                                &op);
2329                                } else {
2330                                        /* do RXOR R1 R2 */
2331                                        set_bit(PPC440SPE_DESC_RXOR12,
2332                                                &op);
2333                                }
2334                        } else {
2335                                /* do RXOR R1 R2 */
2336                                set_bit(PPC440SPE_DESC_RXOR12, &op);
2337                        }
2338                }
2339
2340                if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2341                        /* can not do this operation with RXOR */
2342                        clear_bit(PPC440SPE_RXOR_RUN,
2343                                &ppc440spe_rxor_state);
2344                } else {
2345                        /* can do; set block size right now */
2346                        ppc440spe_desc_set_rxor_block_size(len);
2347                }
2348        }
2349
2350        /* Number of necessary slots depends on operation type selected */
2351        if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2352                /*  This is a WXOR only chain. Need descriptors for each
2353                 * source to GF-XOR them with WXOR, and need descriptors
2354                 * for each destination to zero them with WXOR
2355                 */
2356                slot_cnt = src_cnt;
2357
2358                if (flags & DMA_PREP_ZERO_P) {
2359                        slot_cnt++;
2360                        set_bit(PPC440SPE_ZERO_P, &op);
2361                }
2362                if (flags & DMA_PREP_ZERO_Q) {
2363                        slot_cnt++;
2364                        set_bit(PPC440SPE_ZERO_Q, &op);
2365                }
2366        } else {
2367                /*  Need 1/2 descriptor for RXOR operation, and
2368                 * need (src_cnt - (2 or 3)) for WXOR of sources
2369                 * remained (if any)
2370                 */
2371                slot_cnt = dst_cnt;
2372
2373                if (flags & DMA_PREP_ZERO_P)
2374                        set_bit(PPC440SPE_ZERO_P, &op);
2375                if (flags & DMA_PREP_ZERO_Q)
2376                        set_bit(PPC440SPE_ZERO_Q, &op);
2377
2378                if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2379                        slot_cnt += src_cnt - 2;
2380                else
2381                        slot_cnt += src_cnt - 3;
2382
2383                /*  Thus we have either RXOR only chain or
2384                 * mixed RXOR/WXOR
2385                 */
2386                if (slot_cnt == dst_cnt)
2387                        /* RXOR only chain */
2388                        clear_bit(PPC440SPE_DESC_WXOR, &op);
2389        }
2390
2391        spin_lock_bh(&ppc440spe_chan->lock);
2392        /* for both RXOR/WXOR each descriptor occupies one slot */
2393        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2394        if (sw_desc) {
2395                ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2396                                flags, op);
2397
2398                /* setup dst/src/mult */
2399                pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2400                         __func__, dst[0], dst[1]);
2401                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2402                while (src_cnt--) {
2403                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2404                                                  src_cnt);
2405
2406                        /* NOTE: "Multi = 0 is equivalent to = 1" as it
2407                         * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2408                         * doesn't work for RXOR with DMA0/1! Instead, multi=0
2409                         * leads to zeroing source data after RXOR.
2410                         * So, for P case set-up mult=1 explicitly.
2411                         */
2412                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2413                                mult = scf[src_cnt];
2414                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2415                                mult, src_cnt,  dst_cnt - 1);
2416                }
2417
2418                /* Setup byte count foreach slot just allocated */
2419                sw_desc->async_tx.flags = flags;
2420                list_for_each_entry(iter, &sw_desc->group_list,
2421                                chain_node) {
2422                        ppc440spe_desc_set_byte_count(iter,
2423                                ppc440spe_chan, len);
2424                        iter->unmap_len = len;
2425                }
2426        }
2427        spin_unlock_bh(&ppc440spe_chan->lock);
2428
2429        return sw_desc;
2430}
2431
2432static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2433                struct ppc440spe_adma_chan *ppc440spe_chan,
2434                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2435                const unsigned char *scf, size_t len, unsigned long flags)
2436{
2437        int slot_cnt, descs_per_op;
2438        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2439        unsigned long op = 0;
2440        unsigned char mult = 1;
2441
2442        BUG_ON(!dst_cnt);
2443        /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2444                 __func__, dst_cnt, src_cnt, len);*/
2445
2446        spin_lock_bh(&ppc440spe_chan->lock);
2447        descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2448        if (descs_per_op < 0) {
2449                spin_unlock_bh(&ppc440spe_chan->lock);
2450                return NULL;
2451        }
2452
2453        /* depending on number of sources we have 1 or 2 RXOR chains */
2454        slot_cnt = descs_per_op * dst_cnt;
2455
2456        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2457        if (sw_desc) {
2458                op = slot_cnt;
2459                sw_desc->async_tx.flags = flags;
2460                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2461                        ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2462                                --op ? 0 : flags);
2463                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2464                                len);
2465                        iter->unmap_len = len;
2466
2467                        ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2468                        iter->rxor_cursor.len = len;
2469                        iter->descs_per_op = descs_per_op;
2470                }
2471                op = 0;
2472                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2473                        op++;
2474                        if (op % descs_per_op == 0)
2475                                ppc440spe_adma_init_dma2rxor_slot(iter, src,
2476                                                                  src_cnt);
2477                        if (likely(!list_is_last(&iter->chain_node,
2478                                                 &sw_desc->group_list))) {
2479                                /* set 'next' pointer */
2480                                iter->hw_next =
2481                                        list_entry(iter->chain_node.next,
2482                                                struct ppc440spe_adma_desc_slot,
2483                                                chain_node);
2484                                ppc440spe_xor_set_link(iter, iter->hw_next);
2485                        } else {
2486                                /* this is the last descriptor. */
2487                                iter->hw_next = NULL;
2488                        }
2489                }
2490
2491                /* fixup head descriptor */
2492                sw_desc->dst_cnt = dst_cnt;
2493                if (flags & DMA_PREP_ZERO_P)
2494                        set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2495                if (flags & DMA_PREP_ZERO_Q)
2496                        set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2497
2498                /* setup dst/src/mult */
2499                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2500
2501                while (src_cnt--) {
2502                        /* handle descriptors (if dst_cnt == 2) inside
2503                         * the ppc440spe_adma_pq_set_srcxxx() functions
2504                         */
2505                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2506                                                  src_cnt);
2507                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2508                                mult = scf[src_cnt];
2509                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2510                                        mult, src_cnt, dst_cnt - 1);
2511                }
2512        }
2513        spin_unlock_bh(&ppc440spe_chan->lock);
2514        ppc440spe_desc_set_rxor_block_size(len);
2515        return sw_desc;
2516}
2517
2518/**
2519 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2520 */
2521static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2522                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2523                unsigned int src_cnt, const unsigned char *scf,
2524                size_t len, unsigned long flags)
2525{
2526        struct ppc440spe_adma_chan *ppc440spe_chan;
2527        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2528        int dst_cnt = 0;
2529
2530        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2531
2532        ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2533                                    dst, src, src_cnt));
2534        BUG_ON(!len);
2535        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2536        BUG_ON(!src_cnt);
2537
2538        if (src_cnt == 1 && dst[1] == src[0]) {
2539                dma_addr_t dest[2];
2540
2541                /* dst[1] is real destination (Q) */
2542                dest[0] = dst[1];
2543                /* this is the page to multicast source data to */
2544                dest[1] = ppc440spe_chan->qdest;
2545                sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2546                                dest, 2, src, src_cnt, scf, len, flags);
2547                return sw_desc ? &sw_desc->async_tx : NULL;
2548        }
2549
2550        if (src_cnt == 2 && dst[1] == src[1]) {
2551                sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2552                                        &dst[1], src, 2, scf, len, flags);
2553                return sw_desc ? &sw_desc->async_tx : NULL;
2554        }
2555
2556        if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2557                BUG_ON(!dst[0]);
2558                dst_cnt++;
2559                flags |= DMA_PREP_ZERO_P;
2560        }
2561
2562        if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2563                BUG_ON(!dst[1]);
2564                dst_cnt++;
2565                flags |= DMA_PREP_ZERO_Q;
2566        }
2567
2568        BUG_ON(!dst_cnt);
2569
2570        dev_dbg(ppc440spe_chan->device->common.dev,
2571                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2572                ppc440spe_chan->device->id, __func__, src_cnt, len,
2573                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2574
2575        switch (ppc440spe_chan->device->id) {
2576        case PPC440SPE_DMA0_ID:
2577        case PPC440SPE_DMA1_ID:
2578                sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2579                                dst, dst_cnt, src, src_cnt, scf,
2580                                len, flags);
2581                break;
2582
2583        case PPC440SPE_XOR_ID:
2584                sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2585                                dst, dst_cnt, src, src_cnt, scf,
2586                                len, flags);
2587                break;
2588        }
2589
2590        return sw_desc ? &sw_desc->async_tx : NULL;
2591}
2592
2593/**
2594 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2595 * a PQ_ZERO_SUM operation
2596 */
2597static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2598                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2599                unsigned int src_cnt, const unsigned char *scf, size_t len,
2600                enum sum_check_flags *pqres, unsigned long flags)
2601{
2602        struct ppc440spe_adma_chan *ppc440spe_chan;
2603        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2604        dma_addr_t pdest, qdest;
2605        int slot_cnt, slots_per_op, idst, dst_cnt;
2606
2607        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2608
2609        if (flags & DMA_PREP_PQ_DISABLE_P)
2610                pdest = 0;
2611        else
2612                pdest = pq[0];
2613
2614        if (flags & DMA_PREP_PQ_DISABLE_Q)
2615                qdest = 0;
2616        else
2617                qdest = pq[1];
2618
2619        ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2620                                            src, src_cnt, scf));
2621
2622        /* Always use WXOR for P/Q calculations (two destinations).
2623         * Need 1 or 2 extra slots to verify results are zero.
2624         */
2625        idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2626
2627        /* One additional slot per destination to clone P/Q
2628         * before calculation (we have to preserve destinations).
2629         */
2630        slot_cnt = src_cnt + dst_cnt * 2;
2631        slots_per_op = 1;
2632
2633        spin_lock_bh(&ppc440spe_chan->lock);
2634        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2635                                             slots_per_op);
2636        if (sw_desc) {
2637                ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2638
2639                /* Setup byte count for each slot just allocated */
2640                sw_desc->async_tx.flags = flags;
2641                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2642                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2643                                                      len);
2644                        iter->unmap_len = len;
2645                }
2646
2647                if (pdest) {
2648                        struct dma_cdb *hw_desc;
2649                        struct ppc440spe_adma_chan *chan;
2650
2651                        iter = sw_desc->group_head;
2652                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2653                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2654                        iter->hw_next = list_entry(iter->chain_node.next,
2655                                                struct ppc440spe_adma_desc_slot,
2656                                                chain_node);
2657                        hw_desc = iter->hw_desc;
2658                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2659                        iter->src_cnt = 0;
2660                        iter->dst_cnt = 0;
2661                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2662                                                     ppc440spe_chan->pdest, 0);
2663                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2664                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2665                                                      len);
2666                        iter->unmap_len = 0;
2667                        /* override pdest to preserve original P */
2668                        pdest = ppc440spe_chan->pdest;
2669                }
2670                if (qdest) {
2671                        struct dma_cdb *hw_desc;
2672                        struct ppc440spe_adma_chan *chan;
2673
2674                        iter = list_first_entry(&sw_desc->group_list,
2675                                                struct ppc440spe_adma_desc_slot,
2676                                                chain_node);
2677                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2678
2679                        if (pdest) {
2680                                iter = list_entry(iter->chain_node.next,
2681                                                struct ppc440spe_adma_desc_slot,
2682                                                chain_node);
2683                        }
2684
2685                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2686                        iter->hw_next = list_entry(iter->chain_node.next,
2687                                                struct ppc440spe_adma_desc_slot,
2688                                                chain_node);
2689                        hw_desc = iter->hw_desc;
2690                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2691                        iter->src_cnt = 0;
2692                        iter->dst_cnt = 0;
2693                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2694                                                     ppc440spe_chan->qdest, 0);
2695                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2696                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2697                                                      len);
2698                        iter->unmap_len = 0;
2699                        /* override qdest to preserve original Q */
2700                        qdest = ppc440spe_chan->qdest;
2701                }
2702
2703                /* Setup destinations for P/Q ops */
2704                ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2705
2706                /* Setup zero QWORDs into DCHECK CDBs */
2707                idst = dst_cnt;
2708                list_for_each_entry_reverse(iter, &sw_desc->group_list,
2709                                            chain_node) {
2710                        /*
2711                         * The last CDB corresponds to Q-parity check,
2712                         * the one before last CDB corresponds
2713                         * P-parity check
2714                         */
2715                        if (idst == DMA_DEST_MAX_NUM) {
2716                                if (idst == dst_cnt) {
2717                                        set_bit(PPC440SPE_DESC_QCHECK,
2718                                                &iter->flags);
2719                                } else {
2720                                        set_bit(PPC440SPE_DESC_PCHECK,
2721                                                &iter->flags);
2722                                }
2723                        } else {
2724                                if (qdest) {
2725                                        set_bit(PPC440SPE_DESC_QCHECK,
2726                                                &iter->flags);
2727                                } else {
2728                                        set_bit(PPC440SPE_DESC_PCHECK,
2729                                                &iter->flags);
2730                                }
2731                        }
2732                        iter->xor_check_result = pqres;
2733
2734                        /*
2735                         * set it to zero, if check fail then result will
2736                         * be updated
2737                         */
2738                        *iter->xor_check_result = 0;
2739                        ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2740                                ppc440spe_qword);
2741
2742                        if (!(--dst_cnt))
2743                                break;
2744                }
2745
2746                /* Setup sources and mults for P/Q ops */
2747                list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2748                                                     chain_node) {
2749                        struct ppc440spe_adma_chan *chan;
2750                        u32 mult_dst;
2751
2752                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2753                        ppc440spe_desc_set_src_addr(iter, chan, 0,
2754                                                    DMA_CUED_XOR_HB,
2755                                                    src[src_cnt - 1]);
2756                        if (qdest) {
2757                                mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2758                                                           DMA_CDB_SG_DST1;
2759                                ppc440spe_desc_set_src_mult(iter, chan,
2760                                                            DMA_CUED_MULT1_OFF,
2761                                                            mult_dst,
2762                                                            scf[src_cnt - 1]);
2763                        }
2764                        if (!(--src_cnt))
2765                                break;
2766                }
2767        }
2768        spin_unlock_bh(&ppc440spe_chan->lock);
2769        return sw_desc ? &sw_desc->async_tx : NULL;
2770}
2771
2772/**
2773 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2774 * XOR ZERO_SUM operation
2775 */
2776static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2777                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2778                size_t len, enum sum_check_flags *result, unsigned long flags)
2779{
2780        struct dma_async_tx_descriptor *tx;
2781        dma_addr_t pq[2];
2782
2783        /* validate P, disable Q */
2784        pq[0] = src[0];
2785        pq[1] = 0;
2786        flags |= DMA_PREP_PQ_DISABLE_Q;
2787
2788        tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2789                                                src_cnt - 1, 0, len,
2790                                                result, flags);
2791        return tx;
2792}
2793
2794/**
2795 * ppc440spe_adma_set_dest - set destination address into descriptor
2796 */
2797static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2798                dma_addr_t addr, int index)
2799{
2800        struct ppc440spe_adma_chan *chan;
2801
2802        BUG_ON(index >= sw_desc->dst_cnt);
2803
2804        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2805
2806        switch (chan->device->id) {
2807        case PPC440SPE_DMA0_ID:
2808        case PPC440SPE_DMA1_ID:
2809                /* to do: support transfers lengths >
2810                 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2811                 */
2812                ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2813                        chan, 0, addr, index);
2814                break;
2815        case PPC440SPE_XOR_ID:
2816                sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2817                ppc440spe_desc_set_dest_addr(sw_desc,
2818                        chan, 0, addr, index);
2819                break;
2820        }
2821}
2822
2823static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2824                struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2825{
2826        /*  To clear destinations update the descriptor
2827         * (P or Q depending on index) as follows:
2828         * addr is destination (0 corresponds to SG2):
2829         */
2830        ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2831
2832        /* ... and the addr is source: */
2833        ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2834
2835        /* addr is always SG2 then the mult is always DST1 */
2836        ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2837                                    DMA_CDB_SG_DST1, 1);
2838}
2839
2840/**
2841 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2842 * for the PQXOR operation
2843 */
2844static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2845                dma_addr_t *addrs, unsigned long flags)
2846{
2847        struct ppc440spe_adma_desc_slot *iter;
2848        struct ppc440spe_adma_chan *chan;
2849        dma_addr_t paddr, qaddr;
2850        dma_addr_t addr = 0, ppath, qpath;
2851        int index = 0, i;
2852
2853        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2854
2855        if (flags & DMA_PREP_PQ_DISABLE_P)
2856                paddr = 0;
2857        else
2858                paddr = addrs[0];
2859
2860        if (flags & DMA_PREP_PQ_DISABLE_Q)
2861                qaddr = 0;
2862        else
2863                qaddr = addrs[1];
2864
2865        if (!paddr || !qaddr)
2866                addr = paddr ? paddr : qaddr;
2867
2868        switch (chan->device->id) {
2869        case PPC440SPE_DMA0_ID:
2870        case PPC440SPE_DMA1_ID:
2871                /* walk through the WXOR source list and set P/Q-destinations
2872                 * for each slot:
2873                 */
2874                if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2875                        /* This is WXOR-only chain; may have 1/2 zero descs */
2876                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2877                                index++;
2878                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2879                                index++;
2880
2881                        iter = ppc440spe_get_group_entry(sw_desc, index);
2882                        if (addr) {
2883                                /* one destination */
2884                                list_for_each_entry_from(iter,
2885                                        &sw_desc->group_list, chain_node)
2886                                        ppc440spe_desc_set_dest_addr(iter, chan,
2887                                                DMA_CUED_XOR_BASE, addr, 0);
2888                        } else {
2889                                /* two destinations */
2890                                list_for_each_entry_from(iter,
2891                                        &sw_desc->group_list, chain_node) {
2892                                        ppc440spe_desc_set_dest_addr(iter, chan,
2893                                                DMA_CUED_XOR_BASE, paddr, 0);
2894                                        ppc440spe_desc_set_dest_addr(iter, chan,
2895                                                DMA_CUED_XOR_BASE, qaddr, 1);
2896                                }
2897                        }
2898
2899                        if (index) {
2900                                /*  To clear destinations update the descriptor
2901                                 * (1st,2nd, or both depending on flags)
2902                                 */
2903                                index = 0;
2904                                if (test_bit(PPC440SPE_ZERO_P,
2905                                                &sw_desc->flags)) {
2906                                        iter = ppc440spe_get_group_entry(
2907                                                        sw_desc, index++);
2908                                        ppc440spe_adma_pq_zero_op(iter, chan,
2909                                                        paddr);
2910                                }
2911
2912                                if (test_bit(PPC440SPE_ZERO_Q,
2913                                                &sw_desc->flags)) {
2914                                        iter = ppc440spe_get_group_entry(
2915                                                        sw_desc, index++);
2916                                        ppc440spe_adma_pq_zero_op(iter, chan,
2917                                                        qaddr);
2918                                }
2919
2920                                return;
2921                        }
2922                } else {
2923                        /* This is RXOR-only or RXOR/WXOR mixed chain */
2924
2925                        /* If we want to include destination into calculations,
2926                         * then make dest addresses cued with mult=1 (XOR).
2927                         */
2928                        ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2929                                        DMA_CUED_XOR_HB :
2930                                        DMA_CUED_XOR_BASE |
2931                                                (1 << DMA_CUED_MULT1_OFF);
2932                        qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2933                                        DMA_CUED_XOR_HB :
2934                                        DMA_CUED_XOR_BASE |
2935                                                (1 << DMA_CUED_MULT1_OFF);
2936
2937                        /* Setup destination(s) in RXOR slot(s) */
2938                        iter = ppc440spe_get_group_entry(sw_desc, index++);
2939                        ppc440spe_desc_set_dest_addr(iter, chan,
2940                                                paddr ? ppath : qpath,
2941                                                paddr ? paddr : qaddr, 0);
2942                        if (!addr) {
2943                                /* two destinations */
2944                                iter = ppc440spe_get_group_entry(sw_desc,
2945                                                                 index++);
2946                                ppc440spe_desc_set_dest_addr(iter, chan,
2947                                                qpath, qaddr, 0);
2948                        }
2949
2950                        if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2951                                /* Setup destination(s) in remaining WXOR
2952                                 * slots
2953                                 */
2954                                iter = ppc440spe_get_group_entry(sw_desc,
2955                                                                 index);
2956                                if (addr) {
2957                                        /* one destination */
2958                                        list_for_each_entry_from(iter,
2959                                            &sw_desc->group_list,
2960                                            chain_node)
2961                                                ppc440spe_desc_set_dest_addr(
2962                                                        iter, chan,
2963                                                        DMA_CUED_XOR_BASE,
2964                                                        addr, 0);
2965
2966                                } else {
2967                                        /* two destinations */
2968                                        list_for_each_entry_from(iter,
2969                                            &sw_desc->group_list,
2970                                            chain_node) {
2971                                                ppc440spe_desc_set_dest_addr(
2972                                                        iter, chan,
2973                                                        DMA_CUED_XOR_BASE,
2974                                                        paddr, 0);
2975                                                ppc440spe_desc_set_dest_addr(
2976                                                        iter, chan,
2977                                                        DMA_CUED_XOR_BASE,
2978                                                        qaddr, 1);
2979                                        }
2980                                }
2981                        }
2982
2983                }
2984                break;
2985
2986        case PPC440SPE_XOR_ID:
2987                /* DMA2 descriptors have only 1 destination, so there are
2988                 * two chains - one for each dest.
2989                 * If we want to include destination into calculations,
2990                 * then make dest addresses cued with mult=1 (XOR).
2991                 */
2992                ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2993                                DMA_CUED_XOR_HB :
2994                                DMA_CUED_XOR_BASE |
2995                                        (1 << DMA_CUED_MULT1_OFF);
2996
2997                qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2998                                DMA_CUED_XOR_HB :
2999                                DMA_CUED_XOR_BASE |
3000                                        (1 << DMA_CUED_MULT1_OFF);
3001
3002                iter = ppc440spe_get_group_entry(sw_desc, 0);
3003                for (i = 0; i < sw_desc->descs_per_op; i++) {
3004                        ppc440spe_desc_set_dest_addr(iter, chan,
3005                                paddr ? ppath : qpath,
3006                                paddr ? paddr : qaddr, 0);
3007                        iter = list_entry(iter->chain_node.next,
3008                                          struct ppc440spe_adma_desc_slot,
3009                                          chain_node);
3010                }
3011
3012                if (!addr) {
3013                        /* Two destinations; setup Q here */
3014                        iter = ppc440spe_get_group_entry(sw_desc,
3015                                sw_desc->descs_per_op);
3016                        for (i = 0; i < sw_desc->descs_per_op; i++) {
3017                                ppc440spe_desc_set_dest_addr(iter,
3018                                        chan, qpath, qaddr, 0);
3019                                iter = list_entry(iter->chain_node.next,
3020                                                struct ppc440spe_adma_desc_slot,
3021                                                chain_node);
3022                        }
3023                }
3024
3025                break;
3026        }
3027}
3028
3029/**
3030 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3031 * for the PQ_ZERO_SUM operation
3032 */
3033static void ppc440spe_adma_pqzero_sum_set_dest(
3034                struct ppc440spe_adma_desc_slot *sw_desc,
3035                dma_addr_t paddr, dma_addr_t qaddr)
3036{
3037        struct ppc440spe_adma_desc_slot *iter, *end;
3038        struct ppc440spe_adma_chan *chan;
3039        dma_addr_t addr = 0;
3040        int idx;
3041
3042        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3043
3044        /* walk through the WXOR source list and set P/Q-destinations
3045         * for each slot
3046         */
3047        idx = (paddr && qaddr) ? 2 : 1;
3048        /* set end */
3049        list_for_each_entry_reverse(end, &sw_desc->group_list,
3050                                    chain_node) {
3051                if (!(--idx))
3052                        break;
3053        }
3054        /* set start */
3055        idx = (paddr && qaddr) ? 2 : 1;
3056        iter = ppc440spe_get_group_entry(sw_desc, idx);
3057
3058        if (paddr && qaddr) {
3059                /* two destinations */
3060                list_for_each_entry_from(iter, &sw_desc->group_list,
3061                                         chain_node) {
3062                        if (unlikely(iter == end))
3063                                break;
3064                        ppc440spe_desc_set_dest_addr(iter, chan,
3065                                                DMA_CUED_XOR_BASE, paddr, 0);
3066                        ppc440spe_desc_set_dest_addr(iter, chan,
3067                                                DMA_CUED_XOR_BASE, qaddr, 1);
3068                }
3069        } else {
3070                /* one destination */
3071                addr = paddr ? paddr : qaddr;
3072                list_for_each_entry_from(iter, &sw_desc->group_list,
3073                                         chain_node) {
3074                        if (unlikely(iter == end))
3075                                break;
3076                        ppc440spe_desc_set_dest_addr(iter, chan,
3077                                                DMA_CUED_XOR_BASE, addr, 0);
3078                }
3079        }
3080
3081        /*  The remaining descriptors are DATACHECK. These have no need in
3082         * destination. Actually, these destinations are used there
3083         * as sources for check operation. So, set addr as source.
3084         */
3085        ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3086
3087        if (!addr) {
3088                end = list_entry(end->chain_node.next,
3089                                 struct ppc440spe_adma_desc_slot, chain_node);
3090                ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3091        }
3092}
3093
3094/**
3095 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3096 */
3097static inline void ppc440spe_desc_set_xor_src_cnt(
3098                        struct ppc440spe_adma_desc_slot *desc,
3099                        int src_cnt)
3100{
3101        struct xor_cb *hw_desc = desc->hw_desc;
3102
3103        hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3104        hw_desc->cbc |= src_cnt;
3105}
3106
3107/**
3108 * ppc440spe_adma_pq_set_src - set source address into descriptor
3109 */
3110static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3111                dma_addr_t addr, int index)
3112{
3113        struct ppc440spe_adma_chan *chan;
3114        dma_addr_t haddr = 0;
3115        struct ppc440spe_adma_desc_slot *iter = NULL;
3116
3117        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3118
3119        switch (chan->device->id) {
3120        case PPC440SPE_DMA0_ID:
3121        case PPC440SPE_DMA1_ID:
3122                /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3123                 */
3124                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3125                        /* RXOR-only or RXOR/WXOR operation */
3126                        int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3127                                &sw_desc->flags) ?  2 : 3;
3128
3129                        if (index == 0) {
3130                                /* 1st slot (RXOR) */
3131                                /* setup sources region (R1-2-3, R1-2-4,
3132                                 * or R1-2-5)
3133                                 */
3134                                if (test_bit(PPC440SPE_DESC_RXOR12,
3135                                                &sw_desc->flags))
3136                                        haddr = DMA_RXOR12 <<
3137                                                DMA_CUED_REGION_OFF;
3138                                else if (test_bit(PPC440SPE_DESC_RXOR123,
3139                                    &sw_desc->flags))
3140                                        haddr = DMA_RXOR123 <<
3141                                                DMA_CUED_REGION_OFF;
3142                                else if (test_bit(PPC440SPE_DESC_RXOR124,
3143                                    &sw_desc->flags))
3144                                        haddr = DMA_RXOR124 <<
3145                                                DMA_CUED_REGION_OFF;
3146                                else if (test_bit(PPC440SPE_DESC_RXOR125,
3147                                    &sw_desc->flags))
3148                                        haddr = DMA_RXOR125 <<
3149                                                DMA_CUED_REGION_OFF;
3150                                else
3151                                        BUG();
3152                                haddr |= DMA_CUED_XOR_BASE;
3153                                iter = ppc440spe_get_group_entry(sw_desc, 0);
3154                        } else if (index < iskip) {
3155                                /* 1st slot (RXOR)
3156                                 * shall actually set source address only once
3157                                 * instead of first <iskip>
3158                                 */
3159                                iter = NULL;
3160                        } else {
3161                                /* 2nd/3d and next slots (WXOR);
3162                                 * skip first slot with RXOR
3163                                 */
3164                                haddr = DMA_CUED_XOR_HB;
3165                                iter = ppc440spe_get_group_entry(sw_desc,
3166                                    index - iskip + sw_desc->dst_cnt);
3167                        }
3168                } else {
3169                        int znum = 0;
3170
3171                        /* WXOR-only operation; skip first slots with
3172                         * zeroing destinations
3173                         */
3174                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3175                                znum++;
3176                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3177                                znum++;
3178
3179                        haddr = DMA_CUED_XOR_HB;
3180                        iter = ppc440spe_get_group_entry(sw_desc,
3181                                        index + znum);
3182                }
3183
3184                if (likely(iter)) {
3185                        ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3186
3187                        if (!index &&
3188                            test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3189                            sw_desc->dst_cnt == 2) {
3190                                /* if we have two destinations for RXOR, then
3191                                 * setup source in the second descr too
3192                                 */
3193                                iter = ppc440spe_get_group_entry(sw_desc, 1);
3194                                ppc440spe_desc_set_src_addr(iter, chan, 0,
3195                                        haddr, addr);
3196                        }
3197                }
3198                break;
3199
3200        case PPC440SPE_XOR_ID:
3201                /* DMA2 may do Biskup */
3202                iter = sw_desc->group_head;
3203                if (iter->dst_cnt == 2) {
3204                        /* both P & Q calculations required; set P src here */
3205                        ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3206
3207                        /* this is for Q */
3208                        iter = ppc440spe_get_group_entry(sw_desc,
3209                                sw_desc->descs_per_op);
3210                }
3211                ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3212                break;
3213        }
3214}
3215
3216/**
3217 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3218 */
3219static void ppc440spe_adma_memcpy_xor_set_src(
3220                struct ppc440spe_adma_desc_slot *sw_desc,
3221                dma_addr_t addr, int index)
3222{
3223        struct ppc440spe_adma_chan *chan;
3224
3225        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3226        sw_desc = sw_desc->group_head;
3227
3228        if (likely(sw_desc))
3229                ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3230}
3231
3232/**
3233 * ppc440spe_adma_dma2rxor_inc_addr  -
3234 */
3235static void ppc440spe_adma_dma2rxor_inc_addr(
3236                struct ppc440spe_adma_desc_slot *desc,
3237                struct ppc440spe_rxor *cursor, int index, int src_cnt)
3238{
3239        cursor->addr_count++;
3240        if (index == src_cnt - 1) {
3241                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3242        } else if (cursor->addr_count == XOR_MAX_OPS) {
3243                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3244                cursor->addr_count = 0;
3245                cursor->desc_count++;
3246        }
3247}
3248
3249/**
3250 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3251 */
3252static int ppc440spe_adma_dma2rxor_prep_src(
3253                struct ppc440spe_adma_desc_slot *hdesc,
3254                struct ppc440spe_rxor *cursor, int index,
3255                int src_cnt, u32 addr)
3256{
3257        int rval = 0;
3258        u32 sign;
3259        struct ppc440spe_adma_desc_slot *desc = hdesc;
3260        int i;
3261
3262        for (i = 0; i < cursor->desc_count; i++) {
3263                desc = list_entry(hdesc->chain_node.next,
3264                                  struct ppc440spe_adma_desc_slot,
3265                                  chain_node);
3266        }
3267
3268        switch (cursor->state) {
3269        case 0:
3270                if (addr == cursor->addrl + cursor->len) {
3271                        /* direct RXOR */
3272                        cursor->state = 1;
3273                        cursor->xor_count++;
3274                        if (index == src_cnt-1) {
3275                                ppc440spe_rxor_set_region(desc,
3276                                        cursor->addr_count,
3277                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3278                                ppc440spe_adma_dma2rxor_inc_addr(
3279                                        desc, cursor, index, src_cnt);
3280                        }
3281                } else if (cursor->addrl == addr + cursor->len) {
3282                        /* reverse RXOR */
3283                        cursor->state = 1;
3284                        cursor->xor_count++;
3285                        set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3286                        if (index == src_cnt-1) {
3287                                ppc440spe_rxor_set_region(desc,
3288                                        cursor->addr_count,
3289                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3290                                ppc440spe_adma_dma2rxor_inc_addr(
3291                                        desc, cursor, index, src_cnt);
3292                        }
3293                } else {
3294                        printk(KERN_ERR "Cannot build "
3295                                "DMA2 RXOR command block.\n");
3296                        BUG();
3297                }
3298                break;
3299        case 1:
3300                sign = test_bit(cursor->addr_count,
3301                                desc->reverse_flags)
3302                        ? -1 : 1;
3303                if (index == src_cnt-2 || (sign == -1
3304                        && addr != cursor->addrl - 2*cursor->len)) {
3305                        cursor->state = 0;
3306                        cursor->xor_count = 1;
3307                        cursor->addrl = addr;
3308                        ppc440spe_rxor_set_region(desc,
3309                                cursor->addr_count,
3310                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3311                        ppc440spe_adma_dma2rxor_inc_addr(
3312                                desc, cursor, index, src_cnt);
3313                } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3314                        cursor->state = 2;
3315                        cursor->xor_count = 0;
3316                        ppc440spe_rxor_set_region(desc,
3317                                cursor->addr_count,
3318                                DMA_RXOR123 << DMA_CUED_REGION_OFF);
3319                        if (index == src_cnt-1) {
3320                                ppc440spe_adma_dma2rxor_inc_addr(
3321                                        desc, cursor, index, src_cnt);
3322                        }
3323                } else if (addr == cursor->addrl + 3*cursor->len) {
3324                        cursor->state = 2;
3325                        cursor->xor_count = 0;
3326                        ppc440spe_rxor_set_region(desc,
3327                                cursor->addr_count,
3328                                DMA_RXOR124 << DMA_CUED_REGION_OFF);
3329                        if (index == src_cnt-1) {
3330                                ppc440spe_adma_dma2rxor_inc_addr(
3331                                        desc, cursor, index, src_cnt);
3332                        }
3333                } else if (addr == cursor->addrl + 4*cursor->len) {
3334                        cursor->state = 2;
3335                        cursor->xor_count = 0;
3336                        ppc440spe_rxor_set_region(desc,
3337                                cursor->addr_count,
3338                                DMA_RXOR125 << DMA_CUED_REGION_OFF);
3339                        if (index == src_cnt-1) {
3340                                ppc440spe_adma_dma2rxor_inc_addr(
3341                                        desc, cursor, index, src_cnt);
3342                        }
3343                } else {
3344                        cursor->state = 0;
3345                        cursor->xor_count = 1;
3346                        cursor->addrl = addr;
3347                        ppc440spe_rxor_set_region(desc,
3348                                cursor->addr_count,
3349                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3350                        ppc440spe_adma_dma2rxor_inc_addr(
3351                                desc, cursor, index, src_cnt);
3352                }
3353                break;
3354        case 2:
3355                cursor->state = 0;
3356                cursor->addrl = addr;
3357                cursor->xor_count++;
3358                if (index) {
3359                        ppc440spe_adma_dma2rxor_inc_addr(
3360                                desc, cursor, index, src_cnt);
3361                }
3362                break;
3363        }
3364
3365        return rval;
3366}
3367
3368/**
3369 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3370 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3371 */
3372static void ppc440spe_adma_dma2rxor_set_src(
3373                struct ppc440spe_adma_desc_slot *desc,
3374                int index, dma_addr_t addr)
3375{
3376        struct xor_cb *xcb = desc->hw_desc;
3377        int k = 0, op = 0, lop = 0;
3378
3379        /* get the RXOR operand which corresponds to index addr */
3380        while (op <= index) {
3381                lop = op;
3382                if (k == XOR_MAX_OPS) {
3383                        k = 0;
3384                        desc = list_entry(desc->chain_node.next,
3385                                struct ppc440spe_adma_desc_slot, chain_node);
3386                        xcb = desc->hw_desc;
3387
3388                }
3389                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3390                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3391                        op += 2;
3392                else
3393                        op += 3;
3394        }
3395
3396        BUG_ON(k < 1);
3397
3398        if (test_bit(k-1, desc->reverse_flags)) {
3399                /* reverse operand order; put last op in RXOR group */
3400                if (index == op - 1)
3401                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3402        } else {
3403                /* direct operand order; put first op in RXOR group */
3404                if (index == lop)
3405                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3406        }
3407}
3408
3409/**
3410 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3411 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3412 */
3413static void ppc440spe_adma_dma2rxor_set_mult(
3414                struct ppc440spe_adma_desc_slot *desc,
3415                int index, u8 mult)
3416{
3417        struct xor_cb *xcb = desc->hw_desc;
3418        int k = 0, op = 0, lop = 0;
3419
3420        /* get the RXOR operand which corresponds to index mult */
3421        while (op <= index) {
3422                lop = op;
3423                if (k == XOR_MAX_OPS) {
3424                        k = 0;
3425                        desc = list_entry(desc->chain_node.next,
3426                                          struct ppc440spe_adma_desc_slot,
3427                                          chain_node);
3428                        xcb = desc->hw_desc;
3429
3430                }
3431                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3432                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3433                        op += 2;
3434                else
3435                        op += 3;
3436        }
3437
3438        BUG_ON(k < 1);
3439        if (test_bit(k-1, desc->reverse_flags)) {
3440                /* reverse order */
3441                ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3442        } else {
3443                /* direct order */
3444                ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3445        }
3446}
3447
3448/**
3449 * ppc440spe_init_rxor_cursor -
3450 */
3451static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3452{
3453        memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3454        cursor->state = 2;
3455}
3456
3457/**
3458 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3459 * descriptor for the PQXOR operation
3460 */
3461static void ppc440spe_adma_pq_set_src_mult(
3462                struct ppc440spe_adma_desc_slot *sw_desc,
3463                unsigned char mult, int index, int dst_pos)
3464{
3465        struct ppc440spe_adma_chan *chan;
3466        u32 mult_idx, mult_dst;
3467        struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3468
3469        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3470
3471        switch (chan->device->id) {
3472        case PPC440SPE_DMA0_ID:
3473        case PPC440SPE_DMA1_ID:
3474                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3475                        int region = test_bit(PPC440SPE_DESC_RXOR12,
3476                                        &sw_desc->flags) ? 2 : 3;
3477
3478                        if (index < region) {
3479                                /* RXOR multipliers */
3480                                iter = ppc440spe_get_group_entry(sw_desc,
3481                                        sw_desc->dst_cnt - 1);
3482                                if (sw_desc->dst_cnt == 2)
3483                                        iter1 = ppc440spe_get_group_entry(
3484                                                        sw_desc, 0);
3485
3486                                mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3487                                mult_dst = DMA_CDB_SG_SRC;
3488                        } else {
3489                                /* WXOR multiplier */
3490                                iter = ppc440spe_get_group_entry(sw_desc,
3491                                                        index - region +
3492                                                        sw_desc->dst_cnt);
3493                                mult_idx = DMA_CUED_MULT1_OFF;
3494                                mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3495                                                     DMA_CDB_SG_DST1;
3496                        }
3497                } else {
3498                        int znum = 0;
3499
3500                        /* WXOR-only;
3501                         * skip first slots with destinations (if ZERO_DST has
3502                         * place)
3503                         */
3504                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3505                                znum++;
3506                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3507                                znum++;
3508
3509                        iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3510                        mult_idx = DMA_CUED_MULT1_OFF;
3511                        mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3512                }
3513
3514                if (likely(iter)) {
3515                        ppc440spe_desc_set_src_mult(iter, chan,
3516                                mult_idx, mult_dst, mult);
3517
3518                        if (unlikely(iter1)) {
3519                                /* if we have two destinations for RXOR, then
3520                                 * we've just set Q mult. Set-up P now.
3521                                 */
3522                                ppc440spe_desc_set_src_mult(iter1, chan,
3523                                        mult_idx, mult_dst, 1);
3524                        }
3525
3526                }
3527                break;
3528
3529        case PPC440SPE_XOR_ID:
3530                iter = sw_desc->group_head;
3531                if (sw_desc->dst_cnt == 2) {
3532                        /* both P & Q calculations required; set P mult here */
3533                        ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3534
3535                        /* and then set Q mult */
3536                        iter = ppc440spe_get_group_entry(sw_desc,
3537                               sw_desc->descs_per_op);
3538                }
3539                ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3540                break;
3541        }
3542}
3543
3544/**
3545 * ppc440spe_adma_free_chan_resources - free the resources allocated
3546 */
3547static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3548{
3549        struct ppc440spe_adma_chan *ppc440spe_chan;
3550        struct ppc440spe_adma_desc_slot *iter, *_iter;
3551        int in_use_descs = 0;
3552
3553        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3554        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3555
3556        spin_lock_bh(&ppc440spe_chan->lock);
3557        list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3558                                        chain_node) {
3559                in_use_descs++;
3560                list_del(&iter->chain_node);
3561        }
3562        list_for_each_entry_safe_reverse(iter, _iter,
3563                        &ppc440spe_chan->all_slots, slot_node) {
3564                list_del(&iter->slot_node);
3565                kfree(iter);
3566                ppc440spe_chan->slots_allocated--;
3567        }
3568        ppc440spe_chan->last_used = NULL;
3569
3570        dev_dbg(ppc440spe_chan->device->common.dev,
3571                "ppc440spe adma%d %s slots_allocated %d\n",
3572                ppc440spe_chan->device->id,
3573                __func__, ppc440spe_chan->slots_allocated);
3574        spin_unlock_bh(&ppc440spe_chan->lock);
3575
3576        /* one is ok since we left it on there on purpose */
3577        if (in_use_descs > 1)
3578                printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3579                        in_use_descs - 1);
3580}
3581
3582/**
3583 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3584 * @chan: ADMA channel handle
3585 * @cookie: ADMA transaction identifier
3586 * @txstate: a holder for the current state of the channel
3587 */
3588static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3589                        dma_cookie_t cookie, struct dma_tx_state *txstate)
3590{
3591        struct ppc440spe_adma_chan *ppc440spe_chan;
3592        enum dma_status ret;
3593
3594        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3595        ret = dma_cookie_status(chan, cookie, txstate);
3596        if (ret == DMA_COMPLETE)
3597                return ret;
3598
3599        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3600
3601        return dma_cookie_status(chan, cookie, txstate);
3602}
3603
3604/**
3605 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3606 */
3607static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3608{
3609        struct ppc440spe_adma_chan *chan = data;
3610
3611        dev_dbg(chan->device->common.dev,
3612                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3613
3614        tasklet_schedule(&chan->irq_tasklet);
3615        ppc440spe_adma_device_clear_eot_status(chan);
3616
3617        return IRQ_HANDLED;
3618}
3619
3620/**
3621 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3622 *      do the same things as a eot handler
3623 */
3624static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3625{
3626        struct ppc440spe_adma_chan *chan = data;
3627
3628        dev_dbg(chan->device->common.dev,
3629                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3630
3631        tasklet_schedule(&chan->irq_tasklet);
3632        ppc440spe_adma_device_clear_eot_status(chan);
3633
3634        return IRQ_HANDLED;
3635}
3636
3637/**
3638 * ppc440spe_test_callback - called when test operation has been done
3639 */
3640static void ppc440spe_test_callback(void *unused)
3641{
3642        complete(&ppc440spe_r6_test_comp);
3643}
3644
3645/**
3646 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3647 */
3648static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3649{
3650        struct ppc440spe_adma_chan *ppc440spe_chan;
3651
3652        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3653        dev_dbg(ppc440spe_chan->device->common.dev,
3654                "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3655                __func__, ppc440spe_chan->pending);
3656
3657        if (ppc440spe_chan->pending) {
3658                ppc440spe_chan->pending = 0;
3659                ppc440spe_chan_append(ppc440spe_chan);
3660        }
3661}
3662
3663/**
3664 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3665 *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
3666 *      specific operation)
3667 */
3668static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3669{
3670        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3671        dma_cookie_t cookie;
3672        int slot_cnt, slots_per_op;
3673
3674        dev_dbg(chan->device->common.dev,
3675                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3676
3677        spin_lock_bh(&chan->lock);
3678        slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3679        sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3680        if (sw_desc) {
3681                group_start = sw_desc->group_head;
3682                list_splice_init(&sw_desc->group_list, &chan->chain);
3683                async_tx_ack(&sw_desc->async_tx);
3684                ppc440spe_desc_init_null_xor(group_start);
3685
3686                cookie = dma_cookie_assign(&sw_desc->async_tx);
3687
3688                /* initialize the completed cookie to be less than
3689                 * the most recently used cookie
3690                 */
3691                chan->common.completed_cookie = cookie - 1;
3692
3693                /* channel should not be busy */
3694                BUG_ON(ppc440spe_chan_is_busy(chan));
3695
3696                /* set the descriptor address */
3697                ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3698
3699                /* run the descriptor */
3700                ppc440spe_chan_run(chan);
3701        } else
3702                printk(KERN_ERR "ppc440spe adma%d"
3703                        " failed to allocate null descriptor\n",
3704                        chan->device->id);
3705        spin_unlock_bh(&chan->lock);
3706}
3707
3708/**
3709 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3710 *      For this we just perform one WXOR operation with the same source
3711 *      and destination addresses, the GF-multiplier is 1; so if RAID-6
3712 *      capabilities are enabled then we'll get src/dst filled with zero.
3713 */
3714static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3715{
3716        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3717        struct page *pg;
3718        char *a;
3719        dma_addr_t dma_addr, addrs[2];
3720        unsigned long op = 0;
3721        int rval = 0;
3722
3723        set_bit(PPC440SPE_DESC_WXOR, &op);
3724
3725        pg = alloc_page(GFP_KERNEL);
3726        if (!pg)
3727                return -ENOMEM;
3728
3729        spin_lock_bh(&chan->lock);
3730        sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3731        if (sw_desc) {
3732                /* 1 src, 1 dsr, int_ena, WXOR */
3733                ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3734                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3735                        ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3736                        iter->unmap_len = PAGE_SIZE;
3737                }
3738        } else {
3739                rval = -EFAULT;
3740                spin_unlock_bh(&chan->lock);
3741                goto exit;
3742        }
3743        spin_unlock_bh(&chan->lock);
3744
3745        /* Fill the test page with ones */
3746        memset(page_address(pg), 0xFF, PAGE_SIZE);
3747        dma_addr = dma_map_page(chan->device->dev, pg, 0,
3748                                PAGE_SIZE, DMA_BIDIRECTIONAL);
3749
3750        /* Setup addresses */
3751        ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3752        ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3753        addrs[0] = dma_addr;
3754        addrs[1] = 0;
3755        ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3756
3757        async_tx_ack(&sw_desc->async_tx);
3758        sw_desc->async_tx.callback = ppc440spe_test_callback;
3759        sw_desc->async_tx.callback_param = NULL;
3760
3761        init_completion(&ppc440spe_r6_test_comp);
3762
3763        ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3764        ppc440spe_adma_issue_pending(&chan->common);
3765
3766        wait_for_completion(&ppc440spe_r6_test_comp);
3767
3768        /* Now check if the test page is zeroed */
3769        a = page_address(pg);
3770        if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3771                /* page is zero - RAID-6 enabled */
3772                rval = 0;
3773        } else {
3774                /* RAID-6 was not enabled */
3775                rval = -EINVAL;
3776        }
3777exit:
3778        __free_page(pg);
3779        return rval;
3780}
3781
3782static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3783{
3784        switch (adev->id) {
3785        case PPC440SPE_DMA0_ID:
3786        case PPC440SPE_DMA1_ID:
3787                dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3788                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3789                dma_cap_set(DMA_PQ, adev->common.cap_mask);
3790                dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3791                dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3792                break;
3793        case PPC440SPE_XOR_ID:
3794                dma_cap_set(DMA_XOR, adev->common.cap_mask);
3795                dma_cap_set(DMA_PQ, adev->common.cap_mask);
3796                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3797                adev->common.cap_mask = adev->common.cap_mask;
3798                break;
3799        }
3800
3801        /* Set base routines */
3802        adev->common.device_alloc_chan_resources =
3803                                ppc440spe_adma_alloc_chan_resources;
3804        adev->common.device_free_chan_resources =
3805                                ppc440spe_adma_free_chan_resources;
3806        adev->common.device_tx_status = ppc440spe_adma_tx_status;
3807        adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3808
3809        /* Set prep routines based on capability */
3810        if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3811                adev->common.device_prep_dma_memcpy =
3812                        ppc440spe_adma_prep_dma_memcpy;
3813        }
3814        if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3815                adev->common.max_xor = XOR_MAX_OPS;
3816                adev->common.device_prep_dma_xor =
3817                        ppc440spe_adma_prep_dma_xor;
3818        }
3819        if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3820                switch (adev->id) {
3821                case PPC440SPE_DMA0_ID:
3822                        dma_set_maxpq(&adev->common,
3823                                DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3824                        break;
3825                case PPC440SPE_DMA1_ID:
3826                        dma_set_maxpq(&adev->common,
3827                                DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3828                        break;
3829                case PPC440SPE_XOR_ID:
3830                        adev->common.max_pq = XOR_MAX_OPS * 3;
3831                        break;
3832                }
3833                adev->common.device_prep_dma_pq =
3834                        ppc440spe_adma_prep_dma_pq;
3835        }
3836        if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3837                switch (adev->id) {
3838                case PPC440SPE_DMA0_ID:
3839                        adev->common.max_pq = DMA0_FIFO_SIZE /
3840                                                sizeof(struct dma_cdb);
3841                        break;
3842                case PPC440SPE_DMA1_ID:
3843                        adev->common.max_pq = DMA1_FIFO_SIZE /
3844                                                sizeof(struct dma_cdb);
3845                        break;
3846                }
3847                adev->common.device_prep_dma_pq_val =
3848                        ppc440spe_adma_prep_dma_pqzero_sum;
3849        }
3850        if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3851                switch (adev->id) {
3852                case PPC440SPE_DMA0_ID:
3853                        adev->common.max_xor = DMA0_FIFO_SIZE /
3854                                                sizeof(struct dma_cdb);
3855                        break;
3856                case PPC440SPE_DMA1_ID:
3857                        adev->common.max_xor = DMA1_FIFO_SIZE /
3858                                                sizeof(struct dma_cdb);
3859                        break;
3860                }
3861                adev->common.device_prep_dma_xor_val =
3862                        ppc440spe_adma_prep_dma_xor_zero_sum;
3863        }
3864        if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3865                adev->common.device_prep_dma_interrupt =
3866                        ppc440spe_adma_prep_dma_interrupt;
3867        }
3868        pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3869          "( %s%s%s%s%s%s)\n",
3870          dev_name(adev->dev),
3871          dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3872          dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3873          dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3874          dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3875          dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3876          dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3877}
3878
3879static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3880                                     struct ppc440spe_adma_chan *chan,
3881                                     int *initcode)
3882{
3883        struct platform_device *ofdev;
3884        struct device_node *np;
3885        int ret;
3886
3887        ofdev = container_of(adev->dev, struct platform_device, dev);
3888        np = ofdev->dev.of_node;
3889        if (adev->id != PPC440SPE_XOR_ID) {
3890                adev->err_irq = irq_of_parse_and_map(np, 1);
3891                if (!adev->err_irq) {
3892                        dev_warn(adev->dev, "no err irq resource?\n");
3893                        *initcode = PPC_ADMA_INIT_IRQ2;
3894                        adev->err_irq = -ENXIO;
3895                } else
3896                        atomic_inc(&ppc440spe_adma_err_irq_ref);
3897        } else {
3898                adev->err_irq = -ENXIO;
3899        }
3900
3901        adev->irq = irq_of_parse_and_map(np, 0);
3902        if (!adev->irq) {
3903                dev_err(adev->dev, "no irq resource\n");
3904                *initcode = PPC_ADMA_INIT_IRQ1;
3905                ret = -ENXIO;
3906                goto err_irq_map;
3907        }
3908        dev_dbg(adev->dev, "irq %d, err irq %d\n",
3909                adev->irq, adev->err_irq);
3910
3911        ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3912                          0, dev_driver_string(adev->dev), chan);
3913        if (ret) {
3914                dev_err(adev->dev, "can't request irq %d\n",
3915                        adev->irq);
3916                *initcode = PPC_ADMA_INIT_IRQ1;
3917                ret = -EIO;
3918                goto err_req1;
3919        }
3920
3921        /* only DMA engines have a separate error IRQ
3922         * so it's Ok if err_irq < 0 in XOR engine case.
3923         */
3924        if (adev->err_irq > 0) {
3925                /* both DMA engines share common error IRQ */
3926                ret = request_irq(adev->err_irq,
3927                                  ppc440spe_adma_err_handler,
3928                                  IRQF_SHARED,
3929                                  dev_driver_string(adev->dev),
3930                                  chan);
3931                if (ret) {
3932                        dev_err(adev->dev, "can't request irq %d\n",
3933                                adev->err_irq);
3934                        *initcode = PPC_ADMA_INIT_IRQ2;
3935                        ret = -EIO;
3936                        goto err_req2;
3937                }
3938        }
3939
3940        if (adev->id == PPC440SPE_XOR_ID) {
3941                /* enable XOR engine interrupts */
3942                iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3943                            XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3944                            &adev->xor_reg->ier);
3945        } else {
3946                u32 mask, enable;
3947
3948                np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3949                if (!np) {
3950                        pr_err("%s: can't find I2O device tree node\n",
3951                                __func__);
3952                        ret = -ENODEV;
3953                        goto err_req2;
3954                }
3955                adev->i2o_reg = of_iomap(np, 0);
3956                if (!adev->i2o_reg) {
3957                        pr_err("%s: failed to map I2O registers\n", __func__);
3958                        of_node_put(np);
3959                        ret = -EINVAL;
3960                        goto err_req2;
3961                }
3962                of_node_put(np);
3963                /* Unmask 'CS FIFO Attention' interrupts and
3964                 * enable generating interrupts on errors
3965                 */
3966                enable = (adev->id == PPC440SPE_DMA0_ID) ?
3967                         ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3968                         ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3969                mask = ioread32(&adev->i2o_reg->iopim) & enable;
3970                iowrite32(mask, &adev->i2o_reg->iopim);
3971        }
3972        return 0;
3973
3974err_req2:
3975        free_irq(adev->irq, chan);
3976err_req1:
3977        irq_dispose_mapping(adev->irq);
3978err_irq_map:
3979        if (adev->err_irq > 0) {
3980                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3981                        irq_dispose_mapping(adev->err_irq);
3982        }
3983        return ret;
3984}
3985
3986static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3987                                        struct ppc440spe_adma_chan *chan)
3988{
3989        u32 mask, disable;
3990
3991        if (adev->id == PPC440SPE_XOR_ID) {
3992                /* disable XOR engine interrupts */
3993                mask = ioread32be(&adev->xor_reg->ier);
3994                mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3995                          XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3996                iowrite32be(mask, &adev->xor_reg->ier);
3997        } else {
3998                /* disable DMAx engine interrupts */
3999                disable = (adev->id == PPC440SPE_DMA0_ID) ?
4000                          (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4001                          (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4002                mask = ioread32(&adev->i2o_reg->iopim) | disable;
4003                iowrite32(mask, &adev->i2o_reg->iopim);
4004        }
4005        free_irq(adev->irq, chan);
4006        irq_dispose_mapping(adev->irq);
4007        if (adev->err_irq > 0) {
4008                free_irq(adev->err_irq, chan);
4009                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4010                        irq_dispose_mapping(adev->err_irq);
4011                        iounmap(adev->i2o_reg);
4012                }
4013        }
4014}
4015
4016/**
4017 * ppc440spe_adma_probe - probe the asynch device
4018 */
4019static int ppc440spe_adma_probe(struct platform_device *ofdev)
4020{
4021        struct device_node *np = ofdev->dev.of_node;
4022        struct resource res;
4023        struct ppc440spe_adma_device *adev;
4024        struct ppc440spe_adma_chan *chan;
4025        struct ppc_dma_chan_ref *ref, *_ref;
4026        int ret = 0, initcode = PPC_ADMA_INIT_OK;
4027        const u32 *idx;
4028        int len;
4029        void *regs;
4030        u32 id, pool_size;
4031
4032        if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4033                id = PPC440SPE_XOR_ID;
4034                /* As far as the XOR engine is concerned, it does not
4035                 * use FIFOs but uses linked list. So there is no dependency
4036                 * between pool size to allocate and the engine configuration.
4037                 */
4038                pool_size = PAGE_SIZE << 1;
4039        } else {
4040                /* it is DMA0 or DMA1 */
4041                idx = of_get_property(np, "cell-index", &len);
4042                if (!idx || (len != sizeof(u32))) {
4043                        dev_err(&ofdev->dev, "Device node %pOF has missing "
4044                                "or invalid cell-index property\n",
4045                                np);
4046                        return -EINVAL;
4047                }
4048                id = *idx;
4049                /* DMA0,1 engines use FIFO to maintain CDBs, so we
4050                 * should allocate the pool accordingly to size of this
4051                 * FIFO. Thus, the pool size depends on the FIFO depth:
4052                 * how much CDBs pointers the FIFO may contain then so
4053                 * much CDBs we should provide in the pool.
4054                 * That is
4055                 *   CDB size = 32B;
4056                 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4057                 *   Pool size = CDBs number * CDB size =
4058                 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4059                 */
4060                pool_size = (id == PPC440SPE_DMA0_ID) ?
4061                            DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4062                pool_size <<= 2;
4063        }
4064
4065        if (of_address_to_resource(np, 0, &res)) {
4066                dev_err(&ofdev->dev, "failed to get memory resource\n");
4067                initcode = PPC_ADMA_INIT_MEMRES;
4068                ret = -ENODEV;
4069                goto out;
4070        }
4071
4072        if (!request_mem_region(res.start, resource_size(&res),
4073                                dev_driver_string(&ofdev->dev))) {
4074                dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4075                        &res);
4076                initcode = PPC_ADMA_INIT_MEMREG;
4077                ret = -EBUSY;
4078                goto out;
4079        }
4080
4081        /* create a device */
4082        adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4083        if (!adev) {
4084                initcode = PPC_ADMA_INIT_ALLOC;
4085                ret = -ENOMEM;
4086                goto err_adev_alloc;
4087        }
4088
4089        adev->id = id;
4090        adev->pool_size = pool_size;
4091        /* allocate coherent memory for hardware descriptors */
4092        adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4093                                        adev->pool_size, &adev->dma_desc_pool,
4094                                        GFP_KERNEL);
4095        if (adev->dma_desc_pool_virt == NULL) {
4096                dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4097                        "memory for hardware descriptors\n",
4098                        adev->pool_size);
4099                initcode = PPC_ADMA_INIT_COHERENT;
4100                ret = -ENOMEM;
4101                goto err_dma_alloc;
4102        }
4103        dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4104                adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4105
4106        regs = ioremap(res.start, resource_size(&res));
4107        if (!regs) {
4108                dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4109                ret = -ENOMEM;
4110                goto err_regs_alloc;
4111        }
4112
4113        if (adev->id == PPC440SPE_XOR_ID) {
4114                adev->xor_reg = regs;
4115                /* Reset XOR */
4116                iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4117                iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4118        } else {
4119                size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4120                                   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4121                adev->dma_reg = regs;
4122                /* DMAx_FIFO_SIZE is defined in bytes,
4123                 * <fsiz> - is defined in number of CDB pointers (8byte).
4124                 * DMA FIFO Length = CSlength + CPlength, where
4125                 * CSlength = CPlength = (fsiz + 1) * 8.
4126                 */
4127                iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4128                          &adev->dma_reg->fsiz);
4129                /* Configure DMA engine */
4130                iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4131                          &adev->dma_reg->cfg);
4132                /* Clear Status */
4133                iowrite32(~0, &adev->dma_reg->dsts);
4134        }
4135
4136        adev->dev = &ofdev->dev;
4137        adev->common.dev = &ofdev->dev;
4138        INIT_LIST_HEAD(&adev->common.channels);
4139        platform_set_drvdata(ofdev, adev);
4140
4141        /* create a channel */
4142        chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4143        if (!chan) {
4144                initcode = PPC_ADMA_INIT_CHANNEL;
4145                ret = -ENOMEM;
4146                goto err_chan_alloc;
4147        }
4148
4149        spin_lock_init(&chan->lock);
4150        INIT_LIST_HEAD(&chan->chain);
4151        INIT_LIST_HEAD(&chan->all_slots);
4152        chan->device = adev;
4153        chan->common.device = &adev->common;
4154        dma_cookie_init(&chan->common);
4155        list_add_tail(&chan->common.device_node, &adev->common.channels);
4156        tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4157                     (unsigned long)chan);
4158
4159        /* allocate and map helper pages for async validation or
4160         * async_mult/async_sum_product operations on DMA0/1.
4161         */
4162        if (adev->id != PPC440SPE_XOR_ID) {
4163                chan->pdest_page = alloc_page(GFP_KERNEL);
4164                chan->qdest_page = alloc_page(GFP_KERNEL);
4165                if (!chan->pdest_page ||
4166                    !chan->qdest_page) {
4167                        if (chan->pdest_page)
4168                                __free_page(chan->pdest_page);
4169                        if (chan->qdest_page)
4170                                __free_page(chan->qdest_page);
4171                        ret = -ENOMEM;
4172                        goto err_page_alloc;
4173                }
4174                chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4175                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4176                chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4177                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4178        }
4179
4180        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4181        if (ref) {
4182                ref->chan = &chan->common;
4183                INIT_LIST_HEAD(&ref->node);
4184                list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4185        } else {
4186                dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4187                ret = -ENOMEM;
4188                goto err_ref_alloc;
4189        }
4190
4191        ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4192        if (ret)
4193                goto err_irq;
4194
4195        ppc440spe_adma_init_capabilities(adev);
4196
4197        ret = dma_async_device_register(&adev->common);
4198        if (ret) {
4199                initcode = PPC_ADMA_INIT_REGISTER;
4200                dev_err(&ofdev->dev, "failed to register dma device\n");
4201                goto err_dev_reg;
4202        }
4203
4204        goto out;
4205
4206err_dev_reg:
4207        ppc440spe_adma_release_irqs(adev, chan);
4208err_irq:
4209        list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4210                if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4211                        list_del(&ref->node);
4212                        kfree(ref);
4213                }
4214        }
4215err_ref_alloc:
4216        if (adev->id != PPC440SPE_XOR_ID) {
4217                dma_unmap_page(&ofdev->dev, chan->pdest,
4218                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4219                dma_unmap_page(&ofdev->dev, chan->qdest,
4220                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4221                __free_page(chan->pdest_page);
4222                __free_page(chan->qdest_page);
4223        }
4224err_page_alloc:
4225        kfree(chan);
4226err_chan_alloc:
4227        if (adev->id == PPC440SPE_XOR_ID)
4228                iounmap(adev->xor_reg);
4229        else
4230                iounmap(adev->dma_reg);
4231err_regs_alloc:
4232        dma_free_coherent(adev->dev, adev->pool_size,
4233                          adev->dma_desc_pool_virt,
4234                          adev->dma_desc_pool);
4235err_dma_alloc:
4236        kfree(adev);
4237err_adev_alloc:
4238        release_mem_region(res.start, resource_size(&res));
4239out:
4240        if (id < PPC440SPE_ADMA_ENGINES_NUM)
4241                ppc440spe_adma_devices[id] = initcode;
4242
4243        return ret;
4244}
4245
4246/**
4247 * ppc440spe_adma_remove - remove the asynch device
4248 */
4249static int ppc440spe_adma_remove(struct platform_device *ofdev)
4250{
4251        struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4252        struct device_node *np = ofdev->dev.of_node;
4253        struct resource res;
4254        struct dma_chan *chan, *_chan;
4255        struct ppc_dma_chan_ref *ref, *_ref;
4256        struct ppc440spe_adma_chan *ppc440spe_chan;
4257
4258        if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4259                ppc440spe_adma_devices[adev->id] = -1;
4260
4261        dma_async_device_unregister(&adev->common);
4262
4263        list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4264                                 device_node) {
4265                ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4266                ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4267                tasklet_kill(&ppc440spe_chan->irq_tasklet);
4268                if (adev->id != PPC440SPE_XOR_ID) {
4269                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4270                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4271                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4272                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4273                        __free_page(ppc440spe_chan->pdest_page);
4274                        __free_page(ppc440spe_chan->qdest_page);
4275                }
4276                list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4277                                         node) {
4278                        if (ppc440spe_chan ==
4279                            to_ppc440spe_adma_chan(ref->chan)) {
4280                                list_del(&ref->node);
4281                                kfree(ref);
4282                        }
4283                }
4284                list_del(&chan->device_node);
4285                kfree(ppc440spe_chan);
4286        }
4287
4288        dma_free_coherent(adev->dev, adev->pool_size,
4289                          adev->dma_desc_pool_virt, adev->dma_desc_pool);
4290        if (adev->id == PPC440SPE_XOR_ID)
4291                iounmap(adev->xor_reg);
4292        else
4293                iounmap(adev->dma_reg);
4294        of_address_to_resource(np, 0, &res);
4295        release_mem_region(res.start, resource_size(&res));
4296        kfree(adev);
4297        return 0;
4298}
4299
4300/*
4301 * /sys driver interface to enable h/w RAID-6 capabilities
4302 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4303 * directory are "devices", "enable" and "poly".
4304 * "devices" shows available engines.
4305 * "enable" is used to enable RAID-6 capabilities or to check
4306 * whether these has been activated.
4307 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4308 */
4309
4310static ssize_t devices_show(struct device_driver *dev, char *buf)
4311{
4312        ssize_t size = 0;
4313        int i;
4314
4315        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4316                if (ppc440spe_adma_devices[i] == -1)
4317                        continue;
4318                size += snprintf(buf + size, PAGE_SIZE - size,
4319                                 "PPC440SP(E)-ADMA.%d: %s\n", i,
4320                                 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4321        }
4322        return size;
4323}
4324static DRIVER_ATTR_RO(devices);
4325
4326static ssize_t enable_show(struct device_driver *dev, char *buf)
4327{
4328        return snprintf(buf, PAGE_SIZE,
4329                        "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4330                        ppc440spe_r6_enabled ? "EN" : "DIS");
4331}
4332
4333static ssize_t enable_store(struct device_driver *dev, const char *buf,
4334                            size_t count)
4335{
4336        unsigned long val;
4337
4338        if (!count || count > 11)
4339                return -EINVAL;
4340
4341        if (!ppc440spe_r6_tchan)
4342                return -EFAULT;
4343
4344        /* Write a key */
4345        sscanf(buf, "%lx", &val);
4346        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4347        isync();
4348
4349        /* Verify whether it really works now */
4350        if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4351                pr_info("PPC440SP(e) RAID-6 has been activated "
4352                        "successfully\n");
4353                ppc440spe_r6_enabled = 1;
4354        } else {
4355                pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4356                        " Error key ?\n");
4357                ppc440spe_r6_enabled = 0;
4358        }
4359        return count;
4360}
4361static DRIVER_ATTR_RW(enable);
4362
4363static ssize_t poly_store(struct device_driver *dev, char *buf)
4364{
4365        ssize_t size = 0;
4366        u32 reg;
4367
4368#ifdef CONFIG_440SP
4369        /* 440SP has fixed polynomial */
4370        reg = 0x4d;
4371#else
4372        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4373        reg >>= MQ0_CFBHL_POLY;
4374        reg &= 0xFF;
4375#endif
4376
4377        size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4378                        "uses 0x1%02x polynomial.\n", reg);
4379        return size;
4380}
4381
4382static ssize_t poly_store(struct device_driver *dev, const char *buf,
4383                          size_t count)
4384{
4385        unsigned long reg, val;
4386
4387#ifdef CONFIG_440SP
4388        /* 440SP uses default 0x14D polynomial only */
4389        return -EINVAL;
4390#endif
4391
4392        if (!count || count > 6)
4393                return -EINVAL;
4394
4395        /* e.g., 0x14D or 0x11D */
4396        sscanf(buf, "%lx", &val);
4397
4398        if (val & ~0x1FF)
4399                return -EINVAL;
4400
4401        val &= 0xFF;
4402        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4403        reg &= ~(0xFF << MQ0_CFBHL_POLY);
4404        reg |= val << MQ0_CFBHL_POLY;
4405        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4406
4407        return count;
4408}
4409static DRIVER_ATTR_RW(poly);
4410
4411/*
4412 * Common initialisation for RAID engines; allocate memory for
4413 * DMAx FIFOs, perform configuration common for all DMA engines.
4414 * Further DMA engine specific configuration is done at probe time.
4415 */
4416static int ppc440spe_configure_raid_devices(void)
4417{
4418        struct device_node *np;
4419        struct resource i2o_res;
4420        struct i2o_regs __iomem *i2o_reg;
4421        dcr_host_t i2o_dcr_host;
4422        unsigned int dcr_base, dcr_len;
4423        int i, ret;
4424
4425        np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4426        if (!np) {
4427                pr_err("%s: can't find I2O device tree node\n",
4428                        __func__);
4429                return -ENODEV;
4430        }
4431
4432        if (of_address_to_resource(np, 0, &i2o_res)) {
4433                of_node_put(np);
4434                return -EINVAL;
4435        }
4436
4437        i2o_reg = of_iomap(np, 0);
4438        if (!i2o_reg) {
4439                pr_err("%s: failed to map I2O registers\n", __func__);
4440                of_node_put(np);
4441                return -EINVAL;
4442        }
4443
4444        /* Get I2O DCRs base */
4445        dcr_base = dcr_resource_start(np, 0);
4446        dcr_len = dcr_resource_len(np, 0);
4447        if (!dcr_base && !dcr_len) {
4448                pr_err("%pOF: can't get DCR registers base/len!\n", np);
4449                of_node_put(np);
4450                iounmap(i2o_reg);
4451                return -ENODEV;
4452        }
4453
4454        i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4455        if (!DCR_MAP_OK(i2o_dcr_host)) {
4456                pr_err("%pOF: failed to map DCRs!\n", np);
4457                of_node_put(np);
4458                iounmap(i2o_reg);
4459                return -ENODEV;
4460        }
4461        of_node_put(np);
4462
4463        /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4464         * the base address of FIFO memory space.
4465         * Actually we need twice more physical memory than programmed in the
4466         * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4467         */
4468        ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4469                                         GFP_KERNEL);
4470        if (!ppc440spe_dma_fifo_buf) {
4471                pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4472                iounmap(i2o_reg);
4473                dcr_unmap(i2o_dcr_host, dcr_len);
4474                return -ENOMEM;
4475        }
4476
4477        /*
4478         * Configure h/w
4479         */
4480        /* Reset I2O/DMA */
4481        mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4482        mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4483
4484        /* Setup the base address of mmaped registers */
4485        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4486        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4487                                                I2O_REG_ENABLE);
4488        dcr_unmap(i2o_dcr_host, dcr_len);
4489
4490        /* Setup FIFO memory space base address */
4491        iowrite32(0, &i2o_reg->ifbah);
4492        iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4493
4494        /* set zero FIFO size for I2O, so the whole
4495         * ppc440spe_dma_fifo_buf is used by DMAs.
4496         * DMAx_FIFOs will be configured while probe.
4497         */
4498        iowrite32(0, &i2o_reg->ifsiz);
4499        iounmap(i2o_reg);
4500
4501        /* To prepare WXOR/RXOR functionality we need access to
4502         * Memory Queue Module DCRs (finally it will be enabled
4503         * via /sys interface of the ppc440spe ADMA driver).
4504         */
4505        np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4506        if (!np) {
4507                pr_err("%s: can't find MQ device tree node\n",
4508                        __func__);
4509                ret = -ENODEV;
4510                goto out_free;
4511        }
4512
4513        /* Get MQ DCRs base */
4514        dcr_base = dcr_resource_start(np, 0);
4515        dcr_len = dcr_resource_len(np, 0);
4516        if (!dcr_base && !dcr_len) {
4517                pr_err("%pOF: can't get DCR registers base/len!\n", np);
4518                ret = -ENODEV;
4519                goto out_mq;
4520        }
4521
4522        ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4523        if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4524                pr_err("%pOF: failed to map DCRs!\n", np);
4525                ret = -ENODEV;
4526                goto out_mq;
4527        }
4528        of_node_put(np);
4529        ppc440spe_mq_dcr_len = dcr_len;
4530
4531        /* Set HB alias */
4532        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4533
4534        /* Set:
4535         * - LL transaction passing limit to 1;
4536         * - Memory controller cycle limit to 1;
4537         * - Galois Polynomial to 0x14d (default)
4538         */
4539        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4540                  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4541                  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4542
4543        atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4544        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4545                ppc440spe_adma_devices[i] = -1;
4546
4547        return 0;
4548
4549out_mq:
4550        of_node_put(np);
4551out_free:
4552        kfree(ppc440spe_dma_fifo_buf);
4553        return ret;
4554}
4555
4556static const struct of_device_id ppc440spe_adma_of_match[] = {
4557        { .compatible   = "ibm,dma-440spe", },
4558        { .compatible   = "amcc,xor-accelerator", },
4559        {},
4560};
4561MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4562
4563static struct platform_driver ppc440spe_adma_driver = {
4564        .probe = ppc440spe_adma_probe,
4565        .remove = ppc440spe_adma_remove,
4566        .driver = {
4567                .name = "PPC440SP(E)-ADMA",
4568                .of_match_table = ppc440spe_adma_of_match,
4569        },
4570};
4571
4572static __init int ppc440spe_adma_init(void)
4573{
4574        int ret;
4575
4576        ret = ppc440spe_configure_raid_devices();
4577        if (ret)
4578                return ret;
4579
4580        ret = platform_driver_register(&ppc440spe_adma_driver);
4581        if (ret) {
4582                pr_err("%s: failed to register platform driver\n",
4583                        __func__);
4584                goto out_reg;
4585        }
4586
4587        /* Initialization status */
4588        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4589                                 &driver_attr_devices);
4590        if (ret)
4591                goto out_dev;
4592
4593        /* RAID-6 h/w enable entry */
4594        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4595                                 &driver_attr_enable);
4596        if (ret)
4597                goto out_en;
4598
4599        /* GF polynomial to use */
4600        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4601                                 &driver_attr_poly);
4602        if (!ret)
4603                return ret;
4604
4605        driver_remove_file(&ppc440spe_adma_driver.driver,
4606                           &driver_attr_enable);
4607out_en:
4608        driver_remove_file(&ppc440spe_adma_driver.driver,
4609                           &driver_attr_devices);
4610out_dev:
4611        /* User will not be able to enable h/w RAID-6 */
4612        pr_err("%s: failed to create RAID-6 driver interface\n",
4613                __func__);
4614        platform_driver_unregister(&ppc440spe_adma_driver);
4615out_reg:
4616        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4617        kfree(ppc440spe_dma_fifo_buf);
4618        return ret;
4619}
4620
4621static void __exit ppc440spe_adma_exit(void)
4622{
4623        driver_remove_file(&ppc440spe_adma_driver.driver,
4624                           &driver_attr_poly);
4625        driver_remove_file(&ppc440spe_adma_driver.driver,
4626                           &driver_attr_enable);
4627        driver_remove_file(&ppc440spe_adma_driver.driver,
4628                           &driver_attr_devices);
4629        platform_driver_unregister(&ppc440spe_adma_driver);
4630        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4631        kfree(ppc440spe_dma_fifo_buf);
4632}
4633
4634arch_initcall(ppc440spe_adma_init);
4635module_exit(ppc440spe_adma_exit);
4636
4637MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4638MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4639MODULE_LICENSE("GPL");
4640