linux/drivers/edac/edac_mc.c
<<
>>
Prefs
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Thayne Harbaugh
   8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
   9 *      http://www.anime.net/~goemon/linux-ecc/
  10 *
  11 * Modified by Dave Peterson and Doug Thompson
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/proc_fs.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/sysctl.h>
  22#include <linux/highmem.h>
  23#include <linux/timer.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/spinlock.h>
  27#include <linux/list.h>
  28#include <linux/ctype.h>
  29#include <linux/edac.h>
  30#include <linux/bitops.h>
  31#include <linux/uaccess.h>
  32#include <asm/page.h>
  33#include "edac_mc.h"
  34#include "edac_module.h"
  35#include <ras/ras_event.h>
  36
  37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
  38#include <asm/edac.h>
  39#else
  40#define edac_atomic_scrub(va, size) do { } while (0)
  41#endif
  42
  43int edac_op_state = EDAC_OPSTATE_INVAL;
  44EXPORT_SYMBOL_GPL(edac_op_state);
  45
  46static int edac_report = EDAC_REPORTING_ENABLED;
  47
  48/* lock to memory controller's control array */
  49static DEFINE_MUTEX(mem_ctls_mutex);
  50static LIST_HEAD(mc_devices);
  51
  52/*
  53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  54 *      apei/ghes and i7core_edac to be used at the same time.
  55 */
  56static const char *edac_mc_owner;
  57
  58static struct bus_type mc_bus[EDAC_MAX_MCS];
  59
  60int edac_get_report_status(void)
  61{
  62        return edac_report;
  63}
  64EXPORT_SYMBOL_GPL(edac_get_report_status);
  65
  66void edac_set_report_status(int new)
  67{
  68        if (new == EDAC_REPORTING_ENABLED ||
  69            new == EDAC_REPORTING_DISABLED ||
  70            new == EDAC_REPORTING_FORCE)
  71                edac_report = new;
  72}
  73EXPORT_SYMBOL_GPL(edac_set_report_status);
  74
  75static int edac_report_set(const char *str, const struct kernel_param *kp)
  76{
  77        if (!str)
  78                return -EINVAL;
  79
  80        if (!strncmp(str, "on", 2))
  81                edac_report = EDAC_REPORTING_ENABLED;
  82        else if (!strncmp(str, "off", 3))
  83                edac_report = EDAC_REPORTING_DISABLED;
  84        else if (!strncmp(str, "force", 5))
  85                edac_report = EDAC_REPORTING_FORCE;
  86
  87        return 0;
  88}
  89
  90static int edac_report_get(char *buffer, const struct kernel_param *kp)
  91{
  92        int ret = 0;
  93
  94        switch (edac_report) {
  95        case EDAC_REPORTING_ENABLED:
  96                ret = sprintf(buffer, "on");
  97                break;
  98        case EDAC_REPORTING_DISABLED:
  99                ret = sprintf(buffer, "off");
 100                break;
 101        case EDAC_REPORTING_FORCE:
 102                ret = sprintf(buffer, "force");
 103                break;
 104        default:
 105                ret = -EINVAL;
 106                break;
 107        }
 108
 109        return ret;
 110}
 111
 112static const struct kernel_param_ops edac_report_ops = {
 113        .set = edac_report_set,
 114        .get = edac_report_get,
 115};
 116
 117module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
 118
 119unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
 120                                 unsigned len)
 121{
 122        struct mem_ctl_info *mci = dimm->mci;
 123        int i, n, count = 0;
 124        char *p = buf;
 125
 126        for (i = 0; i < mci->n_layers; i++) {
 127                n = snprintf(p, len, "%s %d ",
 128                              edac_layer_name[mci->layers[i].type],
 129                              dimm->location[i]);
 130                p += n;
 131                len -= n;
 132                count += n;
 133                if (!len)
 134                        break;
 135        }
 136
 137        return count;
 138}
 139
 140#ifdef CONFIG_EDAC_DEBUG
 141
 142static void edac_mc_dump_channel(struct rank_info *chan)
 143{
 144        edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
 145        edac_dbg(4, "    channel = %p\n", chan);
 146        edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
 147        edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
 148}
 149
 150static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
 151{
 152        char location[80];
 153
 154        edac_dimm_info_location(dimm, location, sizeof(location));
 155
 156        edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 157                 dimm->mci->csbased ? "rank" : "dimm",
 158                 number, location, dimm->csrow, dimm->cschannel);
 159        edac_dbg(4, "  dimm = %p\n", dimm);
 160        edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 161        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 162        edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 163        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 164}
 165
 166static void edac_mc_dump_csrow(struct csrow_info *csrow)
 167{
 168        edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 169        edac_dbg(4, "  csrow = %p\n", csrow);
 170        edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 171        edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 172        edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 173        edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 174        edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 175        edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 176}
 177
 178static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 179{
 180        edac_dbg(3, "\tmci = %p\n", mci);
 181        edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 182        edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 183        edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 184        edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 185        edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 186                 mci->nr_csrows, mci->csrows);
 187        edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 188                 mci->tot_dimms, mci->dimms);
 189        edac_dbg(3, "\tdev = %p\n", mci->pdev);
 190        edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 191                 mci->mod_name, mci->ctl_name);
 192        edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 193}
 194
 195#endif                          /* CONFIG_EDAC_DEBUG */
 196
 197const char * const edac_mem_types[] = {
 198        [MEM_EMPTY]     = "Empty",
 199        [MEM_RESERVED]  = "Reserved",
 200        [MEM_UNKNOWN]   = "Unknown",
 201        [MEM_FPM]       = "FPM",
 202        [MEM_EDO]       = "EDO",
 203        [MEM_BEDO]      = "BEDO",
 204        [MEM_SDR]       = "Unbuffered-SDR",
 205        [MEM_RDR]       = "Registered-SDR",
 206        [MEM_DDR]       = "Unbuffered-DDR",
 207        [MEM_RDDR]      = "Registered-DDR",
 208        [MEM_RMBS]      = "RMBS",
 209        [MEM_DDR2]      = "Unbuffered-DDR2",
 210        [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
 211        [MEM_RDDR2]     = "Registered-DDR2",
 212        [MEM_XDR]       = "XDR",
 213        [MEM_DDR3]      = "Unbuffered-DDR3",
 214        [MEM_RDDR3]     = "Registered-DDR3",
 215        [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
 216        [MEM_DDR4]      = "Unbuffered-DDR4",
 217        [MEM_RDDR4]     = "Registered-DDR4",
 218        [MEM_NVDIMM]    = "Non-volatile-RAM",
 219};
 220EXPORT_SYMBOL_GPL(edac_mem_types);
 221
 222/**
 223 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 224 * @p:          pointer to a pointer with the memory offset to be used. At
 225 *              return, this will be incremented to point to the next offset
 226 * @size:       Size of the data structure to be reserved
 227 * @n_elems:    Number of elements that should be reserved
 228 *
 229 * If 'size' is a constant, the compiler will optimize this whole function
 230 * down to either a no-op or the addition of a constant to the value of '*p'.
 231 *
 232 * The 'p' pointer is absolutely needed to keep the proper advancing
 233 * further in memory to the proper offsets when allocating the struct along
 234 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 235 * above, for example.
 236 *
 237 * At return, the pointer 'p' will be incremented to be used on a next call
 238 * to this function.
 239 */
 240void *edac_align_ptr(void **p, unsigned size, int n_elems)
 241{
 242        unsigned align, r;
 243        void *ptr = *p;
 244
 245        *p += size * n_elems;
 246
 247        /*
 248         * 'p' can possibly be an unaligned item X such that sizeof(X) is
 249         * 'size'.  Adjust 'p' so that its alignment is at least as
 250         * stringent as what the compiler would provide for X and return
 251         * the aligned result.
 252         * Here we assume that the alignment of a "long long" is the most
 253         * stringent alignment that the compiler will ever provide by default.
 254         * As far as I know, this is a reasonable assumption.
 255         */
 256        if (size > sizeof(long))
 257                align = sizeof(long long);
 258        else if (size > sizeof(int))
 259                align = sizeof(long);
 260        else if (size > sizeof(short))
 261                align = sizeof(int);
 262        else if (size > sizeof(char))
 263                align = sizeof(short);
 264        else
 265                return (char *)ptr;
 266
 267        r = (unsigned long)p % align;
 268
 269        if (r == 0)
 270                return (char *)ptr;
 271
 272        *p += align - r;
 273
 274        return (void *)(((unsigned long)ptr) + align - r);
 275}
 276
 277static void _edac_mc_free(struct mem_ctl_info *mci)
 278{
 279        int i, chn, row;
 280        struct csrow_info *csr;
 281        const unsigned int tot_dimms = mci->tot_dimms;
 282        const unsigned int tot_channels = mci->num_cschannel;
 283        const unsigned int tot_csrows = mci->nr_csrows;
 284
 285        if (mci->dimms) {
 286                for (i = 0; i < tot_dimms; i++)
 287                        kfree(mci->dimms[i]);
 288                kfree(mci->dimms);
 289        }
 290        if (mci->csrows) {
 291                for (row = 0; row < tot_csrows; row++) {
 292                        csr = mci->csrows[row];
 293                        if (csr) {
 294                                if (csr->channels) {
 295                                        for (chn = 0; chn < tot_channels; chn++)
 296                                                kfree(csr->channels[chn]);
 297                                        kfree(csr->channels);
 298                                }
 299                                kfree(csr);
 300                        }
 301                }
 302                kfree(mci->csrows);
 303        }
 304        kfree(mci);
 305}
 306
 307struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
 308                                   unsigned n_layers,
 309                                   struct edac_mc_layer *layers,
 310                                   unsigned sz_pvt)
 311{
 312        struct mem_ctl_info *mci;
 313        struct edac_mc_layer *layer;
 314        struct csrow_info *csr;
 315        struct rank_info *chan;
 316        struct dimm_info *dimm;
 317        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 318        unsigned pos[EDAC_MAX_LAYERS];
 319        unsigned size, tot_dimms = 1, count = 1;
 320        unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
 321        void *pvt, *p, *ptr = NULL;
 322        int i, j, row, chn, n, len, off;
 323        bool per_rank = false;
 324
 325        BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
 326        /*
 327         * Calculate the total amount of dimms and csrows/cschannels while
 328         * in the old API emulation mode
 329         */
 330        for (i = 0; i < n_layers; i++) {
 331                tot_dimms *= layers[i].size;
 332                if (layers[i].is_virt_csrow)
 333                        tot_csrows *= layers[i].size;
 334                else
 335                        tot_channels *= layers[i].size;
 336
 337                if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
 338                        per_rank = true;
 339        }
 340
 341        /* Figure out the offsets of the various items from the start of an mc
 342         * structure.  We want the alignment of each item to be at least as
 343         * stringent as what the compiler would provide if we could simply
 344         * hardcode everything into a single struct.
 345         */
 346        mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
 347        layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 348        for (i = 0; i < n_layers; i++) {
 349                count *= layers[i].size;
 350                edac_dbg(4, "errcount layer %d size %d\n", i, count);
 351                ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 352                ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 353                tot_errcount += 2 * count;
 354        }
 355
 356        edac_dbg(4, "allocating %d error counters\n", tot_errcount);
 357        pvt = edac_align_ptr(&ptr, sz_pvt, 1);
 358        size = ((unsigned long)pvt) + sz_pvt;
 359
 360        edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 361                 size,
 362                 tot_dimms,
 363                 per_rank ? "ranks" : "dimms",
 364                 tot_csrows * tot_channels);
 365
 366        mci = kzalloc(size, GFP_KERNEL);
 367        if (mci == NULL)
 368                return NULL;
 369
 370        /* Adjust pointers so they point within the memory we just allocated
 371         * rather than an imaginary chunk of memory located at address 0.
 372         */
 373        layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 374        for (i = 0; i < n_layers; i++) {
 375                mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
 376                mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
 377        }
 378        pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 379
 380        /* setup index and various internal pointers */
 381        mci->mc_idx = mc_num;
 382        mci->tot_dimms = tot_dimms;
 383        mci->pvt_info = pvt;
 384        mci->n_layers = n_layers;
 385        mci->layers = layer;
 386        memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 387        mci->nr_csrows = tot_csrows;
 388        mci->num_cschannel = tot_channels;
 389        mci->csbased = per_rank;
 390
 391        /*
 392         * Alocate and fill the csrow/channels structs
 393         */
 394        mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 395        if (!mci->csrows)
 396                goto error;
 397        for (row = 0; row < tot_csrows; row++) {
 398                csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 399                if (!csr)
 400                        goto error;
 401                mci->csrows[row] = csr;
 402                csr->csrow_idx = row;
 403                csr->mci = mci;
 404                csr->nr_channels = tot_channels;
 405                csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 406                                        GFP_KERNEL);
 407                if (!csr->channels)
 408                        goto error;
 409
 410                for (chn = 0; chn < tot_channels; chn++) {
 411                        chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 412                        if (!chan)
 413                                goto error;
 414                        csr->channels[chn] = chan;
 415                        chan->chan_idx = chn;
 416                        chan->csrow = csr;
 417                }
 418        }
 419
 420        /*
 421         * Allocate and fill the dimm structs
 422         */
 423        mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 424        if (!mci->dimms)
 425                goto error;
 426
 427        memset(&pos, 0, sizeof(pos));
 428        row = 0;
 429        chn = 0;
 430        for (i = 0; i < tot_dimms; i++) {
 431                chan = mci->csrows[row]->channels[chn];
 432                off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
 433                if (off < 0 || off >= tot_dimms) {
 434                        edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
 435                        goto error;
 436                }
 437
 438                dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 439                if (!dimm)
 440                        goto error;
 441                mci->dimms[off] = dimm;
 442                dimm->mci = mci;
 443
 444                /*
 445                 * Copy DIMM location and initialize it.
 446                 */
 447                len = sizeof(dimm->label);
 448                p = dimm->label;
 449                n = snprintf(p, len, "mc#%u", mc_num);
 450                p += n;
 451                len -= n;
 452                for (j = 0; j < n_layers; j++) {
 453                        n = snprintf(p, len, "%s#%u",
 454                                     edac_layer_name[layers[j].type],
 455                                     pos[j]);
 456                        p += n;
 457                        len -= n;
 458                        dimm->location[j] = pos[j];
 459
 460                        if (len <= 0)
 461                                break;
 462                }
 463
 464                /* Link it to the csrows old API data */
 465                chan->dimm = dimm;
 466                dimm->csrow = row;
 467                dimm->cschannel = chn;
 468
 469                /* Increment csrow location */
 470                if (layers[0].is_virt_csrow) {
 471                        chn++;
 472                        if (chn == tot_channels) {
 473                                chn = 0;
 474                                row++;
 475                        }
 476                } else {
 477                        row++;
 478                        if (row == tot_csrows) {
 479                                row = 0;
 480                                chn++;
 481                        }
 482                }
 483
 484                /* Increment dimm location */
 485                for (j = n_layers - 1; j >= 0; j--) {
 486                        pos[j]++;
 487                        if (pos[j] < layers[j].size)
 488                                break;
 489                        pos[j] = 0;
 490                }
 491        }
 492
 493        mci->op_state = OP_ALLOC;
 494
 495        return mci;
 496
 497error:
 498        _edac_mc_free(mci);
 499
 500        return NULL;
 501}
 502EXPORT_SYMBOL_GPL(edac_mc_alloc);
 503
 504void edac_mc_free(struct mem_ctl_info *mci)
 505{
 506        edac_dbg(1, "\n");
 507
 508        /* If we're not yet registered with sysfs free only what was allocated
 509         * in edac_mc_alloc().
 510         */
 511        if (!device_is_registered(&mci->dev)) {
 512                _edac_mc_free(mci);
 513                return;
 514        }
 515
 516        /* the mci instance is freed here, when the sysfs object is dropped */
 517        edac_unregister_sysfs(mci);
 518}
 519EXPORT_SYMBOL_GPL(edac_mc_free);
 520
 521bool edac_has_mcs(void)
 522{
 523        bool ret;
 524
 525        mutex_lock(&mem_ctls_mutex);
 526
 527        ret = list_empty(&mc_devices);
 528
 529        mutex_unlock(&mem_ctls_mutex);
 530
 531        return !ret;
 532}
 533EXPORT_SYMBOL_GPL(edac_has_mcs);
 534
 535/* Caller must hold mem_ctls_mutex */
 536static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
 537{
 538        struct mem_ctl_info *mci;
 539        struct list_head *item;
 540
 541        edac_dbg(3, "\n");
 542
 543        list_for_each(item, &mc_devices) {
 544                mci = list_entry(item, struct mem_ctl_info, link);
 545
 546                if (mci->pdev == dev)
 547                        return mci;
 548        }
 549
 550        return NULL;
 551}
 552
 553/**
 554 * find_mci_by_dev
 555 *
 556 *      scan list of controllers looking for the one that manages
 557 *      the 'dev' device
 558 * @dev: pointer to a struct device related with the MCI
 559 */
 560struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 561{
 562        struct mem_ctl_info *ret;
 563
 564        mutex_lock(&mem_ctls_mutex);
 565        ret = __find_mci_by_dev(dev);
 566        mutex_unlock(&mem_ctls_mutex);
 567
 568        return ret;
 569}
 570EXPORT_SYMBOL_GPL(find_mci_by_dev);
 571
 572/*
 573 * edac_mc_workq_function
 574 *      performs the operation scheduled by a workq request
 575 */
 576static void edac_mc_workq_function(struct work_struct *work_req)
 577{
 578        struct delayed_work *d_work = to_delayed_work(work_req);
 579        struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 580
 581        mutex_lock(&mem_ctls_mutex);
 582
 583        if (mci->op_state != OP_RUNNING_POLL) {
 584                mutex_unlock(&mem_ctls_mutex);
 585                return;
 586        }
 587
 588        if (edac_op_state == EDAC_OPSTATE_POLL)
 589                mci->edac_check(mci);
 590
 591        mutex_unlock(&mem_ctls_mutex);
 592
 593        /* Queue ourselves again. */
 594        edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 595}
 596
 597/*
 598 * edac_mc_reset_delay_period(unsigned long value)
 599 *
 600 *      user space has updated our poll period value, need to
 601 *      reset our workq delays
 602 */
 603void edac_mc_reset_delay_period(unsigned long value)
 604{
 605        struct mem_ctl_info *mci;
 606        struct list_head *item;
 607
 608        mutex_lock(&mem_ctls_mutex);
 609
 610        list_for_each(item, &mc_devices) {
 611                mci = list_entry(item, struct mem_ctl_info, link);
 612
 613                if (mci->op_state == OP_RUNNING_POLL)
 614                        edac_mod_work(&mci->work, value);
 615        }
 616        mutex_unlock(&mem_ctls_mutex);
 617}
 618
 619
 620
 621/* Return 0 on success, 1 on failure.
 622 * Before calling this function, caller must
 623 * assign a unique value to mci->mc_idx.
 624 *
 625 *      locking model:
 626 *
 627 *              called with the mem_ctls_mutex lock held
 628 */
 629static int add_mc_to_global_list(struct mem_ctl_info *mci)
 630{
 631        struct list_head *item, *insert_before;
 632        struct mem_ctl_info *p;
 633
 634        insert_before = &mc_devices;
 635
 636        p = __find_mci_by_dev(mci->pdev);
 637        if (unlikely(p != NULL))
 638                goto fail0;
 639
 640        list_for_each(item, &mc_devices) {
 641                p = list_entry(item, struct mem_ctl_info, link);
 642
 643                if (p->mc_idx >= mci->mc_idx) {
 644                        if (unlikely(p->mc_idx == mci->mc_idx))
 645                                goto fail1;
 646
 647                        insert_before = item;
 648                        break;
 649                }
 650        }
 651
 652        list_add_tail_rcu(&mci->link, insert_before);
 653        return 0;
 654
 655fail0:
 656        edac_printk(KERN_WARNING, EDAC_MC,
 657                "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 658                edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 659        return 1;
 660
 661fail1:
 662        edac_printk(KERN_WARNING, EDAC_MC,
 663                "bug in low-level driver: attempt to assign\n"
 664                "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 665        return 1;
 666}
 667
 668static int del_mc_from_global_list(struct mem_ctl_info *mci)
 669{
 670        list_del_rcu(&mci->link);
 671
 672        /* these are for safe removal of devices from global list while
 673         * NMI handlers may be traversing list
 674         */
 675        synchronize_rcu();
 676        INIT_LIST_HEAD(&mci->link);
 677
 678        return list_empty(&mc_devices);
 679}
 680
 681struct mem_ctl_info *edac_mc_find(int idx)
 682{
 683        struct mem_ctl_info *mci = NULL;
 684        struct list_head *item;
 685
 686        mutex_lock(&mem_ctls_mutex);
 687
 688        list_for_each(item, &mc_devices) {
 689                mci = list_entry(item, struct mem_ctl_info, link);
 690
 691                if (mci->mc_idx >= idx) {
 692                        if (mci->mc_idx == idx) {
 693                                goto unlock;
 694                        }
 695                        break;
 696                }
 697        }
 698
 699unlock:
 700        mutex_unlock(&mem_ctls_mutex);
 701        return mci;
 702}
 703EXPORT_SYMBOL(edac_mc_find);
 704
 705const char *edac_get_owner(void)
 706{
 707        return edac_mc_owner;
 708}
 709EXPORT_SYMBOL_GPL(edac_get_owner);
 710
 711/* FIXME - should a warning be printed if no error detection? correction? */
 712int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 713                               const struct attribute_group **groups)
 714{
 715        int ret = -EINVAL;
 716        edac_dbg(0, "\n");
 717
 718        if (mci->mc_idx >= EDAC_MAX_MCS) {
 719                pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
 720                return -ENODEV;
 721        }
 722
 723#ifdef CONFIG_EDAC_DEBUG
 724        if (edac_debug_level >= 3)
 725                edac_mc_dump_mci(mci);
 726
 727        if (edac_debug_level >= 4) {
 728                int i;
 729
 730                for (i = 0; i < mci->nr_csrows; i++) {
 731                        struct csrow_info *csrow = mci->csrows[i];
 732                        u32 nr_pages = 0;
 733                        int j;
 734
 735                        for (j = 0; j < csrow->nr_channels; j++)
 736                                nr_pages += csrow->channels[j]->dimm->nr_pages;
 737                        if (!nr_pages)
 738                                continue;
 739                        edac_mc_dump_csrow(csrow);
 740                        for (j = 0; j < csrow->nr_channels; j++)
 741                                if (csrow->channels[j]->dimm->nr_pages)
 742                                        edac_mc_dump_channel(csrow->channels[j]);
 743                }
 744                for (i = 0; i < mci->tot_dimms; i++)
 745                        if (mci->dimms[i]->nr_pages)
 746                                edac_mc_dump_dimm(mci->dimms[i], i);
 747        }
 748#endif
 749        mutex_lock(&mem_ctls_mutex);
 750
 751        if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 752                ret = -EPERM;
 753                goto fail0;
 754        }
 755
 756        if (add_mc_to_global_list(mci))
 757                goto fail0;
 758
 759        /* set load time so that error rate can be tracked */
 760        mci->start_time = jiffies;
 761
 762        mci->bus = &mc_bus[mci->mc_idx];
 763
 764        if (edac_create_sysfs_mci_device(mci, groups)) {
 765                edac_mc_printk(mci, KERN_WARNING,
 766                        "failed to create sysfs device\n");
 767                goto fail1;
 768        }
 769
 770        if (mci->edac_check) {
 771                mci->op_state = OP_RUNNING_POLL;
 772
 773                INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 774                edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 775
 776        } else {
 777                mci->op_state = OP_RUNNING_INTERRUPT;
 778        }
 779
 780        /* Report action taken */
 781        edac_mc_printk(mci, KERN_INFO,
 782                "Giving out device to module %s controller %s: DEV %s (%s)\n",
 783                mci->mod_name, mci->ctl_name, mci->dev_name,
 784                edac_op_state_to_string(mci->op_state));
 785
 786        edac_mc_owner = mci->mod_name;
 787
 788        mutex_unlock(&mem_ctls_mutex);
 789        return 0;
 790
 791fail1:
 792        del_mc_from_global_list(mci);
 793
 794fail0:
 795        mutex_unlock(&mem_ctls_mutex);
 796        return ret;
 797}
 798EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 799
 800struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 801{
 802        struct mem_ctl_info *mci;
 803
 804        edac_dbg(0, "\n");
 805
 806        mutex_lock(&mem_ctls_mutex);
 807
 808        /* find the requested mci struct in the global list */
 809        mci = __find_mci_by_dev(dev);
 810        if (mci == NULL) {
 811                mutex_unlock(&mem_ctls_mutex);
 812                return NULL;
 813        }
 814
 815        /* mark MCI offline: */
 816        mci->op_state = OP_OFFLINE;
 817
 818        if (del_mc_from_global_list(mci))
 819                edac_mc_owner = NULL;
 820
 821        mutex_unlock(&mem_ctls_mutex);
 822
 823        if (mci->edac_check)
 824                edac_stop_work(&mci->work);
 825
 826        /* remove from sysfs */
 827        edac_remove_sysfs_mci_device(mci);
 828
 829        edac_printk(KERN_INFO, EDAC_MC,
 830                "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 831                mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 832
 833        return mci;
 834}
 835EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 836
 837static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 838                                u32 size)
 839{
 840        struct page *pg;
 841        void *virt_addr;
 842        unsigned long flags = 0;
 843
 844        edac_dbg(3, "\n");
 845
 846        /* ECC error page was not in our memory. Ignore it. */
 847        if (!pfn_valid(page))
 848                return;
 849
 850        /* Find the actual page structure then map it and fix */
 851        pg = pfn_to_page(page);
 852
 853        if (PageHighMem(pg))
 854                local_irq_save(flags);
 855
 856        virt_addr = kmap_atomic(pg);
 857
 858        /* Perform architecture specific atomic scrub operation */
 859        edac_atomic_scrub(virt_addr + offset, size);
 860
 861        /* Unmap and complete */
 862        kunmap_atomic(virt_addr);
 863
 864        if (PageHighMem(pg))
 865                local_irq_restore(flags);
 866}
 867
 868/* FIXME - should return -1 */
 869int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 870{
 871        struct csrow_info **csrows = mci->csrows;
 872        int row, i, j, n;
 873
 874        edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 875        row = -1;
 876
 877        for (i = 0; i < mci->nr_csrows; i++) {
 878                struct csrow_info *csrow = csrows[i];
 879                n = 0;
 880                for (j = 0; j < csrow->nr_channels; j++) {
 881                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 882                        n += dimm->nr_pages;
 883                }
 884                if (n == 0)
 885                        continue;
 886
 887                edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 888                         mci->mc_idx,
 889                         csrow->first_page, page, csrow->last_page,
 890                         csrow->page_mask);
 891
 892                if ((page >= csrow->first_page) &&
 893                    (page <= csrow->last_page) &&
 894                    ((page & csrow->page_mask) ==
 895                     (csrow->first_page & csrow->page_mask))) {
 896                        row = i;
 897                        break;
 898                }
 899        }
 900
 901        if (row == -1)
 902                edac_mc_printk(mci, KERN_ERR,
 903                        "could not look up page error address %lx\n",
 904                        (unsigned long)page);
 905
 906        return row;
 907}
 908EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 909
 910const char *edac_layer_name[] = {
 911        [EDAC_MC_LAYER_BRANCH] = "branch",
 912        [EDAC_MC_LAYER_CHANNEL] = "channel",
 913        [EDAC_MC_LAYER_SLOT] = "slot",
 914        [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 915        [EDAC_MC_LAYER_ALL_MEM] = "memory",
 916};
 917EXPORT_SYMBOL_GPL(edac_layer_name);
 918
 919static void edac_inc_ce_error(struct mem_ctl_info *mci,
 920                              bool enable_per_layer_report,
 921                              const int pos[EDAC_MAX_LAYERS],
 922                              const u16 count)
 923{
 924        int i, index = 0;
 925
 926        mci->ce_mc += count;
 927
 928        if (!enable_per_layer_report) {
 929                mci->ce_noinfo_count += count;
 930                return;
 931        }
 932
 933        for (i = 0; i < mci->n_layers; i++) {
 934                if (pos[i] < 0)
 935                        break;
 936                index += pos[i];
 937                mci->ce_per_layer[i][index] += count;
 938
 939                if (i < mci->n_layers - 1)
 940                        index *= mci->layers[i + 1].size;
 941        }
 942}
 943
 944static void edac_inc_ue_error(struct mem_ctl_info *mci,
 945                                    bool enable_per_layer_report,
 946                                    const int pos[EDAC_MAX_LAYERS],
 947                                    const u16 count)
 948{
 949        int i, index = 0;
 950
 951        mci->ue_mc += count;
 952
 953        if (!enable_per_layer_report) {
 954                mci->ue_noinfo_count += count;
 955                return;
 956        }
 957
 958        for (i = 0; i < mci->n_layers; i++) {
 959                if (pos[i] < 0)
 960                        break;
 961                index += pos[i];
 962                mci->ue_per_layer[i][index] += count;
 963
 964                if (i < mci->n_layers - 1)
 965                        index *= mci->layers[i + 1].size;
 966        }
 967}
 968
 969static void edac_ce_error(struct mem_ctl_info *mci,
 970                          const u16 error_count,
 971                          const int pos[EDAC_MAX_LAYERS],
 972                          const char *msg,
 973                          const char *location,
 974                          const char *label,
 975                          const char *detail,
 976                          const char *other_detail,
 977                          const bool enable_per_layer_report,
 978                          const unsigned long page_frame_number,
 979                          const unsigned long offset_in_page,
 980                          long grain)
 981{
 982        unsigned long remapped_page;
 983        char *msg_aux = "";
 984
 985        if (*msg)
 986                msg_aux = " ";
 987
 988        if (edac_mc_get_log_ce()) {
 989                if (other_detail && *other_detail)
 990                        edac_mc_printk(mci, KERN_WARNING,
 991                                       "%d CE %s%son %s (%s %s - %s)\n",
 992                                       error_count, msg, msg_aux, label,
 993                                       location, detail, other_detail);
 994                else
 995                        edac_mc_printk(mci, KERN_WARNING,
 996                                       "%d CE %s%son %s (%s %s)\n",
 997                                       error_count, msg, msg_aux, label,
 998                                       location, detail);
 999        }
1000        edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1001
1002        if (mci->scrub_mode == SCRUB_SW_SRC) {
1003                /*
1004                        * Some memory controllers (called MCs below) can remap
1005                        * memory so that it is still available at a different
1006                        * address when PCI devices map into memory.
1007                        * MC's that can't do this, lose the memory where PCI
1008                        * devices are mapped. This mapping is MC-dependent
1009                        * and so we call back into the MC driver for it to
1010                        * map the MC page to a physical (CPU) page which can
1011                        * then be mapped to a virtual page - which can then
1012                        * be scrubbed.
1013                        */
1014                remapped_page = mci->ctl_page_to_phys ?
1015                        mci->ctl_page_to_phys(mci, page_frame_number) :
1016                        page_frame_number;
1017
1018                edac_mc_scrub_block(remapped_page,
1019                                        offset_in_page, grain);
1020        }
1021}
1022
1023static void edac_ue_error(struct mem_ctl_info *mci,
1024                          const u16 error_count,
1025                          const int pos[EDAC_MAX_LAYERS],
1026                          const char *msg,
1027                          const char *location,
1028                          const char *label,
1029                          const char *detail,
1030                          const char *other_detail,
1031                          const bool enable_per_layer_report)
1032{
1033        char *msg_aux = "";
1034
1035        if (*msg)
1036                msg_aux = " ";
1037
1038        if (edac_mc_get_log_ue()) {
1039                if (other_detail && *other_detail)
1040                        edac_mc_printk(mci, KERN_WARNING,
1041                                       "%d UE %s%son %s (%s %s - %s)\n",
1042                                       error_count, msg, msg_aux, label,
1043                                       location, detail, other_detail);
1044                else
1045                        edac_mc_printk(mci, KERN_WARNING,
1046                                       "%d UE %s%son %s (%s %s)\n",
1047                                       error_count, msg, msg_aux, label,
1048                                       location, detail);
1049        }
1050
1051        if (edac_mc_get_panic_on_ue()) {
1052                if (other_detail && *other_detail)
1053                        panic("UE %s%son %s (%s%s - %s)\n",
1054                              msg, msg_aux, label, location, detail, other_detail);
1055                else
1056                        panic("UE %s%son %s (%s%s)\n",
1057                              msg, msg_aux, label, location, detail);
1058        }
1059
1060        edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1061}
1062
1063void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1064                              struct mem_ctl_info *mci,
1065                              struct edac_raw_error_desc *e)
1066{
1067        char detail[80];
1068        int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1069
1070        /* Memory type dependent details about the error */
1071        if (type == HW_EVENT_ERR_CORRECTED) {
1072                snprintf(detail, sizeof(detail),
1073                        "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1074                        e->page_frame_number, e->offset_in_page,
1075                        e->grain, e->syndrome);
1076                edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1077                              detail, e->other_detail, e->enable_per_layer_report,
1078                              e->page_frame_number, e->offset_in_page, e->grain);
1079        } else {
1080                snprintf(detail, sizeof(detail),
1081                        "page:0x%lx offset:0x%lx grain:%ld",
1082                        e->page_frame_number, e->offset_in_page, e->grain);
1083
1084                edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1085                              detail, e->other_detail, e->enable_per_layer_report);
1086        }
1087
1088
1089}
1090EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1091
1092void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1093                          struct mem_ctl_info *mci,
1094                          const u16 error_count,
1095                          const unsigned long page_frame_number,
1096                          const unsigned long offset_in_page,
1097                          const unsigned long syndrome,
1098                          const int top_layer,
1099                          const int mid_layer,
1100                          const int low_layer,
1101                          const char *msg,
1102                          const char *other_detail)
1103{
1104        char *p;
1105        int row = -1, chan = -1;
1106        int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1107        int i, n_labels = 0;
1108        u8 grain_bits;
1109        struct edac_raw_error_desc *e = &mci->error_desc;
1110
1111        edac_dbg(3, "MC%d\n", mci->mc_idx);
1112
1113        /* Fills the error report buffer */
1114        memset(e, 0, sizeof (*e));
1115        e->error_count = error_count;
1116        e->top_layer = top_layer;
1117        e->mid_layer = mid_layer;
1118        e->low_layer = low_layer;
1119        e->page_frame_number = page_frame_number;
1120        e->offset_in_page = offset_in_page;
1121        e->syndrome = syndrome;
1122        e->msg = msg;
1123        e->other_detail = other_detail;
1124
1125        /*
1126         * Check if the event report is consistent and if the memory
1127         * location is known. If it is known, enable_per_layer_report will be
1128         * true, the DIMM(s) label info will be filled and the per-layer
1129         * error counters will be incremented.
1130         */
1131        for (i = 0; i < mci->n_layers; i++) {
1132                if (pos[i] >= (int)mci->layers[i].size) {
1133
1134                        edac_mc_printk(mci, KERN_ERR,
1135                                       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1136                                       edac_layer_name[mci->layers[i].type],
1137                                       pos[i], mci->layers[i].size);
1138                        /*
1139                         * Instead of just returning it, let's use what's
1140                         * known about the error. The increment routines and
1141                         * the DIMM filter logic will do the right thing by
1142                         * pointing the likely damaged DIMMs.
1143                         */
1144                        pos[i] = -1;
1145                }
1146                if (pos[i] >= 0)
1147                        e->enable_per_layer_report = true;
1148        }
1149
1150        /*
1151         * Get the dimm label/grain that applies to the match criteria.
1152         * As the error algorithm may not be able to point to just one memory
1153         * stick, the logic here will get all possible labels that could
1154         * pottentially be affected by the error.
1155         * On FB-DIMM memory controllers, for uncorrected errors, it is common
1156         * to have only the MC channel and the MC dimm (also called "branch")
1157         * but the channel is not known, as the memory is arranged in pairs,
1158         * where each memory belongs to a separate channel within the same
1159         * branch.
1160         */
1161        p = e->label;
1162        *p = '\0';
1163
1164        for (i = 0; i < mci->tot_dimms; i++) {
1165                struct dimm_info *dimm = mci->dimms[i];
1166
1167                if (top_layer >= 0 && top_layer != dimm->location[0])
1168                        continue;
1169                if (mid_layer >= 0 && mid_layer != dimm->location[1])
1170                        continue;
1171                if (low_layer >= 0 && low_layer != dimm->location[2])
1172                        continue;
1173
1174                /* get the max grain, over the error match range */
1175                if (dimm->grain > e->grain)
1176                        e->grain = dimm->grain;
1177
1178                /*
1179                 * If the error is memory-controller wide, there's no need to
1180                 * seek for the affected DIMMs because the whole
1181                 * channel/memory controller/...  may be affected.
1182                 * Also, don't show errors for empty DIMM slots.
1183                 */
1184                if (e->enable_per_layer_report && dimm->nr_pages) {
1185                        if (n_labels >= EDAC_MAX_LABELS) {
1186                                e->enable_per_layer_report = false;
1187                                break;
1188                        }
1189                        n_labels++;
1190                        if (p != e->label) {
1191                                strcpy(p, OTHER_LABEL);
1192                                p += strlen(OTHER_LABEL);
1193                        }
1194                        strcpy(p, dimm->label);
1195                        p += strlen(p);
1196                        *p = '\0';
1197
1198                        /*
1199                         * get csrow/channel of the DIMM, in order to allow
1200                         * incrementing the compat API counters
1201                         */
1202                        edac_dbg(4, "%s csrows map: (%d,%d)\n",
1203                                 mci->csbased ? "rank" : "dimm",
1204                                 dimm->csrow, dimm->cschannel);
1205                        if (row == -1)
1206                                row = dimm->csrow;
1207                        else if (row >= 0 && row != dimm->csrow)
1208                                row = -2;
1209
1210                        if (chan == -1)
1211                                chan = dimm->cschannel;
1212                        else if (chan >= 0 && chan != dimm->cschannel)
1213                                chan = -2;
1214                }
1215        }
1216
1217        if (!e->enable_per_layer_report) {
1218                strcpy(e->label, "any memory");
1219        } else {
1220                edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1221                if (p == e->label)
1222                        strcpy(e->label, "unknown memory");
1223                if (type == HW_EVENT_ERR_CORRECTED) {
1224                        if (row >= 0) {
1225                                mci->csrows[row]->ce_count += error_count;
1226                                if (chan >= 0)
1227                                        mci->csrows[row]->channels[chan]->ce_count += error_count;
1228                        }
1229                } else
1230                        if (row >= 0)
1231                                mci->csrows[row]->ue_count += error_count;
1232        }
1233
1234        /* Fill the RAM location data */
1235        p = e->location;
1236
1237        for (i = 0; i < mci->n_layers; i++) {
1238                if (pos[i] < 0)
1239                        continue;
1240
1241                p += sprintf(p, "%s:%d ",
1242                             edac_layer_name[mci->layers[i].type],
1243                             pos[i]);
1244        }
1245        if (p > e->location)
1246                *(p - 1) = '\0';
1247
1248        /* Report the error via the trace interface */
1249        grain_bits = fls_long(e->grain) + 1;
1250
1251        if (IS_ENABLED(CONFIG_RAS))
1252                trace_mc_event(type, e->msg, e->label, e->error_count,
1253                               mci->mc_idx, e->top_layer, e->mid_layer,
1254                               e->low_layer,
1255                               (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1256                               grain_bits, e->syndrome, e->other_detail);
1257
1258        edac_raw_mc_handle_error(type, mci, e);
1259}
1260EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1261