linux/drivers/gpu/drm/i915/i915_gem_gtt.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2010 Daniel Vetter
   3 * Copyright © 2011-2014 Intel Corporation
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice (including the next
  13 * paragraph) shall be included in all copies or substantial portions of the
  14 * Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  22 * IN THE SOFTWARE.
  23 *
  24 */
  25
  26#include <linux/slab.h> /* fault-inject.h is not standalone! */
  27
  28#include <linux/fault-inject.h>
  29#include <linux/log2.h>
  30#include <linux/random.h>
  31#include <linux/seq_file.h>
  32#include <linux/stop_machine.h>
  33
  34#include <asm/set_memory.h>
  35
  36#include <drm/drmP.h>
  37#include <drm/i915_drm.h>
  38
  39#include "i915_drv.h"
  40#include "i915_vgpu.h"
  41#include "i915_trace.h"
  42#include "intel_drv.h"
  43#include "intel_frontbuffer.h"
  44
  45#define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
  46
  47/**
  48 * DOC: Global GTT views
  49 *
  50 * Background and previous state
  51 *
  52 * Historically objects could exists (be bound) in global GTT space only as
  53 * singular instances with a view representing all of the object's backing pages
  54 * in a linear fashion. This view will be called a normal view.
  55 *
  56 * To support multiple views of the same object, where the number of mapped
  57 * pages is not equal to the backing store, or where the layout of the pages
  58 * is not linear, concept of a GGTT view was added.
  59 *
  60 * One example of an alternative view is a stereo display driven by a single
  61 * image. In this case we would have a framebuffer looking like this
  62 * (2x2 pages):
  63 *
  64 *    12
  65 *    34
  66 *
  67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
  68 * rendering. In contrast, fed to the display engine would be an alternative
  69 * view which could look something like this:
  70 *
  71 *   1212
  72 *   3434
  73 *
  74 * In this example both the size and layout of pages in the alternative view is
  75 * different from the normal view.
  76 *
  77 * Implementation and usage
  78 *
  79 * GGTT views are implemented using VMAs and are distinguished via enum
  80 * i915_ggtt_view_type and struct i915_ggtt_view.
  81 *
  82 * A new flavour of core GEM functions which work with GGTT bound objects were
  83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
  84 * renaming  in large amounts of code. They take the struct i915_ggtt_view
  85 * parameter encapsulating all metadata required to implement a view.
  86 *
  87 * As a helper for callers which are only interested in the normal view,
  88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
  89 * GEM API functions, the ones not taking the view parameter, are operating on,
  90 * or with the normal GGTT view.
  91 *
  92 * Code wanting to add or use a new GGTT view needs to:
  93 *
  94 * 1. Add a new enum with a suitable name.
  95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
  96 * 3. Add support to i915_get_vma_pages().
  97 *
  98 * New views are required to build a scatter-gather table from within the
  99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 100 * exists for the lifetime of an VMA.
 101 *
 102 * Core API is designed to have copy semantics which means that passed in
 103 * struct i915_ggtt_view does not need to be persistent (left around after
 104 * calling the core API functions).
 105 *
 106 */
 107
 108static int
 109i915_get_ggtt_vma_pages(struct i915_vma *vma);
 110
 111static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
 112{
 113        /* Note that as an uncached mmio write, this should flush the
 114         * WCB of the writes into the GGTT before it triggers the invalidate.
 115         */
 116        I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
 117}
 118
 119static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
 120{
 121        gen6_ggtt_invalidate(dev_priv);
 122        I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
 123}
 124
 125static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
 126{
 127        intel_gtt_chipset_flush();
 128}
 129
 130static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
 131{
 132        i915->ggtt.invalidate(i915);
 133}
 134
 135int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
 136                                int enable_ppgtt)
 137{
 138        bool has_full_ppgtt;
 139        bool has_full_48bit_ppgtt;
 140
 141        if (!dev_priv->info.has_aliasing_ppgtt)
 142                return 0;
 143
 144        has_full_ppgtt = dev_priv->info.has_full_ppgtt;
 145        has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
 146
 147        if (intel_vgpu_active(dev_priv)) {
 148                /* GVT-g has no support for 32bit ppgtt */
 149                has_full_ppgtt = false;
 150                has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
 151        }
 152
 153        /*
 154         * We don't allow disabling PPGTT for gen9+ as it's a requirement for
 155         * execlists, the sole mechanism available to submit work.
 156         */
 157        if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
 158                return 0;
 159
 160        if (enable_ppgtt == 1)
 161                return 1;
 162
 163        if (enable_ppgtt == 2 && has_full_ppgtt)
 164                return 2;
 165
 166        if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
 167                return 3;
 168
 169        /* Disable ppgtt on SNB if VT-d is on. */
 170        if (IS_GEN6(dev_priv) && intel_vtd_active()) {
 171                DRM_INFO("Disabling PPGTT because VT-d is on\n");
 172                return 0;
 173        }
 174
 175        /* Early VLV doesn't have this */
 176        if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
 177                DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
 178                return 0;
 179        }
 180
 181        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
 182                if (has_full_48bit_ppgtt)
 183                        return 3;
 184
 185                if (has_full_ppgtt)
 186                        return 2;
 187        }
 188
 189        return 1;
 190}
 191
 192static int ppgtt_bind_vma(struct i915_vma *vma,
 193                          enum i915_cache_level cache_level,
 194                          u32 unused)
 195{
 196        u32 pte_flags;
 197        int ret;
 198
 199        if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
 200                ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
 201                                                 vma->size);
 202                if (ret)
 203                        return ret;
 204        }
 205
 206        /* Currently applicable only to VLV */
 207        pte_flags = 0;
 208        if (vma->obj->gt_ro)
 209                pte_flags |= PTE_READ_ONLY;
 210
 211        vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
 212
 213        return 0;
 214}
 215
 216static void ppgtt_unbind_vma(struct i915_vma *vma)
 217{
 218        vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
 219}
 220
 221static int ppgtt_set_pages(struct i915_vma *vma)
 222{
 223        GEM_BUG_ON(vma->pages);
 224
 225        vma->pages = vma->obj->mm.pages;
 226
 227        vma->page_sizes = vma->obj->mm.page_sizes;
 228
 229        return 0;
 230}
 231
 232static void clear_pages(struct i915_vma *vma)
 233{
 234        GEM_BUG_ON(!vma->pages);
 235
 236        if (vma->pages != vma->obj->mm.pages) {
 237                sg_free_table(vma->pages);
 238                kfree(vma->pages);
 239        }
 240        vma->pages = NULL;
 241
 242        memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
 243}
 244
 245static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
 246                                  enum i915_cache_level level)
 247{
 248        gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
 249        pte |= addr;
 250
 251        switch (level) {
 252        case I915_CACHE_NONE:
 253                pte |= PPAT_UNCACHED;
 254                break;
 255        case I915_CACHE_WT:
 256                pte |= PPAT_DISPLAY_ELLC;
 257                break;
 258        default:
 259                pte |= PPAT_CACHED;
 260                break;
 261        }
 262
 263        return pte;
 264}
 265
 266static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
 267                                  const enum i915_cache_level level)
 268{
 269        gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
 270        pde |= addr;
 271        if (level != I915_CACHE_NONE)
 272                pde |= PPAT_CACHED_PDE;
 273        else
 274                pde |= PPAT_UNCACHED;
 275        return pde;
 276}
 277
 278#define gen8_pdpe_encode gen8_pde_encode
 279#define gen8_pml4e_encode gen8_pde_encode
 280
 281static gen6_pte_t snb_pte_encode(dma_addr_t addr,
 282                                 enum i915_cache_level level,
 283                                 u32 unused)
 284{
 285        gen6_pte_t pte = GEN6_PTE_VALID;
 286        pte |= GEN6_PTE_ADDR_ENCODE(addr);
 287
 288        switch (level) {
 289        case I915_CACHE_L3_LLC:
 290        case I915_CACHE_LLC:
 291                pte |= GEN6_PTE_CACHE_LLC;
 292                break;
 293        case I915_CACHE_NONE:
 294                pte |= GEN6_PTE_UNCACHED;
 295                break;
 296        default:
 297                MISSING_CASE(level);
 298        }
 299
 300        return pte;
 301}
 302
 303static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
 304                                 enum i915_cache_level level,
 305                                 u32 unused)
 306{
 307        gen6_pte_t pte = GEN6_PTE_VALID;
 308        pte |= GEN6_PTE_ADDR_ENCODE(addr);
 309
 310        switch (level) {
 311        case I915_CACHE_L3_LLC:
 312                pte |= GEN7_PTE_CACHE_L3_LLC;
 313                break;
 314        case I915_CACHE_LLC:
 315                pte |= GEN6_PTE_CACHE_LLC;
 316                break;
 317        case I915_CACHE_NONE:
 318                pte |= GEN6_PTE_UNCACHED;
 319                break;
 320        default:
 321                MISSING_CASE(level);
 322        }
 323
 324        return pte;
 325}
 326
 327static gen6_pte_t byt_pte_encode(dma_addr_t addr,
 328                                 enum i915_cache_level level,
 329                                 u32 flags)
 330{
 331        gen6_pte_t pte = GEN6_PTE_VALID;
 332        pte |= GEN6_PTE_ADDR_ENCODE(addr);
 333
 334        if (!(flags & PTE_READ_ONLY))
 335                pte |= BYT_PTE_WRITEABLE;
 336
 337        if (level != I915_CACHE_NONE)
 338                pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
 339
 340        return pte;
 341}
 342
 343static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
 344                                 enum i915_cache_level level,
 345                                 u32 unused)
 346{
 347        gen6_pte_t pte = GEN6_PTE_VALID;
 348        pte |= HSW_PTE_ADDR_ENCODE(addr);
 349
 350        if (level != I915_CACHE_NONE)
 351                pte |= HSW_WB_LLC_AGE3;
 352
 353        return pte;
 354}
 355
 356static gen6_pte_t iris_pte_encode(dma_addr_t addr,
 357                                  enum i915_cache_level level,
 358                                  u32 unused)
 359{
 360        gen6_pte_t pte = GEN6_PTE_VALID;
 361        pte |= HSW_PTE_ADDR_ENCODE(addr);
 362
 363        switch (level) {
 364        case I915_CACHE_NONE:
 365                break;
 366        case I915_CACHE_WT:
 367                pte |= HSW_WT_ELLC_LLC_AGE3;
 368                break;
 369        default:
 370                pte |= HSW_WB_ELLC_LLC_AGE3;
 371                break;
 372        }
 373
 374        return pte;
 375}
 376
 377static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
 378{
 379        struct pagevec *pvec = &vm->free_pages;
 380        struct pagevec stash;
 381
 382        if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
 383                i915_gem_shrink_all(vm->i915);
 384
 385        if (likely(pvec->nr))
 386                return pvec->pages[--pvec->nr];
 387
 388        if (!vm->pt_kmap_wc)
 389                return alloc_page(gfp);
 390
 391        /* A placeholder for a specific mutex to guard the WC stash */
 392        lockdep_assert_held(&vm->i915->drm.struct_mutex);
 393
 394        /* Look in our global stash of WC pages... */
 395        pvec = &vm->i915->mm.wc_stash;
 396        if (likely(pvec->nr))
 397                return pvec->pages[--pvec->nr];
 398
 399        /*
 400         * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
 401         *
 402         * We have to be careful as page allocation may trigger the shrinker
 403         * (via direct reclaim) which will fill up the WC stash underneath us.
 404         * So we add our WB pages into a temporary pvec on the stack and merge
 405         * them into the WC stash after all the allocations are complete.
 406         */
 407        pagevec_init(&stash);
 408        do {
 409                struct page *page;
 410
 411                page = alloc_page(gfp);
 412                if (unlikely(!page))
 413                        break;
 414
 415                stash.pages[stash.nr++] = page;
 416        } while (stash.nr < pagevec_space(pvec));
 417
 418        if (stash.nr) {
 419                int nr = min_t(int, stash.nr, pagevec_space(pvec));
 420                struct page **pages = stash.pages + stash.nr - nr;
 421
 422                if (nr && !set_pages_array_wc(pages, nr)) {
 423                        memcpy(pvec->pages + pvec->nr,
 424                               pages, sizeof(pages[0]) * nr);
 425                        pvec->nr += nr;
 426                        stash.nr -= nr;
 427                }
 428
 429                pagevec_release(&stash);
 430        }
 431
 432        return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
 433}
 434
 435static void vm_free_pages_release(struct i915_address_space *vm,
 436                                  bool immediate)
 437{
 438        struct pagevec *pvec = &vm->free_pages;
 439
 440        GEM_BUG_ON(!pagevec_count(pvec));
 441
 442        if (vm->pt_kmap_wc) {
 443                struct pagevec *stash = &vm->i915->mm.wc_stash;
 444
 445                /* When we use WC, first fill up the global stash and then
 446                 * only if full immediately free the overflow.
 447                 */
 448
 449                lockdep_assert_held(&vm->i915->drm.struct_mutex);
 450                if (pagevec_space(stash)) {
 451                        do {
 452                                stash->pages[stash->nr++] =
 453                                        pvec->pages[--pvec->nr];
 454                                if (!pvec->nr)
 455                                        return;
 456                        } while (pagevec_space(stash));
 457
 458                        /* As we have made some room in the VM's free_pages,
 459                         * we can wait for it to fill again. Unless we are
 460                         * inside i915_address_space_fini() and must
 461                         * immediately release the pages!
 462                         */
 463                        if (!immediate)
 464                                return;
 465                }
 466
 467                set_pages_array_wb(pvec->pages, pvec->nr);
 468        }
 469
 470        __pagevec_release(pvec);
 471}
 472
 473static void vm_free_page(struct i915_address_space *vm, struct page *page)
 474{
 475        /*
 476         * On !llc, we need to change the pages back to WB. We only do so
 477         * in bulk, so we rarely need to change the page attributes here,
 478         * but doing so requires a stop_machine() from deep inside arch/x86/mm.
 479         * To make detection of the possible sleep more likely, use an
 480         * unconditional might_sleep() for everybody.
 481         */
 482        might_sleep();
 483        if (!pagevec_add(&vm->free_pages, page))
 484                vm_free_pages_release(vm, false);
 485}
 486
 487static int __setup_page_dma(struct i915_address_space *vm,
 488                            struct i915_page_dma *p,
 489                            gfp_t gfp)
 490{
 491        p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
 492        if (unlikely(!p->page))
 493                return -ENOMEM;
 494
 495        p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
 496                                PCI_DMA_BIDIRECTIONAL);
 497        if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
 498                vm_free_page(vm, p->page);
 499                return -ENOMEM;
 500        }
 501
 502        return 0;
 503}
 504
 505static int setup_page_dma(struct i915_address_space *vm,
 506                          struct i915_page_dma *p)
 507{
 508        return __setup_page_dma(vm, p, I915_GFP_DMA);
 509}
 510
 511static void cleanup_page_dma(struct i915_address_space *vm,
 512                             struct i915_page_dma *p)
 513{
 514        dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 515        vm_free_page(vm, p->page);
 516}
 517
 518#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
 519
 520#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
 521#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
 522#define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
 523#define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
 524
 525static void fill_page_dma(struct i915_address_space *vm,
 526                          struct i915_page_dma *p,
 527                          const u64 val)
 528{
 529        u64 * const vaddr = kmap_atomic(p->page);
 530
 531        memset64(vaddr, val, PAGE_SIZE / sizeof(val));
 532
 533        kunmap_atomic(vaddr);
 534}
 535
 536static void fill_page_dma_32(struct i915_address_space *vm,
 537                             struct i915_page_dma *p,
 538                             const u32 v)
 539{
 540        fill_page_dma(vm, p, (u64)v << 32 | v);
 541}
 542
 543static int
 544setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
 545{
 546        unsigned long size;
 547
 548        /*
 549         * In order to utilize 64K pages for an object with a size < 2M, we will
 550         * need to support a 64K scratch page, given that every 16th entry for a
 551         * page-table operating in 64K mode must point to a properly aligned 64K
 552         * region, including any PTEs which happen to point to scratch.
 553         *
 554         * This is only relevant for the 48b PPGTT where we support
 555         * huge-gtt-pages, see also i915_vma_insert().
 556         *
 557         * TODO: we should really consider write-protecting the scratch-page and
 558         * sharing between ppgtt
 559         */
 560        size = I915_GTT_PAGE_SIZE_4K;
 561        if (i915_vm_is_48bit(vm) &&
 562            HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
 563                size = I915_GTT_PAGE_SIZE_64K;
 564                gfp |= __GFP_NOWARN;
 565        }
 566        gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
 567
 568        do {
 569                int order = get_order(size);
 570                struct page *page;
 571                dma_addr_t addr;
 572
 573                page = alloc_pages(gfp, order);
 574                if (unlikely(!page))
 575                        goto skip;
 576
 577                addr = dma_map_page(vm->dma, page, 0, size,
 578                                    PCI_DMA_BIDIRECTIONAL);
 579                if (unlikely(dma_mapping_error(vm->dma, addr)))
 580                        goto free_page;
 581
 582                if (unlikely(!IS_ALIGNED(addr, size)))
 583                        goto unmap_page;
 584
 585                vm->scratch_page.page = page;
 586                vm->scratch_page.daddr = addr;
 587                vm->scratch_page.order = order;
 588                return 0;
 589
 590unmap_page:
 591                dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
 592free_page:
 593                __free_pages(page, order);
 594skip:
 595                if (size == I915_GTT_PAGE_SIZE_4K)
 596                        return -ENOMEM;
 597
 598                size = I915_GTT_PAGE_SIZE_4K;
 599                gfp &= ~__GFP_NOWARN;
 600        } while (1);
 601}
 602
 603static void cleanup_scratch_page(struct i915_address_space *vm)
 604{
 605        struct i915_page_dma *p = &vm->scratch_page;
 606
 607        dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
 608                       PCI_DMA_BIDIRECTIONAL);
 609        __free_pages(p->page, p->order);
 610}
 611
 612static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
 613{
 614        struct i915_page_table *pt;
 615
 616        pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
 617        if (unlikely(!pt))
 618                return ERR_PTR(-ENOMEM);
 619
 620        if (unlikely(setup_px(vm, pt))) {
 621                kfree(pt);
 622                return ERR_PTR(-ENOMEM);
 623        }
 624
 625        pt->used_ptes = 0;
 626        return pt;
 627}
 628
 629static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
 630{
 631        cleanup_px(vm, pt);
 632        kfree(pt);
 633}
 634
 635static void gen8_initialize_pt(struct i915_address_space *vm,
 636                               struct i915_page_table *pt)
 637{
 638        fill_px(vm, pt,
 639                gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
 640}
 641
 642static void gen6_initialize_pt(struct i915_address_space *vm,
 643                               struct i915_page_table *pt)
 644{
 645        fill32_px(vm, pt,
 646                  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
 647}
 648
 649static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
 650{
 651        struct i915_page_directory *pd;
 652
 653        pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
 654        if (unlikely(!pd))
 655                return ERR_PTR(-ENOMEM);
 656
 657        if (unlikely(setup_px(vm, pd))) {
 658                kfree(pd);
 659                return ERR_PTR(-ENOMEM);
 660        }
 661
 662        pd->used_pdes = 0;
 663        return pd;
 664}
 665
 666static void free_pd(struct i915_address_space *vm,
 667                    struct i915_page_directory *pd)
 668{
 669        cleanup_px(vm, pd);
 670        kfree(pd);
 671}
 672
 673static void gen8_initialize_pd(struct i915_address_space *vm,
 674                               struct i915_page_directory *pd)
 675{
 676        fill_px(vm, pd,
 677                gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
 678        memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
 679}
 680
 681static int __pdp_init(struct i915_address_space *vm,
 682                      struct i915_page_directory_pointer *pdp)
 683{
 684        const unsigned int pdpes = i915_pdpes_per_pdp(vm);
 685
 686        pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
 687                                            GFP_KERNEL | __GFP_NOWARN);
 688        if (unlikely(!pdp->page_directory))
 689                return -ENOMEM;
 690
 691        memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
 692
 693        return 0;
 694}
 695
 696static void __pdp_fini(struct i915_page_directory_pointer *pdp)
 697{
 698        kfree(pdp->page_directory);
 699        pdp->page_directory = NULL;
 700}
 701
 702static inline bool use_4lvl(const struct i915_address_space *vm)
 703{
 704        return i915_vm_is_48bit(vm);
 705}
 706
 707static struct i915_page_directory_pointer *
 708alloc_pdp(struct i915_address_space *vm)
 709{
 710        struct i915_page_directory_pointer *pdp;
 711        int ret = -ENOMEM;
 712
 713        GEM_BUG_ON(!use_4lvl(vm));
 714
 715        pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
 716        if (!pdp)
 717                return ERR_PTR(-ENOMEM);
 718
 719        ret = __pdp_init(vm, pdp);
 720        if (ret)
 721                goto fail_bitmap;
 722
 723        ret = setup_px(vm, pdp);
 724        if (ret)
 725                goto fail_page_m;
 726
 727        return pdp;
 728
 729fail_page_m:
 730        __pdp_fini(pdp);
 731fail_bitmap:
 732        kfree(pdp);
 733
 734        return ERR_PTR(ret);
 735}
 736
 737static void free_pdp(struct i915_address_space *vm,
 738                     struct i915_page_directory_pointer *pdp)
 739{
 740        __pdp_fini(pdp);
 741
 742        if (!use_4lvl(vm))
 743                return;
 744
 745        cleanup_px(vm, pdp);
 746        kfree(pdp);
 747}
 748
 749static void gen8_initialize_pdp(struct i915_address_space *vm,
 750                                struct i915_page_directory_pointer *pdp)
 751{
 752        gen8_ppgtt_pdpe_t scratch_pdpe;
 753
 754        scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
 755
 756        fill_px(vm, pdp, scratch_pdpe);
 757}
 758
 759static void gen8_initialize_pml4(struct i915_address_space *vm,
 760                                 struct i915_pml4 *pml4)
 761{
 762        fill_px(vm, pml4,
 763                gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
 764        memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
 765}
 766
 767/* Broadwell Page Directory Pointer Descriptors */
 768static int gen8_write_pdp(struct i915_request *rq,
 769                          unsigned entry,
 770                          dma_addr_t addr)
 771{
 772        struct intel_engine_cs *engine = rq->engine;
 773        u32 *cs;
 774
 775        BUG_ON(entry >= 4);
 776
 777        cs = intel_ring_begin(rq, 6);
 778        if (IS_ERR(cs))
 779                return PTR_ERR(cs);
 780
 781        *cs++ = MI_LOAD_REGISTER_IMM(1);
 782        *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
 783        *cs++ = upper_32_bits(addr);
 784        *cs++ = MI_LOAD_REGISTER_IMM(1);
 785        *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
 786        *cs++ = lower_32_bits(addr);
 787        intel_ring_advance(rq, cs);
 788
 789        return 0;
 790}
 791
 792static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
 793                               struct i915_request *rq)
 794{
 795        int i, ret;
 796
 797        for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
 798                const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
 799
 800                ret = gen8_write_pdp(rq, i, pd_daddr);
 801                if (ret)
 802                        return ret;
 803        }
 804
 805        return 0;
 806}
 807
 808static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
 809                               struct i915_request *rq)
 810{
 811        return gen8_write_pdp(rq, 0, px_dma(&ppgtt->pml4));
 812}
 813
 814/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 815 * the page table structures, we mark them dirty so that
 816 * context switching/execlist queuing code takes extra steps
 817 * to ensure that tlbs are flushed.
 818 */
 819static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
 820{
 821        ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
 822}
 823
 824/* Removes entries from a single page table, releasing it if it's empty.
 825 * Caller can use the return value to update higher-level entries.
 826 */
 827static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
 828                                struct i915_page_table *pt,
 829                                u64 start, u64 length)
 830{
 831        unsigned int num_entries = gen8_pte_count(start, length);
 832        unsigned int pte = gen8_pte_index(start);
 833        unsigned int pte_end = pte + num_entries;
 834        const gen8_pte_t scratch_pte =
 835                gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
 836        gen8_pte_t *vaddr;
 837
 838        GEM_BUG_ON(num_entries > pt->used_ptes);
 839
 840        pt->used_ptes -= num_entries;
 841        if (!pt->used_ptes)
 842                return true;
 843
 844        vaddr = kmap_atomic_px(pt);
 845        while (pte < pte_end)
 846                vaddr[pte++] = scratch_pte;
 847        kunmap_atomic(vaddr);
 848
 849        return false;
 850}
 851
 852static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
 853                               struct i915_page_directory *pd,
 854                               struct i915_page_table *pt,
 855                               unsigned int pde)
 856{
 857        gen8_pde_t *vaddr;
 858
 859        pd->page_table[pde] = pt;
 860
 861        vaddr = kmap_atomic_px(pd);
 862        vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
 863        kunmap_atomic(vaddr);
 864}
 865
 866static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
 867                                struct i915_page_directory *pd,
 868                                u64 start, u64 length)
 869{
 870        struct i915_page_table *pt;
 871        u32 pde;
 872
 873        gen8_for_each_pde(pt, pd, start, length, pde) {
 874                GEM_BUG_ON(pt == vm->scratch_pt);
 875
 876                if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
 877                        continue;
 878
 879                gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
 880                GEM_BUG_ON(!pd->used_pdes);
 881                pd->used_pdes--;
 882
 883                free_pt(vm, pt);
 884        }
 885
 886        return !pd->used_pdes;
 887}
 888
 889static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
 890                                struct i915_page_directory_pointer *pdp,
 891                                struct i915_page_directory *pd,
 892                                unsigned int pdpe)
 893{
 894        gen8_ppgtt_pdpe_t *vaddr;
 895
 896        pdp->page_directory[pdpe] = pd;
 897        if (!use_4lvl(vm))
 898                return;
 899
 900        vaddr = kmap_atomic_px(pdp);
 901        vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
 902        kunmap_atomic(vaddr);
 903}
 904
 905/* Removes entries from a single page dir pointer, releasing it if it's empty.
 906 * Caller can use the return value to update higher-level entries
 907 */
 908static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
 909                                 struct i915_page_directory_pointer *pdp,
 910                                 u64 start, u64 length)
 911{
 912        struct i915_page_directory *pd;
 913        unsigned int pdpe;
 914
 915        gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
 916                GEM_BUG_ON(pd == vm->scratch_pd);
 917
 918                if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
 919                        continue;
 920
 921                gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
 922                GEM_BUG_ON(!pdp->used_pdpes);
 923                pdp->used_pdpes--;
 924
 925                free_pd(vm, pd);
 926        }
 927
 928        return !pdp->used_pdpes;
 929}
 930
 931static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
 932                                  u64 start, u64 length)
 933{
 934        gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
 935}
 936
 937static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
 938                                 struct i915_page_directory_pointer *pdp,
 939                                 unsigned int pml4e)
 940{
 941        gen8_ppgtt_pml4e_t *vaddr;
 942
 943        pml4->pdps[pml4e] = pdp;
 944
 945        vaddr = kmap_atomic_px(pml4);
 946        vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
 947        kunmap_atomic(vaddr);
 948}
 949
 950/* Removes entries from a single pml4.
 951 * This is the top-level structure in 4-level page tables used on gen8+.
 952 * Empty entries are always scratch pml4e.
 953 */
 954static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
 955                                  u64 start, u64 length)
 956{
 957        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 958        struct i915_pml4 *pml4 = &ppgtt->pml4;
 959        struct i915_page_directory_pointer *pdp;
 960        unsigned int pml4e;
 961
 962        GEM_BUG_ON(!use_4lvl(vm));
 963
 964        gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
 965                GEM_BUG_ON(pdp == vm->scratch_pdp);
 966
 967                if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
 968                        continue;
 969
 970                gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
 971
 972                free_pdp(vm, pdp);
 973        }
 974}
 975
 976static inline struct sgt_dma {
 977        struct scatterlist *sg;
 978        dma_addr_t dma, max;
 979} sgt_dma(struct i915_vma *vma) {
 980        struct scatterlist *sg = vma->pages->sgl;
 981        dma_addr_t addr = sg_dma_address(sg);
 982        return (struct sgt_dma) { sg, addr, addr + sg->length };
 983}
 984
 985struct gen8_insert_pte {
 986        u16 pml4e;
 987        u16 pdpe;
 988        u16 pde;
 989        u16 pte;
 990};
 991
 992static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
 993{
 994        return (struct gen8_insert_pte) {
 995                 gen8_pml4e_index(start),
 996                 gen8_pdpe_index(start),
 997                 gen8_pde_index(start),
 998                 gen8_pte_index(start),
 999        };
1000}
1001
1002static __always_inline bool
1003gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1004                              struct i915_page_directory_pointer *pdp,
1005                              struct sgt_dma *iter,
1006                              struct gen8_insert_pte *idx,
1007                              enum i915_cache_level cache_level)
1008{
1009        struct i915_page_directory *pd;
1010        const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1011        gen8_pte_t *vaddr;
1012        bool ret;
1013
1014        GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1015        pd = pdp->page_directory[idx->pdpe];
1016        vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1017        do {
1018                vaddr[idx->pte] = pte_encode | iter->dma;
1019
1020                iter->dma += PAGE_SIZE;
1021                if (iter->dma >= iter->max) {
1022                        iter->sg = __sg_next(iter->sg);
1023                        if (!iter->sg) {
1024                                ret = false;
1025                                break;
1026                        }
1027
1028                        iter->dma = sg_dma_address(iter->sg);
1029                        iter->max = iter->dma + iter->sg->length;
1030                }
1031
1032                if (++idx->pte == GEN8_PTES) {
1033                        idx->pte = 0;
1034
1035                        if (++idx->pde == I915_PDES) {
1036                                idx->pde = 0;
1037
1038                                /* Limited by sg length for 3lvl */
1039                                if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1040                                        idx->pdpe = 0;
1041                                        ret = true;
1042                                        break;
1043                                }
1044
1045                                GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1046                                pd = pdp->page_directory[idx->pdpe];
1047                        }
1048
1049                        kunmap_atomic(vaddr);
1050                        vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1051                }
1052        } while (1);
1053        kunmap_atomic(vaddr);
1054
1055        return ret;
1056}
1057
1058static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1059                                   struct i915_vma *vma,
1060                                   enum i915_cache_level cache_level,
1061                                   u32 unused)
1062{
1063        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1064        struct sgt_dma iter = sgt_dma(vma);
1065        struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1066
1067        gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1068                                      cache_level);
1069
1070        vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1071}
1072
1073static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1074                                           struct i915_page_directory_pointer **pdps,
1075                                           struct sgt_dma *iter,
1076                                           enum i915_cache_level cache_level)
1077{
1078        const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1079        u64 start = vma->node.start;
1080        dma_addr_t rem = iter->sg->length;
1081
1082        do {
1083                struct gen8_insert_pte idx = gen8_insert_pte(start);
1084                struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1085                struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1086                unsigned int page_size;
1087                bool maybe_64K = false;
1088                gen8_pte_t encode = pte_encode;
1089                gen8_pte_t *vaddr;
1090                u16 index, max;
1091
1092                if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1093                    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1094                    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1095                        index = idx.pde;
1096                        max = I915_PDES;
1097                        page_size = I915_GTT_PAGE_SIZE_2M;
1098
1099                        encode |= GEN8_PDE_PS_2M;
1100
1101                        vaddr = kmap_atomic_px(pd);
1102                } else {
1103                        struct i915_page_table *pt = pd->page_table[idx.pde];
1104
1105                        index = idx.pte;
1106                        max = GEN8_PTES;
1107                        page_size = I915_GTT_PAGE_SIZE;
1108
1109                        if (!index &&
1110                            vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1111                            IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1112                            (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1113                             rem >= (max - index) << PAGE_SHIFT))
1114                                maybe_64K = true;
1115
1116                        vaddr = kmap_atomic_px(pt);
1117                }
1118
1119                do {
1120                        GEM_BUG_ON(iter->sg->length < page_size);
1121                        vaddr[index++] = encode | iter->dma;
1122
1123                        start += page_size;
1124                        iter->dma += page_size;
1125                        rem -= page_size;
1126                        if (iter->dma >= iter->max) {
1127                                iter->sg = __sg_next(iter->sg);
1128                                if (!iter->sg)
1129                                        break;
1130
1131                                rem = iter->sg->length;
1132                                iter->dma = sg_dma_address(iter->sg);
1133                                iter->max = iter->dma + rem;
1134
1135                                if (maybe_64K && index < max &&
1136                                    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1137                                      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1138                                       rem >= (max - index) << PAGE_SHIFT)))
1139                                        maybe_64K = false;
1140
1141                                if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1142                                        break;
1143                        }
1144                } while (rem >= page_size && index < max);
1145
1146                kunmap_atomic(vaddr);
1147
1148                /*
1149                 * Is it safe to mark the 2M block as 64K? -- Either we have
1150                 * filled whole page-table with 64K entries, or filled part of
1151                 * it and have reached the end of the sg table and we have
1152                 * enough padding.
1153                 */
1154                if (maybe_64K &&
1155                    (index == max ||
1156                     (i915_vm_has_scratch_64K(vma->vm) &&
1157                      !iter->sg && IS_ALIGNED(vma->node.start +
1158                                              vma->node.size,
1159                                              I915_GTT_PAGE_SIZE_2M)))) {
1160                        vaddr = kmap_atomic_px(pd);
1161                        vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1162                        kunmap_atomic(vaddr);
1163                        page_size = I915_GTT_PAGE_SIZE_64K;
1164                }
1165
1166                vma->page_sizes.gtt |= page_size;
1167        } while (iter->sg);
1168}
1169
1170static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1171                                   struct i915_vma *vma,
1172                                   enum i915_cache_level cache_level,
1173                                   u32 unused)
1174{
1175        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1176        struct sgt_dma iter = sgt_dma(vma);
1177        struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1178
1179        if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1180                gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1181        } else {
1182                struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1183
1184                while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1185                                                     &iter, &idx, cache_level))
1186                        GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1187
1188                vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1189        }
1190}
1191
1192static void gen8_free_page_tables(struct i915_address_space *vm,
1193                                  struct i915_page_directory *pd)
1194{
1195        int i;
1196
1197        if (!px_page(pd))
1198                return;
1199
1200        for (i = 0; i < I915_PDES; i++) {
1201                if (pd->page_table[i] != vm->scratch_pt)
1202                        free_pt(vm, pd->page_table[i]);
1203        }
1204}
1205
1206static int gen8_init_scratch(struct i915_address_space *vm)
1207{
1208        int ret;
1209
1210        ret = setup_scratch_page(vm, I915_GFP_DMA);
1211        if (ret)
1212                return ret;
1213
1214        vm->scratch_pt = alloc_pt(vm);
1215        if (IS_ERR(vm->scratch_pt)) {
1216                ret = PTR_ERR(vm->scratch_pt);
1217                goto free_scratch_page;
1218        }
1219
1220        vm->scratch_pd = alloc_pd(vm);
1221        if (IS_ERR(vm->scratch_pd)) {
1222                ret = PTR_ERR(vm->scratch_pd);
1223                goto free_pt;
1224        }
1225
1226        if (use_4lvl(vm)) {
1227                vm->scratch_pdp = alloc_pdp(vm);
1228                if (IS_ERR(vm->scratch_pdp)) {
1229                        ret = PTR_ERR(vm->scratch_pdp);
1230                        goto free_pd;
1231                }
1232        }
1233
1234        gen8_initialize_pt(vm, vm->scratch_pt);
1235        gen8_initialize_pd(vm, vm->scratch_pd);
1236        if (use_4lvl(vm))
1237                gen8_initialize_pdp(vm, vm->scratch_pdp);
1238
1239        return 0;
1240
1241free_pd:
1242        free_pd(vm, vm->scratch_pd);
1243free_pt:
1244        free_pt(vm, vm->scratch_pt);
1245free_scratch_page:
1246        cleanup_scratch_page(vm);
1247
1248        return ret;
1249}
1250
1251static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1252{
1253        struct i915_address_space *vm = &ppgtt->base;
1254        struct drm_i915_private *dev_priv = vm->i915;
1255        enum vgt_g2v_type msg;
1256        int i;
1257
1258        if (use_4lvl(vm)) {
1259                const u64 daddr = px_dma(&ppgtt->pml4);
1260
1261                I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1262                I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1263
1264                msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1265                                VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1266        } else {
1267                for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1268                        const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1269
1270                        I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1271                        I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1272                }
1273
1274                msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1275                                VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1276        }
1277
1278        I915_WRITE(vgtif_reg(g2v_notify), msg);
1279
1280        return 0;
1281}
1282
1283static void gen8_free_scratch(struct i915_address_space *vm)
1284{
1285        if (use_4lvl(vm))
1286                free_pdp(vm, vm->scratch_pdp);
1287        free_pd(vm, vm->scratch_pd);
1288        free_pt(vm, vm->scratch_pt);
1289        cleanup_scratch_page(vm);
1290}
1291
1292static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1293                                    struct i915_page_directory_pointer *pdp)
1294{
1295        const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1296        int i;
1297
1298        for (i = 0; i < pdpes; i++) {
1299                if (pdp->page_directory[i] == vm->scratch_pd)
1300                        continue;
1301
1302                gen8_free_page_tables(vm, pdp->page_directory[i]);
1303                free_pd(vm, pdp->page_directory[i]);
1304        }
1305
1306        free_pdp(vm, pdp);
1307}
1308
1309static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1310{
1311        int i;
1312
1313        for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1314                if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1315                        continue;
1316
1317                gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1318        }
1319
1320        cleanup_px(&ppgtt->base, &ppgtt->pml4);
1321}
1322
1323static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1324{
1325        struct drm_i915_private *dev_priv = vm->i915;
1326        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1327
1328        if (intel_vgpu_active(dev_priv))
1329                gen8_ppgtt_notify_vgt(ppgtt, false);
1330
1331        if (use_4lvl(vm))
1332                gen8_ppgtt_cleanup_4lvl(ppgtt);
1333        else
1334                gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1335
1336        gen8_free_scratch(vm);
1337}
1338
1339static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1340                               struct i915_page_directory *pd,
1341                               u64 start, u64 length)
1342{
1343        struct i915_page_table *pt;
1344        u64 from = start;
1345        unsigned int pde;
1346
1347        gen8_for_each_pde(pt, pd, start, length, pde) {
1348                int count = gen8_pte_count(start, length);
1349
1350                if (pt == vm->scratch_pt) {
1351                        pd->used_pdes++;
1352
1353                        pt = alloc_pt(vm);
1354                        if (IS_ERR(pt)) {
1355                                pd->used_pdes--;
1356                                goto unwind;
1357                        }
1358
1359                        if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1360                                gen8_initialize_pt(vm, pt);
1361
1362                        gen8_ppgtt_set_pde(vm, pd, pt, pde);
1363                        GEM_BUG_ON(pd->used_pdes > I915_PDES);
1364                }
1365
1366                pt->used_ptes += count;
1367        }
1368        return 0;
1369
1370unwind:
1371        gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1372        return -ENOMEM;
1373}
1374
1375static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1376                                struct i915_page_directory_pointer *pdp,
1377                                u64 start, u64 length)
1378{
1379        struct i915_page_directory *pd;
1380        u64 from = start;
1381        unsigned int pdpe;
1382        int ret;
1383
1384        gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1385                if (pd == vm->scratch_pd) {
1386                        pdp->used_pdpes++;
1387
1388                        pd = alloc_pd(vm);
1389                        if (IS_ERR(pd)) {
1390                                pdp->used_pdpes--;
1391                                goto unwind;
1392                        }
1393
1394                        gen8_initialize_pd(vm, pd);
1395                        gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1396                        GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1397
1398                        mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1399                }
1400
1401                ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1402                if (unlikely(ret))
1403                        goto unwind_pd;
1404        }
1405
1406        return 0;
1407
1408unwind_pd:
1409        if (!pd->used_pdes) {
1410                gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1411                GEM_BUG_ON(!pdp->used_pdpes);
1412                pdp->used_pdpes--;
1413                free_pd(vm, pd);
1414        }
1415unwind:
1416        gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1417        return -ENOMEM;
1418}
1419
1420static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1421                                 u64 start, u64 length)
1422{
1423        return gen8_ppgtt_alloc_pdp(vm,
1424                                    &i915_vm_to_ppgtt(vm)->pdp, start, length);
1425}
1426
1427static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1428                                 u64 start, u64 length)
1429{
1430        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1431        struct i915_pml4 *pml4 = &ppgtt->pml4;
1432        struct i915_page_directory_pointer *pdp;
1433        u64 from = start;
1434        u32 pml4e;
1435        int ret;
1436
1437        gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1438                if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1439                        pdp = alloc_pdp(vm);
1440                        if (IS_ERR(pdp))
1441                                goto unwind;
1442
1443                        gen8_initialize_pdp(vm, pdp);
1444                        gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1445                }
1446
1447                ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1448                if (unlikely(ret))
1449                        goto unwind_pdp;
1450        }
1451
1452        return 0;
1453
1454unwind_pdp:
1455        if (!pdp->used_pdpes) {
1456                gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1457                free_pdp(vm, pdp);
1458        }
1459unwind:
1460        gen8_ppgtt_clear_4lvl(vm, from, start - from);
1461        return -ENOMEM;
1462}
1463
1464static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1465                          struct i915_page_directory_pointer *pdp,
1466                          u64 start, u64 length,
1467                          gen8_pte_t scratch_pte,
1468                          struct seq_file *m)
1469{
1470        struct i915_address_space *vm = &ppgtt->base;
1471        struct i915_page_directory *pd;
1472        u32 pdpe;
1473
1474        gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1475                struct i915_page_table *pt;
1476                u64 pd_len = length;
1477                u64 pd_start = start;
1478                u32 pde;
1479
1480                if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1481                        continue;
1482
1483                seq_printf(m, "\tPDPE #%d\n", pdpe);
1484                gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1485                        u32 pte;
1486                        gen8_pte_t *pt_vaddr;
1487
1488                        if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1489                                continue;
1490
1491                        pt_vaddr = kmap_atomic_px(pt);
1492                        for (pte = 0; pte < GEN8_PTES; pte += 4) {
1493                                u64 va = (pdpe << GEN8_PDPE_SHIFT |
1494                                          pde << GEN8_PDE_SHIFT |
1495                                          pte << GEN8_PTE_SHIFT);
1496                                int i;
1497                                bool found = false;
1498
1499                                for (i = 0; i < 4; i++)
1500                                        if (pt_vaddr[pte + i] != scratch_pte)
1501                                                found = true;
1502                                if (!found)
1503                                        continue;
1504
1505                                seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1506                                for (i = 0; i < 4; i++) {
1507                                        if (pt_vaddr[pte + i] != scratch_pte)
1508                                                seq_printf(m, " %llx", pt_vaddr[pte + i]);
1509                                        else
1510                                                seq_puts(m, "  SCRATCH ");
1511                                }
1512                                seq_puts(m, "\n");
1513                        }
1514                        kunmap_atomic(pt_vaddr);
1515                }
1516        }
1517}
1518
1519static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1520{
1521        struct i915_address_space *vm = &ppgtt->base;
1522        const gen8_pte_t scratch_pte =
1523                gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1524        u64 start = 0, length = ppgtt->base.total;
1525
1526        if (use_4lvl(vm)) {
1527                u64 pml4e;
1528                struct i915_pml4 *pml4 = &ppgtt->pml4;
1529                struct i915_page_directory_pointer *pdp;
1530
1531                gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1532                        if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1533                                continue;
1534
1535                        seq_printf(m, "    PML4E #%llu\n", pml4e);
1536                        gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1537                }
1538        } else {
1539                gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1540        }
1541}
1542
1543static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1544{
1545        struct i915_address_space *vm = &ppgtt->base;
1546        struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1547        struct i915_page_directory *pd;
1548        u64 start = 0, length = ppgtt->base.total;
1549        u64 from = start;
1550        unsigned int pdpe;
1551
1552        gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1553                pd = alloc_pd(vm);
1554                if (IS_ERR(pd))
1555                        goto unwind;
1556
1557                gen8_initialize_pd(vm, pd);
1558                gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1559                pdp->used_pdpes++;
1560        }
1561
1562        pdp->used_pdpes++; /* never remove */
1563        return 0;
1564
1565unwind:
1566        start -= from;
1567        gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1568                gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1569                free_pd(vm, pd);
1570        }
1571        pdp->used_pdpes = 0;
1572        return -ENOMEM;
1573}
1574
1575/*
1576 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1577 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1578 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1579 * space.
1580 *
1581 */
1582static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1583{
1584        struct i915_address_space *vm = &ppgtt->base;
1585        struct drm_i915_private *dev_priv = vm->i915;
1586        int ret;
1587
1588        ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1589                1ULL << 48 :
1590                1ULL << 32;
1591
1592        /* There are only few exceptions for gen >=6. chv and bxt.
1593         * And we are not sure about the latter so play safe for now.
1594         */
1595        if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1596                ppgtt->base.pt_kmap_wc = true;
1597
1598        ret = gen8_init_scratch(&ppgtt->base);
1599        if (ret) {
1600                ppgtt->base.total = 0;
1601                return ret;
1602        }
1603
1604        if (use_4lvl(vm)) {
1605                ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1606                if (ret)
1607                        goto free_scratch;
1608
1609                gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1610
1611                ppgtt->switch_mm = gen8_mm_switch_4lvl;
1612                ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1613                ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1614                ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1615        } else {
1616                ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1617                if (ret)
1618                        goto free_scratch;
1619
1620                if (intel_vgpu_active(dev_priv)) {
1621                        ret = gen8_preallocate_top_level_pdp(ppgtt);
1622                        if (ret) {
1623                                __pdp_fini(&ppgtt->pdp);
1624                                goto free_scratch;
1625                        }
1626                }
1627
1628                ppgtt->switch_mm = gen8_mm_switch_3lvl;
1629                ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1630                ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1631                ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1632        }
1633
1634        if (intel_vgpu_active(dev_priv))
1635                gen8_ppgtt_notify_vgt(ppgtt, true);
1636
1637        ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1638        ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1639        ppgtt->base.bind_vma = ppgtt_bind_vma;
1640        ppgtt->base.set_pages = ppgtt_set_pages;
1641        ppgtt->base.clear_pages = clear_pages;
1642        ppgtt->debug_dump = gen8_dump_ppgtt;
1643
1644        return 0;
1645
1646free_scratch:
1647        gen8_free_scratch(&ppgtt->base);
1648        return ret;
1649}
1650
1651static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1652{
1653        struct i915_address_space *vm = &ppgtt->base;
1654        struct i915_page_table *unused;
1655        gen6_pte_t scratch_pte;
1656        u32 pd_entry, pte, pde;
1657        u32 start = 0, length = ppgtt->base.total;
1658
1659        scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1660                                     I915_CACHE_LLC, 0);
1661
1662        gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1663                u32 expected;
1664                gen6_pte_t *pt_vaddr;
1665                const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1666                pd_entry = readl(ppgtt->pd_addr + pde);
1667                expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1668
1669                if (pd_entry != expected)
1670                        seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1671                                   pde,
1672                                   pd_entry,
1673                                   expected);
1674                seq_printf(m, "\tPDE: %x\n", pd_entry);
1675
1676                pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1677
1678                for (pte = 0; pte < GEN6_PTES; pte+=4) {
1679                        unsigned long va =
1680                                (pde * PAGE_SIZE * GEN6_PTES) +
1681                                (pte * PAGE_SIZE);
1682                        int i;
1683                        bool found = false;
1684                        for (i = 0; i < 4; i++)
1685                                if (pt_vaddr[pte + i] != scratch_pte)
1686                                        found = true;
1687                        if (!found)
1688                                continue;
1689
1690                        seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1691                        for (i = 0; i < 4; i++) {
1692                                if (pt_vaddr[pte + i] != scratch_pte)
1693                                        seq_printf(m, " %08x", pt_vaddr[pte + i]);
1694                                else
1695                                        seq_puts(m, "  SCRATCH ");
1696                        }
1697                        seq_puts(m, "\n");
1698                }
1699                kunmap_atomic(pt_vaddr);
1700        }
1701}
1702
1703/* Write pde (index) from the page directory @pd to the page table @pt */
1704static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1705                                  const unsigned int pde,
1706                                  const struct i915_page_table *pt)
1707{
1708        /* Caller needs to make sure the write completes if necessary */
1709        writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1710                       ppgtt->pd_addr + pde);
1711}
1712
1713/* Write all the page tables found in the ppgtt structure to incrementing page
1714 * directories. */
1715static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1716                                  u32 start, u32 length)
1717{
1718        struct i915_page_table *pt;
1719        unsigned int pde;
1720
1721        gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1722                gen6_write_pde(ppgtt, pde, pt);
1723
1724        mark_tlbs_dirty(ppgtt);
1725        wmb();
1726}
1727
1728static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1729{
1730        GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1731        return ppgtt->pd.base.ggtt_offset << 10;
1732}
1733
1734static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1735                         struct i915_request *rq)
1736{
1737        struct intel_engine_cs *engine = rq->engine;
1738        u32 *cs;
1739
1740        /* NB: TLBs must be flushed and invalidated before a switch */
1741        cs = intel_ring_begin(rq, 6);
1742        if (IS_ERR(cs))
1743                return PTR_ERR(cs);
1744
1745        *cs++ = MI_LOAD_REGISTER_IMM(2);
1746        *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1747        *cs++ = PP_DIR_DCLV_2G;
1748        *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1749        *cs++ = get_pd_offset(ppgtt);
1750        *cs++ = MI_NOOP;
1751        intel_ring_advance(rq, cs);
1752
1753        return 0;
1754}
1755
1756static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1757                          struct i915_request *rq)
1758{
1759        struct intel_engine_cs *engine = rq->engine;
1760        u32 *cs;
1761
1762        /* NB: TLBs must be flushed and invalidated before a switch */
1763        cs = intel_ring_begin(rq, 6);
1764        if (IS_ERR(cs))
1765                return PTR_ERR(cs);
1766
1767        *cs++ = MI_LOAD_REGISTER_IMM(2);
1768        *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1769        *cs++ = PP_DIR_DCLV_2G;
1770        *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1771        *cs++ = get_pd_offset(ppgtt);
1772        *cs++ = MI_NOOP;
1773        intel_ring_advance(rq, cs);
1774
1775        return 0;
1776}
1777
1778static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1779                          struct i915_request *rq)
1780{
1781        struct intel_engine_cs *engine = rq->engine;
1782        struct drm_i915_private *dev_priv = rq->i915;
1783
1784        I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1785        I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1786        return 0;
1787}
1788
1789static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1790{
1791        struct intel_engine_cs *engine;
1792        enum intel_engine_id id;
1793
1794        for_each_engine(engine, dev_priv, id) {
1795                u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1796                                 GEN8_GFX_PPGTT_48B : 0;
1797                I915_WRITE(RING_MODE_GEN7(engine),
1798                           _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1799        }
1800}
1801
1802static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1803{
1804        struct intel_engine_cs *engine;
1805        u32 ecochk, ecobits;
1806        enum intel_engine_id id;
1807
1808        ecobits = I915_READ(GAC_ECO_BITS);
1809        I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1810
1811        ecochk = I915_READ(GAM_ECOCHK);
1812        if (IS_HASWELL(dev_priv)) {
1813                ecochk |= ECOCHK_PPGTT_WB_HSW;
1814        } else {
1815                ecochk |= ECOCHK_PPGTT_LLC_IVB;
1816                ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1817        }
1818        I915_WRITE(GAM_ECOCHK, ecochk);
1819
1820        for_each_engine(engine, dev_priv, id) {
1821                /* GFX_MODE is per-ring on gen7+ */
1822                I915_WRITE(RING_MODE_GEN7(engine),
1823                           _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1824        }
1825}
1826
1827static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1828{
1829        u32 ecochk, gab_ctl, ecobits;
1830
1831        ecobits = I915_READ(GAC_ECO_BITS);
1832        I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1833                   ECOBITS_PPGTT_CACHE64B);
1834
1835        gab_ctl = I915_READ(GAB_CTL);
1836        I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1837
1838        ecochk = I915_READ(GAM_ECOCHK);
1839        I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1840
1841        I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1842}
1843
1844/* PPGTT support for Sandybdrige/Gen6 and later */
1845static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1846                                   u64 start, u64 length)
1847{
1848        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1849        unsigned int first_entry = start >> PAGE_SHIFT;
1850        unsigned int pde = first_entry / GEN6_PTES;
1851        unsigned int pte = first_entry % GEN6_PTES;
1852        unsigned int num_entries = length >> PAGE_SHIFT;
1853        gen6_pte_t scratch_pte =
1854                vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1855
1856        while (num_entries) {
1857                struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1858                unsigned int end = min(pte + num_entries, GEN6_PTES);
1859                gen6_pte_t *vaddr;
1860
1861                num_entries -= end - pte;
1862
1863                /* Note that the hw doesn't support removing PDE on the fly
1864                 * (they are cached inside the context with no means to
1865                 * invalidate the cache), so we can only reset the PTE
1866                 * entries back to scratch.
1867                 */
1868
1869                vaddr = kmap_atomic_px(pt);
1870                do {
1871                        vaddr[pte++] = scratch_pte;
1872                } while (pte < end);
1873                kunmap_atomic(vaddr);
1874
1875                pte = 0;
1876        }
1877}
1878
1879static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1880                                      struct i915_vma *vma,
1881                                      enum i915_cache_level cache_level,
1882                                      u32 flags)
1883{
1884        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1885        unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1886        unsigned act_pt = first_entry / GEN6_PTES;
1887        unsigned act_pte = first_entry % GEN6_PTES;
1888        const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1889        struct sgt_dma iter = sgt_dma(vma);
1890        gen6_pte_t *vaddr;
1891
1892        vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1893        do {
1894                vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1895
1896                iter.dma += PAGE_SIZE;
1897                if (iter.dma == iter.max) {
1898                        iter.sg = __sg_next(iter.sg);
1899                        if (!iter.sg)
1900                                break;
1901
1902                        iter.dma = sg_dma_address(iter.sg);
1903                        iter.max = iter.dma + iter.sg->length;
1904                }
1905
1906                if (++act_pte == GEN6_PTES) {
1907                        kunmap_atomic(vaddr);
1908                        vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1909                        act_pte = 0;
1910                }
1911        } while (1);
1912        kunmap_atomic(vaddr);
1913
1914        vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1915}
1916
1917static int gen6_alloc_va_range(struct i915_address_space *vm,
1918                               u64 start, u64 length)
1919{
1920        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1921        struct i915_page_table *pt;
1922        u64 from = start;
1923        unsigned int pde;
1924        bool flush = false;
1925
1926        gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1927                if (pt == vm->scratch_pt) {
1928                        pt = alloc_pt(vm);
1929                        if (IS_ERR(pt))
1930                                goto unwind_out;
1931
1932                        gen6_initialize_pt(vm, pt);
1933                        ppgtt->pd.page_table[pde] = pt;
1934                        gen6_write_pde(ppgtt, pde, pt);
1935                        flush = true;
1936                }
1937        }
1938
1939        if (flush) {
1940                mark_tlbs_dirty(ppgtt);
1941                wmb();
1942        }
1943
1944        return 0;
1945
1946unwind_out:
1947        gen6_ppgtt_clear_range(vm, from, start);
1948        return -ENOMEM;
1949}
1950
1951static int gen6_init_scratch(struct i915_address_space *vm)
1952{
1953        int ret;
1954
1955        ret = setup_scratch_page(vm, I915_GFP_DMA);
1956        if (ret)
1957                return ret;
1958
1959        vm->scratch_pt = alloc_pt(vm);
1960        if (IS_ERR(vm->scratch_pt)) {
1961                cleanup_scratch_page(vm);
1962                return PTR_ERR(vm->scratch_pt);
1963        }
1964
1965        gen6_initialize_pt(vm, vm->scratch_pt);
1966
1967        return 0;
1968}
1969
1970static void gen6_free_scratch(struct i915_address_space *vm)
1971{
1972        free_pt(vm, vm->scratch_pt);
1973        cleanup_scratch_page(vm);
1974}
1975
1976static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1977{
1978        struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1979        struct i915_page_directory *pd = &ppgtt->pd;
1980        struct i915_page_table *pt;
1981        u32 pde;
1982
1983        drm_mm_remove_node(&ppgtt->node);
1984
1985        gen6_for_all_pdes(pt, pd, pde)
1986                if (pt != vm->scratch_pt)
1987                        free_pt(vm, pt);
1988
1989        gen6_free_scratch(vm);
1990}
1991
1992static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1993{
1994        struct i915_address_space *vm = &ppgtt->base;
1995        struct drm_i915_private *dev_priv = ppgtt->base.i915;
1996        struct i915_ggtt *ggtt = &dev_priv->ggtt;
1997        int ret;
1998
1999        /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2000         * allocator works in address space sizes, so it's multiplied by page
2001         * size. We allocate at the top of the GTT to avoid fragmentation.
2002         */
2003        BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2004
2005        ret = gen6_init_scratch(vm);
2006        if (ret)
2007                return ret;
2008
2009        ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
2010                                  GEN6_PD_SIZE, GEN6_PD_ALIGN,
2011                                  I915_COLOR_UNEVICTABLE,
2012                                  0, ggtt->base.total,
2013                                  PIN_HIGH);
2014        if (ret)
2015                goto err_out;
2016
2017        if (ppgtt->node.start < ggtt->mappable_end)
2018                DRM_DEBUG("Forced to use aperture for PDEs\n");
2019
2020        ppgtt->pd.base.ggtt_offset =
2021                ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2022
2023        ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2024                ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2025
2026        return 0;
2027
2028err_out:
2029        gen6_free_scratch(vm);
2030        return ret;
2031}
2032
2033static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2034{
2035        return gen6_ppgtt_allocate_page_directories(ppgtt);
2036}
2037
2038static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2039                                  u64 start, u64 length)
2040{
2041        struct i915_page_table *unused;
2042        u32 pde;
2043
2044        gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2045                ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2046}
2047
2048static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2049{
2050        struct drm_i915_private *dev_priv = ppgtt->base.i915;
2051        struct i915_ggtt *ggtt = &dev_priv->ggtt;
2052        int ret;
2053
2054        ppgtt->base.pte_encode = ggtt->base.pte_encode;
2055        if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2056                ppgtt->switch_mm = gen6_mm_switch;
2057        else if (IS_HASWELL(dev_priv))
2058                ppgtt->switch_mm = hsw_mm_switch;
2059        else if (IS_GEN7(dev_priv))
2060                ppgtt->switch_mm = gen7_mm_switch;
2061        else
2062                BUG();
2063
2064        ret = gen6_ppgtt_alloc(ppgtt);
2065        if (ret)
2066                return ret;
2067
2068        ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2069
2070        gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2071        gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2072
2073        ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2074        if (ret) {
2075                gen6_ppgtt_cleanup(&ppgtt->base);
2076                return ret;
2077        }
2078
2079        ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2080        ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2081        ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2082        ppgtt->base.bind_vma = ppgtt_bind_vma;
2083        ppgtt->base.set_pages = ppgtt_set_pages;
2084        ppgtt->base.clear_pages = clear_pages;
2085        ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2086        ppgtt->debug_dump = gen6_dump_ppgtt;
2087
2088        DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2089                         ppgtt->node.size >> 20,
2090                         ppgtt->node.start / PAGE_SIZE);
2091
2092        DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2093                         ppgtt->pd.base.ggtt_offset << 10);
2094
2095        return 0;
2096}
2097
2098static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2099                           struct drm_i915_private *dev_priv)
2100{
2101        ppgtt->base.i915 = dev_priv;
2102        ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2103
2104        if (INTEL_GEN(dev_priv) < 8)
2105                return gen6_ppgtt_init(ppgtt);
2106        else
2107                return gen8_ppgtt_init(ppgtt);
2108}
2109
2110static void i915_address_space_init(struct i915_address_space *vm,
2111                                    struct drm_i915_private *dev_priv,
2112                                    const char *name)
2113{
2114        i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2115
2116        drm_mm_init(&vm->mm, 0, vm->total);
2117        vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2118
2119        INIT_LIST_HEAD(&vm->active_list);
2120        INIT_LIST_HEAD(&vm->inactive_list);
2121        INIT_LIST_HEAD(&vm->unbound_list);
2122
2123        list_add_tail(&vm->global_link, &dev_priv->vm_list);
2124        pagevec_init(&vm->free_pages);
2125}
2126
2127static void i915_address_space_fini(struct i915_address_space *vm)
2128{
2129        if (pagevec_count(&vm->free_pages))
2130                vm_free_pages_release(vm, true);
2131
2132        i915_gem_timeline_fini(&vm->timeline);
2133        drm_mm_takedown(&vm->mm);
2134        list_del(&vm->global_link);
2135}
2136
2137static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2138{
2139        /* This function is for gtt related workarounds. This function is
2140         * called on driver load and after a GPU reset, so you can place
2141         * workarounds here even if they get overwritten by GPU reset.
2142         */
2143        /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */
2144        if (IS_BROADWELL(dev_priv))
2145                I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2146        else if (IS_CHERRYVIEW(dev_priv))
2147                I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2148        else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
2149                I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2150        else if (IS_GEN9_LP(dev_priv))
2151                I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2152
2153        /*
2154         * To support 64K PTEs we need to first enable the use of the
2155         * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2156         * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2157         * shouldn't be needed after GEN10.
2158         *
2159         * 64K pages were first introduced from BDW+, although technically they
2160         * only *work* from gen9+. For pre-BDW we instead have the option for
2161         * 32K pages, but we don't currently have any support for it in our
2162         * driver.
2163         */
2164        if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2165            INTEL_GEN(dev_priv) <= 10)
2166                I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2167                           I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2168                           GAMW_ECO_ENABLE_64K_IPS_FIELD);
2169}
2170
2171int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2172{
2173        gtt_write_workarounds(dev_priv);
2174
2175        /* In the case of execlists, PPGTT is enabled by the context descriptor
2176         * and the PDPs are contained within the context itself.  We don't
2177         * need to do anything here. */
2178        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2179                return 0;
2180
2181        if (!USES_PPGTT(dev_priv))
2182                return 0;
2183
2184        if (IS_GEN6(dev_priv))
2185                gen6_ppgtt_enable(dev_priv);
2186        else if (IS_GEN7(dev_priv))
2187                gen7_ppgtt_enable(dev_priv);
2188        else if (INTEL_GEN(dev_priv) >= 8)
2189                gen8_ppgtt_enable(dev_priv);
2190        else
2191                MISSING_CASE(INTEL_GEN(dev_priv));
2192
2193        return 0;
2194}
2195
2196struct i915_hw_ppgtt *
2197i915_ppgtt_create(struct drm_i915_private *dev_priv,
2198                  struct drm_i915_file_private *fpriv,
2199                  const char *name)
2200{
2201        struct i915_hw_ppgtt *ppgtt;
2202        int ret;
2203
2204        ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2205        if (!ppgtt)
2206                return ERR_PTR(-ENOMEM);
2207
2208        ret = __hw_ppgtt_init(ppgtt, dev_priv);
2209        if (ret) {
2210                kfree(ppgtt);
2211                return ERR_PTR(ret);
2212        }
2213
2214        kref_init(&ppgtt->ref);
2215        i915_address_space_init(&ppgtt->base, dev_priv, name);
2216        ppgtt->base.file = fpriv;
2217
2218        trace_i915_ppgtt_create(&ppgtt->base);
2219
2220        return ppgtt;
2221}
2222
2223void i915_ppgtt_close(struct i915_address_space *vm)
2224{
2225        struct list_head *phases[] = {
2226                &vm->active_list,
2227                &vm->inactive_list,
2228                &vm->unbound_list,
2229                NULL,
2230        }, **phase;
2231
2232        GEM_BUG_ON(vm->closed);
2233        vm->closed = true;
2234
2235        for (phase = phases; *phase; phase++) {
2236                struct i915_vma *vma, *vn;
2237
2238                list_for_each_entry_safe(vma, vn, *phase, vm_link)
2239                        if (!i915_vma_is_closed(vma))
2240                                i915_vma_close(vma);
2241        }
2242}
2243
2244void i915_ppgtt_release(struct kref *kref)
2245{
2246        struct i915_hw_ppgtt *ppgtt =
2247                container_of(kref, struct i915_hw_ppgtt, ref);
2248
2249        trace_i915_ppgtt_release(&ppgtt->base);
2250
2251        /* vmas should already be unbound and destroyed */
2252        GEM_BUG_ON(!list_empty(&ppgtt->base.active_list));
2253        GEM_BUG_ON(!list_empty(&ppgtt->base.inactive_list));
2254        GEM_BUG_ON(!list_empty(&ppgtt->base.unbound_list));
2255
2256        ppgtt->base.cleanup(&ppgtt->base);
2257        i915_address_space_fini(&ppgtt->base);
2258        kfree(ppgtt);
2259}
2260
2261/* Certain Gen5 chipsets require require idling the GPU before
2262 * unmapping anything from the GTT when VT-d is enabled.
2263 */
2264static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2265{
2266        /* Query intel_iommu to see if we need the workaround. Presumably that
2267         * was loaded first.
2268         */
2269        return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2270}
2271
2272static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2273{
2274        struct intel_engine_cs *engine;
2275        enum intel_engine_id id;
2276        u32 fault;
2277
2278        for_each_engine(engine, dev_priv, id) {
2279                fault = I915_READ(RING_FAULT_REG(engine));
2280                if (fault & RING_FAULT_VALID) {
2281                        DRM_DEBUG_DRIVER("Unexpected fault\n"
2282                                         "\tAddr: 0x%08lx\n"
2283                                         "\tAddress space: %s\n"
2284                                         "\tSource ID: %d\n"
2285                                         "\tType: %d\n",
2286                                         fault & PAGE_MASK,
2287                                         fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2288                                         RING_FAULT_SRCID(fault),
2289                                         RING_FAULT_FAULT_TYPE(fault));
2290                        I915_WRITE(RING_FAULT_REG(engine),
2291                                   fault & ~RING_FAULT_VALID);
2292                }
2293        }
2294
2295        POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2296}
2297
2298static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2299{
2300        u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2301
2302        if (fault & RING_FAULT_VALID) {
2303                u32 fault_data0, fault_data1;
2304                u64 fault_addr;
2305
2306                fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2307                fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2308                fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2309                             ((u64)fault_data0 << 12);
2310
2311                DRM_DEBUG_DRIVER("Unexpected fault\n"
2312                                 "\tAddr: 0x%08x_%08x\n"
2313                                 "\tAddress space: %s\n"
2314                                 "\tEngine ID: %d\n"
2315                                 "\tSource ID: %d\n"
2316                                 "\tType: %d\n",
2317                                 upper_32_bits(fault_addr),
2318                                 lower_32_bits(fault_addr),
2319                                 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2320                                 GEN8_RING_FAULT_ENGINE_ID(fault),
2321                                 RING_FAULT_SRCID(fault),
2322                                 RING_FAULT_FAULT_TYPE(fault));
2323                I915_WRITE(GEN8_RING_FAULT_REG,
2324                           fault & ~RING_FAULT_VALID);
2325        }
2326
2327        POSTING_READ(GEN8_RING_FAULT_REG);
2328}
2329
2330void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2331{
2332        /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2333        if (INTEL_GEN(dev_priv) >= 8)
2334                gen8_check_and_clear_faults(dev_priv);
2335        else if (INTEL_GEN(dev_priv) >= 6)
2336                gen6_check_and_clear_faults(dev_priv);
2337        else
2338                return;
2339}
2340
2341void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2342{
2343        struct i915_ggtt *ggtt = &dev_priv->ggtt;
2344
2345        /* Don't bother messing with faults pre GEN6 as we have little
2346         * documentation supporting that it's a good idea.
2347         */
2348        if (INTEL_GEN(dev_priv) < 6)
2349                return;
2350
2351        i915_check_and_clear_faults(dev_priv);
2352
2353        ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2354
2355        i915_ggtt_invalidate(dev_priv);
2356}
2357
2358int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2359                               struct sg_table *pages)
2360{
2361        do {
2362                if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2363                                     pages->sgl, pages->nents,
2364                                     PCI_DMA_BIDIRECTIONAL,
2365                                     DMA_ATTR_NO_WARN))
2366                        return 0;
2367
2368                /* If the DMA remap fails, one cause can be that we have
2369                 * too many objects pinned in a small remapping table,
2370                 * such as swiotlb. Incrementally purge all other objects and
2371                 * try again - if there are no more pages to remove from
2372                 * the DMA remapper, i915_gem_shrink will return 0.
2373                 */
2374                GEM_BUG_ON(obj->mm.pages == pages);
2375        } while (i915_gem_shrink(to_i915(obj->base.dev),
2376                                 obj->base.size >> PAGE_SHIFT, NULL,
2377                                 I915_SHRINK_BOUND |
2378                                 I915_SHRINK_UNBOUND |
2379                                 I915_SHRINK_ACTIVE));
2380
2381        return -ENOSPC;
2382}
2383
2384static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2385{
2386        writeq(pte, addr);
2387}
2388
2389static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2390                                  dma_addr_t addr,
2391                                  u64 offset,
2392                                  enum i915_cache_level level,
2393                                  u32 unused)
2394{
2395        struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2396        gen8_pte_t __iomem *pte =
2397                (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2398
2399        gen8_set_pte(pte, gen8_pte_encode(addr, level));
2400
2401        ggtt->invalidate(vm->i915);
2402}
2403
2404static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2405                                     struct i915_vma *vma,
2406                                     enum i915_cache_level level,
2407                                     u32 unused)
2408{
2409        struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2410        struct sgt_iter sgt_iter;
2411        gen8_pte_t __iomem *gtt_entries;
2412        const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2413        dma_addr_t addr;
2414
2415        gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2416        gtt_entries += vma->node.start >> PAGE_SHIFT;
2417        for_each_sgt_dma(addr, sgt_iter, vma->pages)
2418                gen8_set_pte(gtt_entries++, pte_encode | addr);
2419
2420        wmb();
2421
2422        /* This next bit makes the above posting read even more important. We
2423         * want to flush the TLBs only after we're certain all the PTE updates
2424         * have finished.
2425         */
2426        ggtt->invalidate(vm->i915);
2427}
2428
2429static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2430                                  dma_addr_t addr,
2431                                  u64 offset,
2432                                  enum i915_cache_level level,
2433                                  u32 flags)
2434{
2435        struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2436        gen6_pte_t __iomem *pte =
2437                (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2438
2439        iowrite32(vm->pte_encode(addr, level, flags), pte);
2440
2441        ggtt->invalidate(vm->i915);
2442}
2443
2444/*
2445 * Binds an object into the global gtt with the specified cache level. The object
2446 * will be accessible to the GPU via commands whose operands reference offsets
2447 * within the global GTT as well as accessible by the GPU through the GMADR
2448 * mapped BAR (dev_priv->mm.gtt->gtt).
2449 */
2450static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2451                                     struct i915_vma *vma,
2452                                     enum i915_cache_level level,
2453                                     u32 flags)
2454{
2455        struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2456        gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2457        unsigned int i = vma->node.start >> PAGE_SHIFT;
2458        struct sgt_iter iter;
2459        dma_addr_t addr;
2460        for_each_sgt_dma(addr, iter, vma->pages)
2461                iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2462        wmb();
2463
2464        /* This next bit makes the above posting read even more important. We
2465         * want to flush the TLBs only after we're certain all the PTE updates
2466         * have finished.
2467         */
2468        ggtt->invalidate(vm->i915);
2469}
2470
2471static void nop_clear_range(struct i915_address_space *vm,
2472                            u64 start, u64 length)
2473{
2474}
2475
2476static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2477                                  u64 start, u64 length)
2478{
2479        struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2480        unsigned first_entry = start >> PAGE_SHIFT;
2481        unsigned num_entries = length >> PAGE_SHIFT;
2482        const gen8_pte_t scratch_pte =
2483                gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2484        gen8_pte_t __iomem *gtt_base =
2485                (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2486        const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2487        int i;
2488
2489        if (WARN(num_entries > max_entries,
2490                 "First entry = %d; Num entries = %d (max=%d)\n",
2491                 first_entry, num_entries, max_entries))
2492                num_entries = max_entries;
2493
2494        for (i = 0; i < num_entries; i++)
2495                gen8_set_pte(&gtt_base[i], scratch_pte);
2496}
2497
2498static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2499{
2500        struct drm_i915_private *dev_priv = vm->i915;
2501
2502        /*
2503         * Make sure the internal GAM fifo has been cleared of all GTT
2504         * writes before exiting stop_machine(). This guarantees that
2505         * any aperture accesses waiting to start in another process
2506         * cannot back up behind the GTT writes causing a hang.
2507         * The register can be any arbitrary GAM register.
2508         */
2509        POSTING_READ(GFX_FLSH_CNTL_GEN6);
2510}
2511
2512struct insert_page {
2513        struct i915_address_space *vm;
2514        dma_addr_t addr;
2515        u64 offset;
2516        enum i915_cache_level level;
2517};
2518
2519static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2520{
2521        struct insert_page *arg = _arg;
2522
2523        gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2524        bxt_vtd_ggtt_wa(arg->vm);
2525
2526        return 0;
2527}
2528
2529static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2530                                          dma_addr_t addr,
2531                                          u64 offset,
2532                                          enum i915_cache_level level,
2533                                          u32 unused)
2534{
2535        struct insert_page arg = { vm, addr, offset, level };
2536
2537        stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2538}
2539
2540struct insert_entries {
2541        struct i915_address_space *vm;
2542        struct i915_vma *vma;
2543        enum i915_cache_level level;
2544};
2545
2546static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2547{
2548        struct insert_entries *arg = _arg;
2549
2550        gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2551        bxt_vtd_ggtt_wa(arg->vm);
2552
2553        return 0;
2554}
2555
2556static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2557                                             struct i915_vma *vma,
2558                                             enum i915_cache_level level,
2559                                             u32 unused)
2560{
2561        struct insert_entries arg = { vm, vma, level };
2562
2563        stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2564}
2565
2566struct clear_range {
2567        struct i915_address_space *vm;
2568        u64 start;
2569        u64 length;
2570};
2571
2572static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2573{
2574        struct clear_range *arg = _arg;
2575
2576        gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2577        bxt_vtd_ggtt_wa(arg->vm);
2578
2579        return 0;
2580}
2581
2582static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2583                                          u64 start,
2584                                          u64 length)
2585{
2586        struct clear_range arg = { vm, start, length };
2587
2588        stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2589}
2590
2591static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2592                                  u64 start, u64 length)
2593{
2594        struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2595        unsigned first_entry = start >> PAGE_SHIFT;
2596        unsigned num_entries = length >> PAGE_SHIFT;
2597        gen6_pte_t scratch_pte, __iomem *gtt_base =
2598                (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2599        const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2600        int i;
2601
2602        if (WARN(num_entries > max_entries,
2603                 "First entry = %d; Num entries = %d (max=%d)\n",
2604                 first_entry, num_entries, max_entries))
2605                num_entries = max_entries;
2606
2607        scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2608                                     I915_CACHE_LLC, 0);
2609
2610        for (i = 0; i < num_entries; i++)
2611                iowrite32(scratch_pte, &gtt_base[i]);
2612}
2613
2614static void i915_ggtt_insert_page(struct i915_address_space *vm,
2615                                  dma_addr_t addr,
2616                                  u64 offset,
2617                                  enum i915_cache_level cache_level,
2618                                  u32 unused)
2619{
2620        unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2621                AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2622
2623        intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2624}
2625
2626static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2627                                     struct i915_vma *vma,
2628                                     enum i915_cache_level cache_level,
2629                                     u32 unused)
2630{
2631        unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2632                AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2633
2634        intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2635                                    flags);
2636}
2637
2638static void i915_ggtt_clear_range(struct i915_address_space *vm,
2639                                  u64 start, u64 length)
2640{
2641        intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2642}
2643
2644static int ggtt_bind_vma(struct i915_vma *vma,
2645                         enum i915_cache_level cache_level,
2646                         u32 flags)
2647{
2648        struct drm_i915_private *i915 = vma->vm->i915;
2649        struct drm_i915_gem_object *obj = vma->obj;
2650        u32 pte_flags;
2651
2652        /* Currently applicable only to VLV */
2653        pte_flags = 0;
2654        if (obj->gt_ro)
2655                pte_flags |= PTE_READ_ONLY;
2656
2657        intel_runtime_pm_get(i915);
2658        vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2659        intel_runtime_pm_put(i915);
2660
2661        vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2662
2663        /*
2664         * Without aliasing PPGTT there's no difference between
2665         * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2666         * upgrade to both bound if we bind either to avoid double-binding.
2667         */
2668        vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2669
2670        return 0;
2671}
2672
2673static void ggtt_unbind_vma(struct i915_vma *vma)
2674{
2675        struct drm_i915_private *i915 = vma->vm->i915;
2676
2677        intel_runtime_pm_get(i915);
2678        vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2679        intel_runtime_pm_put(i915);
2680}
2681
2682static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2683                                 enum i915_cache_level cache_level,
2684                                 u32 flags)
2685{
2686        struct drm_i915_private *i915 = vma->vm->i915;
2687        u32 pte_flags;
2688        int ret;
2689
2690        /* Currently applicable only to VLV */
2691        pte_flags = 0;
2692        if (vma->obj->gt_ro)
2693                pte_flags |= PTE_READ_ONLY;
2694
2695        if (flags & I915_VMA_LOCAL_BIND) {
2696                struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2697
2698                if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2699                    appgtt->base.allocate_va_range) {
2700                        ret = appgtt->base.allocate_va_range(&appgtt->base,
2701                                                             vma->node.start,
2702                                                             vma->size);
2703                        if (ret)
2704                                return ret;
2705                }
2706
2707                appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2708                                            pte_flags);
2709        }
2710
2711        if (flags & I915_VMA_GLOBAL_BIND) {
2712                intel_runtime_pm_get(i915);
2713                vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2714                intel_runtime_pm_put(i915);
2715        }
2716
2717        return 0;
2718}
2719
2720static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2721{
2722        struct drm_i915_private *i915 = vma->vm->i915;
2723
2724        if (vma->flags & I915_VMA_GLOBAL_BIND) {
2725                intel_runtime_pm_get(i915);
2726                vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2727                intel_runtime_pm_put(i915);
2728        }
2729
2730        if (vma->flags & I915_VMA_LOCAL_BIND) {
2731                struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2732
2733                vm->clear_range(vm, vma->node.start, vma->size);
2734        }
2735}
2736
2737void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2738                               struct sg_table *pages)
2739{
2740        struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2741        struct device *kdev = &dev_priv->drm.pdev->dev;
2742        struct i915_ggtt *ggtt = &dev_priv->ggtt;
2743
2744        if (unlikely(ggtt->do_idle_maps)) {
2745                if (i915_gem_wait_for_idle(dev_priv, 0)) {
2746                        DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2747                        /* Wait a bit, in hopes it avoids the hang */
2748                        udelay(10);
2749                }
2750        }
2751
2752        dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2753}
2754
2755static int ggtt_set_pages(struct i915_vma *vma)
2756{
2757        int ret;
2758
2759        GEM_BUG_ON(vma->pages);
2760
2761        ret = i915_get_ggtt_vma_pages(vma);
2762        if (ret)
2763                return ret;
2764
2765        vma->page_sizes = vma->obj->mm.page_sizes;
2766
2767        return 0;
2768}
2769
2770static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2771                                  unsigned long color,
2772                                  u64 *start,
2773                                  u64 *end)
2774{
2775        if (node->allocated && node->color != color)
2776                *start += I915_GTT_PAGE_SIZE;
2777
2778        /* Also leave a space between the unallocated reserved node after the
2779         * GTT and any objects within the GTT, i.e. we use the color adjustment
2780         * to insert a guard page to prevent prefetches crossing over the
2781         * GTT boundary.
2782         */
2783        node = list_next_entry(node, node_list);
2784        if (node->color != color)
2785                *end -= I915_GTT_PAGE_SIZE;
2786}
2787
2788int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2789{
2790        struct i915_ggtt *ggtt = &i915->ggtt;
2791        struct i915_hw_ppgtt *ppgtt;
2792        int err;
2793
2794        ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2795        if (IS_ERR(ppgtt))
2796                return PTR_ERR(ppgtt);
2797
2798        if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2799                err = -ENODEV;
2800                goto err_ppgtt;
2801        }
2802
2803        if (ppgtt->base.allocate_va_range) {
2804                /* Note we only pre-allocate as far as the end of the global
2805                 * GTT. On 48b / 4-level page-tables, the difference is very,
2806                 * very significant! We have to preallocate as GVT/vgpu does
2807                 * not like the page directory disappearing.
2808                 */
2809                err = ppgtt->base.allocate_va_range(&ppgtt->base,
2810                                                    0, ggtt->base.total);
2811                if (err)
2812                        goto err_ppgtt;
2813        }
2814
2815        i915->mm.aliasing_ppgtt = ppgtt;
2816
2817        GEM_BUG_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2818        ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2819
2820        GEM_BUG_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2821        ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2822
2823        return 0;
2824
2825err_ppgtt:
2826        i915_ppgtt_put(ppgtt);
2827        return err;
2828}
2829
2830void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2831{
2832        struct i915_ggtt *ggtt = &i915->ggtt;
2833        struct i915_hw_ppgtt *ppgtt;
2834
2835        ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2836        if (!ppgtt)
2837                return;
2838
2839        i915_ppgtt_put(ppgtt);
2840
2841        ggtt->base.bind_vma = ggtt_bind_vma;
2842        ggtt->base.unbind_vma = ggtt_unbind_vma;
2843}
2844
2845int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2846{
2847        /* Let GEM Manage all of the aperture.
2848         *
2849         * However, leave one page at the end still bound to the scratch page.
2850         * There are a number of places where the hardware apparently prefetches
2851         * past the end of the object, and we've seen multiple hangs with the
2852         * GPU head pointer stuck in a batchbuffer bound at the last page of the
2853         * aperture.  One page should be enough to keep any prefetching inside
2854         * of the aperture.
2855         */
2856        struct i915_ggtt *ggtt = &dev_priv->ggtt;
2857        unsigned long hole_start, hole_end;
2858        struct drm_mm_node *entry;
2859        int ret;
2860
2861        ret = intel_vgt_balloon(dev_priv);
2862        if (ret)
2863                return ret;
2864
2865        /* Reserve a mappable slot for our lockless error capture */
2866        ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2867                                          PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2868                                          0, ggtt->mappable_end,
2869                                          DRM_MM_INSERT_LOW);
2870        if (ret)
2871                return ret;
2872
2873        /* Clear any non-preallocated blocks */
2874        drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2875                DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2876                              hole_start, hole_end);
2877                ggtt->base.clear_range(&ggtt->base, hole_start,
2878                                       hole_end - hole_start);
2879        }
2880
2881        /* And finally clear the reserved guard page */
2882        ggtt->base.clear_range(&ggtt->base,
2883                               ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2884
2885        if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2886                ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2887                if (ret)
2888                        goto err;
2889        }
2890
2891        return 0;
2892
2893err:
2894        drm_mm_remove_node(&ggtt->error_capture);
2895        return ret;
2896}
2897
2898/**
2899 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2900 * @dev_priv: i915 device
2901 */
2902void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2903{
2904        struct i915_ggtt *ggtt = &dev_priv->ggtt;
2905        struct i915_vma *vma, *vn;
2906        struct pagevec *pvec;
2907
2908        ggtt->base.closed = true;
2909
2910        mutex_lock(&dev_priv->drm.struct_mutex);
2911        GEM_BUG_ON(!list_empty(&ggtt->base.active_list));
2912        list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2913                WARN_ON(i915_vma_unbind(vma));
2914        mutex_unlock(&dev_priv->drm.struct_mutex);
2915
2916        i915_gem_cleanup_stolen(&dev_priv->drm);
2917
2918        mutex_lock(&dev_priv->drm.struct_mutex);
2919        i915_gem_fini_aliasing_ppgtt(dev_priv);
2920
2921        if (drm_mm_node_allocated(&ggtt->error_capture))
2922                drm_mm_remove_node(&ggtt->error_capture);
2923
2924        if (drm_mm_initialized(&ggtt->base.mm)) {
2925                intel_vgt_deballoon(dev_priv);
2926                i915_address_space_fini(&ggtt->base);
2927        }
2928
2929        ggtt->base.cleanup(&ggtt->base);
2930
2931        pvec = &dev_priv->mm.wc_stash;
2932        if (pvec->nr) {
2933                set_pages_array_wb(pvec->pages, pvec->nr);
2934                __pagevec_release(pvec);
2935        }
2936
2937        mutex_unlock(&dev_priv->drm.struct_mutex);
2938
2939        arch_phys_wc_del(ggtt->mtrr);
2940        io_mapping_fini(&ggtt->iomap);
2941}
2942
2943static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2944{
2945        snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2946        snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2947        return snb_gmch_ctl << 20;
2948}
2949
2950static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2951{
2952        bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2953        bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2954        if (bdw_gmch_ctl)
2955                bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2956
2957#ifdef CONFIG_X86_32
2958        /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2959        if (bdw_gmch_ctl > 4)
2960                bdw_gmch_ctl = 4;
2961#endif
2962
2963        return bdw_gmch_ctl << 20;
2964}
2965
2966static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2967{
2968        gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2969        gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2970
2971        if (gmch_ctrl)
2972                return 1 << (20 + gmch_ctrl);
2973
2974        return 0;
2975}
2976
2977static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2978{
2979        struct drm_i915_private *dev_priv = ggtt->base.i915;
2980        struct pci_dev *pdev = dev_priv->drm.pdev;
2981        phys_addr_t phys_addr;
2982        int ret;
2983
2984        /* For Modern GENs the PTEs and register space are split in the BAR */
2985        phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2986
2987        /*
2988         * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2989         * will be dropped. For WC mappings in general we have 64 byte burst
2990         * writes when the WC buffer is flushed, so we can't use it, but have to
2991         * resort to an uncached mapping. The WC issue is easily caught by the
2992         * readback check when writing GTT PTE entries.
2993         */
2994        if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2995                ggtt->gsm = ioremap_nocache(phys_addr, size);
2996        else
2997                ggtt->gsm = ioremap_wc(phys_addr, size);
2998        if (!ggtt->gsm) {
2999                DRM_ERROR("Failed to map the ggtt page table\n");
3000                return -ENOMEM;
3001        }
3002
3003        ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
3004        if (ret) {
3005                DRM_ERROR("Scratch setup failed\n");
3006                /* iounmap will also get called at remove, but meh */
3007                iounmap(ggtt->gsm);
3008                return ret;
3009        }
3010
3011        return 0;
3012}
3013
3014static struct intel_ppat_entry *
3015__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3016{
3017        struct intel_ppat_entry *entry = &ppat->entries[index];
3018
3019        GEM_BUG_ON(index >= ppat->max_entries);
3020        GEM_BUG_ON(test_bit(index, ppat->used));
3021
3022        entry->ppat = ppat;
3023        entry->value = value;
3024        kref_init(&entry->ref);
3025        set_bit(index, ppat->used);
3026        set_bit(index, ppat->dirty);
3027
3028        return entry;
3029}
3030
3031static void __free_ppat_entry(struct intel_ppat_entry *entry)
3032{
3033        struct intel_ppat *ppat = entry->ppat;
3034        unsigned int index = entry - ppat->entries;
3035
3036        GEM_BUG_ON(index >= ppat->max_entries);
3037        GEM_BUG_ON(!test_bit(index, ppat->used));
3038
3039        entry->value = ppat->clear_value;
3040        clear_bit(index, ppat->used);
3041        set_bit(index, ppat->dirty);
3042}
3043
3044/**
3045 * intel_ppat_get - get a usable PPAT entry
3046 * @i915: i915 device instance
3047 * @value: the PPAT value required by the caller
3048 *
3049 * The function tries to search if there is an existing PPAT entry which
3050 * matches with the required value. If perfectly matched, the existing PPAT
3051 * entry will be used. If only partially matched, it will try to check if
3052 * there is any available PPAT index. If yes, it will allocate a new PPAT
3053 * index for the required entry and update the HW. If not, the partially
3054 * matched entry will be used.
3055 */
3056const struct intel_ppat_entry *
3057intel_ppat_get(struct drm_i915_private *i915, u8 value)
3058{
3059        struct intel_ppat *ppat = &i915->ppat;
3060        struct intel_ppat_entry *entry = NULL;
3061        unsigned int scanned, best_score;
3062        int i;
3063
3064        GEM_BUG_ON(!ppat->max_entries);
3065
3066        scanned = best_score = 0;
3067        for_each_set_bit(i, ppat->used, ppat->max_entries) {
3068                unsigned int score;
3069
3070                score = ppat->match(ppat->entries[i].value, value);
3071                if (score > best_score) {
3072                        entry = &ppat->entries[i];
3073                        if (score == INTEL_PPAT_PERFECT_MATCH) {
3074                                kref_get(&entry->ref);
3075                                return entry;
3076                        }
3077                        best_score = score;
3078                }
3079                scanned++;
3080        }
3081
3082        if (scanned == ppat->max_entries) {
3083                if (!entry)
3084                        return ERR_PTR(-ENOSPC);
3085
3086                kref_get(&entry->ref);
3087                return entry;
3088        }
3089
3090        i = find_first_zero_bit(ppat->used, ppat->max_entries);
3091        entry = __alloc_ppat_entry(ppat, i, value);
3092        ppat->update_hw(i915);
3093        return entry;
3094}
3095
3096static void release_ppat(struct kref *kref)
3097{
3098        struct intel_ppat_entry *entry =
3099                container_of(kref, struct intel_ppat_entry, ref);
3100        struct drm_i915_private *i915 = entry->ppat->i915;
3101
3102        __free_ppat_entry(entry);
3103        entry->ppat->update_hw(i915);
3104}
3105
3106/**
3107 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3108 * @entry: an intel PPAT entry
3109 *
3110 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3111 * entry is dynamically allocated, its reference count will be decreased. Once
3112 * the reference count becomes into zero, the PPAT index becomes free again.
3113 */
3114void intel_ppat_put(const struct intel_ppat_entry *entry)
3115{
3116        struct intel_ppat *ppat = entry->ppat;
3117        unsigned int index = entry - ppat->entries;
3118
3119        GEM_BUG_ON(!ppat->max_entries);
3120
3121        kref_put(&ppat->entries[index].ref, release_ppat);
3122}
3123
3124static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3125{
3126        struct intel_ppat *ppat = &dev_priv->ppat;
3127        int i;
3128
3129        for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3130                I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3131                clear_bit(i, ppat->dirty);
3132        }
3133}
3134
3135static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3136{
3137        struct intel_ppat *ppat = &dev_priv->ppat;
3138        u64 pat = 0;
3139        int i;
3140
3141        for (i = 0; i < ppat->max_entries; i++)
3142                pat |= GEN8_PPAT(i, ppat->entries[i].value);
3143
3144        bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3145
3146        I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3147        I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3148}
3149
3150static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3151{
3152        unsigned int score = 0;
3153        enum {
3154                AGE_MATCH = BIT(0),
3155                TC_MATCH = BIT(1),
3156                CA_MATCH = BIT(2),
3157        };
3158
3159        /* Cache attribute has to be matched. */
3160        if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3161                return 0;
3162
3163        score |= CA_MATCH;
3164
3165        if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3166                score |= TC_MATCH;
3167
3168        if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3169                score |= AGE_MATCH;
3170
3171        if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3172                return INTEL_PPAT_PERFECT_MATCH;
3173
3174        return score;
3175}
3176
3177static unsigned int chv_private_pat_match(u8 src, u8 dst)
3178{
3179        return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3180                INTEL_PPAT_PERFECT_MATCH : 0;
3181}
3182
3183static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3184{
3185        ppat->max_entries = 8;
3186        ppat->update_hw = cnl_private_pat_update_hw;
3187        ppat->match = bdw_private_pat_match;
3188        ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3189
3190        __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3191        __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3192        __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3193        __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3194        __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3195        __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3196        __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3197        __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3198}
3199
3200/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3201 * bits. When using advanced contexts each context stores its own PAT, but
3202 * writing this data shouldn't be harmful even in those cases. */
3203static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3204{
3205        ppat->max_entries = 8;
3206        ppat->update_hw = bdw_private_pat_update_hw;
3207        ppat->match = bdw_private_pat_match;
3208        ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3209
3210        if (!USES_PPGTT(ppat->i915)) {
3211                /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3212                 * so RTL will always use the value corresponding to
3213                 * pat_sel = 000".
3214                 * So let's disable cache for GGTT to avoid screen corruptions.
3215                 * MOCS still can be used though.
3216                 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3217                 * before this patch, i.e. the same uncached + snooping access
3218                 * like on gen6/7 seems to be in effect.
3219                 * - So this just fixes blitter/render access. Again it looks
3220                 * like it's not just uncached access, but uncached + snooping.
3221                 * So we can still hold onto all our assumptions wrt cpu
3222                 * clflushing on LLC machines.
3223                 */
3224                __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3225                return;
3226        }
3227
3228        __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3229        __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3230        __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3231        __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3232        __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3233        __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3234        __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3235        __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3236}
3237
3238static void chv_setup_private_ppat(struct intel_ppat *ppat)
3239{
3240        ppat->max_entries = 8;
3241        ppat->update_hw = bdw_private_pat_update_hw;
3242        ppat->match = chv_private_pat_match;
3243        ppat->clear_value = CHV_PPAT_SNOOP;
3244
3245        /*
3246         * Map WB on BDW to snooped on CHV.
3247         *
3248         * Only the snoop bit has meaning for CHV, the rest is
3249         * ignored.
3250         *
3251         * The hardware will never snoop for certain types of accesses:
3252         * - CPU GTT (GMADR->GGTT->no snoop->memory)
3253         * - PPGTT page tables
3254         * - some other special cycles
3255         *
3256         * As with BDW, we also need to consider the following for GT accesses:
3257         * "For GGTT, there is NO pat_sel[2:0] from the entry,
3258         * so RTL will always use the value corresponding to
3259         * pat_sel = 000".
3260         * Which means we must set the snoop bit in PAT entry 0
3261         * in order to keep the global status page working.
3262         */
3263
3264        __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3265        __alloc_ppat_entry(ppat, 1, 0);
3266        __alloc_ppat_entry(ppat, 2, 0);
3267        __alloc_ppat_entry(ppat, 3, 0);
3268        __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3269        __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3270        __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3271        __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3272}
3273
3274static void gen6_gmch_remove(struct i915_address_space *vm)
3275{
3276        struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3277
3278        iounmap(ggtt->gsm);
3279        cleanup_scratch_page(vm);
3280}
3281
3282static void setup_private_pat(struct drm_i915_private *dev_priv)
3283{
3284        struct intel_ppat *ppat = &dev_priv->ppat;
3285        int i;
3286
3287        ppat->i915 = dev_priv;
3288
3289        if (INTEL_GEN(dev_priv) >= 10)
3290                cnl_setup_private_ppat(ppat);
3291        else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3292                chv_setup_private_ppat(ppat);
3293        else
3294                bdw_setup_private_ppat(ppat);
3295
3296        GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3297
3298        for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3299                ppat->entries[i].value = ppat->clear_value;
3300                ppat->entries[i].ppat = ppat;
3301                set_bit(i, ppat->dirty);
3302        }
3303
3304        ppat->update_hw(dev_priv);
3305}
3306
3307static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3308{
3309        struct drm_i915_private *dev_priv = ggtt->base.i915;
3310        struct pci_dev *pdev = dev_priv->drm.pdev;
3311        unsigned int size;
3312        u16 snb_gmch_ctl;
3313        int err;
3314
3315        /* TODO: We're not aware of mappable constraints on gen8 yet */
3316        ggtt->gmadr =
3317                (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3318                                                 pci_resource_len(pdev, 2));
3319        ggtt->mappable_end = resource_size(&ggtt->gmadr);
3320
3321        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3322        if (!err)
3323                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3324        if (err)
3325                DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3326
3327        pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3328
3329        if (INTEL_GEN(dev_priv) >= 9) {
3330                size = gen8_get_total_gtt_size(snb_gmch_ctl);
3331        } else if (IS_CHERRYVIEW(dev_priv)) {
3332                size = chv_get_total_gtt_size(snb_gmch_ctl);
3333        } else {
3334                size = gen8_get_total_gtt_size(snb_gmch_ctl);
3335        }
3336
3337        ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3338        ggtt->base.cleanup = gen6_gmch_remove;
3339        ggtt->base.bind_vma = ggtt_bind_vma;
3340        ggtt->base.unbind_vma = ggtt_unbind_vma;
3341        ggtt->base.set_pages = ggtt_set_pages;
3342        ggtt->base.clear_pages = clear_pages;
3343        ggtt->base.insert_page = gen8_ggtt_insert_page;
3344        ggtt->base.clear_range = nop_clear_range;
3345        if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3346                ggtt->base.clear_range = gen8_ggtt_clear_range;
3347
3348        ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3349
3350        /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3351        if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3352                ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3353                ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3354                if (ggtt->base.clear_range != nop_clear_range)
3355                        ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3356        }
3357
3358        ggtt->invalidate = gen6_ggtt_invalidate;
3359
3360        setup_private_pat(dev_priv);
3361
3362        return ggtt_probe_common(ggtt, size);
3363}
3364
3365static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3366{
3367        struct drm_i915_private *dev_priv = ggtt->base.i915;
3368        struct pci_dev *pdev = dev_priv->drm.pdev;
3369        unsigned int size;
3370        u16 snb_gmch_ctl;
3371        int err;
3372
3373        ggtt->gmadr =
3374                (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3375                                                 pci_resource_len(pdev, 2));
3376        ggtt->mappable_end = resource_size(&ggtt->gmadr);
3377
3378        /* 64/512MB is the current min/max we actually know of, but this is just
3379         * a coarse sanity check.
3380         */
3381        if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3382                DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3383                return -ENXIO;
3384        }
3385
3386        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3387        if (!err)
3388                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3389        if (err)
3390                DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3391        pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3392
3393        size = gen6_get_total_gtt_size(snb_gmch_ctl);
3394        ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3395
3396        ggtt->base.clear_range = gen6_ggtt_clear_range;
3397        ggtt->base.insert_page = gen6_ggtt_insert_page;
3398        ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3399        ggtt->base.bind_vma = ggtt_bind_vma;
3400        ggtt->base.unbind_vma = ggtt_unbind_vma;
3401        ggtt->base.set_pages = ggtt_set_pages;
3402        ggtt->base.clear_pages = clear_pages;
3403        ggtt->base.cleanup = gen6_gmch_remove;
3404
3405        ggtt->invalidate = gen6_ggtt_invalidate;
3406
3407        if (HAS_EDRAM(dev_priv))
3408                ggtt->base.pte_encode = iris_pte_encode;
3409        else if (IS_HASWELL(dev_priv))
3410                ggtt->base.pte_encode = hsw_pte_encode;
3411        else if (IS_VALLEYVIEW(dev_priv))
3412                ggtt->base.pte_encode = byt_pte_encode;
3413        else if (INTEL_GEN(dev_priv) >= 7)
3414                ggtt->base.pte_encode = ivb_pte_encode;
3415        else
3416                ggtt->base.pte_encode = snb_pte_encode;
3417
3418        return ggtt_probe_common(ggtt, size);
3419}
3420
3421static void i915_gmch_remove(struct i915_address_space *vm)
3422{
3423        intel_gmch_remove();
3424}
3425
3426static int i915_gmch_probe(struct i915_ggtt *ggtt)
3427{
3428        struct drm_i915_private *dev_priv = ggtt->base.i915;
3429        phys_addr_t gmadr_base;
3430        int ret;
3431
3432        ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3433        if (!ret) {
3434                DRM_ERROR("failed to set up gmch\n");
3435                return -EIO;
3436        }
3437
3438        intel_gtt_get(&ggtt->base.total,
3439                      &gmadr_base,
3440                      &ggtt->mappable_end);
3441
3442        ggtt->gmadr =
3443                (struct resource) DEFINE_RES_MEM(gmadr_base,
3444                                                 ggtt->mappable_end);
3445
3446        ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3447        ggtt->base.insert_page = i915_ggtt_insert_page;
3448        ggtt->base.insert_entries = i915_ggtt_insert_entries;
3449        ggtt->base.clear_range = i915_ggtt_clear_range;
3450        ggtt->base.bind_vma = ggtt_bind_vma;
3451        ggtt->base.unbind_vma = ggtt_unbind_vma;
3452        ggtt->base.set_pages = ggtt_set_pages;
3453        ggtt->base.clear_pages = clear_pages;
3454        ggtt->base.cleanup = i915_gmch_remove;
3455
3456        ggtt->invalidate = gmch_ggtt_invalidate;
3457
3458        if (unlikely(ggtt->do_idle_maps))
3459                DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3460
3461        return 0;
3462}
3463
3464/**
3465 * i915_ggtt_probe_hw - Probe GGTT hardware location
3466 * @dev_priv: i915 device
3467 */
3468int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3469{
3470        struct i915_ggtt *ggtt = &dev_priv->ggtt;
3471        int ret;
3472
3473        ggtt->base.i915 = dev_priv;
3474        ggtt->base.dma = &dev_priv->drm.pdev->dev;
3475
3476        if (INTEL_GEN(dev_priv) <= 5)
3477                ret = i915_gmch_probe(ggtt);
3478        else if (INTEL_GEN(dev_priv) < 8)
3479                ret = gen6_gmch_probe(ggtt);
3480        else
3481                ret = gen8_gmch_probe(ggtt);
3482        if (ret)
3483                return ret;
3484
3485        /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3486         * This is easier than doing range restriction on the fly, as we
3487         * currently don't have any bits spare to pass in this upper
3488         * restriction!
3489         */
3490        if (USES_GUC(dev_priv)) {
3491                ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3492                ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3493        }
3494
3495        if ((ggtt->base.total - 1) >> 32) {
3496                DRM_ERROR("We never expected a Global GTT with more than 32bits"
3497                          " of address space! Found %lldM!\n",
3498                          ggtt->base.total >> 20);
3499                ggtt->base.total = 1ULL << 32;
3500                ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3501        }
3502
3503        if (ggtt->mappable_end > ggtt->base.total) {
3504                DRM_ERROR("mappable aperture extends past end of GGTT,"
3505                          " aperture=%pa, total=%llx\n",
3506                          &ggtt->mappable_end, ggtt->base.total);
3507                ggtt->mappable_end = ggtt->base.total;
3508        }
3509
3510        /* GMADR is the PCI mmio aperture into the global GTT. */
3511        DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20);
3512        DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3513        DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3514                         (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3515        if (intel_vtd_active())
3516                DRM_INFO("VT-d active for gfx access\n");
3517
3518        return 0;
3519}
3520
3521/**
3522 * i915_ggtt_init_hw - Initialize GGTT hardware
3523 * @dev_priv: i915 device
3524 */
3525int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3526{
3527        struct i915_ggtt *ggtt = &dev_priv->ggtt;
3528        int ret;
3529
3530        INIT_LIST_HEAD(&dev_priv->vm_list);
3531
3532        /* Note that we use page colouring to enforce a guard page at the
3533         * end of the address space. This is required as the CS may prefetch
3534         * beyond the end of the batch buffer, across the page boundary,
3535         * and beyond the end of the GTT if we do not provide a guard.
3536         */
3537        mutex_lock(&dev_priv->drm.struct_mutex);
3538        i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3539        if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3540                ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3541        mutex_unlock(&dev_priv->drm.struct_mutex);
3542
3543        if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3544                                dev_priv->ggtt.gmadr.start,
3545                                dev_priv->ggtt.mappable_end)) {
3546                ret = -EIO;
3547                goto out_gtt_cleanup;
3548        }
3549
3550        ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3551
3552        /*
3553         * Initialise stolen early so that we may reserve preallocated
3554         * objects for the BIOS to KMS transition.
3555         */
3556        ret = i915_gem_init_stolen(dev_priv);
3557        if (ret)
3558                goto out_gtt_cleanup;
3559
3560        return 0;
3561
3562out_gtt_cleanup:
3563        ggtt->base.cleanup(&ggtt->base);
3564        return ret;
3565}
3566
3567int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3568{
3569        if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3570                return -EIO;
3571
3572        return 0;
3573}
3574
3575void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3576{
3577        GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3578
3579        i915->ggtt.invalidate = guc_ggtt_invalidate;
3580
3581        i915_ggtt_invalidate(i915);
3582}
3583
3584void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3585{
3586        /* We should only be called after i915_ggtt_enable_guc() */
3587        GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3588
3589        i915->ggtt.invalidate = gen6_ggtt_invalidate;
3590
3591        i915_ggtt_invalidate(i915);
3592}
3593
3594void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3595{
3596        struct i915_ggtt *ggtt = &dev_priv->ggtt;
3597        struct drm_i915_gem_object *obj, *on;
3598
3599        i915_check_and_clear_faults(dev_priv);
3600
3601        /* First fill our portion of the GTT with scratch pages */
3602        ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3603
3604        ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3605
3606        /* clflush objects bound into the GGTT and rebind them. */
3607        list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3608                bool ggtt_bound = false;
3609                struct i915_vma *vma;
3610
3611                for_each_ggtt_vma(vma, obj) {
3612                        if (!i915_vma_unbind(vma))
3613                                continue;
3614
3615                        WARN_ON(i915_vma_bind(vma, obj->cache_level,
3616                                              PIN_UPDATE));
3617                        ggtt_bound = true;
3618                }
3619
3620                if (ggtt_bound)
3621                        WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3622        }
3623
3624        ggtt->base.closed = false;
3625
3626        if (INTEL_GEN(dev_priv) >= 8) {
3627                struct intel_ppat *ppat = &dev_priv->ppat;
3628
3629                bitmap_set(ppat->dirty, 0, ppat->max_entries);
3630                dev_priv->ppat.update_hw(dev_priv);
3631                return;
3632        }
3633
3634        if (USES_PPGTT(dev_priv)) {
3635                struct i915_address_space *vm;
3636
3637                list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3638                        struct i915_hw_ppgtt *ppgtt;
3639
3640                        if (i915_is_ggtt(vm))
3641                                ppgtt = dev_priv->mm.aliasing_ppgtt;
3642                        else
3643                                ppgtt = i915_vm_to_ppgtt(vm);
3644
3645                        gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3646                }
3647        }
3648
3649        i915_ggtt_invalidate(dev_priv);
3650}
3651
3652static struct scatterlist *
3653rotate_pages(const dma_addr_t *in, unsigned int offset,
3654             unsigned int width, unsigned int height,
3655             unsigned int stride,
3656             struct sg_table *st, struct scatterlist *sg)
3657{
3658        unsigned int column, row;
3659        unsigned int src_idx;
3660
3661        for (column = 0; column < width; column++) {
3662                src_idx = stride * (height - 1) + column;
3663                for (row = 0; row < height; row++) {
3664                        st->nents++;
3665                        /* We don't need the pages, but need to initialize
3666                         * the entries so the sg list can be happily traversed.
3667                         * The only thing we need are DMA addresses.
3668                         */
3669                        sg_set_page(sg, NULL, PAGE_SIZE, 0);
3670                        sg_dma_address(sg) = in[offset + src_idx];
3671                        sg_dma_len(sg) = PAGE_SIZE;
3672                        sg = sg_next(sg);
3673                        src_idx -= stride;
3674                }
3675        }
3676
3677        return sg;
3678}
3679
3680static noinline struct sg_table *
3681intel_rotate_pages(struct intel_rotation_info *rot_info,
3682                   struct drm_i915_gem_object *obj)
3683{
3684        const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3685        unsigned int size = intel_rotation_info_size(rot_info);
3686        struct sgt_iter sgt_iter;
3687        dma_addr_t dma_addr;
3688        unsigned long i;
3689        dma_addr_t *page_addr_list;
3690        struct sg_table *st;
3691        struct scatterlist *sg;
3692        int ret = -ENOMEM;
3693
3694        /* Allocate a temporary list of source pages for random access. */
3695        page_addr_list = kvmalloc_array(n_pages,
3696                                        sizeof(dma_addr_t),
3697                                        GFP_KERNEL);
3698        if (!page_addr_list)
3699                return ERR_PTR(ret);
3700
3701        /* Allocate target SG list. */
3702        st = kmalloc(sizeof(*st), GFP_KERNEL);
3703        if (!st)
3704                goto err_st_alloc;
3705
3706        ret = sg_alloc_table(st, size, GFP_KERNEL);
3707        if (ret)
3708                goto err_sg_alloc;
3709
3710        /* Populate source page list from the object. */
3711        i = 0;
3712        for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3713                page_addr_list[i++] = dma_addr;
3714
3715        GEM_BUG_ON(i != n_pages);
3716        st->nents = 0;
3717        sg = st->sgl;
3718
3719        for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3720                sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3721                                  rot_info->plane[i].width, rot_info->plane[i].height,
3722                                  rot_info->plane[i].stride, st, sg);
3723        }
3724
3725        kvfree(page_addr_list);
3726
3727        return st;
3728
3729err_sg_alloc:
3730        kfree(st);
3731err_st_alloc:
3732        kvfree(page_addr_list);
3733
3734        DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3735                         obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3736
3737        return ERR_PTR(ret);
3738}
3739
3740static noinline struct sg_table *
3741intel_partial_pages(const struct i915_ggtt_view *view,
3742                    struct drm_i915_gem_object *obj)
3743{
3744        struct sg_table *st;
3745        struct scatterlist *sg, *iter;
3746        unsigned int count = view->partial.size;
3747        unsigned int offset;
3748        int ret = -ENOMEM;
3749
3750        st = kmalloc(sizeof(*st), GFP_KERNEL);
3751        if (!st)
3752                goto err_st_alloc;
3753
3754        ret = sg_alloc_table(st, count, GFP_KERNEL);
3755        if (ret)
3756                goto err_sg_alloc;
3757
3758        iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3759        GEM_BUG_ON(!iter);
3760
3761        sg = st->sgl;
3762        st->nents = 0;
3763        do {
3764                unsigned int len;
3765
3766                len = min(iter->length - (offset << PAGE_SHIFT),
3767                          count << PAGE_SHIFT);
3768                sg_set_page(sg, NULL, len, 0);
3769                sg_dma_address(sg) =
3770                        sg_dma_address(iter) + (offset << PAGE_SHIFT);
3771                sg_dma_len(sg) = len;
3772
3773                st->nents++;
3774                count -= len >> PAGE_SHIFT;
3775                if (count == 0) {
3776                        sg_mark_end(sg);
3777                        return st;
3778                }
3779
3780                sg = __sg_next(sg);
3781                iter = __sg_next(iter);
3782                offset = 0;
3783        } while (1);
3784
3785err_sg_alloc:
3786        kfree(st);
3787err_st_alloc:
3788        return ERR_PTR(ret);
3789}
3790
3791static int
3792i915_get_ggtt_vma_pages(struct i915_vma *vma)
3793{
3794        int ret;
3795
3796        /* The vma->pages are only valid within the lifespan of the borrowed
3797         * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3798         * must be the vma->pages. A simple rule is that vma->pages must only
3799         * be accessed when the obj->mm.pages are pinned.
3800         */
3801        GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3802
3803        switch (vma->ggtt_view.type) {
3804        default:
3805                GEM_BUG_ON(vma->ggtt_view.type);
3806                /* fall through */
3807        case I915_GGTT_VIEW_NORMAL:
3808                vma->pages = vma->obj->mm.pages;
3809                return 0;
3810
3811        case I915_GGTT_VIEW_ROTATED:
3812                vma->pages =
3813                        intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3814                break;
3815
3816        case I915_GGTT_VIEW_PARTIAL:
3817                vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3818                break;
3819        }
3820
3821        ret = 0;
3822        if (unlikely(IS_ERR(vma->pages))) {
3823                ret = PTR_ERR(vma->pages);
3824                vma->pages = NULL;
3825                DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3826                          vma->ggtt_view.type, ret);
3827        }
3828        return ret;
3829}
3830
3831/**
3832 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3833 * @vm: the &struct i915_address_space
3834 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3835 * @size: how much space to allocate inside the GTT,
3836 *        must be #I915_GTT_PAGE_SIZE aligned
3837 * @offset: where to insert inside the GTT,
3838 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3839 *          (@offset + @size) must fit within the address space
3840 * @color: color to apply to node, if this node is not from a VMA,
3841 *         color must be #I915_COLOR_UNEVICTABLE
3842 * @flags: control search and eviction behaviour
3843 *
3844 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3845 * the address space (using @size and @color). If the @node does not fit, it
3846 * tries to evict any overlapping nodes from the GTT, including any
3847 * neighbouring nodes if the colors do not match (to ensure guard pages between
3848 * differing domains). See i915_gem_evict_for_node() for the gory details
3849 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3850 * evicting active overlapping objects, and any overlapping node that is pinned
3851 * or marked as unevictable will also result in failure.
3852 *
3853 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3854 * asked to wait for eviction and interrupted.
3855 */
3856int i915_gem_gtt_reserve(struct i915_address_space *vm,
3857                         struct drm_mm_node *node,
3858                         u64 size, u64 offset, unsigned long color,
3859                         unsigned int flags)
3860{
3861        int err;
3862
3863        GEM_BUG_ON(!size);
3864        GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3865        GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3866        GEM_BUG_ON(range_overflows(offset, size, vm->total));
3867        GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3868        GEM_BUG_ON(drm_mm_node_allocated(node));
3869
3870        node->size = size;
3871        node->start = offset;
3872        node->color = color;
3873
3874        err = drm_mm_reserve_node(&vm->mm, node);
3875        if (err != -ENOSPC)
3876                return err;
3877
3878        if (flags & PIN_NOEVICT)
3879                return -ENOSPC;
3880
3881        err = i915_gem_evict_for_node(vm, node, flags);
3882        if (err == 0)
3883                err = drm_mm_reserve_node(&vm->mm, node);
3884
3885        return err;
3886}
3887
3888static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3889{
3890        u64 range, addr;
3891
3892        GEM_BUG_ON(range_overflows(start, len, end));
3893        GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3894
3895        range = round_down(end - len, align) - round_up(start, align);
3896        if (range) {
3897                if (sizeof(unsigned long) == sizeof(u64)) {
3898                        addr = get_random_long();
3899                } else {
3900                        addr = get_random_int();
3901                        if (range > U32_MAX) {
3902                                addr <<= 32;
3903                                addr |= get_random_int();
3904                        }
3905                }
3906                div64_u64_rem(addr, range, &addr);
3907                start += addr;
3908        }
3909
3910        return round_up(start, align);
3911}
3912
3913/**
3914 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3915 * @vm: the &struct i915_address_space
3916 * @node: the &struct drm_mm_node (typically i915_vma.node)
3917 * @size: how much space to allocate inside the GTT,
3918 *        must be #I915_GTT_PAGE_SIZE aligned
3919 * @alignment: required alignment of starting offset, may be 0 but
3920 *             if specified, this must be a power-of-two and at least
3921 *             #I915_GTT_MIN_ALIGNMENT
3922 * @color: color to apply to node
3923 * @start: start of any range restriction inside GTT (0 for all),
3924 *         must be #I915_GTT_PAGE_SIZE aligned
3925 * @end: end of any range restriction inside GTT (U64_MAX for all),
3926 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3927 * @flags: control search and eviction behaviour
3928 *
3929 * i915_gem_gtt_insert() first searches for an available hole into which
3930 * is can insert the node. The hole address is aligned to @alignment and
3931 * its @size must then fit entirely within the [@start, @end] bounds. The
3932 * nodes on either side of the hole must match @color, or else a guard page
3933 * will be inserted between the two nodes (or the node evicted). If no
3934 * suitable hole is found, first a victim is randomly selected and tested
3935 * for eviction, otherwise then the LRU list of objects within the GTT
3936 * is scanned to find the first set of replacement nodes to create the hole.
3937 * Those old overlapping nodes are evicted from the GTT (and so must be
3938 * rebound before any future use). Any node that is currently pinned cannot
3939 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3940 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3941 * searching for an eviction candidate. See i915_gem_evict_something() for
3942 * the gory details on the eviction algorithm.
3943 *
3944 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3945 * asked to wait for eviction and interrupted.
3946 */
3947int i915_gem_gtt_insert(struct i915_address_space *vm,
3948                        struct drm_mm_node *node,
3949                        u64 size, u64 alignment, unsigned long color,
3950                        u64 start, u64 end, unsigned int flags)
3951{
3952        enum drm_mm_insert_mode mode;
3953        u64 offset;
3954        int err;
3955
3956        lockdep_assert_held(&vm->i915->drm.struct_mutex);
3957        GEM_BUG_ON(!size);
3958        GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3959        GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3960        GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3961        GEM_BUG_ON(start >= end);
3962        GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3963        GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3964        GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3965        GEM_BUG_ON(drm_mm_node_allocated(node));
3966
3967        if (unlikely(range_overflows(start, size, end)))
3968                return -ENOSPC;
3969
3970        if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3971                return -ENOSPC;
3972
3973        mode = DRM_MM_INSERT_BEST;
3974        if (flags & PIN_HIGH)
3975                mode = DRM_MM_INSERT_HIGH;
3976        if (flags & PIN_MAPPABLE)
3977                mode = DRM_MM_INSERT_LOW;
3978
3979        /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3980         * so we know that we always have a minimum alignment of 4096.
3981         * The drm_mm range manager is optimised to return results
3982         * with zero alignment, so where possible use the optimal
3983         * path.
3984         */
3985        BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3986        if (alignment <= I915_GTT_MIN_ALIGNMENT)
3987                alignment = 0;
3988
3989        err = drm_mm_insert_node_in_range(&vm->mm, node,
3990                                          size, alignment, color,
3991                                          start, end, mode);
3992        if (err != -ENOSPC)
3993                return err;
3994
3995        if (flags & PIN_NOEVICT)
3996                return -ENOSPC;
3997
3998        /* No free space, pick a slot at random.
3999         *
4000         * There is a pathological case here using a GTT shared between
4001         * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4002         *
4003         *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4004         *         (64k objects)             (448k objects)
4005         *
4006         * Now imagine that the eviction LRU is ordered top-down (just because
4007         * pathology meets real life), and that we need to evict an object to
4008         * make room inside the aperture. The eviction scan then has to walk
4009         * the 448k list before it finds one within range. And now imagine that
4010         * it has to search for a new hole between every byte inside the memcpy,
4011         * for several simultaneous clients.
4012         *
4013         * On a full-ppgtt system, if we have run out of available space, there
4014         * will be lots and lots of objects in the eviction list! Again,
4015         * searching that LRU list may be slow if we are also applying any
4016         * range restrictions (e.g. restriction to low 4GiB) and so, for
4017         * simplicity and similarilty between different GTT, try the single
4018         * random replacement first.
4019         */
4020        offset = random_offset(start, end,
4021                               size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4022        err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4023        if (err != -ENOSPC)
4024                return err;
4025
4026        /* Randomly selected placement is pinned, do a search */
4027        err = i915_gem_evict_something(vm, size, alignment, color,
4028                                       start, end, flags);
4029        if (err)
4030                return err;
4031
4032        return drm_mm_insert_node_in_range(&vm->mm, node,
4033                                           size, alignment, color,
4034                                           start, end, DRM_MM_INSERT_EVICT);
4035}
4036
4037#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4038#include "selftests/mock_gtt.c"
4039#include "selftests/i915_gem_gtt.c"
4040#endif
4041