linux/drivers/gpu/drm/i915/i915_drv.h
<<
>>
Prefs
   1/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
   2 */
   3/*
   4 *
   5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   6 * All Rights Reserved.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a
   9 * copy of this software and associated documentation files (the
  10 * "Software"), to deal in the Software without restriction, including
  11 * without limitation the rights to use, copy, modify, merge, publish,
  12 * distribute, sub license, and/or sell copies of the Software, and to
  13 * permit persons to whom the Software is furnished to do so, subject to
  14 * the following conditions:
  15 *
  16 * The above copyright notice and this permission notice (including the
  17 * next paragraph) shall be included in all copies or substantial portions
  18 * of the Software.
  19 *
  20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  27 *
  28 */
  29
  30#ifndef _I915_DRV_H_
  31#define _I915_DRV_H_
  32
  33#include <uapi/drm/i915_drm.h>
  34#include <uapi/drm/drm_fourcc.h>
  35
  36#include <linux/io-mapping.h>
  37#include <linux/i2c.h>
  38#include <linux/i2c-algo-bit.h>
  39#include <linux/backlight.h>
  40#include <linux/hash.h>
  41#include <linux/intel-iommu.h>
  42#include <linux/kref.h>
  43#include <linux/perf_event.h>
  44#include <linux/pm_qos.h>
  45#include <linux/reservation.h>
  46#include <linux/shmem_fs.h>
  47
  48#include <drm/drmP.h>
  49#include <drm/intel-gtt.h>
  50#include <drm/drm_legacy.h> /* for struct drm_dma_handle */
  51#include <drm/drm_gem.h>
  52#include <drm/drm_auth.h>
  53#include <drm/drm_cache.h>
  54
  55#include "i915_params.h"
  56#include "i915_reg.h"
  57#include "i915_utils.h"
  58
  59#include "intel_bios.h"
  60#include "intel_device_info.h"
  61#include "intel_display.h"
  62#include "intel_dpll_mgr.h"
  63#include "intel_lrc.h"
  64#include "intel_opregion.h"
  65#include "intel_ringbuffer.h"
  66#include "intel_uncore.h"
  67#include "intel_uc.h"
  68
  69#include "i915_gem.h"
  70#include "i915_gem_context.h"
  71#include "i915_gem_fence_reg.h"
  72#include "i915_gem_object.h"
  73#include "i915_gem_gtt.h"
  74#include "i915_gem_timeline.h"
  75
  76#include "i915_request.h"
  77#include "i915_vma.h"
  78
  79#include "intel_gvt.h"
  80
  81/* General customization:
  82 */
  83
  84#define DRIVER_NAME             "i915"
  85#define DRIVER_DESC             "Intel Graphics"
  86#define DRIVER_DATE             "20180308"
  87#define DRIVER_TIMESTAMP        1520513379
  88
  89/* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
  90 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
  91 * which may not necessarily be a user visible problem.  This will either
  92 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
  93 * enable distros and users to tailor their preferred amount of i915 abrt
  94 * spam.
  95 */
  96#define I915_STATE_WARN(condition, format...) ({                        \
  97        int __ret_warn_on = !!(condition);                              \
  98        if (unlikely(__ret_warn_on))                                    \
  99                if (!WARN(i915_modparams.verbose_state_checks, format)) \
 100                        DRM_ERROR(format);                              \
 101        unlikely(__ret_warn_on);                                        \
 102})
 103
 104#define I915_STATE_WARN_ON(x)                                           \
 105        I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
 106
 107#if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
 108bool __i915_inject_load_failure(const char *func, int line);
 109#define i915_inject_load_failure() \
 110        __i915_inject_load_failure(__func__, __LINE__)
 111#else
 112#define i915_inject_load_failure() false
 113#endif
 114
 115typedef struct {
 116        uint32_t val;
 117} uint_fixed_16_16_t;
 118
 119#define FP_16_16_MAX ({ \
 120        uint_fixed_16_16_t fp; \
 121        fp.val = UINT_MAX; \
 122        fp; \
 123})
 124
 125static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
 126{
 127        if (val.val == 0)
 128                return true;
 129        return false;
 130}
 131
 132static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
 133{
 134        uint_fixed_16_16_t fp;
 135
 136        WARN_ON(val > U16_MAX);
 137
 138        fp.val = val << 16;
 139        return fp;
 140}
 141
 142static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
 143{
 144        return DIV_ROUND_UP(fp.val, 1 << 16);
 145}
 146
 147static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
 148{
 149        return fp.val >> 16;
 150}
 151
 152static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
 153                                                 uint_fixed_16_16_t min2)
 154{
 155        uint_fixed_16_16_t min;
 156
 157        min.val = min(min1.val, min2.val);
 158        return min;
 159}
 160
 161static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
 162                                                 uint_fixed_16_16_t max2)
 163{
 164        uint_fixed_16_16_t max;
 165
 166        max.val = max(max1.val, max2.val);
 167        return max;
 168}
 169
 170static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
 171{
 172        uint_fixed_16_16_t fp;
 173        WARN_ON(val > U32_MAX);
 174        fp.val = (uint32_t) val;
 175        return fp;
 176}
 177
 178static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
 179                                            uint_fixed_16_16_t d)
 180{
 181        return DIV_ROUND_UP(val.val, d.val);
 182}
 183
 184static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
 185                                                uint_fixed_16_16_t mul)
 186{
 187        uint64_t intermediate_val;
 188
 189        intermediate_val = (uint64_t) val * mul.val;
 190        intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
 191        WARN_ON(intermediate_val > U32_MAX);
 192        return (uint32_t) intermediate_val;
 193}
 194
 195static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
 196                                             uint_fixed_16_16_t mul)
 197{
 198        uint64_t intermediate_val;
 199
 200        intermediate_val = (uint64_t) val.val * mul.val;
 201        intermediate_val = intermediate_val >> 16;
 202        return clamp_u64_to_fixed16(intermediate_val);
 203}
 204
 205static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
 206{
 207        uint64_t interm_val;
 208
 209        interm_val = (uint64_t)val << 16;
 210        interm_val = DIV_ROUND_UP_ULL(interm_val, d);
 211        return clamp_u64_to_fixed16(interm_val);
 212}
 213
 214static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
 215                                                uint_fixed_16_16_t d)
 216{
 217        uint64_t interm_val;
 218
 219        interm_val = (uint64_t)val << 16;
 220        interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
 221        WARN_ON(interm_val > U32_MAX);
 222        return (uint32_t) interm_val;
 223}
 224
 225static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
 226                                                     uint_fixed_16_16_t mul)
 227{
 228        uint64_t intermediate_val;
 229
 230        intermediate_val = (uint64_t) val * mul.val;
 231        return clamp_u64_to_fixed16(intermediate_val);
 232}
 233
 234static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
 235                                             uint_fixed_16_16_t add2)
 236{
 237        uint64_t interm_sum;
 238
 239        interm_sum = (uint64_t) add1.val + add2.val;
 240        return clamp_u64_to_fixed16(interm_sum);
 241}
 242
 243static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
 244                                                 uint32_t add2)
 245{
 246        uint64_t interm_sum;
 247        uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
 248
 249        interm_sum = (uint64_t) add1.val + interm_add2.val;
 250        return clamp_u64_to_fixed16(interm_sum);
 251}
 252
 253enum hpd_pin {
 254        HPD_NONE = 0,
 255        HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
 256        HPD_CRT,
 257        HPD_SDVO_B,
 258        HPD_SDVO_C,
 259        HPD_PORT_A,
 260        HPD_PORT_B,
 261        HPD_PORT_C,
 262        HPD_PORT_D,
 263        HPD_PORT_E,
 264        HPD_NUM_PINS
 265};
 266
 267#define for_each_hpd_pin(__pin) \
 268        for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
 269
 270#define HPD_STORM_DEFAULT_THRESHOLD 5
 271
 272struct i915_hotplug {
 273        struct work_struct hotplug_work;
 274
 275        struct {
 276                unsigned long last_jiffies;
 277                int count;
 278                enum {
 279                        HPD_ENABLED = 0,
 280                        HPD_DISABLED = 1,
 281                        HPD_MARK_DISABLED = 2
 282                } state;
 283        } stats[HPD_NUM_PINS];
 284        u32 event_bits;
 285        struct delayed_work reenable_work;
 286
 287        struct intel_digital_port *irq_port[I915_MAX_PORTS];
 288        u32 long_port_mask;
 289        u32 short_port_mask;
 290        struct work_struct dig_port_work;
 291
 292        struct work_struct poll_init_work;
 293        bool poll_enabled;
 294
 295        unsigned int hpd_storm_threshold;
 296
 297        /*
 298         * if we get a HPD irq from DP and a HPD irq from non-DP
 299         * the non-DP HPD could block the workqueue on a mode config
 300         * mutex getting, that userspace may have taken. However
 301         * userspace is waiting on the DP workqueue to run which is
 302         * blocked behind the non-DP one.
 303         */
 304        struct workqueue_struct *dp_wq;
 305};
 306
 307#define I915_GEM_GPU_DOMAINS \
 308        (I915_GEM_DOMAIN_RENDER | \
 309         I915_GEM_DOMAIN_SAMPLER | \
 310         I915_GEM_DOMAIN_COMMAND | \
 311         I915_GEM_DOMAIN_INSTRUCTION | \
 312         I915_GEM_DOMAIN_VERTEX)
 313
 314struct drm_i915_private;
 315struct i915_mm_struct;
 316struct i915_mmu_object;
 317
 318struct drm_i915_file_private {
 319        struct drm_i915_private *dev_priv;
 320        struct drm_file *file;
 321
 322        struct {
 323                spinlock_t lock;
 324                struct list_head request_list;
 325/* 20ms is a fairly arbitrary limit (greater than the average frame time)
 326 * chosen to prevent the CPU getting more than a frame ahead of the GPU
 327 * (when using lax throttling for the frontbuffer). We also use it to
 328 * offer free GPU waitboosts for severely congested workloads.
 329 */
 330#define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
 331        } mm;
 332        struct idr context_idr;
 333
 334        struct intel_rps_client {
 335                atomic_t boosts;
 336        } rps_client;
 337
 338        unsigned int bsd_engine;
 339
 340/* Client can have a maximum of 3 contexts banned before
 341 * it is denied of creating new contexts. As one context
 342 * ban needs 4 consecutive hangs, and more if there is
 343 * progress in between, this is a last resort stop gap measure
 344 * to limit the badly behaving clients access to gpu.
 345 */
 346#define I915_MAX_CLIENT_CONTEXT_BANS 3
 347        atomic_t context_bans;
 348};
 349
 350/* Interface history:
 351 *
 352 * 1.1: Original.
 353 * 1.2: Add Power Management
 354 * 1.3: Add vblank support
 355 * 1.4: Fix cmdbuffer path, add heap destroy
 356 * 1.5: Add vblank pipe configuration
 357 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
 358 *      - Support vertical blank on secondary display pipe
 359 */
 360#define DRIVER_MAJOR            1
 361#define DRIVER_MINOR            6
 362#define DRIVER_PATCHLEVEL       0
 363
 364struct intel_overlay;
 365struct intel_overlay_error_state;
 366
 367struct sdvo_device_mapping {
 368        u8 initialized;
 369        u8 dvo_port;
 370        u8 slave_addr;
 371        u8 dvo_wiring;
 372        u8 i2c_pin;
 373        u8 ddc_pin;
 374};
 375
 376struct intel_connector;
 377struct intel_encoder;
 378struct intel_atomic_state;
 379struct intel_crtc_state;
 380struct intel_initial_plane_config;
 381struct intel_crtc;
 382struct intel_limit;
 383struct dpll;
 384struct intel_cdclk_state;
 385
 386struct drm_i915_display_funcs {
 387        void (*get_cdclk)(struct drm_i915_private *dev_priv,
 388                          struct intel_cdclk_state *cdclk_state);
 389        void (*set_cdclk)(struct drm_i915_private *dev_priv,
 390                          const struct intel_cdclk_state *cdclk_state);
 391        int (*get_fifo_size)(struct drm_i915_private *dev_priv,
 392                             enum i9xx_plane_id i9xx_plane);
 393        int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
 394        int (*compute_intermediate_wm)(struct drm_device *dev,
 395                                       struct intel_crtc *intel_crtc,
 396                                       struct intel_crtc_state *newstate);
 397        void (*initial_watermarks)(struct intel_atomic_state *state,
 398                                   struct intel_crtc_state *cstate);
 399        void (*atomic_update_watermarks)(struct intel_atomic_state *state,
 400                                         struct intel_crtc_state *cstate);
 401        void (*optimize_watermarks)(struct intel_atomic_state *state,
 402                                    struct intel_crtc_state *cstate);
 403        int (*compute_global_watermarks)(struct drm_atomic_state *state);
 404        void (*update_wm)(struct intel_crtc *crtc);
 405        int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
 406        /* Returns the active state of the crtc, and if the crtc is active,
 407         * fills out the pipe-config with the hw state. */
 408        bool (*get_pipe_config)(struct intel_crtc *,
 409                                struct intel_crtc_state *);
 410        void (*get_initial_plane_config)(struct intel_crtc *,
 411                                         struct intel_initial_plane_config *);
 412        int (*crtc_compute_clock)(struct intel_crtc *crtc,
 413                                  struct intel_crtc_state *crtc_state);
 414        void (*crtc_enable)(struct intel_crtc_state *pipe_config,
 415                            struct drm_atomic_state *old_state);
 416        void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
 417                             struct drm_atomic_state *old_state);
 418        void (*update_crtcs)(struct drm_atomic_state *state);
 419        void (*audio_codec_enable)(struct intel_encoder *encoder,
 420                                   const struct intel_crtc_state *crtc_state,
 421                                   const struct drm_connector_state *conn_state);
 422        void (*audio_codec_disable)(struct intel_encoder *encoder,
 423                                    const struct intel_crtc_state *old_crtc_state,
 424                                    const struct drm_connector_state *old_conn_state);
 425        void (*fdi_link_train)(struct intel_crtc *crtc,
 426                               const struct intel_crtc_state *crtc_state);
 427        void (*init_clock_gating)(struct drm_i915_private *dev_priv);
 428        void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
 429        /* clock updates for mode set */
 430        /* cursor updates */
 431        /* render clock increase/decrease */
 432        /* display clock increase/decrease */
 433        /* pll clock increase/decrease */
 434
 435        void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
 436        void (*load_luts)(struct drm_crtc_state *crtc_state);
 437};
 438
 439#define CSR_VERSION(major, minor)       ((major) << 16 | (minor))
 440#define CSR_VERSION_MAJOR(version)      ((version) >> 16)
 441#define CSR_VERSION_MINOR(version)      ((version) & 0xffff)
 442
 443struct intel_csr {
 444        struct work_struct work;
 445        const char *fw_path;
 446        uint32_t *dmc_payload;
 447        uint32_t dmc_fw_size;
 448        uint32_t version;
 449        uint32_t mmio_count;
 450        i915_reg_t mmioaddr[8];
 451        uint32_t mmiodata[8];
 452        uint32_t dc_state;
 453        uint32_t allowed_dc_mask;
 454};
 455
 456struct intel_display_error_state;
 457
 458struct i915_gpu_state {
 459        struct kref ref;
 460        ktime_t time;
 461        ktime_t boottime;
 462        ktime_t uptime;
 463
 464        struct drm_i915_private *i915;
 465
 466        char error_msg[128];
 467        bool simulated;
 468        bool awake;
 469        bool wakelock;
 470        bool suspended;
 471        int iommu;
 472        u32 reset_count;
 473        u32 suspend_count;
 474        struct intel_device_info device_info;
 475        struct intel_driver_caps driver_caps;
 476        struct i915_params params;
 477
 478        struct i915_error_uc {
 479                struct intel_uc_fw guc_fw;
 480                struct intel_uc_fw huc_fw;
 481                struct drm_i915_error_object *guc_log;
 482        } uc;
 483
 484        /* Generic register state */
 485        u32 eir;
 486        u32 pgtbl_er;
 487        u32 ier;
 488        u32 gtier[4], ngtier;
 489        u32 ccid;
 490        u32 derrmr;
 491        u32 forcewake;
 492        u32 error; /* gen6+ */
 493        u32 err_int; /* gen7 */
 494        u32 fault_data0; /* gen8, gen9 */
 495        u32 fault_data1; /* gen8, gen9 */
 496        u32 done_reg;
 497        u32 gac_eco;
 498        u32 gam_ecochk;
 499        u32 gab_ctl;
 500        u32 gfx_mode;
 501
 502        u32 nfence;
 503        u64 fence[I915_MAX_NUM_FENCES];
 504        struct intel_overlay_error_state *overlay;
 505        struct intel_display_error_state *display;
 506
 507        struct drm_i915_error_engine {
 508                int engine_id;
 509                /* Software tracked state */
 510                bool idle;
 511                bool waiting;
 512                int num_waiters;
 513                unsigned long hangcheck_timestamp;
 514                bool hangcheck_stalled;
 515                enum intel_engine_hangcheck_action hangcheck_action;
 516                struct i915_address_space *vm;
 517                int num_requests;
 518                u32 reset_count;
 519
 520                /* position of active request inside the ring */
 521                u32 rq_head, rq_post, rq_tail;
 522
 523                /* our own tracking of ring head and tail */
 524                u32 cpu_ring_head;
 525                u32 cpu_ring_tail;
 526
 527                u32 last_seqno;
 528
 529                /* Register state */
 530                u32 start;
 531                u32 tail;
 532                u32 head;
 533                u32 ctl;
 534                u32 mode;
 535                u32 hws;
 536                u32 ipeir;
 537                u32 ipehr;
 538                u32 bbstate;
 539                u32 instpm;
 540                u32 instps;
 541                u32 seqno;
 542                u64 bbaddr;
 543                u64 acthd;
 544                u32 fault_reg;
 545                u64 faddr;
 546                u32 rc_psmi; /* sleep state */
 547                u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
 548                struct intel_instdone instdone;
 549
 550                struct drm_i915_error_context {
 551                        char comm[TASK_COMM_LEN];
 552                        pid_t pid;
 553                        u32 handle;
 554                        u32 hw_id;
 555                        int priority;
 556                        int ban_score;
 557                        int active;
 558                        int guilty;
 559                        bool bannable;
 560                } context;
 561
 562                struct drm_i915_error_object {
 563                        u64 gtt_offset;
 564                        u64 gtt_size;
 565                        int page_count;
 566                        int unused;
 567                        u32 *pages[0];
 568                } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
 569
 570                struct drm_i915_error_object **user_bo;
 571                long user_bo_count;
 572
 573                struct drm_i915_error_object *wa_ctx;
 574                struct drm_i915_error_object *default_state;
 575
 576                struct drm_i915_error_request {
 577                        long jiffies;
 578                        pid_t pid;
 579                        u32 context;
 580                        int priority;
 581                        int ban_score;
 582                        u32 seqno;
 583                        u32 head;
 584                        u32 tail;
 585                } *requests, execlist[EXECLIST_MAX_PORTS];
 586                unsigned int num_ports;
 587
 588                struct drm_i915_error_waiter {
 589                        char comm[TASK_COMM_LEN];
 590                        pid_t pid;
 591                        u32 seqno;
 592                } *waiters;
 593
 594                struct {
 595                        u32 gfx_mode;
 596                        union {
 597                                u64 pdp[4];
 598                                u32 pp_dir_base;
 599                        };
 600                } vm_info;
 601        } engine[I915_NUM_ENGINES];
 602
 603        struct drm_i915_error_buffer {
 604                u32 size;
 605                u32 name;
 606                u32 rseqno[I915_NUM_ENGINES], wseqno;
 607                u64 gtt_offset;
 608                u32 read_domains;
 609                u32 write_domain;
 610                s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
 611                u32 tiling:2;
 612                u32 dirty:1;
 613                u32 purgeable:1;
 614                u32 userptr:1;
 615                s32 engine:4;
 616                u32 cache_level:3;
 617        } *active_bo[I915_NUM_ENGINES], *pinned_bo;
 618        u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
 619        struct i915_address_space *active_vm[I915_NUM_ENGINES];
 620};
 621
 622enum i915_cache_level {
 623        I915_CACHE_NONE = 0,
 624        I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
 625        I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
 626                              caches, eg sampler/render caches, and the
 627                              large Last-Level-Cache. LLC is coherent with
 628                              the CPU, but L3 is only visible to the GPU. */
 629        I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
 630};
 631
 632#define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
 633
 634enum fb_op_origin {
 635        ORIGIN_GTT,
 636        ORIGIN_CPU,
 637        ORIGIN_CS,
 638        ORIGIN_FLIP,
 639        ORIGIN_DIRTYFB,
 640};
 641
 642struct intel_fbc {
 643        /* This is always the inner lock when overlapping with struct_mutex and
 644         * it's the outer lock when overlapping with stolen_lock. */
 645        struct mutex lock;
 646        unsigned threshold;
 647        unsigned int possible_framebuffer_bits;
 648        unsigned int busy_bits;
 649        unsigned int visible_pipes_mask;
 650        struct intel_crtc *crtc;
 651
 652        struct drm_mm_node compressed_fb;
 653        struct drm_mm_node *compressed_llb;
 654
 655        bool false_color;
 656
 657        bool enabled;
 658        bool active;
 659
 660        bool underrun_detected;
 661        struct work_struct underrun_work;
 662
 663        /*
 664         * Due to the atomic rules we can't access some structures without the
 665         * appropriate locking, so we cache information here in order to avoid
 666         * these problems.
 667         */
 668        struct intel_fbc_state_cache {
 669                struct i915_vma *vma;
 670                unsigned long flags;
 671
 672                struct {
 673                        unsigned int mode_flags;
 674                        uint32_t hsw_bdw_pixel_rate;
 675                } crtc;
 676
 677                struct {
 678                        unsigned int rotation;
 679                        int src_w;
 680                        int src_h;
 681                        bool visible;
 682                        /*
 683                         * Display surface base address adjustement for
 684                         * pageflips. Note that on gen4+ this only adjusts up
 685                         * to a tile, offsets within a tile are handled in
 686                         * the hw itself (with the TILEOFF register).
 687                         */
 688                        int adjusted_x;
 689                        int adjusted_y;
 690
 691                        int y;
 692                } plane;
 693
 694                struct {
 695                        const struct drm_format_info *format;
 696                        unsigned int stride;
 697                } fb;
 698        } state_cache;
 699
 700        /*
 701         * This structure contains everything that's relevant to program the
 702         * hardware registers. When we want to figure out if we need to disable
 703         * and re-enable FBC for a new configuration we just check if there's
 704         * something different in the struct. The genx_fbc_activate functions
 705         * are supposed to read from it in order to program the registers.
 706         */
 707        struct intel_fbc_reg_params {
 708                struct i915_vma *vma;
 709                unsigned long flags;
 710
 711                struct {
 712                        enum pipe pipe;
 713                        enum i9xx_plane_id i9xx_plane;
 714                        unsigned int fence_y_offset;
 715                } crtc;
 716
 717                struct {
 718                        const struct drm_format_info *format;
 719                        unsigned int stride;
 720                } fb;
 721
 722                int cfb_size;
 723                unsigned int gen9_wa_cfb_stride;
 724        } params;
 725
 726        struct intel_fbc_work {
 727                bool scheduled;
 728                u64 scheduled_vblank;
 729                struct work_struct work;
 730        } work;
 731
 732        const char *no_fbc_reason;
 733};
 734
 735/*
 736 * HIGH_RR is the highest eDP panel refresh rate read from EDID
 737 * LOW_RR is the lowest eDP panel refresh rate found from EDID
 738 * parsing for same resolution.
 739 */
 740enum drrs_refresh_rate_type {
 741        DRRS_HIGH_RR,
 742        DRRS_LOW_RR,
 743        DRRS_MAX_RR, /* RR count */
 744};
 745
 746enum drrs_support_type {
 747        DRRS_NOT_SUPPORTED = 0,
 748        STATIC_DRRS_SUPPORT = 1,
 749        SEAMLESS_DRRS_SUPPORT = 2
 750};
 751
 752struct intel_dp;
 753struct i915_drrs {
 754        struct mutex mutex;
 755        struct delayed_work work;
 756        struct intel_dp *dp;
 757        unsigned busy_frontbuffer_bits;
 758        enum drrs_refresh_rate_type refresh_rate_type;
 759        enum drrs_support_type type;
 760};
 761
 762struct i915_psr {
 763        struct mutex lock;
 764        bool sink_support;
 765        struct intel_dp *enabled;
 766        bool active;
 767        struct delayed_work work;
 768        unsigned busy_frontbuffer_bits;
 769        bool psr2_support;
 770        bool aux_frame_sync;
 771        bool link_standby;
 772        bool y_cord_support;
 773        bool colorimetry_support;
 774        bool alpm;
 775
 776        void (*enable_source)(struct intel_dp *,
 777                              const struct intel_crtc_state *);
 778        void (*disable_source)(struct intel_dp *,
 779                               const struct intel_crtc_state *);
 780        void (*enable_sink)(struct intel_dp *);
 781        void (*activate)(struct intel_dp *);
 782        void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
 783};
 784
 785enum intel_pch {
 786        PCH_NONE = 0,   /* No PCH present */
 787        PCH_IBX,        /* Ibexpeak PCH */
 788        PCH_CPT,        /* Cougarpoint/Pantherpoint PCH */
 789        PCH_LPT,        /* Lynxpoint/Wildcatpoint PCH */
 790        PCH_SPT,        /* Sunrisepoint PCH */
 791        PCH_KBP,        /* Kaby Lake PCH */
 792        PCH_CNP,        /* Cannon Lake PCH */
 793        PCH_ICP,        /* Ice Lake PCH */
 794        PCH_NOP,
 795};
 796
 797enum intel_sbi_destination {
 798        SBI_ICLK,
 799        SBI_MPHY,
 800};
 801
 802#define QUIRK_LVDS_SSC_DISABLE (1<<1)
 803#define QUIRK_INVERT_BRIGHTNESS (1<<2)
 804#define QUIRK_BACKLIGHT_PRESENT (1<<3)
 805#define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
 806#define QUIRK_INCREASE_T12_DELAY (1<<6)
 807
 808struct intel_fbdev;
 809struct intel_fbc_work;
 810
 811struct intel_gmbus {
 812        struct i2c_adapter adapter;
 813#define GMBUS_FORCE_BIT_RETRY (1U << 31)
 814        u32 force_bit;
 815        u32 reg0;
 816        i915_reg_t gpio_reg;
 817        struct i2c_algo_bit_data bit_algo;
 818        struct drm_i915_private *dev_priv;
 819};
 820
 821struct i915_suspend_saved_registers {
 822        u32 saveDSPARB;
 823        u32 saveFBC_CONTROL;
 824        u32 saveCACHE_MODE_0;
 825        u32 saveMI_ARB_STATE;
 826        u32 saveSWF0[16];
 827        u32 saveSWF1[16];
 828        u32 saveSWF3[3];
 829        uint64_t saveFENCE[I915_MAX_NUM_FENCES];
 830        u32 savePCH_PORT_HOTPLUG;
 831        u16 saveGCDGMBUS;
 832};
 833
 834struct vlv_s0ix_state {
 835        /* GAM */
 836        u32 wr_watermark;
 837        u32 gfx_prio_ctrl;
 838        u32 arb_mode;
 839        u32 gfx_pend_tlb0;
 840        u32 gfx_pend_tlb1;
 841        u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
 842        u32 media_max_req_count;
 843        u32 gfx_max_req_count;
 844        u32 render_hwsp;
 845        u32 ecochk;
 846        u32 bsd_hwsp;
 847        u32 blt_hwsp;
 848        u32 tlb_rd_addr;
 849
 850        /* MBC */
 851        u32 g3dctl;
 852        u32 gsckgctl;
 853        u32 mbctl;
 854
 855        /* GCP */
 856        u32 ucgctl1;
 857        u32 ucgctl3;
 858        u32 rcgctl1;
 859        u32 rcgctl2;
 860        u32 rstctl;
 861        u32 misccpctl;
 862
 863        /* GPM */
 864        u32 gfxpause;
 865        u32 rpdeuhwtc;
 866        u32 rpdeuc;
 867        u32 ecobus;
 868        u32 pwrdwnupctl;
 869        u32 rp_down_timeout;
 870        u32 rp_deucsw;
 871        u32 rcubmabdtmr;
 872        u32 rcedata;
 873        u32 spare2gh;
 874
 875        /* Display 1 CZ domain */
 876        u32 gt_imr;
 877        u32 gt_ier;
 878        u32 pm_imr;
 879        u32 pm_ier;
 880        u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
 881
 882        /* GT SA CZ domain */
 883        u32 tilectl;
 884        u32 gt_fifoctl;
 885        u32 gtlc_wake_ctrl;
 886        u32 gtlc_survive;
 887        u32 pmwgicz;
 888
 889        /* Display 2 CZ domain */
 890        u32 gu_ctl0;
 891        u32 gu_ctl1;
 892        u32 pcbr;
 893        u32 clock_gate_dis2;
 894};
 895
 896struct intel_rps_ei {
 897        ktime_t ktime;
 898        u32 render_c0;
 899        u32 media_c0;
 900};
 901
 902struct intel_rps {
 903        /*
 904         * work, interrupts_enabled and pm_iir are protected by
 905         * dev_priv->irq_lock
 906         */
 907        struct work_struct work;
 908        bool interrupts_enabled;
 909        u32 pm_iir;
 910
 911        /* PM interrupt bits that should never be masked */
 912        u32 pm_intrmsk_mbz;
 913
 914        /* Frequencies are stored in potentially platform dependent multiples.
 915         * In other words, *_freq needs to be multiplied by X to be interesting.
 916         * Soft limits are those which are used for the dynamic reclocking done
 917         * by the driver (raise frequencies under heavy loads, and lower for
 918         * lighter loads). Hard limits are those imposed by the hardware.
 919         *
 920         * A distinction is made for overclocking, which is never enabled by
 921         * default, and is considered to be above the hard limit if it's
 922         * possible at all.
 923         */
 924        u8 cur_freq;            /* Current frequency (cached, may not == HW) */
 925        u8 min_freq_softlimit;  /* Minimum frequency permitted by the driver */
 926        u8 max_freq_softlimit;  /* Max frequency permitted by the driver */
 927        u8 max_freq;            /* Maximum frequency, RP0 if not overclocking */
 928        u8 min_freq;            /* AKA RPn. Minimum frequency */
 929        u8 boost_freq;          /* Frequency to request when wait boosting */
 930        u8 idle_freq;           /* Frequency to request when we are idle */
 931        u8 efficient_freq;      /* AKA RPe. Pre-determined balanced frequency */
 932        u8 rp1_freq;            /* "less than" RP0 power/freqency */
 933        u8 rp0_freq;            /* Non-overclocked max frequency. */
 934        u16 gpll_ref_freq;      /* vlv/chv GPLL reference frequency */
 935
 936        u8 up_threshold; /* Current %busy required to uplock */
 937        u8 down_threshold; /* Current %busy required to downclock */
 938
 939        int last_adj;
 940        enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
 941
 942        bool enabled;
 943        atomic_t num_waiters;
 944        atomic_t boosts;
 945
 946        /* manual wa residency calculations */
 947        struct intel_rps_ei ei;
 948};
 949
 950struct intel_rc6 {
 951        bool enabled;
 952        u64 prev_hw_residency[4];
 953        u64 cur_residency[4];
 954};
 955
 956struct intel_llc_pstate {
 957        bool enabled;
 958};
 959
 960struct intel_gen6_power_mgmt {
 961        struct intel_rps rps;
 962        struct intel_rc6 rc6;
 963        struct intel_llc_pstate llc_pstate;
 964};
 965
 966/* defined intel_pm.c */
 967extern spinlock_t mchdev_lock;
 968
 969struct intel_ilk_power_mgmt {
 970        u8 cur_delay;
 971        u8 min_delay;
 972        u8 max_delay;
 973        u8 fmax;
 974        u8 fstart;
 975
 976        u64 last_count1;
 977        unsigned long last_time1;
 978        unsigned long chipset_power;
 979        u64 last_count2;
 980        u64 last_time2;
 981        unsigned long gfx_power;
 982        u8 corr;
 983
 984        int c_m;
 985        int r_t;
 986};
 987
 988struct drm_i915_private;
 989struct i915_power_well;
 990
 991struct i915_power_well_ops {
 992        /*
 993         * Synchronize the well's hw state to match the current sw state, for
 994         * example enable/disable it based on the current refcount. Called
 995         * during driver init and resume time, possibly after first calling
 996         * the enable/disable handlers.
 997         */
 998        void (*sync_hw)(struct drm_i915_private *dev_priv,
 999                        struct i915_power_well *power_well);
1000        /*
1001         * Enable the well and resources that depend on it (for example
1002         * interrupts located on the well). Called after the 0->1 refcount
1003         * transition.
1004         */
1005        void (*enable)(struct drm_i915_private *dev_priv,
1006                       struct i915_power_well *power_well);
1007        /*
1008         * Disable the well and resources that depend on it. Called after
1009         * the 1->0 refcount transition.
1010         */
1011        void (*disable)(struct drm_i915_private *dev_priv,
1012                        struct i915_power_well *power_well);
1013        /* Returns the hw enabled state. */
1014        bool (*is_enabled)(struct drm_i915_private *dev_priv,
1015                           struct i915_power_well *power_well);
1016};
1017
1018/* Power well structure for haswell */
1019struct i915_power_well {
1020        const char *name;
1021        bool always_on;
1022        /* power well enable/disable usage count */
1023        int count;
1024        /* cached hw enabled state */
1025        bool hw_enabled;
1026        u64 domains;
1027        /* unique identifier for this power well */
1028        enum i915_power_well_id id;
1029        /*
1030         * Arbitraty data associated with this power well. Platform and power
1031         * well specific.
1032         */
1033        union {
1034                struct {
1035                        enum dpio_phy phy;
1036                } bxt;
1037                struct {
1038                        /* Mask of pipes whose IRQ logic is backed by the pw */
1039                        u8 irq_pipe_mask;
1040                        /* The pw is backing the VGA functionality */
1041                        bool has_vga:1;
1042                        bool has_fuses:1;
1043                } hsw;
1044        };
1045        const struct i915_power_well_ops *ops;
1046};
1047
1048struct i915_power_domains {
1049        /*
1050         * Power wells needed for initialization at driver init and suspend
1051         * time are on. They are kept on until after the first modeset.
1052         */
1053        bool init_power_on;
1054        bool initializing;
1055        int power_well_count;
1056
1057        struct mutex lock;
1058        int domain_use_count[POWER_DOMAIN_NUM];
1059        struct i915_power_well *power_wells;
1060};
1061
1062#define MAX_L3_SLICES 2
1063struct intel_l3_parity {
1064        u32 *remap_info[MAX_L3_SLICES];
1065        struct work_struct error_work;
1066        int which_slice;
1067};
1068
1069struct i915_gem_mm {
1070        /** Memory allocator for GTT stolen memory */
1071        struct drm_mm stolen;
1072        /** Protects the usage of the GTT stolen memory allocator. This is
1073         * always the inner lock when overlapping with struct_mutex. */
1074        struct mutex stolen_lock;
1075
1076        /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
1077        spinlock_t obj_lock;
1078
1079        /** List of all objects in gtt_space. Used to restore gtt
1080         * mappings on resume */
1081        struct list_head bound_list;
1082        /**
1083         * List of objects which are not bound to the GTT (thus
1084         * are idle and not used by the GPU). These objects may or may
1085         * not actually have any pages attached.
1086         */
1087        struct list_head unbound_list;
1088
1089        /** List of all objects in gtt_space, currently mmaped by userspace.
1090         * All objects within this list must also be on bound_list.
1091         */
1092        struct list_head userfault_list;
1093
1094        /**
1095         * List of objects which are pending destruction.
1096         */
1097        struct llist_head free_list;
1098        struct work_struct free_work;
1099        spinlock_t free_lock;
1100        /**
1101         * Count of objects pending destructions. Used to skip needlessly
1102         * waiting on an RCU barrier if no objects are waiting to be freed.
1103         */
1104        atomic_t free_count;
1105
1106        /**
1107         * Small stash of WC pages
1108         */
1109        struct pagevec wc_stash;
1110
1111        /**
1112         * tmpfs instance used for shmem backed objects
1113         */
1114        struct vfsmount *gemfs;
1115
1116        /** PPGTT used for aliasing the PPGTT with the GTT */
1117        struct i915_hw_ppgtt *aliasing_ppgtt;
1118
1119        struct notifier_block oom_notifier;
1120        struct notifier_block vmap_notifier;
1121        struct shrinker shrinker;
1122
1123        /** LRU list of objects with fence regs on them. */
1124        struct list_head fence_list;
1125
1126        /**
1127         * Workqueue to fault in userptr pages, flushed by the execbuf
1128         * when required but otherwise left to userspace to try again
1129         * on EAGAIN.
1130         */
1131        struct workqueue_struct *userptr_wq;
1132
1133        u64 unordered_timeline;
1134
1135        /* the indicator for dispatch video commands on two BSD rings */
1136        atomic_t bsd_engine_dispatch_index;
1137
1138        /** Bit 6 swizzling required for X tiling */
1139        uint32_t bit_6_swizzle_x;
1140        /** Bit 6 swizzling required for Y tiling */
1141        uint32_t bit_6_swizzle_y;
1142
1143        /* accounting, useful for userland debugging */
1144        spinlock_t object_stat_lock;
1145        u64 object_memory;
1146        u32 object_count;
1147};
1148
1149struct drm_i915_error_state_buf {
1150        struct drm_i915_private *i915;
1151        unsigned bytes;
1152        unsigned size;
1153        int err;
1154        u8 *buf;
1155        loff_t start;
1156        loff_t pos;
1157};
1158
1159#define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1160
1161#define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1162#define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1163
1164#define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1165#define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1166
1167struct i915_gpu_error {
1168        /* For hangcheck timer */
1169#define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1170#define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1171
1172        struct delayed_work hangcheck_work;
1173
1174        /* For reset and error_state handling. */
1175        spinlock_t lock;
1176        /* Protected by the above dev->gpu_error.lock. */
1177        struct i915_gpu_state *first_error;
1178
1179        atomic_t pending_fb_pin;
1180
1181        unsigned long missed_irq_rings;
1182
1183        /**
1184         * State variable controlling the reset flow and count
1185         *
1186         * This is a counter which gets incremented when reset is triggered,
1187         *
1188         * Before the reset commences, the I915_RESET_BACKOFF bit is set
1189         * meaning that any waiters holding onto the struct_mutex should
1190         * relinquish the lock immediately in order for the reset to start.
1191         *
1192         * If reset is not completed succesfully, the I915_WEDGE bit is
1193         * set meaning that hardware is terminally sour and there is no
1194         * recovery. All waiters on the reset_queue will be woken when
1195         * that happens.
1196         *
1197         * This counter is used by the wait_seqno code to notice that reset
1198         * event happened and it needs to restart the entire ioctl (since most
1199         * likely the seqno it waited for won't ever signal anytime soon).
1200         *
1201         * This is important for lock-free wait paths, where no contended lock
1202         * naturally enforces the correct ordering between the bail-out of the
1203         * waiter and the gpu reset work code.
1204         */
1205        unsigned long reset_count;
1206
1207        /**
1208         * flags: Control various stages of the GPU reset
1209         *
1210         * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1211         * other users acquiring the struct_mutex. To do this we set the
1212         * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1213         * and then check for that bit before acquiring the struct_mutex (in
1214         * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1215         * secondary role in preventing two concurrent global reset attempts.
1216         *
1217         * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1218         * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1219         * but it may be held by some long running waiter (that we cannot
1220         * interrupt without causing trouble). Once we are ready to do the GPU
1221         * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1222         * they already hold the struct_mutex and want to participate they can
1223         * inspect the bit and do the reset directly, otherwise the worker
1224         * waits for the struct_mutex.
1225         *
1226         * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1227         * acquire the struct_mutex to reset an engine, we need an explicit
1228         * flag to prevent two concurrent reset attempts in the same engine.
1229         * As the number of engines continues to grow, allocate the flags from
1230         * the most significant bits.
1231         *
1232         * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1233         * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1234         * i915_request_alloc(), this bit is checked and the sequence
1235         * aborted (with -EIO reported to userspace) if set.
1236         */
1237        unsigned long flags;
1238#define I915_RESET_BACKOFF      0
1239#define I915_RESET_HANDOFF      1
1240#define I915_RESET_MODESET      2
1241#define I915_WEDGED             (BITS_PER_LONG - 1)
1242#define I915_RESET_ENGINE       (I915_WEDGED - I915_NUM_ENGINES)
1243
1244        /** Number of times an engine has been reset */
1245        u32 reset_engine_count[I915_NUM_ENGINES];
1246
1247        /**
1248         * Waitqueue to signal when a hang is detected. Used to for waiters
1249         * to release the struct_mutex for the reset to procede.
1250         */
1251        wait_queue_head_t wait_queue;
1252
1253        /**
1254         * Waitqueue to signal when the reset has completed. Used by clients
1255         * that wait for dev_priv->mm.wedged to settle.
1256         */
1257        wait_queue_head_t reset_queue;
1258
1259        /* For missed irq/seqno simulation. */
1260        unsigned long test_irq_rings;
1261};
1262
1263enum modeset_restore {
1264        MODESET_ON_LID_OPEN,
1265        MODESET_DONE,
1266        MODESET_SUSPENDED,
1267};
1268
1269#define DP_AUX_A 0x40
1270#define DP_AUX_B 0x10
1271#define DP_AUX_C 0x20
1272#define DP_AUX_D 0x30
1273#define DP_AUX_F 0x60
1274
1275#define DDC_PIN_B  0x05
1276#define DDC_PIN_C  0x04
1277#define DDC_PIN_D  0x06
1278
1279struct ddi_vbt_port_info {
1280        int max_tmds_clock;
1281
1282        /*
1283         * This is an index in the HDMI/DVI DDI buffer translation table.
1284         * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1285         * populate this field.
1286         */
1287#define HDMI_LEVEL_SHIFT_UNKNOWN        0xff
1288        uint8_t hdmi_level_shift;
1289
1290        uint8_t supports_dvi:1;
1291        uint8_t supports_hdmi:1;
1292        uint8_t supports_dp:1;
1293        uint8_t supports_edp:1;
1294
1295        uint8_t alternate_aux_channel;
1296        uint8_t alternate_ddc_pin;
1297
1298        uint8_t dp_boost_level;
1299        uint8_t hdmi_boost_level;
1300        int dp_max_link_rate;           /* 0 for not limited by VBT */
1301};
1302
1303enum psr_lines_to_wait {
1304        PSR_0_LINES_TO_WAIT = 0,
1305        PSR_1_LINE_TO_WAIT,
1306        PSR_4_LINES_TO_WAIT,
1307        PSR_8_LINES_TO_WAIT
1308};
1309
1310struct intel_vbt_data {
1311        struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1312        struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1313
1314        /* Feature bits */
1315        unsigned int int_tv_support:1;
1316        unsigned int lvds_dither:1;
1317        unsigned int lvds_vbt:1;
1318        unsigned int int_crt_support:1;
1319        unsigned int lvds_use_ssc:1;
1320        unsigned int display_clock_mode:1;
1321        unsigned int fdi_rx_polarity_inverted:1;
1322        unsigned int panel_type:4;
1323        int lvds_ssc_freq;
1324        unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1325
1326        enum drrs_support_type drrs_type;
1327
1328        struct {
1329                int rate;
1330                int lanes;
1331                int preemphasis;
1332                int vswing;
1333                bool low_vswing;
1334                bool initialized;
1335                bool support;
1336                int bpp;
1337                struct edp_power_seq pps;
1338        } edp;
1339
1340        struct {
1341                bool full_link;
1342                bool require_aux_wakeup;
1343                int idle_frames;
1344                enum psr_lines_to_wait lines_to_wait;
1345                int tp1_wakeup_time;
1346                int tp2_tp3_wakeup_time;
1347        } psr;
1348
1349        struct {
1350                u16 pwm_freq_hz;
1351                bool present;
1352                bool active_low_pwm;
1353                u8 min_brightness;      /* min_brightness/255 of max */
1354                u8 controller;          /* brightness controller number */
1355                enum intel_backlight_type type;
1356        } backlight;
1357
1358        /* MIPI DSI */
1359        struct {
1360                u16 panel_id;
1361                struct mipi_config *config;
1362                struct mipi_pps_data *pps;
1363                u16 bl_ports;
1364                u16 cabc_ports;
1365                u8 seq_version;
1366                u32 size;
1367                u8 *data;
1368                const u8 *sequence[MIPI_SEQ_MAX];
1369                u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1370        } dsi;
1371
1372        int crt_ddc_pin;
1373
1374        int child_dev_num;
1375        struct child_device_config *child_dev;
1376
1377        struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1378        struct sdvo_device_mapping sdvo_mappings[2];
1379};
1380
1381enum intel_ddb_partitioning {
1382        INTEL_DDB_PART_1_2,
1383        INTEL_DDB_PART_5_6, /* IVB+ */
1384};
1385
1386struct intel_wm_level {
1387        bool enable;
1388        uint32_t pri_val;
1389        uint32_t spr_val;
1390        uint32_t cur_val;
1391        uint32_t fbc_val;
1392};
1393
1394struct ilk_wm_values {
1395        uint32_t wm_pipe[3];
1396        uint32_t wm_lp[3];
1397        uint32_t wm_lp_spr[3];
1398        uint32_t wm_linetime[3];
1399        bool enable_fbc_wm;
1400        enum intel_ddb_partitioning partitioning;
1401};
1402
1403struct g4x_pipe_wm {
1404        uint16_t plane[I915_MAX_PLANES];
1405        uint16_t fbc;
1406};
1407
1408struct g4x_sr_wm {
1409        uint16_t plane;
1410        uint16_t cursor;
1411        uint16_t fbc;
1412};
1413
1414struct vlv_wm_ddl_values {
1415        uint8_t plane[I915_MAX_PLANES];
1416};
1417
1418struct vlv_wm_values {
1419        struct g4x_pipe_wm pipe[3];
1420        struct g4x_sr_wm sr;
1421        struct vlv_wm_ddl_values ddl[3];
1422        uint8_t level;
1423        bool cxsr;
1424};
1425
1426struct g4x_wm_values {
1427        struct g4x_pipe_wm pipe[2];
1428        struct g4x_sr_wm sr;
1429        struct g4x_sr_wm hpll;
1430        bool cxsr;
1431        bool hpll_en;
1432        bool fbc_en;
1433};
1434
1435struct skl_ddb_entry {
1436        uint16_t start, end;    /* in number of blocks, 'end' is exclusive */
1437};
1438
1439static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1440{
1441        return entry->end - entry->start;
1442}
1443
1444static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1445                                       const struct skl_ddb_entry *e2)
1446{
1447        if (e1->start == e2->start && e1->end == e2->end)
1448                return true;
1449
1450        return false;
1451}
1452
1453struct skl_ddb_allocation {
1454        struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1455        struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1456};
1457
1458struct skl_wm_values {
1459        unsigned dirty_pipes;
1460        struct skl_ddb_allocation ddb;
1461};
1462
1463struct skl_wm_level {
1464        bool plane_en;
1465        uint16_t plane_res_b;
1466        uint8_t plane_res_l;
1467};
1468
1469/* Stores plane specific WM parameters */
1470struct skl_wm_params {
1471        bool x_tiled, y_tiled;
1472        bool rc_surface;
1473        uint32_t width;
1474        uint8_t cpp;
1475        uint32_t plane_pixel_rate;
1476        uint32_t y_min_scanlines;
1477        uint32_t plane_bytes_per_line;
1478        uint_fixed_16_16_t plane_blocks_per_line;
1479        uint_fixed_16_16_t y_tile_minimum;
1480        uint32_t linetime_us;
1481        uint32_t dbuf_block_size;
1482};
1483
1484/*
1485 * This struct helps tracking the state needed for runtime PM, which puts the
1486 * device in PCI D3 state. Notice that when this happens, nothing on the
1487 * graphics device works, even register access, so we don't get interrupts nor
1488 * anything else.
1489 *
1490 * Every piece of our code that needs to actually touch the hardware needs to
1491 * either call intel_runtime_pm_get or call intel_display_power_get with the
1492 * appropriate power domain.
1493 *
1494 * Our driver uses the autosuspend delay feature, which means we'll only really
1495 * suspend if we stay with zero refcount for a certain amount of time. The
1496 * default value is currently very conservative (see intel_runtime_pm_enable), but
1497 * it can be changed with the standard runtime PM files from sysfs.
1498 *
1499 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1500 * goes back to false exactly before we reenable the IRQs. We use this variable
1501 * to check if someone is trying to enable/disable IRQs while they're supposed
1502 * to be disabled. This shouldn't happen and we'll print some error messages in
1503 * case it happens.
1504 *
1505 * For more, read the Documentation/power/runtime_pm.txt.
1506 */
1507struct i915_runtime_pm {
1508        atomic_t wakeref_count;
1509        bool suspended;
1510        bool irqs_enabled;
1511};
1512
1513enum intel_pipe_crc_source {
1514        INTEL_PIPE_CRC_SOURCE_NONE,
1515        INTEL_PIPE_CRC_SOURCE_PLANE1,
1516        INTEL_PIPE_CRC_SOURCE_PLANE2,
1517        INTEL_PIPE_CRC_SOURCE_PF,
1518        INTEL_PIPE_CRC_SOURCE_PIPE,
1519        /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1520        INTEL_PIPE_CRC_SOURCE_TV,
1521        INTEL_PIPE_CRC_SOURCE_DP_B,
1522        INTEL_PIPE_CRC_SOURCE_DP_C,
1523        INTEL_PIPE_CRC_SOURCE_DP_D,
1524        INTEL_PIPE_CRC_SOURCE_AUTO,
1525        INTEL_PIPE_CRC_SOURCE_MAX,
1526};
1527
1528struct intel_pipe_crc_entry {
1529        uint32_t frame;
1530        uint32_t crc[5];
1531};
1532
1533#define INTEL_PIPE_CRC_ENTRIES_NR       128
1534struct intel_pipe_crc {
1535        spinlock_t lock;
1536        bool opened;            /* exclusive access to the result file */
1537        struct intel_pipe_crc_entry *entries;
1538        enum intel_pipe_crc_source source;
1539        int head, tail;
1540        wait_queue_head_t wq;
1541        int skipped;
1542};
1543
1544struct i915_frontbuffer_tracking {
1545        spinlock_t lock;
1546
1547        /*
1548         * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1549         * scheduled flips.
1550         */
1551        unsigned busy_bits;
1552        unsigned flip_bits;
1553};
1554
1555struct i915_wa_reg {
1556        i915_reg_t addr;
1557        u32 value;
1558        /* bitmask representing WA bits */
1559        u32 mask;
1560};
1561
1562#define I915_MAX_WA_REGS 16
1563
1564struct i915_workarounds {
1565        struct i915_wa_reg reg[I915_MAX_WA_REGS];
1566        u32 count;
1567        u32 hw_whitelist_count[I915_NUM_ENGINES];
1568};
1569
1570struct i915_virtual_gpu {
1571        bool active;
1572        u32 caps;
1573};
1574
1575/* used in computing the new watermarks state */
1576struct intel_wm_config {
1577        unsigned int num_pipes_active;
1578        bool sprites_enabled;
1579        bool sprites_scaled;
1580};
1581
1582struct i915_oa_format {
1583        u32 format;
1584        int size;
1585};
1586
1587struct i915_oa_reg {
1588        i915_reg_t addr;
1589        u32 value;
1590};
1591
1592struct i915_oa_config {
1593        char uuid[UUID_STRING_LEN + 1];
1594        int id;
1595
1596        const struct i915_oa_reg *mux_regs;
1597        u32 mux_regs_len;
1598        const struct i915_oa_reg *b_counter_regs;
1599        u32 b_counter_regs_len;
1600        const struct i915_oa_reg *flex_regs;
1601        u32 flex_regs_len;
1602
1603        struct attribute_group sysfs_metric;
1604        struct attribute *attrs[2];
1605        struct device_attribute sysfs_metric_id;
1606
1607        atomic_t ref_count;
1608};
1609
1610struct i915_perf_stream;
1611
1612/**
1613 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1614 */
1615struct i915_perf_stream_ops {
1616        /**
1617         * @enable: Enables the collection of HW samples, either in response to
1618         * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1619         * without `I915_PERF_FLAG_DISABLED`.
1620         */
1621        void (*enable)(struct i915_perf_stream *stream);
1622
1623        /**
1624         * @disable: Disables the collection of HW samples, either in response
1625         * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1626         * the stream.
1627         */
1628        void (*disable)(struct i915_perf_stream *stream);
1629
1630        /**
1631         * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1632         * once there is something ready to read() for the stream
1633         */
1634        void (*poll_wait)(struct i915_perf_stream *stream,
1635                          struct file *file,
1636                          poll_table *wait);
1637
1638        /**
1639         * @wait_unlocked: For handling a blocking read, wait until there is
1640         * something to ready to read() for the stream. E.g. wait on the same
1641         * wait queue that would be passed to poll_wait().
1642         */
1643        int (*wait_unlocked)(struct i915_perf_stream *stream);
1644
1645        /**
1646         * @read: Copy buffered metrics as records to userspace
1647         * **buf**: the userspace, destination buffer
1648         * **count**: the number of bytes to copy, requested by userspace
1649         * **offset**: zero at the start of the read, updated as the read
1650         * proceeds, it represents how many bytes have been copied so far and
1651         * the buffer offset for copying the next record.
1652         *
1653         * Copy as many buffered i915 perf samples and records for this stream
1654         * to userspace as will fit in the given buffer.
1655         *
1656         * Only write complete records; returning -%ENOSPC if there isn't room
1657         * for a complete record.
1658         *
1659         * Return any error condition that results in a short read such as
1660         * -%ENOSPC or -%EFAULT, even though these may be squashed before
1661         * returning to userspace.
1662         */
1663        int (*read)(struct i915_perf_stream *stream,
1664                    char __user *buf,
1665                    size_t count,
1666                    size_t *offset);
1667
1668        /**
1669         * @destroy: Cleanup any stream specific resources.
1670         *
1671         * The stream will always be disabled before this is called.
1672         */
1673        void (*destroy)(struct i915_perf_stream *stream);
1674};
1675
1676/**
1677 * struct i915_perf_stream - state for a single open stream FD
1678 */
1679struct i915_perf_stream {
1680        /**
1681         * @dev_priv: i915 drm device
1682         */
1683        struct drm_i915_private *dev_priv;
1684
1685        /**
1686         * @link: Links the stream into ``&drm_i915_private->streams``
1687         */
1688        struct list_head link;
1689
1690        /**
1691         * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1692         * properties given when opening a stream, representing the contents
1693         * of a single sample as read() by userspace.
1694         */
1695        u32 sample_flags;
1696
1697        /**
1698         * @sample_size: Considering the configured contents of a sample
1699         * combined with the required header size, this is the total size
1700         * of a single sample record.
1701         */
1702        int sample_size;
1703
1704        /**
1705         * @ctx: %NULL if measuring system-wide across all contexts or a
1706         * specific context that is being monitored.
1707         */
1708        struct i915_gem_context *ctx;
1709
1710        /**
1711         * @enabled: Whether the stream is currently enabled, considering
1712         * whether the stream was opened in a disabled state and based
1713         * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1714         */
1715        bool enabled;
1716
1717        /**
1718         * @ops: The callbacks providing the implementation of this specific
1719         * type of configured stream.
1720         */
1721        const struct i915_perf_stream_ops *ops;
1722
1723        /**
1724         * @oa_config: The OA configuration used by the stream.
1725         */
1726        struct i915_oa_config *oa_config;
1727};
1728
1729/**
1730 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1731 */
1732struct i915_oa_ops {
1733        /**
1734         * @is_valid_b_counter_reg: Validates register's address for
1735         * programming boolean counters for a particular platform.
1736         */
1737        bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1738                                       u32 addr);
1739
1740        /**
1741         * @is_valid_mux_reg: Validates register's address for programming mux
1742         * for a particular platform.
1743         */
1744        bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1745
1746        /**
1747         * @is_valid_flex_reg: Validates register's address for programming
1748         * flex EU filtering for a particular platform.
1749         */
1750        bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1751
1752        /**
1753         * @init_oa_buffer: Resets the head and tail pointers of the
1754         * circular buffer for periodic OA reports.
1755         *
1756         * Called when first opening a stream for OA metrics, but also may be
1757         * called in response to an OA buffer overflow or other error
1758         * condition.
1759         *
1760         * Note it may be necessary to clear the full OA buffer here as part of
1761         * maintaining the invariable that new reports must be written to
1762         * zeroed memory for us to be able to reliable detect if an expected
1763         * report has not yet landed in memory.  (At least on Haswell the OA
1764         * buffer tail pointer is not synchronized with reports being visible
1765         * to the CPU)
1766         */
1767        void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1768
1769        /**
1770         * @enable_metric_set: Selects and applies any MUX configuration to set
1771         * up the Boolean and Custom (B/C) counters that are part of the
1772         * counter reports being sampled. May apply system constraints such as
1773         * disabling EU clock gating as required.
1774         */
1775        int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1776                                 const struct i915_oa_config *oa_config);
1777
1778        /**
1779         * @disable_metric_set: Remove system constraints associated with using
1780         * the OA unit.
1781         */
1782        void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1783
1784        /**
1785         * @oa_enable: Enable periodic sampling
1786         */
1787        void (*oa_enable)(struct drm_i915_private *dev_priv);
1788
1789        /**
1790         * @oa_disable: Disable periodic sampling
1791         */
1792        void (*oa_disable)(struct drm_i915_private *dev_priv);
1793
1794        /**
1795         * @read: Copy data from the circular OA buffer into a given userspace
1796         * buffer.
1797         */
1798        int (*read)(struct i915_perf_stream *stream,
1799                    char __user *buf,
1800                    size_t count,
1801                    size_t *offset);
1802
1803        /**
1804         * @oa_hw_tail_read: read the OA tail pointer register
1805         *
1806         * In particular this enables us to share all the fiddly code for
1807         * handling the OA unit tail pointer race that affects multiple
1808         * generations.
1809         */
1810        u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1811};
1812
1813struct intel_cdclk_state {
1814        unsigned int cdclk, vco, ref, bypass;
1815        u8 voltage_level;
1816};
1817
1818struct drm_i915_private {
1819        struct drm_device drm;
1820
1821        struct kmem_cache *objects;
1822        struct kmem_cache *vmas;
1823        struct kmem_cache *luts;
1824        struct kmem_cache *requests;
1825        struct kmem_cache *dependencies;
1826        struct kmem_cache *priorities;
1827
1828        const struct intel_device_info info;
1829        struct intel_driver_caps caps;
1830
1831        /**
1832         * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1833         * end of stolen which we can optionally use to create GEM objects
1834         * backed by stolen memory. Note that stolen_usable_size tells us
1835         * exactly how much of this we are actually allowed to use, given that
1836         * some portion of it is in fact reserved for use by hardware functions.
1837         */
1838        struct resource dsm;
1839        /**
1840         * Reseved portion of Data Stolen Memory
1841         */
1842        struct resource dsm_reserved;
1843
1844        /*
1845         * Stolen memory is segmented in hardware with different portions
1846         * offlimits to certain functions.
1847         *
1848         * The drm_mm is initialised to the total accessible range, as found
1849         * from the PCI config. On Broadwell+, this is further restricted to
1850         * avoid the first page! The upper end of stolen memory is reserved for
1851         * hardware functions and similarly removed from the accessible range.
1852         */
1853        resource_size_t stolen_usable_size;     /* Total size minus reserved ranges */
1854
1855        void __iomem *regs;
1856
1857        struct intel_uncore uncore;
1858
1859        struct i915_virtual_gpu vgpu;
1860
1861        struct intel_gvt *gvt;
1862
1863        struct intel_huc huc;
1864        struct intel_guc guc;
1865
1866        struct intel_csr csr;
1867
1868        struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1869
1870        /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1871         * controller on different i2c buses. */
1872        struct mutex gmbus_mutex;
1873
1874        /**
1875         * Base address of the gmbus and gpio block.
1876         */
1877        uint32_t gpio_mmio_base;
1878
1879        /* MMIO base address for MIPI regs */
1880        uint32_t mipi_mmio_base;
1881
1882        uint32_t psr_mmio_base;
1883
1884        uint32_t pps_mmio_base;
1885
1886        wait_queue_head_t gmbus_wait_queue;
1887
1888        struct pci_dev *bridge_dev;
1889        struct intel_engine_cs *engine[I915_NUM_ENGINES];
1890        /* Context used internally to idle the GPU and setup initial state */
1891        struct i915_gem_context *kernel_context;
1892        /* Context only to be used for injecting preemption commands */
1893        struct i915_gem_context *preempt_context;
1894        struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1895                                            [MAX_ENGINE_INSTANCE + 1];
1896
1897        struct drm_dma_handle *status_page_dmah;
1898        struct resource mch_res;
1899
1900        /* protects the irq masks */
1901        spinlock_t irq_lock;
1902
1903        bool display_irqs_enabled;
1904
1905        /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1906        struct pm_qos_request pm_qos;
1907
1908        /* Sideband mailbox protection */
1909        struct mutex sb_lock;
1910
1911        /** Cached value of IMR to avoid reads in updating the bitfield */
1912        union {
1913                u32 irq_mask;
1914                u32 de_irq_mask[I915_MAX_PIPES];
1915        };
1916        u32 gt_irq_mask;
1917        u32 pm_imr;
1918        u32 pm_ier;
1919        u32 pm_rps_events;
1920        u32 pm_guc_events;
1921        u32 pipestat_irq_mask[I915_MAX_PIPES];
1922
1923        struct i915_hotplug hotplug;
1924        struct intel_fbc fbc;
1925        struct i915_drrs drrs;
1926        struct intel_opregion opregion;
1927        struct intel_vbt_data vbt;
1928
1929        bool preserve_bios_swizzle;
1930
1931        /* overlay */
1932        struct intel_overlay *overlay;
1933
1934        /* backlight registers and fields in struct intel_panel */
1935        struct mutex backlight_lock;
1936
1937        /* LVDS info */
1938        bool no_aux_handshake;
1939
1940        /* protects panel power sequencer state */
1941        struct mutex pps_mutex;
1942
1943        struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1944        int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1945
1946        unsigned int fsb_freq, mem_freq, is_ddr3;
1947        unsigned int skl_preferred_vco_freq;
1948        unsigned int max_cdclk_freq;
1949
1950        unsigned int max_dotclk_freq;
1951        unsigned int rawclk_freq;
1952        unsigned int hpll_freq;
1953        unsigned int fdi_pll_freq;
1954        unsigned int czclk_freq;
1955
1956        struct {
1957                /*
1958                 * The current logical cdclk state.
1959                 * See intel_atomic_state.cdclk.logical
1960                 *
1961                 * For reading holding any crtc lock is sufficient,
1962                 * for writing must hold all of them.
1963                 */
1964                struct intel_cdclk_state logical;
1965                /*
1966                 * The current actual cdclk state.
1967                 * See intel_atomic_state.cdclk.actual
1968                 */
1969                struct intel_cdclk_state actual;
1970                /* The current hardware cdclk state */
1971                struct intel_cdclk_state hw;
1972        } cdclk;
1973
1974        /**
1975         * wq - Driver workqueue for GEM.
1976         *
1977         * NOTE: Work items scheduled here are not allowed to grab any modeset
1978         * locks, for otherwise the flushing done in the pageflip code will
1979         * result in deadlocks.
1980         */
1981        struct workqueue_struct *wq;
1982
1983        /* ordered wq for modesets */
1984        struct workqueue_struct *modeset_wq;
1985
1986        /* Display functions */
1987        struct drm_i915_display_funcs display;
1988
1989        /* PCH chipset type */
1990        enum intel_pch pch_type;
1991        unsigned short pch_id;
1992
1993        unsigned long quirks;
1994
1995        enum modeset_restore modeset_restore;
1996        struct mutex modeset_restore_lock;
1997        struct drm_atomic_state *modeset_restore_state;
1998        struct drm_modeset_acquire_ctx reset_ctx;
1999
2000        struct list_head vm_list; /* Global list of all address spaces */
2001        struct i915_ggtt ggtt; /* VM representing the global address space */
2002
2003        struct i915_gem_mm mm;
2004        DECLARE_HASHTABLE(mm_structs, 7);
2005        struct mutex mm_lock;
2006
2007        struct intel_ppat ppat;
2008
2009        /* Kernel Modesetting */
2010
2011        struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2012        struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2013
2014#ifdef CONFIG_DEBUG_FS
2015        struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2016#endif
2017
2018        /* dpll and cdclk state is protected by connection_mutex */
2019        int num_shared_dpll;
2020        struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2021        const struct intel_dpll_mgr *dpll_mgr;
2022
2023        /*
2024         * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2025         * Must be global rather than per dpll, because on some platforms
2026         * plls share registers.
2027         */
2028        struct mutex dpll_lock;
2029
2030        unsigned int active_crtcs;
2031        /* minimum acceptable cdclk for each pipe */
2032        int min_cdclk[I915_MAX_PIPES];
2033        /* minimum acceptable voltage level for each pipe */
2034        u8 min_voltage_level[I915_MAX_PIPES];
2035
2036        int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2037
2038        struct i915_workarounds workarounds;
2039
2040        struct i915_frontbuffer_tracking fb_tracking;
2041
2042        struct intel_atomic_helper {
2043                struct llist_head free_list;
2044                struct work_struct free_work;
2045        } atomic_helper;
2046
2047        u16 orig_clock;
2048
2049        bool mchbar_need_disable;
2050
2051        struct intel_l3_parity l3_parity;
2052
2053        /* Cannot be determined by PCIID. You must always read a register. */
2054        u32 edram_cap;
2055
2056        /*
2057         * Protects RPS/RC6 register access and PCU communication.
2058         * Must be taken after struct_mutex if nested. Note that
2059         * this lock may be held for long periods of time when
2060         * talking to hw - so only take it when talking to hw!
2061         */
2062        struct mutex pcu_lock;
2063
2064        /* gen6+ GT PM state */
2065        struct intel_gen6_power_mgmt gt_pm;
2066
2067        /* ilk-only ips/rps state. Everything in here is protected by the global
2068         * mchdev_lock in intel_pm.c */
2069        struct intel_ilk_power_mgmt ips;
2070
2071        struct i915_power_domains power_domains;
2072
2073        struct i915_psr psr;
2074
2075        struct i915_gpu_error gpu_error;
2076
2077        struct drm_i915_gem_object *vlv_pctx;
2078
2079        /* list of fbdev register on this device */
2080        struct intel_fbdev *fbdev;
2081        struct work_struct fbdev_suspend_work;
2082
2083        struct drm_property *broadcast_rgb_property;
2084        struct drm_property *force_audio_property;
2085
2086        /* hda/i915 audio component */
2087        struct i915_audio_component *audio_component;
2088        bool audio_component_registered;
2089        /**
2090         * av_mutex - mutex for audio/video sync
2091         *
2092         */
2093        struct mutex av_mutex;
2094
2095        struct {
2096                struct list_head list;
2097                struct llist_head free_list;
2098                struct work_struct free_work;
2099
2100                /* The hw wants to have a stable context identifier for the
2101                 * lifetime of the context (for OA, PASID, faults, etc).
2102                 * This is limited in execlists to 21 bits.
2103                 */
2104                struct ida hw_ida;
2105#define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2106#define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
2107        } contexts;
2108
2109        u32 fdi_rx_config;
2110
2111        /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2112        u32 chv_phy_control;
2113        /*
2114         * Shadows for CHV DPLL_MD regs to keep the state
2115         * checker somewhat working in the presence hardware
2116         * crappiness (can't read out DPLL_MD for pipes B & C).
2117         */
2118        u32 chv_dpll_md[I915_MAX_PIPES];
2119        u32 bxt_phy_grc;
2120
2121        u32 suspend_count;
2122        bool power_domains_suspended;
2123        struct i915_suspend_saved_registers regfile;
2124        struct vlv_s0ix_state vlv_s0ix_state;
2125
2126        enum {
2127                I915_SAGV_UNKNOWN = 0,
2128                I915_SAGV_DISABLED,
2129                I915_SAGV_ENABLED,
2130                I915_SAGV_NOT_CONTROLLED
2131        } sagv_status;
2132
2133        struct {
2134                /*
2135                 * Raw watermark latency values:
2136                 * in 0.1us units for WM0,
2137                 * in 0.5us units for WM1+.
2138                 */
2139                /* primary */
2140                uint16_t pri_latency[5];
2141                /* sprite */
2142                uint16_t spr_latency[5];
2143                /* cursor */
2144                uint16_t cur_latency[5];
2145                /*
2146                 * Raw watermark memory latency values
2147                 * for SKL for all 8 levels
2148                 * in 1us units.
2149                 */
2150                uint16_t skl_latency[8];
2151
2152                /* current hardware state */
2153                union {
2154                        struct ilk_wm_values hw;
2155                        struct skl_wm_values skl_hw;
2156                        struct vlv_wm_values vlv;
2157                        struct g4x_wm_values g4x;
2158                };
2159
2160                uint8_t max_level;
2161
2162                /*
2163                 * Should be held around atomic WM register writing; also
2164                 * protects * intel_crtc->wm.active and
2165                 * cstate->wm.need_postvbl_update.
2166                 */
2167                struct mutex wm_mutex;
2168
2169                /*
2170                 * Set during HW readout of watermarks/DDB.  Some platforms
2171                 * need to know when we're still using BIOS-provided values
2172                 * (which we don't fully trust).
2173                 */
2174                bool distrust_bios_wm;
2175        } wm;
2176
2177        struct i915_runtime_pm runtime_pm;
2178
2179        struct {
2180                bool initialized;
2181
2182                struct kobject *metrics_kobj;
2183                struct ctl_table_header *sysctl_header;
2184
2185                /*
2186                 * Lock associated with adding/modifying/removing OA configs
2187                 * in dev_priv->perf.metrics_idr.
2188                 */
2189                struct mutex metrics_lock;
2190
2191                /*
2192                 * List of dynamic configurations, you need to hold
2193                 * dev_priv->perf.metrics_lock to access it.
2194                 */
2195                struct idr metrics_idr;
2196
2197                /*
2198                 * Lock associated with anything below within this structure
2199                 * except exclusive_stream.
2200                 */
2201                struct mutex lock;
2202                struct list_head streams;
2203
2204                struct {
2205                        /*
2206                         * The stream currently using the OA unit. If accessed
2207                         * outside a syscall associated to its file
2208                         * descriptor, you need to hold
2209                         * dev_priv->drm.struct_mutex.
2210                         */
2211                        struct i915_perf_stream *exclusive_stream;
2212
2213                        u32 specific_ctx_id;
2214
2215                        struct hrtimer poll_check_timer;
2216                        wait_queue_head_t poll_wq;
2217                        bool pollin;
2218
2219                        /**
2220                         * For rate limiting any notifications of spurious
2221                         * invalid OA reports
2222                         */
2223                        struct ratelimit_state spurious_report_rs;
2224
2225                        bool periodic;
2226                        int period_exponent;
2227
2228                        struct i915_oa_config test_config;
2229
2230                        struct {
2231                                struct i915_vma *vma;
2232                                u8 *vaddr;
2233                                u32 last_ctx_id;
2234                                int format;
2235                                int format_size;
2236
2237                                /**
2238                                 * Locks reads and writes to all head/tail state
2239                                 *
2240                                 * Consider: the head and tail pointer state
2241                                 * needs to be read consistently from a hrtimer
2242                                 * callback (atomic context) and read() fop
2243                                 * (user context) with tail pointer updates
2244                                 * happening in atomic context and head updates
2245                                 * in user context and the (unlikely)
2246                                 * possibility of read() errors needing to
2247                                 * reset all head/tail state.
2248                                 *
2249                                 * Note: Contention or performance aren't
2250                                 * currently a significant concern here
2251                                 * considering the relatively low frequency of
2252                                 * hrtimer callbacks (5ms period) and that
2253                                 * reads typically only happen in response to a
2254                                 * hrtimer event and likely complete before the
2255                                 * next callback.
2256                                 *
2257                                 * Note: This lock is not held *while* reading
2258                                 * and copying data to userspace so the value
2259                                 * of head observed in htrimer callbacks won't
2260                                 * represent any partial consumption of data.
2261                                 */
2262                                spinlock_t ptr_lock;
2263
2264                                /**
2265                                 * One 'aging' tail pointer and one 'aged'
2266                                 * tail pointer ready to used for reading.
2267                                 *
2268                                 * Initial values of 0xffffffff are invalid
2269                                 * and imply that an update is required
2270                                 * (and should be ignored by an attempted
2271                                 * read)
2272                                 */
2273                                struct {
2274                                        u32 offset;
2275                                } tails[2];
2276
2277                                /**
2278                                 * Index for the aged tail ready to read()
2279                                 * data up to.
2280                                 */
2281                                unsigned int aged_tail_idx;
2282
2283                                /**
2284                                 * A monotonic timestamp for when the current
2285                                 * aging tail pointer was read; used to
2286                                 * determine when it is old enough to trust.
2287                                 */
2288                                u64 aging_timestamp;
2289
2290                                /**
2291                                 * Although we can always read back the head
2292                                 * pointer register, we prefer to avoid
2293                                 * trusting the HW state, just to avoid any
2294                                 * risk that some hardware condition could
2295                                 * somehow bump the head pointer unpredictably
2296                                 * and cause us to forward the wrong OA buffer
2297                                 * data to userspace.
2298                                 */
2299                                u32 head;
2300                        } oa_buffer;
2301
2302                        u32 gen7_latched_oastatus1;
2303                        u32 ctx_oactxctrl_offset;
2304                        u32 ctx_flexeu0_offset;
2305
2306                        /**
2307                         * The RPT_ID/reason field for Gen8+ includes a bit
2308                         * to determine if the CTX ID in the report is valid
2309                         * but the specific bit differs between Gen 8 and 9
2310                         */
2311                        u32 gen8_valid_ctx_bit;
2312
2313                        struct i915_oa_ops ops;
2314                        const struct i915_oa_format *oa_formats;
2315                } oa;
2316        } perf;
2317
2318        /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2319        struct {
2320                void (*resume)(struct drm_i915_private *);
2321                void (*cleanup_engine)(struct intel_engine_cs *engine);
2322
2323                struct list_head timelines;
2324                struct i915_gem_timeline global_timeline;
2325                u32 active_requests;
2326
2327                /**
2328                 * Is the GPU currently considered idle, or busy executing
2329                 * userspace requests? Whilst idle, we allow runtime power
2330                 * management to power down the hardware and display clocks.
2331                 * In order to reduce the effect on performance, there
2332                 * is a slight delay before we do so.
2333                 */
2334                bool awake;
2335
2336                /**
2337                 * The number of times we have woken up.
2338                 */
2339                unsigned int epoch;
2340#define I915_EPOCH_INVALID 0
2341
2342                /**
2343                 * We leave the user IRQ off as much as possible,
2344                 * but this means that requests will finish and never
2345                 * be retired once the system goes idle. Set a timer to
2346                 * fire periodically while the ring is running. When it
2347                 * fires, go retire requests.
2348                 */
2349                struct delayed_work retire_work;
2350
2351                /**
2352                 * When we detect an idle GPU, we want to turn on
2353                 * powersaving features. So once we see that there
2354                 * are no more requests outstanding and no more
2355                 * arrive within a small period of time, we fire
2356                 * off the idle_work.
2357                 */
2358                struct delayed_work idle_work;
2359
2360                ktime_t last_init_time;
2361        } gt;
2362
2363        /* perform PHY state sanity checks? */
2364        bool chv_phy_assert[2];
2365
2366        bool ipc_enabled;
2367
2368        /* Used to save the pipe-to-encoder mapping for audio */
2369        struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2370
2371        /* necessary resource sharing with HDMI LPE audio driver. */
2372        struct {
2373                struct platform_device *platdev;
2374                int     irq;
2375        } lpe_audio;
2376
2377        struct i915_pmu pmu;
2378
2379        /*
2380         * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2381         * will be rejected. Instead look for a better place.
2382         */
2383};
2384
2385static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2386{
2387        return container_of(dev, struct drm_i915_private, drm);
2388}
2389
2390static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2391{
2392        return to_i915(dev_get_drvdata(kdev));
2393}
2394
2395static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2396{
2397        return container_of(guc, struct drm_i915_private, guc);
2398}
2399
2400static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2401{
2402        return container_of(huc, struct drm_i915_private, huc);
2403}
2404
2405/* Simple iterator over all initialised engines */
2406#define for_each_engine(engine__, dev_priv__, id__) \
2407        for ((id__) = 0; \
2408             (id__) < I915_NUM_ENGINES; \
2409             (id__)++) \
2410                for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2411
2412/* Iterator over subset of engines selected by mask */
2413#define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2414        for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;        \
2415             tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2416
2417enum hdmi_force_audio {
2418        HDMI_AUDIO_OFF_DVI = -2,        /* no aux data for HDMI-DVI converter */
2419        HDMI_AUDIO_OFF,                 /* force turn off HDMI audio */
2420        HDMI_AUDIO_AUTO,                /* trust EDID */
2421        HDMI_AUDIO_ON,                  /* force turn on HDMI audio */
2422};
2423
2424#define I915_GTT_OFFSET_NONE ((u32)-1)
2425
2426/*
2427 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2428 * considered to be the frontbuffer for the given plane interface-wise. This
2429 * doesn't mean that the hw necessarily already scans it out, but that any
2430 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2431 *
2432 * We have one bit per pipe and per scanout plane type.
2433 */
2434#define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2435#define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2436        BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2437        BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2438        BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2439})
2440#define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2441        BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2442#define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2443        GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2444                INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2445
2446/*
2447 * Optimised SGL iterator for GEM objects
2448 */
2449static __always_inline struct sgt_iter {
2450        struct scatterlist *sgp;
2451        union {
2452                unsigned long pfn;
2453                dma_addr_t dma;
2454        };
2455        unsigned int curr;
2456        unsigned int max;
2457} __sgt_iter(struct scatterlist *sgl, bool dma) {
2458        struct sgt_iter s = { .sgp = sgl };
2459
2460        if (s.sgp) {
2461                s.max = s.curr = s.sgp->offset;
2462                s.max += s.sgp->length;
2463                if (dma)
2464                        s.dma = sg_dma_address(s.sgp);
2465                else
2466                        s.pfn = page_to_pfn(sg_page(s.sgp));
2467        }
2468
2469        return s;
2470}
2471
2472static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2473{
2474        ++sg;
2475        if (unlikely(sg_is_chain(sg)))
2476                sg = sg_chain_ptr(sg);
2477        return sg;
2478}
2479
2480/**
2481 * __sg_next - return the next scatterlist entry in a list
2482 * @sg:         The current sg entry
2483 *
2484 * Description:
2485 *   If the entry is the last, return NULL; otherwise, step to the next
2486 *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2487 *   otherwise just return the pointer to the current element.
2488 **/
2489static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2490{
2491#ifdef CONFIG_DEBUG_SG
2492        BUG_ON(sg->sg_magic != SG_MAGIC);
2493#endif
2494        return sg_is_last(sg) ? NULL : ____sg_next(sg);
2495}
2496
2497/**
2498 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2499 * @__dmap:     DMA address (output)
2500 * @__iter:     'struct sgt_iter' (iterator state, internal)
2501 * @__sgt:      sg_table to iterate over (input)
2502 */
2503#define for_each_sgt_dma(__dmap, __iter, __sgt)                         \
2504        for ((__iter) = __sgt_iter((__sgt)->sgl, true);                 \
2505             ((__dmap) = (__iter).dma + (__iter).curr);                 \
2506             (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?           \
2507             (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2508
2509/**
2510 * for_each_sgt_page - iterate over the pages of the given sg_table
2511 * @__pp:       page pointer (output)
2512 * @__iter:     'struct sgt_iter' (iterator state, internal)
2513 * @__sgt:      sg_table to iterate over (input)
2514 */
2515#define for_each_sgt_page(__pp, __iter, __sgt)                          \
2516        for ((__iter) = __sgt_iter((__sgt)->sgl, false);                \
2517             ((__pp) = (__iter).pfn == 0 ? NULL :                       \
2518              pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2519             (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?           \
2520             (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2521
2522static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2523{
2524        unsigned int page_sizes;
2525
2526        page_sizes = 0;
2527        while (sg) {
2528                GEM_BUG_ON(sg->offset);
2529                GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2530                page_sizes |= sg->length;
2531                sg = __sg_next(sg);
2532        }
2533
2534        return page_sizes;
2535}
2536
2537static inline unsigned int i915_sg_segment_size(void)
2538{
2539        unsigned int size = swiotlb_max_segment();
2540
2541        if (size == 0)
2542                return SCATTERLIST_MAX_SEGMENT;
2543
2544        size = rounddown(size, PAGE_SIZE);
2545        /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2546        if (size < PAGE_SIZE)
2547                size = PAGE_SIZE;
2548
2549        return size;
2550}
2551
2552static inline const struct intel_device_info *
2553intel_info(const struct drm_i915_private *dev_priv)
2554{
2555        return &dev_priv->info;
2556}
2557
2558#define INTEL_INFO(dev_priv)    intel_info((dev_priv))
2559
2560#define INTEL_GEN(dev_priv)     ((dev_priv)->info.gen)
2561#define INTEL_DEVID(dev_priv)   ((dev_priv)->info.device_id)
2562
2563#define REVID_FOREVER           0xff
2564#define INTEL_REVID(dev_priv)   ((dev_priv)->drm.pdev->revision)
2565
2566#define GEN_FOREVER (0)
2567
2568#define INTEL_GEN_MASK(s, e) ( \
2569        BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2570        BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2571        GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2572                (s) != GEN_FOREVER ? (s) - 1 : 0) \
2573)
2574
2575/*
2576 * Returns true if Gen is in inclusive range [Start, End].
2577 *
2578 * Use GEN_FOREVER for unbound start and or end.
2579 */
2580#define IS_GEN(dev_priv, s, e) \
2581        (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2582
2583/*
2584 * Return true if revision is in range [since,until] inclusive.
2585 *
2586 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2587 */
2588#define IS_REVID(p, since, until) \
2589        (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2590
2591#define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2592
2593#define IS_I830(dev_priv)       IS_PLATFORM(dev_priv, INTEL_I830)
2594#define IS_I845G(dev_priv)      IS_PLATFORM(dev_priv, INTEL_I845G)
2595#define IS_I85X(dev_priv)       IS_PLATFORM(dev_priv, INTEL_I85X)
2596#define IS_I865G(dev_priv)      IS_PLATFORM(dev_priv, INTEL_I865G)
2597#define IS_I915G(dev_priv)      IS_PLATFORM(dev_priv, INTEL_I915G)
2598#define IS_I915GM(dev_priv)     IS_PLATFORM(dev_priv, INTEL_I915GM)
2599#define IS_I945G(dev_priv)      IS_PLATFORM(dev_priv, INTEL_I945G)
2600#define IS_I945GM(dev_priv)     IS_PLATFORM(dev_priv, INTEL_I945GM)
2601#define IS_I965G(dev_priv)      IS_PLATFORM(dev_priv, INTEL_I965G)
2602#define IS_I965GM(dev_priv)     IS_PLATFORM(dev_priv, INTEL_I965GM)
2603#define IS_G45(dev_priv)        IS_PLATFORM(dev_priv, INTEL_G45)
2604#define IS_GM45(dev_priv)       IS_PLATFORM(dev_priv, INTEL_GM45)
2605#define IS_G4X(dev_priv)        (IS_G45(dev_priv) || IS_GM45(dev_priv))
2606#define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2607#define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2608#define IS_PINEVIEW(dev_priv)   IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2609#define IS_G33(dev_priv)        IS_PLATFORM(dev_priv, INTEL_G33)
2610#define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2611#define IS_IVYBRIDGE(dev_priv)  IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2612#define IS_IVB_GT1(dev_priv)    (IS_IVYBRIDGE(dev_priv) && \
2613                                 (dev_priv)->info.gt == 1)
2614#define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2615#define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2616#define IS_HASWELL(dev_priv)    IS_PLATFORM(dev_priv, INTEL_HASWELL)
2617#define IS_BROADWELL(dev_priv)  IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2618#define IS_SKYLAKE(dev_priv)    IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2619#define IS_BROXTON(dev_priv)    IS_PLATFORM(dev_priv, INTEL_BROXTON)
2620#define IS_KABYLAKE(dev_priv)   IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2621#define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2622#define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2623#define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2624#define IS_ICELAKE(dev_priv)    IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2625#define IS_MOBILE(dev_priv)     ((dev_priv)->info.is_mobile)
2626#define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2627                                    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2628#define IS_BDW_ULT(dev_priv)    (IS_BROADWELL(dev_priv) && \
2629                                 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||       \
2630                                 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||        \
2631                                 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2632/* ULX machines are also considered ULT. */
2633#define IS_BDW_ULX(dev_priv)    (IS_BROADWELL(dev_priv) && \
2634                                 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2635#define IS_BDW_GT3(dev_priv)    (IS_BROADWELL(dev_priv) && \
2636                                 (dev_priv)->info.gt == 3)
2637#define IS_HSW_ULT(dev_priv)    (IS_HASWELL(dev_priv) && \
2638                                 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2639#define IS_HSW_GT3(dev_priv)    (IS_HASWELL(dev_priv) && \
2640                                 (dev_priv)->info.gt == 3)
2641/* ULX machines are also considered ULT. */
2642#define IS_HSW_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0A0E || \
2643                                 INTEL_DEVID(dev_priv) == 0x0A1E)
2644#define IS_SKL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x1906 || \
2645                                 INTEL_DEVID(dev_priv) == 0x1913 || \
2646                                 INTEL_DEVID(dev_priv) == 0x1916 || \
2647                                 INTEL_DEVID(dev_priv) == 0x1921 || \
2648                                 INTEL_DEVID(dev_priv) == 0x1926)
2649#define IS_SKL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x190E || \
2650                                 INTEL_DEVID(dev_priv) == 0x1915 || \
2651                                 INTEL_DEVID(dev_priv) == 0x191E)
2652#define IS_KBL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x5906 || \
2653                                 INTEL_DEVID(dev_priv) == 0x5913 || \
2654                                 INTEL_DEVID(dev_priv) == 0x5916 || \
2655                                 INTEL_DEVID(dev_priv) == 0x5921 || \
2656                                 INTEL_DEVID(dev_priv) == 0x5926)
2657#define IS_KBL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x590E || \
2658                                 INTEL_DEVID(dev_priv) == 0x5915 || \
2659                                 INTEL_DEVID(dev_priv) == 0x591E)
2660#define IS_SKL_GT2(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2661                                 (dev_priv)->info.gt == 2)
2662#define IS_SKL_GT3(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2663                                 (dev_priv)->info.gt == 3)
2664#define IS_SKL_GT4(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2665                                 (dev_priv)->info.gt == 4)
2666#define IS_KBL_GT2(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2667                                 (dev_priv)->info.gt == 2)
2668#define IS_KBL_GT3(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2669                                 (dev_priv)->info.gt == 3)
2670#define IS_CFL_ULT(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2671                                 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2672#define IS_CFL_GT2(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2673                                 (dev_priv)->info.gt == 2)
2674#define IS_CFL_GT3(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2675                                 (dev_priv)->info.gt == 3)
2676#define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2677                                        (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2678
2679#define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2680
2681#define SKL_REVID_A0            0x0
2682#define SKL_REVID_B0            0x1
2683#define SKL_REVID_C0            0x2
2684#define SKL_REVID_D0            0x3
2685#define SKL_REVID_E0            0x4
2686#define SKL_REVID_F0            0x5
2687#define SKL_REVID_G0            0x6
2688#define SKL_REVID_H0            0x7
2689
2690#define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2691
2692#define BXT_REVID_A0            0x0
2693#define BXT_REVID_A1            0x1
2694#define BXT_REVID_B0            0x3
2695#define BXT_REVID_B_LAST        0x8
2696#define BXT_REVID_C0            0x9
2697
2698#define IS_BXT_REVID(dev_priv, since, until) \
2699        (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2700
2701#define KBL_REVID_A0            0x0
2702#define KBL_REVID_B0            0x1
2703#define KBL_REVID_C0            0x2
2704#define KBL_REVID_D0            0x3
2705#define KBL_REVID_E0            0x4
2706
2707#define IS_KBL_REVID(dev_priv, since, until) \
2708        (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2709
2710#define GLK_REVID_A0            0x0
2711#define GLK_REVID_A1            0x1
2712
2713#define IS_GLK_REVID(dev_priv, since, until) \
2714        (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2715
2716#define CNL_REVID_A0            0x0
2717#define CNL_REVID_B0            0x1
2718#define CNL_REVID_C0            0x2
2719
2720#define IS_CNL_REVID(p, since, until) \
2721        (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2722
2723/*
2724 * The genX designation typically refers to the render engine, so render
2725 * capability related checks should use IS_GEN, while display and other checks
2726 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2727 * chips, etc.).
2728 */
2729#define IS_GEN2(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(1)))
2730#define IS_GEN3(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(2)))
2731#define IS_GEN4(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(3)))
2732#define IS_GEN5(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(4)))
2733#define IS_GEN6(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(5)))
2734#define IS_GEN7(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(6)))
2735#define IS_GEN8(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(7)))
2736#define IS_GEN9(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(8)))
2737#define IS_GEN10(dev_priv)      (!!((dev_priv)->info.gen_mask & BIT(9)))
2738#define IS_GEN11(dev_priv)      (!!((dev_priv)->info.gen_mask & BIT(10)))
2739
2740#define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2741#define IS_GEN9_LP(dev_priv)    (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2742#define IS_GEN9_BC(dev_priv)    (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2743
2744#define ENGINE_MASK(id) BIT(id)
2745#define RENDER_RING     ENGINE_MASK(RCS)
2746#define BSD_RING        ENGINE_MASK(VCS)
2747#define BLT_RING        ENGINE_MASK(BCS)
2748#define VEBOX_RING      ENGINE_MASK(VECS)
2749#define BSD2_RING       ENGINE_MASK(VCS2)
2750#define BSD3_RING       ENGINE_MASK(VCS3)
2751#define BSD4_RING       ENGINE_MASK(VCS4)
2752#define VEBOX2_RING     ENGINE_MASK(VECS2)
2753#define ALL_ENGINES     (~0)
2754
2755#define HAS_ENGINE(dev_priv, id) \
2756        (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2757
2758#define HAS_BSD(dev_priv)       HAS_ENGINE(dev_priv, VCS)
2759#define HAS_BSD2(dev_priv)      HAS_ENGINE(dev_priv, VCS2)
2760#define HAS_BLT(dev_priv)       HAS_ENGINE(dev_priv, BCS)
2761#define HAS_VEBOX(dev_priv)     HAS_ENGINE(dev_priv, VECS)
2762
2763#define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2764
2765#define HAS_LLC(dev_priv)       ((dev_priv)->info.has_llc)
2766#define HAS_SNOOP(dev_priv)     ((dev_priv)->info.has_snoop)
2767#define HAS_EDRAM(dev_priv)     (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2768#define HAS_WT(dev_priv)        ((IS_HASWELL(dev_priv) || \
2769                                 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2770
2771#define HWS_NEEDS_PHYSICAL(dev_priv)    ((dev_priv)->info.hws_needs_physical)
2772
2773#define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2774                ((dev_priv)->info.has_logical_ring_contexts)
2775#define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2776                ((dev_priv)->info.has_logical_ring_elsq)
2777#define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2778                ((dev_priv)->info.has_logical_ring_preemption)
2779
2780#define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2781
2782#define USES_PPGTT(dev_priv)            (i915_modparams.enable_ppgtt)
2783#define USES_FULL_PPGTT(dev_priv)       (i915_modparams.enable_ppgtt >= 2)
2784#define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
2785#define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2786        GEM_BUG_ON((sizes) == 0); \
2787        ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2788})
2789
2790#define HAS_OVERLAY(dev_priv)            ((dev_priv)->info.has_overlay)
2791#define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2792                ((dev_priv)->info.overlay_needs_physical)
2793
2794/* Early gen2 have a totally busted CS tlb and require pinned batches. */
2795#define HAS_BROKEN_CS_TLB(dev_priv)     (IS_I830(dev_priv) || IS_I845G(dev_priv))
2796
2797/* WaRsDisableCoarsePowerGating:skl,cnl */
2798#define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2799        (IS_CANNONLAKE(dev_priv) || \
2800         IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2801
2802/*
2803 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2804 * even when in MSI mode. This results in spurious interrupt warnings if the
2805 * legacy irq no. is shared with another device. The kernel then disables that
2806 * interrupt source and so prevents the other device from working properly.
2807 *
2808 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
2809 * interrupts.
2810 */
2811#define HAS_AUX_IRQ(dev_priv)   true
2812#define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2813
2814/* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2815 * rows, which changed the alignment requirements and fence programming.
2816 */
2817#define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2818                                         !(IS_I915G(dev_priv) || \
2819                                         IS_I915GM(dev_priv)))
2820#define SUPPORTS_TV(dev_priv)           ((dev_priv)->info.supports_tv)
2821#define I915_HAS_HOTPLUG(dev_priv)      ((dev_priv)->info.has_hotplug)
2822
2823#define HAS_FW_BLC(dev_priv)    (INTEL_GEN(dev_priv) > 2)
2824#define HAS_FBC(dev_priv)       ((dev_priv)->info.has_fbc)
2825#define HAS_CUR_FBC(dev_priv)   (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2826
2827#define HAS_IPS(dev_priv)       (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2828
2829#define HAS_DP_MST(dev_priv)    ((dev_priv)->info.has_dp_mst)
2830
2831#define HAS_DDI(dev_priv)                ((dev_priv)->info.has_ddi)
2832#define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2833#define HAS_PSR(dev_priv)                ((dev_priv)->info.has_psr)
2834
2835#define HAS_RC6(dev_priv)                ((dev_priv)->info.has_rc6)
2836#define HAS_RC6p(dev_priv)               ((dev_priv)->info.has_rc6p)
2837#define HAS_RC6pp(dev_priv)              (false) /* HW was never validated */
2838
2839#define HAS_CSR(dev_priv)       ((dev_priv)->info.has_csr)
2840
2841#define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2842#define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2843
2844#define HAS_IPC(dev_priv)                ((dev_priv)->info.has_ipc)
2845
2846/*
2847 * For now, anything with a GuC requires uCode loading, and then supports
2848 * command submission once loaded. But these are logically independent
2849 * properties, so we have separate macros to test them.
2850 */
2851#define HAS_GUC(dev_priv)       ((dev_priv)->info.has_guc)
2852#define HAS_GUC_CT(dev_priv)    ((dev_priv)->info.has_guc_ct)
2853#define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2854#define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2855
2856/* For now, anything with a GuC has also HuC */
2857#define HAS_HUC(dev_priv)       (HAS_GUC(dev_priv))
2858#define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2859
2860/* Having a GuC is not the same as using a GuC */
2861#define USES_GUC(dev_priv)              intel_uc_is_using_guc()
2862#define USES_GUC_SUBMISSION(dev_priv)   intel_uc_is_using_guc_submission()
2863#define USES_HUC(dev_priv)              intel_uc_is_using_huc()
2864
2865#define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2866
2867#define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2868
2869#define INTEL_PCH_DEVICE_ID_MASK                0xff80
2870#define INTEL_PCH_IBX_DEVICE_ID_TYPE            0x3b00
2871#define INTEL_PCH_CPT_DEVICE_ID_TYPE            0x1c00
2872#define INTEL_PCH_PPT_DEVICE_ID_TYPE            0x1e00
2873#define INTEL_PCH_LPT_DEVICE_ID_TYPE            0x8c00
2874#define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE         0x9c00
2875#define INTEL_PCH_WPT_DEVICE_ID_TYPE            0x8c80
2876#define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE         0x9c80
2877#define INTEL_PCH_SPT_DEVICE_ID_TYPE            0xA100
2878#define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE         0x9D00
2879#define INTEL_PCH_KBP_DEVICE_ID_TYPE            0xA280
2880#define INTEL_PCH_CNP_DEVICE_ID_TYPE            0xA300
2881#define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE         0x9D80
2882#define INTEL_PCH_ICP_DEVICE_ID_TYPE            0x3480
2883#define INTEL_PCH_P2X_DEVICE_ID_TYPE            0x7100
2884#define INTEL_PCH_P3X_DEVICE_ID_TYPE            0x7000
2885#define INTEL_PCH_QEMU_DEVICE_ID_TYPE           0x2900 /* qemu q35 has 2918 */
2886
2887#define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2888#define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2889#define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2890#define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2891#define HAS_PCH_CNP_LP(dev_priv) \
2892        (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2893#define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2894#define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2895#define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2896#define HAS_PCH_LPT_LP(dev_priv) \
2897        (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2898         INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2899#define HAS_PCH_LPT_H(dev_priv) \
2900        (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2901         INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2902#define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2903#define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2904#define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2905#define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2906
2907#define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2908
2909#define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2910
2911/* DPF == dynamic parity feature */
2912#define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2913#define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2914                                 2 : HAS_L3_DPF(dev_priv))
2915
2916#define GT_FREQUENCY_MULTIPLIER 50
2917#define GEN9_FREQ_SCALER 3
2918
2919#include "i915_trace.h"
2920
2921static inline bool intel_vtd_active(void)
2922{
2923#ifdef CONFIG_INTEL_IOMMU
2924        if (intel_iommu_gfx_mapped)
2925                return true;
2926#endif
2927        return false;
2928}
2929
2930static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2931{
2932        return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2933}
2934
2935static inline bool
2936intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2937{
2938        return IS_BROXTON(dev_priv) && intel_vtd_active();
2939}
2940
2941int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2942                                int enable_ppgtt);
2943
2944/* i915_drv.c */
2945void __printf(3, 4)
2946__i915_printk(struct drm_i915_private *dev_priv, const char *level,
2947              const char *fmt, ...);
2948
2949#define i915_report_error(dev_priv, fmt, ...)                              \
2950        __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2951
2952#ifdef CONFIG_COMPAT
2953extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2954                              unsigned long arg);
2955#else
2956#define i915_compat_ioctl NULL
2957#endif
2958extern const struct dev_pm_ops i915_pm_ops;
2959
2960extern int i915_driver_load(struct pci_dev *pdev,
2961                            const struct pci_device_id *ent);
2962extern void i915_driver_unload(struct drm_device *dev);
2963extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2964extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2965
2966#define I915_RESET_QUIET BIT(0)
2967extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
2968extern int i915_reset_engine(struct intel_engine_cs *engine,
2969                             unsigned int flags);
2970
2971extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2972extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2973extern int intel_guc_reset_engine(struct intel_guc *guc,
2974                                  struct intel_engine_cs *engine);
2975extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2976extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2977extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2978extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2979extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2980extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2981int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2982
2983int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2984int intel_engines_init(struct drm_i915_private *dev_priv);
2985
2986/* intel_hotplug.c */
2987void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2988                           u32 pin_mask, u32 long_mask);
2989void intel_hpd_init(struct drm_i915_private *dev_priv);
2990void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2991void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2992enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv,
2993                                enum hpd_pin pin);
2994enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2995                                   enum port port);
2996bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2997void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2998
2999/* i915_irq.c */
3000static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3001{
3002        unsigned long delay;
3003
3004        if (unlikely(!i915_modparams.enable_hangcheck))
3005                return;
3006
3007        /* Don't continually defer the hangcheck so that it is always run at
3008         * least once after work has been scheduled on any ring. Otherwise,
3009         * we will ignore a hung ring if a second ring is kept busy.
3010         */
3011
3012        delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3013        queue_delayed_work(system_long_wq,
3014                           &dev_priv->gpu_error.hangcheck_work, delay);
3015}
3016
3017__printf(3, 4)
3018void i915_handle_error(struct drm_i915_private *dev_priv,
3019                       u32 engine_mask,
3020                       const char *fmt, ...);
3021
3022extern void intel_irq_init(struct drm_i915_private *dev_priv);
3023extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3024int intel_irq_install(struct drm_i915_private *dev_priv);
3025void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3026
3027static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3028{
3029        return dev_priv->gvt;
3030}
3031
3032static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3033{
3034        return dev_priv->vgpu.active;
3035}
3036
3037u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3038                              enum pipe pipe);
3039void
3040i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3041                     u32 status_mask);
3042
3043void
3044i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3045                      u32 status_mask);
3046
3047void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3048void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3049void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3050                                   uint32_t mask,
3051                                   uint32_t bits);
3052void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3053                            uint32_t interrupt_mask,
3054                            uint32_t enabled_irq_mask);
3055static inline void
3056ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3057{
3058        ilk_update_display_irq(dev_priv, bits, bits);
3059}
3060static inline void
3061ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3062{
3063        ilk_update_display_irq(dev_priv, bits, 0);
3064}
3065void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3066                         enum pipe pipe,
3067                         uint32_t interrupt_mask,
3068                         uint32_t enabled_irq_mask);
3069static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3070                                       enum pipe pipe, uint32_t bits)
3071{
3072        bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3073}
3074static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3075                                        enum pipe pipe, uint32_t bits)
3076{
3077        bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3078}
3079void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3080                                  uint32_t interrupt_mask,
3081                                  uint32_t enabled_irq_mask);
3082static inline void
3083ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3084{
3085        ibx_display_interrupt_update(dev_priv, bits, bits);
3086}
3087static inline void
3088ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3089{
3090        ibx_display_interrupt_update(dev_priv, bits, 0);
3091}
3092
3093/* i915_gem.c */
3094int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3095                          struct drm_file *file_priv);
3096int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3097                         struct drm_file *file_priv);
3098int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3099                          struct drm_file *file_priv);
3100int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3101                        struct drm_file *file_priv);
3102int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3103                        struct drm_file *file_priv);
3104int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3105                              struct drm_file *file_priv);
3106int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3107                             struct drm_file *file_priv);
3108int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3109                              struct drm_file *file_priv);
3110int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3111                               struct drm_file *file_priv);
3112int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3113                        struct drm_file *file_priv);
3114int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3115                               struct drm_file *file);
3116int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3117                               struct drm_file *file);
3118int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3119                            struct drm_file *file_priv);
3120int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3121                           struct drm_file *file_priv);
3122int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3123                              struct drm_file *file_priv);
3124int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3125                              struct drm_file *file_priv);
3126int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3127void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3128int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3129                           struct drm_file *file);
3130int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3131                                struct drm_file *file_priv);
3132int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3133                        struct drm_file *file_priv);
3134void i915_gem_sanitize(struct drm_i915_private *i915);
3135int i915_gem_load_init(struct drm_i915_private *dev_priv);
3136void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3137void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3138int i915_gem_freeze(struct drm_i915_private *dev_priv);
3139int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3140
3141void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3142void i915_gem_object_free(struct drm_i915_gem_object *obj);
3143void i915_gem_object_init(struct drm_i915_gem_object *obj,
3144                         const struct drm_i915_gem_object_ops *ops);
3145struct drm_i915_gem_object *
3146i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3147struct drm_i915_gem_object *
3148i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3149                                 const void *data, size_t size);
3150void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3151void i915_gem_free_object(struct drm_gem_object *obj);
3152
3153static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3154{
3155        if (!atomic_read(&i915->mm.free_count))
3156                return;
3157
3158        /* A single pass should suffice to release all the freed objects (along
3159         * most call paths) , but be a little more paranoid in that freeing
3160         * the objects does take a little amount of time, during which the rcu
3161         * callbacks could have added new objects into the freed list, and
3162         * armed the work again.
3163         */
3164        do {
3165                rcu_barrier();
3166        } while (flush_work(&i915->mm.free_work));
3167}
3168
3169static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3170{
3171        /*
3172         * Similar to objects above (see i915_gem_drain_freed-objects), in
3173         * general we have workers that are armed by RCU and then rearm
3174         * themselves in their callbacks. To be paranoid, we need to
3175         * drain the workqueue a second time after waiting for the RCU
3176         * grace period so that we catch work queued via RCU from the first
3177         * pass. As neither drain_workqueue() nor flush_workqueue() report
3178         * a result, we make an assumption that we only don't require more
3179         * than 2 passes to catch all recursive RCU delayed work.
3180         *
3181         */
3182        int pass = 2;
3183        do {
3184                rcu_barrier();
3185                drain_workqueue(i915->wq);
3186        } while (--pass);
3187}
3188
3189struct i915_vma * __must_check
3190i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3191                         const struct i915_ggtt_view *view,
3192                         u64 size,
3193                         u64 alignment,
3194                         u64 flags);
3195
3196int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3197void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3198
3199void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3200
3201static inline int __sg_page_count(const struct scatterlist *sg)
3202{
3203        return sg->length >> PAGE_SHIFT;
3204}
3205
3206struct scatterlist *
3207i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3208                       unsigned int n, unsigned int *offset);
3209
3210struct page *
3211i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3212                         unsigned int n);
3213
3214struct page *
3215i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3216                               unsigned int n);
3217
3218dma_addr_t
3219i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3220                                unsigned long n);
3221
3222void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3223                                 struct sg_table *pages,
3224                                 unsigned int sg_page_sizes);
3225int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3226
3227static inline int __must_check
3228i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3229{
3230        might_lock(&obj->mm.lock);
3231
3232        if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3233                return 0;
3234
3235        return __i915_gem_object_get_pages(obj);
3236}
3237
3238static inline bool
3239i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3240{
3241        return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3242}
3243
3244static inline void
3245__i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3246{
3247        GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3248
3249        atomic_inc(&obj->mm.pages_pin_count);
3250}
3251
3252static inline bool
3253i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3254{
3255        return atomic_read(&obj->mm.pages_pin_count);
3256}
3257
3258static inline void
3259__i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3260{
3261        GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3262        GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3263
3264        atomic_dec(&obj->mm.pages_pin_count);
3265}
3266
3267static inline void
3268i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3269{
3270        __i915_gem_object_unpin_pages(obj);
3271}
3272
3273enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3274        I915_MM_NORMAL = 0,
3275        I915_MM_SHRINKER
3276};
3277
3278void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3279                                 enum i915_mm_subclass subclass);
3280void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3281
3282enum i915_map_type {
3283        I915_MAP_WB = 0,
3284        I915_MAP_WC,
3285#define I915_MAP_OVERRIDE BIT(31)
3286        I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3287        I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3288};
3289
3290/**
3291 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3292 * @obj: the object to map into kernel address space
3293 * @type: the type of mapping, used to select pgprot_t
3294 *
3295 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3296 * pages and then returns a contiguous mapping of the backing storage into
3297 * the kernel address space. Based on the @type of mapping, the PTE will be
3298 * set to either WriteBack or WriteCombine (via pgprot_t).
3299 *
3300 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3301 * mapping is no longer required.
3302 *
3303 * Returns the pointer through which to access the mapped object, or an
3304 * ERR_PTR() on error.
3305 */
3306void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3307                                           enum i915_map_type type);
3308
3309/**
3310 * i915_gem_object_unpin_map - releases an earlier mapping
3311 * @obj: the object to unmap
3312 *
3313 * After pinning the object and mapping its pages, once you are finished
3314 * with your access, call i915_gem_object_unpin_map() to release the pin
3315 * upon the mapping. Once the pin count reaches zero, that mapping may be
3316 * removed.
3317 */
3318static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3319{
3320        i915_gem_object_unpin_pages(obj);
3321}
3322
3323int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3324                                    unsigned int *needs_clflush);
3325int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3326                                     unsigned int *needs_clflush);
3327#define CLFLUSH_BEFORE  BIT(0)
3328#define CLFLUSH_AFTER   BIT(1)
3329#define CLFLUSH_FLAGS   (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3330
3331static inline void
3332i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3333{
3334        i915_gem_object_unpin_pages(obj);
3335}
3336
3337int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3338void i915_vma_move_to_active(struct i915_vma *vma,
3339                             struct i915_request *rq,
3340                             unsigned int flags);
3341int i915_gem_dumb_create(struct drm_file *file_priv,
3342                         struct drm_device *dev,
3343                         struct drm_mode_create_dumb *args);
3344int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3345                      uint32_t handle, uint64_t *offset);
3346int i915_gem_mmap_gtt_version(void);
3347
3348void i915_gem_track_fb(struct drm_i915_gem_object *old,
3349                       struct drm_i915_gem_object *new,
3350                       unsigned frontbuffer_bits);
3351
3352int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3353
3354struct i915_request *
3355i915_gem_find_active_request(struct intel_engine_cs *engine);
3356
3357static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3358{
3359        return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3360}
3361
3362static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3363{
3364        return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3365}
3366
3367static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3368{
3369        return unlikely(test_bit(I915_WEDGED, &error->flags));
3370}
3371
3372static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3373{
3374        return i915_reset_backoff(error) | i915_terminally_wedged(error);
3375}
3376
3377static inline u32 i915_reset_count(struct i915_gpu_error *error)
3378{
3379        return READ_ONCE(error->reset_count);
3380}
3381
3382static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3383                                          struct intel_engine_cs *engine)
3384{
3385        return READ_ONCE(error->reset_engine_count[engine->id]);
3386}
3387
3388struct i915_request *
3389i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3390int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3391void i915_gem_reset(struct drm_i915_private *dev_priv);
3392void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3393void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3394void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3395bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3396void i915_gem_reset_engine(struct intel_engine_cs *engine,
3397                           struct i915_request *request);
3398
3399void i915_gem_init_mmio(struct drm_i915_private *i915);
3400int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3401int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3402void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3403void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3404int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3405                           unsigned int flags);
3406int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3407void i915_gem_resume(struct drm_i915_private *dev_priv);
3408int i915_gem_fault(struct vm_fault *vmf);
3409int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3410                         unsigned int flags,
3411                         long timeout,
3412                         struct intel_rps_client *rps);
3413int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3414                                  unsigned int flags,
3415                                  int priority);
3416#define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3417
3418int __must_check
3419i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3420int __must_check
3421i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3422int __must_check
3423i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3424struct i915_vma * __must_check
3425i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3426                                     u32 alignment,
3427                                     const struct i915_ggtt_view *view,
3428                                     unsigned int flags);
3429void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3430int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3431                                int align);
3432int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3433void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3434
3435int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3436                                    enum i915_cache_level cache_level);
3437
3438struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3439                                struct dma_buf *dma_buf);
3440
3441struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3442                                struct drm_gem_object *gem_obj, int flags);
3443
3444static inline struct i915_hw_ppgtt *
3445i915_vm_to_ppgtt(struct i915_address_space *vm)
3446{
3447        return container_of(vm, struct i915_hw_ppgtt, base);
3448}
3449
3450/* i915_gem_fence_reg.c */
3451struct drm_i915_fence_reg *
3452i915_reserve_fence(struct drm_i915_private *dev_priv);
3453void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3454
3455void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3456void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3457
3458void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3459void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3460                                       struct sg_table *pages);
3461void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3462                                         struct sg_table *pages);
3463
3464static inline struct i915_gem_context *
3465__i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3466{
3467        return idr_find(&file_priv->context_idr, id);
3468}
3469
3470static inline struct i915_gem_context *
3471i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3472{
3473        struct i915_gem_context *ctx;
3474
3475        rcu_read_lock();
3476        ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3477        if (ctx && !kref_get_unless_zero(&ctx->ref))
3478                ctx = NULL;
3479        rcu_read_unlock();
3480
3481        return ctx;
3482}
3483
3484static inline struct intel_timeline *
3485i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3486                                 struct intel_engine_cs *engine)
3487{
3488        struct i915_address_space *vm;
3489
3490        vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3491        return &vm->timeline.engine[engine->id];
3492}
3493
3494int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3495                         struct drm_file *file);
3496int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3497                               struct drm_file *file);
3498int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3499                                  struct drm_file *file);
3500void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3501                            struct i915_gem_context *ctx,
3502                            uint32_t *reg_state);
3503
3504/* i915_gem_evict.c */
3505int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3506                                          u64 min_size, u64 alignment,
3507                                          unsigned cache_level,
3508                                          u64 start, u64 end,
3509                                          unsigned flags);
3510int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3511                                         struct drm_mm_node *node,
3512                                         unsigned int flags);
3513int i915_gem_evict_vm(struct i915_address_space *vm);
3514
3515void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3516
3517/* belongs in i915_gem_gtt.h */
3518static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3519{
3520        wmb();
3521        if (INTEL_GEN(dev_priv) < 6)
3522                intel_gtt_chipset_flush();
3523}
3524
3525/* i915_gem_stolen.c */
3526int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3527                                struct drm_mm_node *node, u64 size,
3528                                unsigned alignment);
3529int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3530                                         struct drm_mm_node *node, u64 size,
3531                                         unsigned alignment, u64 start,
3532                                         u64 end);
3533void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3534                                 struct drm_mm_node *node);
3535int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3536void i915_gem_cleanup_stolen(struct drm_device *dev);
3537struct drm_i915_gem_object *
3538i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3539                              resource_size_t size);
3540struct drm_i915_gem_object *
3541i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3542                                               resource_size_t stolen_offset,
3543                                               resource_size_t gtt_offset,
3544                                               resource_size_t size);
3545
3546/* i915_gem_internal.c */
3547struct drm_i915_gem_object *
3548i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3549                                phys_addr_t size);
3550
3551/* i915_gem_shrinker.c */
3552unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3553                              unsigned long target,
3554                              unsigned long *nr_scanned,
3555                              unsigned flags);
3556#define I915_SHRINK_PURGEABLE 0x1
3557#define I915_SHRINK_UNBOUND 0x2
3558#define I915_SHRINK_BOUND 0x4
3559#define I915_SHRINK_ACTIVE 0x8
3560#define I915_SHRINK_VMAPS 0x10
3561unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3562void i915_gem_shrinker_register(struct drm_i915_private *i915);
3563void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3564
3565
3566/* i915_gem_tiling.c */
3567static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3568{
3569        struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3570
3571        return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3572                i915_gem_object_is_tiled(obj);
3573}
3574
3575u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3576                        unsigned int tiling, unsigned int stride);
3577u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3578                             unsigned int tiling, unsigned int stride);
3579
3580/* i915_debugfs.c */
3581#ifdef CONFIG_DEBUG_FS
3582int i915_debugfs_register(struct drm_i915_private *dev_priv);
3583int i915_debugfs_connector_add(struct drm_connector *connector);
3584void intel_display_crc_init(struct drm_i915_private *dev_priv);
3585#else
3586static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3587static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3588{ return 0; }
3589static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3590#endif
3591
3592/* i915_gpu_error.c */
3593#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3594
3595__printf(2, 3)
3596void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3597int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3598                            const struct i915_gpu_state *gpu);
3599int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3600                              struct drm_i915_private *i915,
3601                              size_t count, loff_t pos);
3602static inline void i915_error_state_buf_release(
3603        struct drm_i915_error_state_buf *eb)
3604{
3605        kfree(eb->buf);
3606}
3607
3608struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3609void i915_capture_error_state(struct drm_i915_private *dev_priv,
3610                              u32 engine_mask,
3611                              const char *error_msg);
3612
3613static inline struct i915_gpu_state *
3614i915_gpu_state_get(struct i915_gpu_state *gpu)
3615{
3616        kref_get(&gpu->ref);
3617        return gpu;
3618}
3619
3620void __i915_gpu_state_free(struct kref *kref);
3621static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3622{
3623        if (gpu)
3624                kref_put(&gpu->ref, __i915_gpu_state_free);
3625}
3626
3627struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3628void i915_reset_error_state(struct drm_i915_private *i915);
3629
3630#else
3631
3632static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3633                                            u32 engine_mask,
3634                                            const char *error_msg)
3635{
3636}
3637
3638static inline struct i915_gpu_state *
3639i915_first_error_state(struct drm_i915_private *i915)
3640{
3641        return NULL;
3642}
3643
3644static inline void i915_reset_error_state(struct drm_i915_private *i915)
3645{
3646}
3647
3648#endif
3649
3650const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3651
3652/* i915_cmd_parser.c */
3653int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3654void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3655void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3656int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3657                            struct drm_i915_gem_object *batch_obj,
3658                            struct drm_i915_gem_object *shadow_batch_obj,
3659                            u32 batch_start_offset,
3660                            u32 batch_len,
3661                            bool is_master);
3662
3663/* i915_perf.c */
3664extern void i915_perf_init(struct drm_i915_private *dev_priv);
3665extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3666extern void i915_perf_register(struct drm_i915_private *dev_priv);
3667extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3668
3669/* i915_suspend.c */
3670extern int i915_save_state(struct drm_i915_private *dev_priv);
3671extern int i915_restore_state(struct drm_i915_private *dev_priv);
3672
3673/* i915_sysfs.c */
3674void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3675void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3676
3677/* intel_lpe_audio.c */
3678int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3679void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3680void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3681void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3682                            enum pipe pipe, enum port port,
3683                            const void *eld, int ls_clock, bool dp_output);
3684
3685/* intel_i2c.c */
3686extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3687extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3688extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3689                                     unsigned int pin);
3690extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3691
3692extern struct i2c_adapter *
3693intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3694extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3695extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3696static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3697{
3698        return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3699}
3700extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3701
3702/* intel_bios.c */
3703void intel_bios_init(struct drm_i915_private *dev_priv);
3704void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3705bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3706bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3707bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3708bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3709bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3710bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3711bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3712bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3713                                     enum port port);
3714bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3715                                enum port port);
3716
3717/* intel_acpi.c */
3718#ifdef CONFIG_ACPI
3719extern void intel_register_dsm_handler(void);
3720extern void intel_unregister_dsm_handler(void);
3721#else
3722static inline void intel_register_dsm_handler(void) { return; }
3723static inline void intel_unregister_dsm_handler(void) { return; }
3724#endif /* CONFIG_ACPI */
3725
3726/* intel_device_info.c */
3727static inline struct intel_device_info *
3728mkwrite_device_info(struct drm_i915_private *dev_priv)
3729{
3730        return (struct intel_device_info *)&dev_priv->info;
3731}
3732
3733/* modesetting */
3734extern void intel_modeset_init_hw(struct drm_device *dev);
3735extern int intel_modeset_init(struct drm_device *dev);
3736extern void intel_modeset_cleanup(struct drm_device *dev);
3737extern int intel_connector_register(struct drm_connector *);
3738extern void intel_connector_unregister(struct drm_connector *);
3739extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3740                                       bool state);
3741extern void intel_display_resume(struct drm_device *dev);
3742extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3743extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3744extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3745extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3746extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3747extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3748                                  bool enable);
3749
3750int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3751                        struct drm_file *file);
3752
3753/* overlay */
3754extern struct intel_overlay_error_state *
3755intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3756extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3757                                            struct intel_overlay_error_state *error);
3758
3759extern struct intel_display_error_state *
3760intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3761extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3762                                            struct intel_display_error_state *error);
3763
3764int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3765int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3766                                    u32 val, int fast_timeout_us,
3767                                    int slow_timeout_ms);
3768#define sandybridge_pcode_write(dev_priv, mbox, val)    \
3769        sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3770
3771int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3772                      u32 reply_mask, u32 reply, int timeout_base_ms);
3773
3774/* intel_sideband.c */
3775u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3776int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3777u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3778u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3779void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3780u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3781void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3782u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3783void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3784u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3785void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3786u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3787void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3788u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3789                   enum intel_sbi_destination destination);
3790void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3791                     enum intel_sbi_destination destination);
3792u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3793void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3794
3795/* intel_dpio_phy.c */
3796void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3797                             enum dpio_phy *phy, enum dpio_channel *ch);
3798void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3799                                  enum port port, u32 margin, u32 scale,
3800                                  u32 enable, u32 deemphasis);
3801void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3802void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3803bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3804                            enum dpio_phy phy);
3805bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3806                              enum dpio_phy phy);
3807uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3808void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3809                                     uint8_t lane_lat_optim_mask);
3810uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3811
3812void chv_set_phy_signal_level(struct intel_encoder *encoder,
3813                              u32 deemph_reg_value, u32 margin_reg_value,
3814                              bool uniq_trans_scale);
3815void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3816                              const struct intel_crtc_state *crtc_state,
3817                              bool reset);
3818void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3819                            const struct intel_crtc_state *crtc_state);
3820void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3821                                const struct intel_crtc_state *crtc_state);
3822void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3823void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3824                              const struct intel_crtc_state *old_crtc_state);
3825
3826void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3827                              u32 demph_reg_value, u32 preemph_reg_value,
3828                              u32 uniqtranscale_reg_value, u32 tx3_demph);
3829void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3830                            const struct intel_crtc_state *crtc_state);
3831void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3832                                const struct intel_crtc_state *crtc_state);
3833void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3834                         const struct intel_crtc_state *old_crtc_state);
3835
3836int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3837int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3838u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3839                           const i915_reg_t reg);
3840
3841u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3842
3843static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3844                                         const i915_reg_t reg)
3845{
3846        return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3847}
3848
3849#define I915_READ8(reg)         dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3850#define I915_WRITE8(reg, val)   dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3851
3852#define I915_READ16(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3853#define I915_WRITE16(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3854#define I915_READ16_NOTRACE(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3855#define I915_WRITE16_NOTRACE(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3856
3857#define I915_READ(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3858#define I915_WRITE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3859#define I915_READ_NOTRACE(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3860#define I915_WRITE_NOTRACE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3861
3862/* Be very careful with read/write 64-bit values. On 32-bit machines, they
3863 * will be implemented using 2 32-bit writes in an arbitrary order with
3864 * an arbitrary delay between them. This can cause the hardware to
3865 * act upon the intermediate value, possibly leading to corruption and
3866 * machine death. For this reason we do not support I915_WRITE64, or
3867 * dev_priv->uncore.funcs.mmio_writeq.
3868 *
3869 * When reading a 64-bit value as two 32-bit values, the delay may cause
3870 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3871 * occasionally a 64-bit register does not actualy support a full readq
3872 * and must be read using two 32-bit reads.
3873 *
3874 * You have been warned.
3875 */
3876#define I915_READ64(reg)        dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3877
3878#define I915_READ64_2x32(lower_reg, upper_reg) ({                       \
3879        u32 upper, lower, old_upper, loop = 0;                          \
3880        upper = I915_READ(upper_reg);                                   \
3881        do {                                                            \
3882                old_upper = upper;                                      \
3883                lower = I915_READ(lower_reg);                           \
3884                upper = I915_READ(upper_reg);                           \
3885        } while (upper != old_upper && loop++ < 2);                     \
3886        (u64)upper << 32 | lower; })
3887
3888#define POSTING_READ(reg)       (void)I915_READ_NOTRACE(reg)
3889#define POSTING_READ16(reg)     (void)I915_READ16_NOTRACE(reg)
3890
3891#define __raw_read(x, s) \
3892static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3893                                             i915_reg_t reg) \
3894{ \
3895        return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3896}
3897
3898#define __raw_write(x, s) \
3899static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3900                                       i915_reg_t reg, uint##x##_t val) \
3901{ \
3902        write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3903}
3904__raw_read(8, b)
3905__raw_read(16, w)
3906__raw_read(32, l)
3907__raw_read(64, q)
3908
3909__raw_write(8, b)
3910__raw_write(16, w)
3911__raw_write(32, l)
3912__raw_write(64, q)
3913
3914#undef __raw_read
3915#undef __raw_write
3916
3917/* These are untraced mmio-accessors that are only valid to be used inside
3918 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3919 * controlled.
3920 *
3921 * Think twice, and think again, before using these.
3922 *
3923 * As an example, these accessors can possibly be used between:
3924 *
3925 * spin_lock_irq(&dev_priv->uncore.lock);
3926 * intel_uncore_forcewake_get__locked();
3927 *
3928 * and
3929 *
3930 * intel_uncore_forcewake_put__locked();
3931 * spin_unlock_irq(&dev_priv->uncore.lock);
3932 *
3933 *
3934 * Note: some registers may not need forcewake held, so
3935 * intel_uncore_forcewake_{get,put} can be omitted, see
3936 * intel_uncore_forcewake_for_reg().
3937 *
3938 * Certain architectures will die if the same cacheline is concurrently accessed
3939 * by different clients (e.g. on Ivybridge). Access to registers should
3940 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3941 * a more localised lock guarding all access to that bank of registers.
3942 */
3943#define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3944#define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3945#define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3946#define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3947
3948/* "Broadcast RGB" property */
3949#define INTEL_BROADCAST_RGB_AUTO 0
3950#define INTEL_BROADCAST_RGB_FULL 1
3951#define INTEL_BROADCAST_RGB_LIMITED 2
3952
3953static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3954{
3955        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3956                return VLV_VGACNTRL;
3957        else if (INTEL_GEN(dev_priv) >= 5)
3958                return CPU_VGACNTRL;
3959        else
3960                return VGACNTRL;
3961}
3962
3963static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3964{
3965        unsigned long j = msecs_to_jiffies(m);
3966
3967        return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3968}
3969
3970static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3971{
3972        /* nsecs_to_jiffies64() does not guard against overflow */
3973        if (NSEC_PER_SEC % HZ &&
3974            div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3975                return MAX_JIFFY_OFFSET;
3976
3977        return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3978}
3979
3980static inline unsigned long
3981timespec_to_jiffies_timeout(const struct timespec *value)
3982{
3983        unsigned long j = timespec_to_jiffies(value);
3984
3985        return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3986}
3987
3988/*
3989 * If you need to wait X milliseconds between events A and B, but event B
3990 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3991 * when event A happened, then just before event B you call this function and
3992 * pass the timestamp as the first argument, and X as the second argument.
3993 */
3994static inline void
3995wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3996{
3997        unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3998
3999        /*
4000         * Don't re-read the value of "jiffies" every time since it may change
4001         * behind our back and break the math.
4002         */
4003        tmp_jiffies = jiffies;
4004        target_jiffies = timestamp_jiffies +
4005                         msecs_to_jiffies_timeout(to_wait_ms);
4006
4007        if (time_after(target_jiffies, tmp_jiffies)) {
4008                remaining_jiffies = target_jiffies - tmp_jiffies;
4009                while (remaining_jiffies)
4010                        remaining_jiffies =
4011                            schedule_timeout_uninterruptible(remaining_jiffies);
4012        }
4013}
4014
4015static inline bool
4016__i915_request_irq_complete(const struct i915_request *rq)
4017{
4018        struct intel_engine_cs *engine = rq->engine;
4019        u32 seqno;
4020
4021        /* Note that the engine may have wrapped around the seqno, and
4022         * so our request->global_seqno will be ahead of the hardware,
4023         * even though it completed the request before wrapping. We catch
4024         * this by kicking all the waiters before resetting the seqno
4025         * in hardware, and also signal the fence.
4026         */
4027        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
4028                return true;
4029
4030        /* The request was dequeued before we were awoken. We check after
4031         * inspecting the hw to confirm that this was the same request
4032         * that generated the HWS update. The memory barriers within
4033         * the request execution are sufficient to ensure that a check
4034         * after reading the value from hw matches this request.
4035         */
4036        seqno = i915_request_global_seqno(rq);
4037        if (!seqno)
4038                return false;
4039
4040        /* Before we do the heavier coherent read of the seqno,
4041         * check the value (hopefully) in the CPU cacheline.
4042         */
4043        if (__i915_request_completed(rq, seqno))
4044                return true;
4045
4046        /* Ensure our read of the seqno is coherent so that we
4047         * do not "miss an interrupt" (i.e. if this is the last
4048         * request and the seqno write from the GPU is not visible
4049         * by the time the interrupt fires, we will see that the
4050         * request is incomplete and go back to sleep awaiting
4051         * another interrupt that will never come.)
4052         *
4053         * Strictly, we only need to do this once after an interrupt,
4054         * but it is easier and safer to do it every time the waiter
4055         * is woken.
4056         */
4057        if (engine->irq_seqno_barrier &&
4058            test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4059                struct intel_breadcrumbs *b = &engine->breadcrumbs;
4060
4061                /* The ordering of irq_posted versus applying the barrier
4062                 * is crucial. The clearing of the current irq_posted must
4063                 * be visible before we perform the barrier operation,
4064                 * such that if a subsequent interrupt arrives, irq_posted
4065                 * is reasserted and our task rewoken (which causes us to
4066                 * do another __i915_request_irq_complete() immediately
4067                 * and reapply the barrier). Conversely, if the clear
4068                 * occurs after the barrier, then an interrupt that arrived
4069                 * whilst we waited on the barrier would not trigger a
4070                 * barrier on the next pass, and the read may not see the
4071                 * seqno update.
4072                 */
4073                engine->irq_seqno_barrier(engine);
4074
4075                /* If we consume the irq, but we are no longer the bottom-half,
4076                 * the real bottom-half may not have serialised their own
4077                 * seqno check with the irq-barrier (i.e. may have inspected
4078                 * the seqno before we believe it coherent since they see
4079                 * irq_posted == false but we are still running).
4080                 */
4081                spin_lock_irq(&b->irq_lock);
4082                if (b->irq_wait && b->irq_wait->tsk != current)
4083                        /* Note that if the bottom-half is changed as we
4084                         * are sending the wake-up, the new bottom-half will
4085                         * be woken by whomever made the change. We only have
4086                         * to worry about when we steal the irq-posted for
4087                         * ourself.
4088                         */
4089                        wake_up_process(b->irq_wait->tsk);
4090                spin_unlock_irq(&b->irq_lock);
4091
4092                if (__i915_request_completed(rq, seqno))
4093                        return true;
4094        }
4095
4096        return false;
4097}
4098
4099void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4100bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4101
4102/* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4103 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4104 * perform the operation. To check beforehand, pass in the parameters to
4105 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4106 * you only need to pass in the minor offsets, page-aligned pointers are
4107 * always valid.
4108 *
4109 * For just checking for SSE4.1, in the foreknowledge that the future use
4110 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4111 */
4112#define i915_can_memcpy_from_wc(dst, src, len) \
4113        i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4114
4115#define i915_has_memcpy_from_wc() \
4116        i915_memcpy_from_wc(NULL, NULL, 0)
4117
4118/* i915_mm.c */
4119int remap_io_mapping(struct vm_area_struct *vma,
4120                     unsigned long addr, unsigned long pfn, unsigned long size,
4121                     struct io_mapping *iomap);
4122
4123static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4124{
4125        if (INTEL_GEN(i915) >= 10)
4126                return CNL_HWS_CSB_WRITE_INDEX;
4127        else
4128                return I915_HWS_CSB_WRITE_INDEX;
4129}
4130
4131#endif
4132