linux/drivers/gpu/drm/i915/i915_perf.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2015-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *   Robert Bragg <robert@sixbynine.org>
  25 */
  26
  27
  28/**
  29 * DOC: i915 Perf Overview
  30 *
  31 * Gen graphics supports a large number of performance counters that can help
  32 * driver and application developers understand and optimize their use of the
  33 * GPU.
  34 *
  35 * This i915 perf interface enables userspace to configure and open a file
  36 * descriptor representing a stream of GPU metrics which can then be read() as
  37 * a stream of sample records.
  38 *
  39 * The interface is particularly suited to exposing buffered metrics that are
  40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
  41 *
  42 * Streams representing a single context are accessible to applications with a
  43 * corresponding drm file descriptor, such that OpenGL can use the interface
  44 * without special privileges. Access to system-wide metrics requires root
  45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
  46 * sysctl option.
  47 *
  48 */
  49
  50/**
  51 * DOC: i915 Perf History and Comparison with Core Perf
  52 *
  53 * The interface was initially inspired by the core Perf infrastructure but
  54 * some notable differences are:
  55 *
  56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
  57 * a perf event primarily corresponds to a single 64bit value, while a stream
  58 * might sample sets of tightly-coupled counters, depending on the
  59 * configuration.  For example the Gen OA unit isn't designed to support
  60 * orthogonal configurations of individual counters; it's configured for a set
  61 * of related counters. Samples for an i915 perf stream capturing OA metrics
  62 * will include a set of counter values packed in a compact HW specific format.
  63 * The OA unit supports a number of different packing formats which can be
  64 * selected by the user opening the stream. Perf has support for grouping
  65 * events, but each event in the group is configured, validated and
  66 * authenticated individually with separate system calls.
  67 *
  68 * i915 perf stream configurations are provided as an array of u64 (key,value)
  69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
  70 * interleaved with event-type specific members.
  71 *
  72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
  73 * The supported metrics are being written to memory by the GPU unsynchronized
  74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
  75 * the constraints on HW configuration require reports to be filtered before it
  76 * would be acceptable to expose them to unprivileged applications - to hide
  77 * the metrics of other processes/contexts. For these use cases a read() based
  78 * interface is a good fit, and provides an opportunity to filter data as it
  79 * gets copied from the GPU mapped buffers to userspace buffers.
  80 *
  81 *
  82 * Issues hit with first prototype based on Core Perf
  83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  84 *
  85 * The first prototype of this driver was based on the core perf
  86 * infrastructure, and while we did make that mostly work, with some changes to
  87 * perf, we found we were breaking or working around too many assumptions baked
  88 * into perf's currently cpu centric design.
  89 *
  90 * In the end we didn't see a clear benefit to making perf's implementation and
  91 * interface more complex by changing design assumptions while we knew we still
  92 * wouldn't be able to use any existing perf based userspace tools.
  93 *
  94 * Also considering the Gen specific nature of the Observability hardware and
  95 * how userspace will sometimes need to combine i915 perf OA metrics with
  96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
  97 * expecting the interface to be used by a platform specific userspace such as
  98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
  99 * a standard vendor/architecture agnostic interface by not using perf.
 100 *
 101 *
 102 * For posterity, in case we might re-visit trying to adapt core perf to be
 103 * better suited to exposing i915 metrics these were the main pain points we
 104 * hit:
 105 *
 106 * - The perf based OA PMU driver broke some significant design assumptions:
 107 *
 108 *   Existing perf pmus are used for profiling work on a cpu and we were
 109 *   introducing the idea of _IS_DEVICE pmus with different security
 110 *   implications, the need to fake cpu-related data (such as user/kernel
 111 *   registers) to fit with perf's current design, and adding _DEVICE records
 112 *   as a way to forward device-specific status records.
 113 *
 114 *   The OA unit writes reports of counters into a circular buffer, without
 115 *   involvement from the CPU, making our PMU driver the first of a kind.
 116 *
 117 *   Given the way we were periodically forward data from the GPU-mapped, OA
 118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 119 *   we were sampling too fast and so we had to subvert its throttling checks.
 120 *
 121 *   Perf supports groups of counters and allows those to be read via
 122 *   transactions internally but transactions currently seem designed to be
 123 *   explicitly initiated from the cpu (say in response to a userspace read())
 124 *   and while we could pull a report out of the OA buffer we can't
 125 *   trigger a report from the cpu on demand.
 126 *
 127 *   Related to being report based; the OA counters are configured in HW as a
 128 *   set while perf generally expects counter configurations to be orthogonal.
 129 *   Although counters can be associated with a group leader as they are
 130 *   opened, there's no clear precedent for being able to provide group-wide
 131 *   configuration attributes (for example we want to let userspace choose the
 132 *   OA unit report format used to capture all counters in a set, or specify a
 133 *   GPU context to filter metrics on). We avoided using perf's grouping
 134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 135 *   field. This suited our userspace well considering how coupled the counters
 136 *   are when dealing with normalizing. It would be inconvenient to split
 137 *   counters up into separate events, only to require userspace to recombine
 138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 139 *   for combining with the side-band raw reports it captures using
 140 *   MI_REPORT_PERF_COUNT commands.
 141 *
 142 *   - As a side note on perf's grouping feature; there was also some concern
 143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 144 *     would quite drastically inflate our sample sizes, which would likely
 145 *     lower the effective sampling resolutions we could use when the available
 146 *     memory bandwidth is limited.
 147 *
 148 *     With the OA unit's report formats, counters are packed together as 32
 149 *     or 40bit values, with the largest report size being 256 bytes.
 150 *
 151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 154 *
 155 *   Related to counter orthogonality; we can't time share the OA unit, while
 156 *   event scheduling is a central design idea within perf for allowing
 157 *   userspace to open + enable more events than can be configured in HW at any
 158 *   one time.  The OA unit is not designed to allow re-configuration while in
 159 *   use. We can't reconfigure the OA unit without losing internal OA unit
 160 *   state which we can't access explicitly to save and restore. Reconfiguring
 161 *   the OA unit is also relatively slow, involving ~100 register writes. From
 162 *   userspace Mesa also depends on a stable OA configuration when emitting
 163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 164 *   disabled while there are outstanding MI_RPC commands lest we hang the
 165 *   command streamer.
 166 *
 167 *   The contents of sample records aren't extensible by device drivers (i.e.
 168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 170 *   into sample records by using the 'raw' field, but it's tricky to pack more
 171 *   than one thing into this field because events/core.c currently only lets a
 172 *   pmu give a single raw data pointer plus len which will be copied into the
 173 *   ring buffer. To include more than the OA report we'd have to copy the
 174 *   report into an intermediate larger buffer. I'd been considering allowing a
 175 *   vector of data+len values to be specified for copying the raw data, but
 176 *   it felt like a kludge to being using the raw field for this purpose.
 177 *
 178 * - It felt like our perf based PMU was making some technical compromises
 179 *   just for the sake of using perf:
 180 *
 181 *   perf_event_open() requires events to either relate to a pid or a specific
 182 *   cpu core, while our device pmu related to neither.  Events opened with a
 183 *   pid will be automatically enabled/disabled according to the scheduling of
 184 *   that process - so not appropriate for us. When an event is related to a
 185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 187 *   perf events for a specific cpu. This was workable but it meant the
 188 *   majority of the OA driver ran in atomic context, including all OA report
 189 *   forwarding, which wasn't really necessary in our case and seems to make
 190 *   our locking requirements somewhat complex as we handled the interaction
 191 *   with the rest of the i915 driver.
 192 */
 193
 194#include <linux/anon_inodes.h>
 195#include <linux/sizes.h>
 196#include <linux/uuid.h>
 197
 198#include "i915_drv.h"
 199#include "i915_oa_hsw.h"
 200#include "i915_oa_bdw.h"
 201#include "i915_oa_chv.h"
 202#include "i915_oa_sklgt2.h"
 203#include "i915_oa_sklgt3.h"
 204#include "i915_oa_sklgt4.h"
 205#include "i915_oa_bxt.h"
 206#include "i915_oa_kblgt2.h"
 207#include "i915_oa_kblgt3.h"
 208#include "i915_oa_glk.h"
 209#include "i915_oa_cflgt2.h"
 210#include "i915_oa_cflgt3.h"
 211#include "i915_oa_cnl.h"
 212
 213/* HW requires this to be a power of two, between 128k and 16M, though driver
 214 * is currently generally designed assuming the largest 16M size is used such
 215 * that the overflow cases are unlikely in normal operation.
 216 */
 217#define OA_BUFFER_SIZE          SZ_16M
 218
 219#define OA_TAKEN(tail, head)    ((tail - head) & (OA_BUFFER_SIZE - 1))
 220
 221/**
 222 * DOC: OA Tail Pointer Race
 223 *
 224 * There's a HW race condition between OA unit tail pointer register updates and
 225 * writes to memory whereby the tail pointer can sometimes get ahead of what's
 226 * been written out to the OA buffer so far (in terms of what's visible to the
 227 * CPU).
 228 *
 229 * Although this can be observed explicitly while copying reports to userspace
 230 * by checking for a zeroed report-id field in tail reports, we want to account
 231 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
 232 * read() attempts.
 233 *
 234 * In effect we define a tail pointer for reading that lags the real tail
 235 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 236 * time for the corresponding reports to become visible to the CPU.
 237 *
 238 * To manage this we actually track two tail pointers:
 239 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 240 *     can trust the corresponding data is visible to the CPU; at which point
 241 *     it is considered 'aged'.
 242 *  2) An 'aged' tail that can be used for read()ing.
 243 *
 244 * The two separate pointers let us decouple read()s from tail pointer aging.
 245 *
 246 * The tail pointers are checked and updated at a limited rate within a hrtimer
 247 * callback (the same callback that is used for delivering EPOLLIN events)
 248 *
 249 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 250 * indicates that an updated tail pointer is needed.
 251 *
 252 * Most of the implementation details for this workaround are in
 253 * oa_buffer_check_unlocked() and _append_oa_reports()
 254 *
 255 * Note for posterity: previously the driver used to define an effective tail
 256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 258 * This was flawed considering that the OA unit may also automatically generate
 259 * non-periodic reports (such as on context switch) or the OA unit may be
 260 * enabled without any periodic sampling.
 261 */
 262#define OA_TAIL_MARGIN_NSEC     100000ULL
 263#define INVALID_TAIL_PTR        0xffffffff
 264
 265/* frequency for checking whether the OA unit has written new reports to the
 266 * circular OA buffer...
 267 */
 268#define POLL_FREQUENCY 200
 269#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
 270
 271/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
 272static int zero;
 273static int one = 1;
 274static u32 i915_perf_stream_paranoid = true;
 275
 276/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 277 * of the 64bit timestamp bits to trigger reports from) but there's currently
 278 * no known use case for sampling as infrequently as once per 47 thousand years.
 279 *
 280 * Since the timestamps included in OA reports are only 32bits it seems
 281 * reasonable to limit the OA exponent where it's still possible to account for
 282 * overflow in OA report timestamps.
 283 */
 284#define OA_EXPONENT_MAX 31
 285
 286#define INVALID_CTX_ID 0xffffffff
 287
 288/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
 289#define OAREPORT_REASON_MASK           0x3f
 290#define OAREPORT_REASON_SHIFT          19
 291#define OAREPORT_REASON_TIMER          (1<<0)
 292#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
 293#define OAREPORT_REASON_CLK_RATIO      (1<<5)
 294
 295
 296/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 297 *
 298 * The highest sampling frequency we can theoretically program the OA unit
 299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 300 *
 301 * Initialized just before we register the sysctl parameter.
 302 */
 303static int oa_sample_rate_hard_limit;
 304
 305/* Theoretically we can program the OA unit to sample every 160ns but don't
 306 * allow that by default unless root...
 307 *
 308 * The default threshold of 100000Hz is based on perf's similar
 309 * kernel.perf_event_max_sample_rate sysctl parameter.
 310 */
 311static u32 i915_oa_max_sample_rate = 100000;
 312
 313/* XXX: beware if future OA HW adds new report formats that the current
 314 * code assumes all reports have a power-of-two size and ~(size - 1) can
 315 * be used as a mask to align the OA tail pointer.
 316 */
 317static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
 318        [I915_OA_FORMAT_A13]        = { 0, 64 },
 319        [I915_OA_FORMAT_A29]        = { 1, 128 },
 320        [I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
 321        /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
 322        [I915_OA_FORMAT_B4_C8]      = { 4, 64 },
 323        [I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
 324        [I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
 325        [I915_OA_FORMAT_C4_B8]      = { 7, 64 },
 326};
 327
 328static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
 329        [I915_OA_FORMAT_A12]                = { 0, 64 },
 330        [I915_OA_FORMAT_A12_B8_C8]          = { 2, 128 },
 331        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 332        [I915_OA_FORMAT_C4_B8]              = { 7, 64 },
 333};
 334
 335#define SAMPLE_OA_REPORT      (1<<0)
 336
 337/**
 338 * struct perf_open_properties - for validated properties given to open a stream
 339 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 340 * @single_context: Whether a single or all gpu contexts should be monitored
 341 * @ctx_handle: A gem ctx handle for use with @single_context
 342 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 343 * @oa_format: An OA unit HW report format
 344 * @oa_periodic: Whether to enable periodic OA unit sampling
 345 * @oa_period_exponent: The OA unit sampling period is derived from this
 346 *
 347 * As read_properties_unlocked() enumerates and validates the properties given
 348 * to open a stream of metrics the configuration is built up in the structure
 349 * which starts out zero initialized.
 350 */
 351struct perf_open_properties {
 352        u32 sample_flags;
 353
 354        u64 single_context:1;
 355        u64 ctx_handle;
 356
 357        /* OA sampling state */
 358        int metrics_set;
 359        int oa_format;
 360        bool oa_periodic;
 361        int oa_period_exponent;
 362};
 363
 364static void free_oa_config(struct drm_i915_private *dev_priv,
 365                           struct i915_oa_config *oa_config)
 366{
 367        if (!PTR_ERR(oa_config->flex_regs))
 368                kfree(oa_config->flex_regs);
 369        if (!PTR_ERR(oa_config->b_counter_regs))
 370                kfree(oa_config->b_counter_regs);
 371        if (!PTR_ERR(oa_config->mux_regs))
 372                kfree(oa_config->mux_regs);
 373        kfree(oa_config);
 374}
 375
 376static void put_oa_config(struct drm_i915_private *dev_priv,
 377                          struct i915_oa_config *oa_config)
 378{
 379        if (!atomic_dec_and_test(&oa_config->ref_count))
 380                return;
 381
 382        free_oa_config(dev_priv, oa_config);
 383}
 384
 385static int get_oa_config(struct drm_i915_private *dev_priv,
 386                         int metrics_set,
 387                         struct i915_oa_config **out_config)
 388{
 389        int ret;
 390
 391        if (metrics_set == 1) {
 392                *out_config = &dev_priv->perf.oa.test_config;
 393                atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
 394                return 0;
 395        }
 396
 397        ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
 398        if (ret)
 399                return ret;
 400
 401        *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
 402        if (!*out_config)
 403                ret = -EINVAL;
 404        else
 405                atomic_inc(&(*out_config)->ref_count);
 406
 407        mutex_unlock(&dev_priv->perf.metrics_lock);
 408
 409        return ret;
 410}
 411
 412static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
 413{
 414        return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
 415}
 416
 417static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
 418{
 419        u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
 420
 421        return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
 422}
 423
 424/**
 425 * oa_buffer_check_unlocked - check for data and update tail ptr state
 426 * @dev_priv: i915 device instance
 427 *
 428 * This is either called via fops (for blocking reads in user ctx) or the poll
 429 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 430 * if there is data available for userspace to read.
 431 *
 432 * This function is central to providing a workaround for the OA unit tail
 433 * pointer having a race with respect to what data is visible to the CPU.
 434 * It is responsible for reading tail pointers from the hardware and giving
 435 * the pointers time to 'age' before they are made available for reading.
 436 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 437 *
 438 * Besides returning true when there is data available to read() this function
 439 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 440 * and .aged_tail_idx state used for reading.
 441 *
 442 * Note: It's safe to read OA config state here unlocked, assuming that this is
 443 * only called while the stream is enabled, while the global OA configuration
 444 * can't be modified.
 445 *
 446 * Returns: %true if the OA buffer contains data, else %false
 447 */
 448static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
 449{
 450        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 451        unsigned long flags;
 452        unsigned int aged_idx;
 453        u32 head, hw_tail, aged_tail, aging_tail;
 454        u64 now;
 455
 456        /* We have to consider the (unlikely) possibility that read() errors
 457         * could result in an OA buffer reset which might reset the head,
 458         * tails[] and aged_tail state.
 459         */
 460        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 461
 462        /* NB: The head we observe here might effectively be a little out of
 463         * date (between head and tails[aged_idx].offset if there is currently
 464         * a read() in progress.
 465         */
 466        head = dev_priv->perf.oa.oa_buffer.head;
 467
 468        aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 469        aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
 470        aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
 471
 472        hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
 473
 474        /* The tail pointer increases in 64 byte increments,
 475         * not in report_size steps...
 476         */
 477        hw_tail &= ~(report_size - 1);
 478
 479        now = ktime_get_mono_fast_ns();
 480
 481        /* Update the aged tail
 482         *
 483         * Flip the tail pointer available for read()s once the aging tail is
 484         * old enough to trust that the corresponding data will be visible to
 485         * the CPU...
 486         *
 487         * Do this before updating the aging pointer in case we may be able to
 488         * immediately start aging a new pointer too (if new data has become
 489         * available) without needing to wait for a later hrtimer callback.
 490         */
 491        if (aging_tail != INVALID_TAIL_PTR &&
 492            ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
 493             OA_TAIL_MARGIN_NSEC)) {
 494
 495                aged_idx ^= 1;
 496                dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
 497
 498                aged_tail = aging_tail;
 499
 500                /* Mark that we need a new pointer to start aging... */
 501                dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
 502                aging_tail = INVALID_TAIL_PTR;
 503        }
 504
 505        /* Update the aging tail
 506         *
 507         * We throttle aging tail updates until we have a new tail that
 508         * represents >= one report more data than is already available for
 509         * reading. This ensures there will be enough data for a successful
 510         * read once this new pointer has aged and ensures we will give the new
 511         * pointer time to age.
 512         */
 513        if (aging_tail == INVALID_TAIL_PTR &&
 514            (aged_tail == INVALID_TAIL_PTR ||
 515             OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
 516                struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
 517                u32 gtt_offset = i915_ggtt_offset(vma);
 518
 519                /* Be paranoid and do a bounds check on the pointer read back
 520                 * from hardware, just in case some spurious hardware condition
 521                 * could put the tail out of bounds...
 522                 */
 523                if (hw_tail >= gtt_offset &&
 524                    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
 525                        dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
 526                                aging_tail = hw_tail;
 527                        dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
 528                } else {
 529                        DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
 530                                  hw_tail);
 531                }
 532        }
 533
 534        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 535
 536        return aged_tail == INVALID_TAIL_PTR ?
 537                false : OA_TAKEN(aged_tail, head) >= report_size;
 538}
 539
 540/**
 541 * append_oa_status - Appends a status record to a userspace read() buffer.
 542 * @stream: An i915-perf stream opened for OA metrics
 543 * @buf: destination buffer given by userspace
 544 * @count: the number of bytes userspace wants to read
 545 * @offset: (inout): the current position for writing into @buf
 546 * @type: The kind of status to report to userspace
 547 *
 548 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 549 * into the userspace read() buffer.
 550 *
 551 * The @buf @offset will only be updated on success.
 552 *
 553 * Returns: 0 on success, negative error code on failure.
 554 */
 555static int append_oa_status(struct i915_perf_stream *stream,
 556                            char __user *buf,
 557                            size_t count,
 558                            size_t *offset,
 559                            enum drm_i915_perf_record_type type)
 560{
 561        struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
 562
 563        if ((count - *offset) < header.size)
 564                return -ENOSPC;
 565
 566        if (copy_to_user(buf + *offset, &header, sizeof(header)))
 567                return -EFAULT;
 568
 569        (*offset) += header.size;
 570
 571        return 0;
 572}
 573
 574/**
 575 * append_oa_sample - Copies single OA report into userspace read() buffer.
 576 * @stream: An i915-perf stream opened for OA metrics
 577 * @buf: destination buffer given by userspace
 578 * @count: the number of bytes userspace wants to read
 579 * @offset: (inout): the current position for writing into @buf
 580 * @report: A single OA report to (optionally) include as part of the sample
 581 *
 582 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 583 * properties when opening a stream, tracked as `stream->sample_flags`. This
 584 * function copies the requested components of a single sample to the given
 585 * read() @buf.
 586 *
 587 * The @buf @offset will only be updated on success.
 588 *
 589 * Returns: 0 on success, negative error code on failure.
 590 */
 591static int append_oa_sample(struct i915_perf_stream *stream,
 592                            char __user *buf,
 593                            size_t count,
 594                            size_t *offset,
 595                            const u8 *report)
 596{
 597        struct drm_i915_private *dev_priv = stream->dev_priv;
 598        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 599        struct drm_i915_perf_record_header header;
 600        u32 sample_flags = stream->sample_flags;
 601
 602        header.type = DRM_I915_PERF_RECORD_SAMPLE;
 603        header.pad = 0;
 604        header.size = stream->sample_size;
 605
 606        if ((count - *offset) < header.size)
 607                return -ENOSPC;
 608
 609        buf += *offset;
 610        if (copy_to_user(buf, &header, sizeof(header)))
 611                return -EFAULT;
 612        buf += sizeof(header);
 613
 614        if (sample_flags & SAMPLE_OA_REPORT) {
 615                if (copy_to_user(buf, report, report_size))
 616                        return -EFAULT;
 617        }
 618
 619        (*offset) += header.size;
 620
 621        return 0;
 622}
 623
 624/**
 625 * Copies all buffered OA reports into userspace read() buffer.
 626 * @stream: An i915-perf stream opened for OA metrics
 627 * @buf: destination buffer given by userspace
 628 * @count: the number of bytes userspace wants to read
 629 * @offset: (inout): the current position for writing into @buf
 630 *
 631 * Notably any error condition resulting in a short read (-%ENOSPC or
 632 * -%EFAULT) will be returned even though one or more records may
 633 * have been successfully copied. In this case it's up to the caller
 634 * to decide if the error should be squashed before returning to
 635 * userspace.
 636 *
 637 * Note: reports are consumed from the head, and appended to the
 638 * tail, so the tail chases the head?... If you think that's mad
 639 * and back-to-front you're not alone, but this follows the
 640 * Gen PRM naming convention.
 641 *
 642 * Returns: 0 on success, negative error code on failure.
 643 */
 644static int gen8_append_oa_reports(struct i915_perf_stream *stream,
 645                                  char __user *buf,
 646                                  size_t count,
 647                                  size_t *offset)
 648{
 649        struct drm_i915_private *dev_priv = stream->dev_priv;
 650        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 651        u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
 652        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
 653        u32 mask = (OA_BUFFER_SIZE - 1);
 654        size_t start_offset = *offset;
 655        unsigned long flags;
 656        unsigned int aged_tail_idx;
 657        u32 head, tail;
 658        u32 taken;
 659        int ret = 0;
 660
 661        if (WARN_ON(!stream->enabled))
 662                return -EIO;
 663
 664        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 665
 666        head = dev_priv->perf.oa.oa_buffer.head;
 667        aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 668        tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
 669
 670        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 671
 672        /*
 673         * An invalid tail pointer here means we're still waiting for the poll
 674         * hrtimer callback to give us a pointer
 675         */
 676        if (tail == INVALID_TAIL_PTR)
 677                return -EAGAIN;
 678
 679        /*
 680         * NB: oa_buffer.head/tail include the gtt_offset which we don't want
 681         * while indexing relative to oa_buf_base.
 682         */
 683        head -= gtt_offset;
 684        tail -= gtt_offset;
 685
 686        /*
 687         * An out of bounds or misaligned head or tail pointer implies a driver
 688         * bug since we validate + align the tail pointers we read from the
 689         * hardware and we are in full control of the head pointer which should
 690         * only be incremented by multiples of the report size (notably also
 691         * all a power of two).
 692         */
 693        if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
 694                      tail > OA_BUFFER_SIZE || tail % report_size,
 695                      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 696                      head, tail))
 697                return -EIO;
 698
 699
 700        for (/* none */;
 701             (taken = OA_TAKEN(tail, head));
 702             head = (head + report_size) & mask) {
 703                u8 *report = oa_buf_base + head;
 704                u32 *report32 = (void *)report;
 705                u32 ctx_id;
 706                u32 reason;
 707
 708                /*
 709                 * All the report sizes factor neatly into the buffer
 710                 * size so we never expect to see a report split
 711                 * between the beginning and end of the buffer.
 712                 *
 713                 * Given the initial alignment check a misalignment
 714                 * here would imply a driver bug that would result
 715                 * in an overrun.
 716                 */
 717                if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
 718                        DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
 719                        break;
 720                }
 721
 722                /*
 723                 * The reason field includes flags identifying what
 724                 * triggered this specific report (mostly timer
 725                 * triggered or e.g. due to a context switch).
 726                 *
 727                 * This field is never expected to be zero so we can
 728                 * check that the report isn't invalid before copying
 729                 * it to userspace...
 730                 */
 731                reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
 732                          OAREPORT_REASON_MASK);
 733                if (reason == 0) {
 734                        if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
 735                                DRM_NOTE("Skipping spurious, invalid OA report\n");
 736                        continue;
 737                }
 738
 739                /*
 740                 * XXX: Just keep the lower 21 bits for now since I'm not
 741                 * entirely sure if the HW touches any of the higher bits in
 742                 * this field
 743                 */
 744                ctx_id = report32[2] & 0x1fffff;
 745
 746                /*
 747                 * Squash whatever is in the CTX_ID field if it's marked as
 748                 * invalid to be sure we avoid false-positive, single-context
 749                 * filtering below...
 750                 *
 751                 * Note: that we don't clear the valid_ctx_bit so userspace can
 752                 * understand that the ID has been squashed by the kernel.
 753                 */
 754                if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
 755                        ctx_id = report32[2] = INVALID_CTX_ID;
 756
 757                /*
 758                 * NB: For Gen 8 the OA unit no longer supports clock gating
 759                 * off for a specific context and the kernel can't securely
 760                 * stop the counters from updating as system-wide / global
 761                 * values.
 762                 *
 763                 * Automatic reports now include a context ID so reports can be
 764                 * filtered on the cpu but it's not worth trying to
 765                 * automatically subtract/hide counter progress for other
 766                 * contexts while filtering since we can't stop userspace
 767                 * issuing MI_REPORT_PERF_COUNT commands which would still
 768                 * provide a side-band view of the real values.
 769                 *
 770                 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
 771                 * to normalize counters for a single filtered context then it
 772                 * needs be forwarded bookend context-switch reports so that it
 773                 * can track switches in between MI_REPORT_PERF_COUNT commands
 774                 * and can itself subtract/ignore the progress of counters
 775                 * associated with other contexts. Note that the hardware
 776                 * automatically triggers reports when switching to a new
 777                 * context which are tagged with the ID of the newly active
 778                 * context. To avoid the complexity (and likely fragility) of
 779                 * reading ahead while parsing reports to try and minimize
 780                 * forwarding redundant context switch reports (i.e. between
 781                 * other, unrelated contexts) we simply elect to forward them
 782                 * all.
 783                 *
 784                 * We don't rely solely on the reason field to identify context
 785                 * switches since it's not-uncommon for periodic samples to
 786                 * identify a switch before any 'context switch' report.
 787                 */
 788                if (!dev_priv->perf.oa.exclusive_stream->ctx ||
 789                    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
 790                    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
 791                     dev_priv->perf.oa.specific_ctx_id) ||
 792                    reason & OAREPORT_REASON_CTX_SWITCH) {
 793
 794                        /*
 795                         * While filtering for a single context we avoid
 796                         * leaking the IDs of other contexts.
 797                         */
 798                        if (dev_priv->perf.oa.exclusive_stream->ctx &&
 799                            dev_priv->perf.oa.specific_ctx_id != ctx_id) {
 800                                report32[2] = INVALID_CTX_ID;
 801                        }
 802
 803                        ret = append_oa_sample(stream, buf, count, offset,
 804                                               report);
 805                        if (ret)
 806                                break;
 807
 808                        dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
 809                }
 810
 811                /*
 812                 * The above reason field sanity check is based on
 813                 * the assumption that the OA buffer is initially
 814                 * zeroed and we reset the field after copying so the
 815                 * check is still meaningful once old reports start
 816                 * being overwritten.
 817                 */
 818                report32[0] = 0;
 819        }
 820
 821        if (start_offset != *offset) {
 822                spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 823
 824                /*
 825                 * We removed the gtt_offset for the copy loop above, indexing
 826                 * relative to oa_buf_base so put back here...
 827                 */
 828                head += gtt_offset;
 829
 830                I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
 831                dev_priv->perf.oa.oa_buffer.head = head;
 832
 833                spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 834        }
 835
 836        return ret;
 837}
 838
 839/**
 840 * gen8_oa_read - copy status records then buffered OA reports
 841 * @stream: An i915-perf stream opened for OA metrics
 842 * @buf: destination buffer given by userspace
 843 * @count: the number of bytes userspace wants to read
 844 * @offset: (inout): the current position for writing into @buf
 845 *
 846 * Checks OA unit status registers and if necessary appends corresponding
 847 * status records for userspace (such as for a buffer full condition) and then
 848 * initiate appending any buffered OA reports.
 849 *
 850 * Updates @offset according to the number of bytes successfully copied into
 851 * the userspace buffer.
 852 *
 853 * NB: some data may be successfully copied to the userspace buffer
 854 * even if an error is returned, and this is reflected in the
 855 * updated @offset.
 856 *
 857 * Returns: zero on success or a negative error code
 858 */
 859static int gen8_oa_read(struct i915_perf_stream *stream,
 860                        char __user *buf,
 861                        size_t count,
 862                        size_t *offset)
 863{
 864        struct drm_i915_private *dev_priv = stream->dev_priv;
 865        u32 oastatus;
 866        int ret;
 867
 868        if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
 869                return -EIO;
 870
 871        oastatus = I915_READ(GEN8_OASTATUS);
 872
 873        /*
 874         * We treat OABUFFER_OVERFLOW as a significant error:
 875         *
 876         * Although theoretically we could handle this more gracefully
 877         * sometimes, some Gens don't correctly suppress certain
 878         * automatically triggered reports in this condition and so we
 879         * have to assume that old reports are now being trampled
 880         * over.
 881         *
 882         * Considering how we don't currently give userspace control
 883         * over the OA buffer size and always configure a large 16MB
 884         * buffer, then a buffer overflow does anyway likely indicate
 885         * that something has gone quite badly wrong.
 886         */
 887        if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
 888                ret = append_oa_status(stream, buf, count, offset,
 889                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
 890                if (ret)
 891                        return ret;
 892
 893                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
 894                          dev_priv->perf.oa.period_exponent);
 895
 896                dev_priv->perf.oa.ops.oa_disable(dev_priv);
 897                dev_priv->perf.oa.ops.oa_enable(dev_priv);
 898
 899                /*
 900                 * Note: .oa_enable() is expected to re-init the oabuffer and
 901                 * reset GEN8_OASTATUS for us
 902                 */
 903                oastatus = I915_READ(GEN8_OASTATUS);
 904        }
 905
 906        if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
 907                ret = append_oa_status(stream, buf, count, offset,
 908                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
 909                if (ret)
 910                        return ret;
 911                I915_WRITE(GEN8_OASTATUS,
 912                           oastatus & ~GEN8_OASTATUS_REPORT_LOST);
 913        }
 914
 915        return gen8_append_oa_reports(stream, buf, count, offset);
 916}
 917
 918/**
 919 * Copies all buffered OA reports into userspace read() buffer.
 920 * @stream: An i915-perf stream opened for OA metrics
 921 * @buf: destination buffer given by userspace
 922 * @count: the number of bytes userspace wants to read
 923 * @offset: (inout): the current position for writing into @buf
 924 *
 925 * Notably any error condition resulting in a short read (-%ENOSPC or
 926 * -%EFAULT) will be returned even though one or more records may
 927 * have been successfully copied. In this case it's up to the caller
 928 * to decide if the error should be squashed before returning to
 929 * userspace.
 930 *
 931 * Note: reports are consumed from the head, and appended to the
 932 * tail, so the tail chases the head?... If you think that's mad
 933 * and back-to-front you're not alone, but this follows the
 934 * Gen PRM naming convention.
 935 *
 936 * Returns: 0 on success, negative error code on failure.
 937 */
 938static int gen7_append_oa_reports(struct i915_perf_stream *stream,
 939                                  char __user *buf,
 940                                  size_t count,
 941                                  size_t *offset)
 942{
 943        struct drm_i915_private *dev_priv = stream->dev_priv;
 944        int report_size = dev_priv->perf.oa.oa_buffer.format_size;
 945        u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
 946        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
 947        u32 mask = (OA_BUFFER_SIZE - 1);
 948        size_t start_offset = *offset;
 949        unsigned long flags;
 950        unsigned int aged_tail_idx;
 951        u32 head, tail;
 952        u32 taken;
 953        int ret = 0;
 954
 955        if (WARN_ON(!stream->enabled))
 956                return -EIO;
 957
 958        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 959
 960        head = dev_priv->perf.oa.oa_buffer.head;
 961        aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
 962        tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
 963
 964        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
 965
 966        /* An invalid tail pointer here means we're still waiting for the poll
 967         * hrtimer callback to give us a pointer
 968         */
 969        if (tail == INVALID_TAIL_PTR)
 970                return -EAGAIN;
 971
 972        /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
 973         * while indexing relative to oa_buf_base.
 974         */
 975        head -= gtt_offset;
 976        tail -= gtt_offset;
 977
 978        /* An out of bounds or misaligned head or tail pointer implies a driver
 979         * bug since we validate + align the tail pointers we read from the
 980         * hardware and we are in full control of the head pointer which should
 981         * only be incremented by multiples of the report size (notably also
 982         * all a power of two).
 983         */
 984        if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
 985                      tail > OA_BUFFER_SIZE || tail % report_size,
 986                      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 987                      head, tail))
 988                return -EIO;
 989
 990
 991        for (/* none */;
 992             (taken = OA_TAKEN(tail, head));
 993             head = (head + report_size) & mask) {
 994                u8 *report = oa_buf_base + head;
 995                u32 *report32 = (void *)report;
 996
 997                /* All the report sizes factor neatly into the buffer
 998                 * size so we never expect to see a report split
 999                 * between the beginning and end of the buffer.
1000                 *
1001                 * Given the initial alignment check a misalignment
1002                 * here would imply a driver bug that would result
1003                 * in an overrun.
1004                 */
1005                if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1006                        DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1007                        break;
1008                }
1009
1010                /* The report-ID field for periodic samples includes
1011                 * some undocumented flags related to what triggered
1012                 * the report and is never expected to be zero so we
1013                 * can check that the report isn't invalid before
1014                 * copying it to userspace...
1015                 */
1016                if (report32[0] == 0) {
1017                        if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1018                                DRM_NOTE("Skipping spurious, invalid OA report\n");
1019                        continue;
1020                }
1021
1022                ret = append_oa_sample(stream, buf, count, offset, report);
1023                if (ret)
1024                        break;
1025
1026                /* The above report-id field sanity check is based on
1027                 * the assumption that the OA buffer is initially
1028                 * zeroed and we reset the field after copying so the
1029                 * check is still meaningful once old reports start
1030                 * being overwritten.
1031                 */
1032                report32[0] = 0;
1033        }
1034
1035        if (start_offset != *offset) {
1036                spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1037
1038                /* We removed the gtt_offset for the copy loop above, indexing
1039                 * relative to oa_buf_base so put back here...
1040                 */
1041                head += gtt_offset;
1042
1043                I915_WRITE(GEN7_OASTATUS2,
1044                           ((head & GEN7_OASTATUS2_HEAD_MASK) |
1045                            OA_MEM_SELECT_GGTT));
1046                dev_priv->perf.oa.oa_buffer.head = head;
1047
1048                spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1049        }
1050
1051        return ret;
1052}
1053
1054/**
1055 * gen7_oa_read - copy status records then buffered OA reports
1056 * @stream: An i915-perf stream opened for OA metrics
1057 * @buf: destination buffer given by userspace
1058 * @count: the number of bytes userspace wants to read
1059 * @offset: (inout): the current position for writing into @buf
1060 *
1061 * Checks Gen 7 specific OA unit status registers and if necessary appends
1062 * corresponding status records for userspace (such as for a buffer full
1063 * condition) and then initiate appending any buffered OA reports.
1064 *
1065 * Updates @offset according to the number of bytes successfully copied into
1066 * the userspace buffer.
1067 *
1068 * Returns: zero on success or a negative error code
1069 */
1070static int gen7_oa_read(struct i915_perf_stream *stream,
1071                        char __user *buf,
1072                        size_t count,
1073                        size_t *offset)
1074{
1075        struct drm_i915_private *dev_priv = stream->dev_priv;
1076        u32 oastatus1;
1077        int ret;
1078
1079        if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1080                return -EIO;
1081
1082        oastatus1 = I915_READ(GEN7_OASTATUS1);
1083
1084        /* XXX: On Haswell we don't have a safe way to clear oastatus1
1085         * bits while the OA unit is enabled (while the tail pointer
1086         * may be updated asynchronously) so we ignore status bits
1087         * that have already been reported to userspace.
1088         */
1089        oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1090
1091        /* We treat OABUFFER_OVERFLOW as a significant error:
1092         *
1093         * - The status can be interpreted to mean that the buffer is
1094         *   currently full (with a higher precedence than OA_TAKEN()
1095         *   which will start to report a near-empty buffer after an
1096         *   overflow) but it's awkward that we can't clear the status
1097         *   on Haswell, so without a reset we won't be able to catch
1098         *   the state again.
1099         *
1100         * - Since it also implies the HW has started overwriting old
1101         *   reports it may also affect our sanity checks for invalid
1102         *   reports when copying to userspace that assume new reports
1103         *   are being written to cleared memory.
1104         *
1105         * - In the future we may want to introduce a flight recorder
1106         *   mode where the driver will automatically maintain a safe
1107         *   guard band between head/tail, avoiding this overflow
1108         *   condition, but we avoid the added driver complexity for
1109         *   now.
1110         */
1111        if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1112                ret = append_oa_status(stream, buf, count, offset,
1113                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1114                if (ret)
1115                        return ret;
1116
1117                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1118                          dev_priv->perf.oa.period_exponent);
1119
1120                dev_priv->perf.oa.ops.oa_disable(dev_priv);
1121                dev_priv->perf.oa.ops.oa_enable(dev_priv);
1122
1123                oastatus1 = I915_READ(GEN7_OASTATUS1);
1124        }
1125
1126        if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1127                ret = append_oa_status(stream, buf, count, offset,
1128                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1129                if (ret)
1130                        return ret;
1131                dev_priv->perf.oa.gen7_latched_oastatus1 |=
1132                        GEN7_OASTATUS1_REPORT_LOST;
1133        }
1134
1135        return gen7_append_oa_reports(stream, buf, count, offset);
1136}
1137
1138/**
1139 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1140 * @stream: An i915-perf stream opened for OA metrics
1141 *
1142 * Called when userspace tries to read() from a blocking stream FD opened
1143 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1144 * OA buffer and wakes us.
1145 *
1146 * Note: it's acceptable to have this return with some false positives
1147 * since any subsequent read handling will return -EAGAIN if there isn't
1148 * really data ready for userspace yet.
1149 *
1150 * Returns: zero on success or a negative error code
1151 */
1152static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1153{
1154        struct drm_i915_private *dev_priv = stream->dev_priv;
1155
1156        /* We would wait indefinitely if periodic sampling is not enabled */
1157        if (!dev_priv->perf.oa.periodic)
1158                return -EIO;
1159
1160        return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1161                                        oa_buffer_check_unlocked(dev_priv));
1162}
1163
1164/**
1165 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1166 * @stream: An i915-perf stream opened for OA metrics
1167 * @file: An i915 perf stream file
1168 * @wait: poll() state table
1169 *
1170 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1171 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1172 * when it sees data ready to read in the circular OA buffer.
1173 */
1174static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1175                              struct file *file,
1176                              poll_table *wait)
1177{
1178        struct drm_i915_private *dev_priv = stream->dev_priv;
1179
1180        poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1181}
1182
1183/**
1184 * i915_oa_read - just calls through to &i915_oa_ops->read
1185 * @stream: An i915-perf stream opened for OA metrics
1186 * @buf: destination buffer given by userspace
1187 * @count: the number of bytes userspace wants to read
1188 * @offset: (inout): the current position for writing into @buf
1189 *
1190 * Updates @offset according to the number of bytes successfully copied into
1191 * the userspace buffer.
1192 *
1193 * Returns: zero on success or a negative error code
1194 */
1195static int i915_oa_read(struct i915_perf_stream *stream,
1196                        char __user *buf,
1197                        size_t count,
1198                        size_t *offset)
1199{
1200        struct drm_i915_private *dev_priv = stream->dev_priv;
1201
1202        return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1203}
1204
1205/**
1206 * oa_get_render_ctx_id - determine and hold ctx hw id
1207 * @stream: An i915-perf stream opened for OA metrics
1208 *
1209 * Determine the render context hw id, and ensure it remains fixed for the
1210 * lifetime of the stream. This ensures that we don't have to worry about
1211 * updating the context ID in OACONTROL on the fly.
1212 *
1213 * Returns: zero on success or a negative error code
1214 */
1215static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1216{
1217        struct drm_i915_private *dev_priv = stream->dev_priv;
1218
1219        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1220                dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1221        } else {
1222                struct intel_engine_cs *engine = dev_priv->engine[RCS];
1223                struct intel_ring *ring;
1224                int ret;
1225
1226                ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1227                if (ret)
1228                        return ret;
1229
1230                /*
1231                 * As the ID is the gtt offset of the context's vma we
1232                 * pin the vma to ensure the ID remains fixed.
1233                 *
1234                 * NB: implied RCS engine...
1235                 */
1236                ring = engine->context_pin(engine, stream->ctx);
1237                mutex_unlock(&dev_priv->drm.struct_mutex);
1238                if (IS_ERR(ring))
1239                        return PTR_ERR(ring);
1240
1241
1242                /*
1243                 * Explicitly track the ID (instead of calling
1244                 * i915_ggtt_offset() on the fly) considering the difference
1245                 * with gen8+ and execlists
1246                 */
1247                dev_priv->perf.oa.specific_ctx_id =
1248                        i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1249        }
1250
1251        return 0;
1252}
1253
1254/**
1255 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1256 * @stream: An i915-perf stream opened for OA metrics
1257 *
1258 * In case anything needed doing to ensure the context HW ID would remain valid
1259 * for the lifetime of the stream, then that can be undone here.
1260 */
1261static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1262{
1263        struct drm_i915_private *dev_priv = stream->dev_priv;
1264
1265        if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1266                dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1267        } else {
1268                struct intel_engine_cs *engine = dev_priv->engine[RCS];
1269
1270                mutex_lock(&dev_priv->drm.struct_mutex);
1271
1272                dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1273                engine->context_unpin(engine, stream->ctx);
1274
1275                mutex_unlock(&dev_priv->drm.struct_mutex);
1276        }
1277}
1278
1279static void
1280free_oa_buffer(struct drm_i915_private *i915)
1281{
1282        mutex_lock(&i915->drm.struct_mutex);
1283
1284        i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1285        i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1286        i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1287
1288        i915->perf.oa.oa_buffer.vma = NULL;
1289        i915->perf.oa.oa_buffer.vaddr = NULL;
1290
1291        mutex_unlock(&i915->drm.struct_mutex);
1292}
1293
1294static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1295{
1296        struct drm_i915_private *dev_priv = stream->dev_priv;
1297
1298        BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1299
1300        /*
1301         * Unset exclusive_stream first, it will be checked while disabling
1302         * the metric set on gen8+.
1303         */
1304        mutex_lock(&dev_priv->drm.struct_mutex);
1305        dev_priv->perf.oa.exclusive_stream = NULL;
1306        dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1307        mutex_unlock(&dev_priv->drm.struct_mutex);
1308
1309        free_oa_buffer(dev_priv);
1310
1311        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1312        intel_runtime_pm_put(dev_priv);
1313
1314        if (stream->ctx)
1315                oa_put_render_ctx_id(stream);
1316
1317        put_oa_config(dev_priv, stream->oa_config);
1318
1319        if (dev_priv->perf.oa.spurious_report_rs.missed) {
1320                DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1321                         dev_priv->perf.oa.spurious_report_rs.missed);
1322        }
1323}
1324
1325static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1326{
1327        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1328        unsigned long flags;
1329
1330        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1331
1332        /* Pre-DevBDW: OABUFFER must be set with counters off,
1333         * before OASTATUS1, but after OASTATUS2
1334         */
1335        I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
1336        dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1337
1338        I915_WRITE(GEN7_OABUFFER, gtt_offset);
1339
1340        I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1341
1342        /* Mark that we need updated tail pointers to read from... */
1343        dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1344        dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1345
1346        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1347
1348        /* On Haswell we have to track which OASTATUS1 flags we've
1349         * already seen since they can't be cleared while periodic
1350         * sampling is enabled.
1351         */
1352        dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1353
1354        /* NB: although the OA buffer will initially be allocated
1355         * zeroed via shmfs (and so this memset is redundant when
1356         * first allocating), we may re-init the OA buffer, either
1357         * when re-enabling a stream or in error/reset paths.
1358         *
1359         * The reason we clear the buffer for each re-init is for the
1360         * sanity check in gen7_append_oa_reports() that looks at the
1361         * report-id field to make sure it's non-zero which relies on
1362         * the assumption that new reports are being written to zeroed
1363         * memory...
1364         */
1365        memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1366
1367        /* Maybe make ->pollin per-stream state if we support multiple
1368         * concurrent streams in the future.
1369         */
1370        dev_priv->perf.oa.pollin = false;
1371}
1372
1373static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1374{
1375        u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1376        unsigned long flags;
1377
1378        spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1379
1380        I915_WRITE(GEN8_OASTATUS, 0);
1381        I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1382        dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1383
1384        I915_WRITE(GEN8_OABUFFER_UDW, 0);
1385
1386        /*
1387         * PRM says:
1388         *
1389         *  "This MMIO must be set before the OATAILPTR
1390         *  register and after the OAHEADPTR register. This is
1391         *  to enable proper functionality of the overflow
1392         *  bit."
1393         */
1394        I915_WRITE(GEN8_OABUFFER, gtt_offset |
1395                   OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1396        I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1397
1398        /* Mark that we need updated tail pointers to read from... */
1399        dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1400        dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1401
1402        /*
1403         * Reset state used to recognise context switches, affecting which
1404         * reports we will forward to userspace while filtering for a single
1405         * context.
1406         */
1407        dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1408
1409        spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1410
1411        /*
1412         * NB: although the OA buffer will initially be allocated
1413         * zeroed via shmfs (and so this memset is redundant when
1414         * first allocating), we may re-init the OA buffer, either
1415         * when re-enabling a stream or in error/reset paths.
1416         *
1417         * The reason we clear the buffer for each re-init is for the
1418         * sanity check in gen8_append_oa_reports() that looks at the
1419         * reason field to make sure it's non-zero which relies on
1420         * the assumption that new reports are being written to zeroed
1421         * memory...
1422         */
1423        memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1424
1425        /*
1426         * Maybe make ->pollin per-stream state if we support multiple
1427         * concurrent streams in the future.
1428         */
1429        dev_priv->perf.oa.pollin = false;
1430}
1431
1432static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1433{
1434        struct drm_i915_gem_object *bo;
1435        struct i915_vma *vma;
1436        int ret;
1437
1438        if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1439                return -ENODEV;
1440
1441        ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1442        if (ret)
1443                return ret;
1444
1445        BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1446        BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1447
1448        bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1449        if (IS_ERR(bo)) {
1450                DRM_ERROR("Failed to allocate OA buffer\n");
1451                ret = PTR_ERR(bo);
1452                goto unlock;
1453        }
1454
1455        ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1456        if (ret)
1457                goto err_unref;
1458
1459        /* PreHSW required 512K alignment, HSW requires 16M */
1460        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1461        if (IS_ERR(vma)) {
1462                ret = PTR_ERR(vma);
1463                goto err_unref;
1464        }
1465        dev_priv->perf.oa.oa_buffer.vma = vma;
1466
1467        dev_priv->perf.oa.oa_buffer.vaddr =
1468                i915_gem_object_pin_map(bo, I915_MAP_WB);
1469        if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1470                ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1471                goto err_unpin;
1472        }
1473
1474        dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1475
1476        DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1477                         i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1478                         dev_priv->perf.oa.oa_buffer.vaddr);
1479
1480        goto unlock;
1481
1482err_unpin:
1483        __i915_vma_unpin(vma);
1484
1485err_unref:
1486        i915_gem_object_put(bo);
1487
1488        dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1489        dev_priv->perf.oa.oa_buffer.vma = NULL;
1490
1491unlock:
1492        mutex_unlock(&dev_priv->drm.struct_mutex);
1493        return ret;
1494}
1495
1496static void config_oa_regs(struct drm_i915_private *dev_priv,
1497                           const struct i915_oa_reg *regs,
1498                           u32 n_regs)
1499{
1500        u32 i;
1501
1502        for (i = 0; i < n_regs; i++) {
1503                const struct i915_oa_reg *reg = regs + i;
1504
1505                I915_WRITE(reg->addr, reg->value);
1506        }
1507}
1508
1509static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1510                                 const struct i915_oa_config *oa_config)
1511{
1512        /* PRM:
1513         *
1514         * OA unit is using “crclk” for its functionality. When trunk
1515         * level clock gating takes place, OA clock would be gated,
1516         * unable to count the events from non-render clock domain.
1517         * Render clock gating must be disabled when OA is enabled to
1518         * count the events from non-render domain. Unit level clock
1519         * gating for RCS should also be disabled.
1520         */
1521        I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1522                                    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1523        I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1524                                  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1525
1526        config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1527
1528        /* It apparently takes a fairly long time for a new MUX
1529         * configuration to be be applied after these register writes.
1530         * This delay duration was derived empirically based on the
1531         * render_basic config but hopefully it covers the maximum
1532         * configuration latency.
1533         *
1534         * As a fallback, the checks in _append_oa_reports() to skip
1535         * invalid OA reports do also seem to work to discard reports
1536         * generated before this config has completed - albeit not
1537         * silently.
1538         *
1539         * Unfortunately this is essentially a magic number, since we
1540         * don't currently know of a reliable mechanism for predicting
1541         * how long the MUX config will take to apply and besides
1542         * seeing invalid reports we don't know of a reliable way to
1543         * explicitly check that the MUX config has landed.
1544         *
1545         * It's even possible we've miss characterized the underlying
1546         * problem - it just seems like the simplest explanation why
1547         * a delay at this location would mitigate any invalid reports.
1548         */
1549        usleep_range(15000, 20000);
1550
1551        config_oa_regs(dev_priv, oa_config->b_counter_regs,
1552                       oa_config->b_counter_regs_len);
1553
1554        return 0;
1555}
1556
1557static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1558{
1559        I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1560                                  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1561        I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1562                                    GEN7_DOP_CLOCK_GATE_ENABLE));
1563
1564        I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1565                                      ~GT_NOA_ENABLE));
1566}
1567
1568/*
1569 * NB: It must always remain pointer safe to run this even if the OA unit
1570 * has been disabled.
1571 *
1572 * It's fine to put out-of-date values into these per-context registers
1573 * in the case that the OA unit has been disabled.
1574 */
1575static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1576                                           u32 *reg_state,
1577                                           const struct i915_oa_config *oa_config)
1578{
1579        struct drm_i915_private *dev_priv = ctx->i915;
1580        u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1581        u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1582        /* The MMIO offsets for Flex EU registers aren't contiguous */
1583        u32 flex_mmio[] = {
1584                i915_mmio_reg_offset(EU_PERF_CNTL0),
1585                i915_mmio_reg_offset(EU_PERF_CNTL1),
1586                i915_mmio_reg_offset(EU_PERF_CNTL2),
1587                i915_mmio_reg_offset(EU_PERF_CNTL3),
1588                i915_mmio_reg_offset(EU_PERF_CNTL4),
1589                i915_mmio_reg_offset(EU_PERF_CNTL5),
1590                i915_mmio_reg_offset(EU_PERF_CNTL6),
1591        };
1592        int i;
1593
1594        reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1595        reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1596                                      GEN8_OA_TIMER_PERIOD_SHIFT) |
1597                                     (dev_priv->perf.oa.periodic ?
1598                                      GEN8_OA_TIMER_ENABLE : 0) |
1599                                     GEN8_OA_COUNTER_RESUME;
1600
1601        for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1602                u32 state_offset = ctx_flexeu0 + i * 2;
1603                u32 mmio = flex_mmio[i];
1604
1605                /*
1606                 * This arbitrary default will select the 'EU FPU0 Pipeline
1607                 * Active' event. In the future it's anticipated that there
1608                 * will be an explicit 'No Event' we can select, but not yet...
1609                 */
1610                u32 value = 0;
1611
1612                if (oa_config) {
1613                        u32 j;
1614
1615                        for (j = 0; j < oa_config->flex_regs_len; j++) {
1616                                if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1617                                        value = oa_config->flex_regs[j].value;
1618                                        break;
1619                                }
1620                        }
1621                }
1622
1623                reg_state[state_offset] = mmio;
1624                reg_state[state_offset+1] = value;
1625        }
1626}
1627
1628/*
1629 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1630 * is only used by the kernel context.
1631 */
1632static int gen8_emit_oa_config(struct i915_request *rq,
1633                               const struct i915_oa_config *oa_config)
1634{
1635        struct drm_i915_private *dev_priv = rq->i915;
1636        /* The MMIO offsets for Flex EU registers aren't contiguous */
1637        u32 flex_mmio[] = {
1638                i915_mmio_reg_offset(EU_PERF_CNTL0),
1639                i915_mmio_reg_offset(EU_PERF_CNTL1),
1640                i915_mmio_reg_offset(EU_PERF_CNTL2),
1641                i915_mmio_reg_offset(EU_PERF_CNTL3),
1642                i915_mmio_reg_offset(EU_PERF_CNTL4),
1643                i915_mmio_reg_offset(EU_PERF_CNTL5),
1644                i915_mmio_reg_offset(EU_PERF_CNTL6),
1645        };
1646        u32 *cs;
1647        int i;
1648
1649        cs = intel_ring_begin(rq, ARRAY_SIZE(flex_mmio) * 2 + 4);
1650        if (IS_ERR(cs))
1651                return PTR_ERR(cs);
1652
1653        *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1654
1655        *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1656        *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1657                (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1658                GEN8_OA_COUNTER_RESUME;
1659
1660        for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1661                u32 mmio = flex_mmio[i];
1662
1663                /*
1664                 * This arbitrary default will select the 'EU FPU0 Pipeline
1665                 * Active' event. In the future it's anticipated that there
1666                 * will be an explicit 'No Event' we can select, but not
1667                 * yet...
1668                 */
1669                u32 value = 0;
1670
1671                if (oa_config) {
1672                        u32 j;
1673
1674                        for (j = 0; j < oa_config->flex_regs_len; j++) {
1675                                if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1676                                        value = oa_config->flex_regs[j].value;
1677                                        break;
1678                                }
1679                        }
1680                }
1681
1682                *cs++ = mmio;
1683                *cs++ = value;
1684        }
1685
1686        *cs++ = MI_NOOP;
1687        intel_ring_advance(rq, cs);
1688
1689        return 0;
1690}
1691
1692static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1693                                                 const struct i915_oa_config *oa_config)
1694{
1695        struct intel_engine_cs *engine = dev_priv->engine[RCS];
1696        struct i915_gem_timeline *timeline;
1697        struct i915_request *rq;
1698        int ret;
1699
1700        lockdep_assert_held(&dev_priv->drm.struct_mutex);
1701
1702        i915_retire_requests(dev_priv);
1703
1704        rq = i915_request_alloc(engine, dev_priv->kernel_context);
1705        if (IS_ERR(rq))
1706                return PTR_ERR(rq);
1707
1708        ret = gen8_emit_oa_config(rq, oa_config);
1709        if (ret) {
1710                i915_request_add(rq);
1711                return ret;
1712        }
1713
1714        /* Queue this switch after all other activity */
1715        list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1716                struct i915_request *prev;
1717                struct intel_timeline *tl;
1718
1719                tl = &timeline->engine[engine->id];
1720                prev = i915_gem_active_raw(&tl->last_request,
1721                                           &dev_priv->drm.struct_mutex);
1722                if (prev)
1723                        i915_sw_fence_await_sw_fence_gfp(&rq->submit,
1724                                                         &prev->submit,
1725                                                         GFP_KERNEL);
1726        }
1727
1728        i915_request_add(rq);
1729
1730        return 0;
1731}
1732
1733/*
1734 * Manages updating the per-context aspects of the OA stream
1735 * configuration across all contexts.
1736 *
1737 * The awkward consideration here is that OACTXCONTROL controls the
1738 * exponent for periodic sampling which is primarily used for system
1739 * wide profiling where we'd like a consistent sampling period even in
1740 * the face of context switches.
1741 *
1742 * Our approach of updating the register state context (as opposed to
1743 * say using a workaround batch buffer) ensures that the hardware
1744 * won't automatically reload an out-of-date timer exponent even
1745 * transiently before a WA BB could be parsed.
1746 *
1747 * This function needs to:
1748 * - Ensure the currently running context's per-context OA state is
1749 *   updated
1750 * - Ensure that all existing contexts will have the correct per-context
1751 *   OA state if they are scheduled for use.
1752 * - Ensure any new contexts will be initialized with the correct
1753 *   per-context OA state.
1754 *
1755 * Note: it's only the RCS/Render context that has any OA state.
1756 */
1757static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1758                                       const struct i915_oa_config *oa_config)
1759{
1760        struct i915_gem_context *ctx;
1761        int ret;
1762        unsigned int wait_flags = I915_WAIT_LOCKED;
1763
1764        lockdep_assert_held(&dev_priv->drm.struct_mutex);
1765
1766        /* Switch away from any user context. */
1767        ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
1768        if (ret)
1769                goto out;
1770
1771        /*
1772         * The OA register config is setup through the context image. This image
1773         * might be written to by the GPU on context switch (in particular on
1774         * lite-restore). This means we can't safely update a context's image,
1775         * if this context is scheduled/submitted to run on the GPU.
1776         *
1777         * We could emit the OA register config through the batch buffer but
1778         * this might leave small interval of time where the OA unit is
1779         * configured at an invalid sampling period.
1780         *
1781         * So far the best way to work around this issue seems to be draining
1782         * the GPU from any submitted work.
1783         */
1784        ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1785        if (ret)
1786                goto out;
1787
1788        /* Update all contexts now that we've stalled the submission. */
1789        list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1790                struct intel_context *ce = &ctx->engine[RCS];
1791                u32 *regs;
1792
1793                /* OA settings will be set upon first use */
1794                if (!ce->state)
1795                        continue;
1796
1797                regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1798                if (IS_ERR(regs)) {
1799                        ret = PTR_ERR(regs);
1800                        goto out;
1801                }
1802
1803                ce->state->obj->mm.dirty = true;
1804                regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1805
1806                gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1807
1808                i915_gem_object_unpin_map(ce->state->obj);
1809        }
1810
1811 out:
1812        return ret;
1813}
1814
1815static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1816                                  const struct i915_oa_config *oa_config)
1817{
1818        int ret;
1819
1820        /*
1821         * We disable slice/unslice clock ratio change reports on SKL since
1822         * they are too noisy. The HW generates a lot of redundant reports
1823         * where the ratio hasn't really changed causing a lot of redundant
1824         * work to processes and increasing the chances we'll hit buffer
1825         * overruns.
1826         *
1827         * Although we don't currently use the 'disable overrun' OABUFFER
1828         * feature it's worth noting that clock ratio reports have to be
1829         * disabled before considering to use that feature since the HW doesn't
1830         * correctly block these reports.
1831         *
1832         * Currently none of the high-level metrics we have depend on knowing
1833         * this ratio to normalize.
1834         *
1835         * Note: This register is not power context saved and restored, but
1836         * that's OK considering that we disable RC6 while the OA unit is
1837         * enabled.
1838         *
1839         * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1840         * be read back from automatically triggered reports, as part of the
1841         * RPT_ID field.
1842         */
1843        if (IS_GEN9(dev_priv) || IS_GEN10(dev_priv)) {
1844                I915_WRITE(GEN8_OA_DEBUG,
1845                           _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1846                                              GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1847        }
1848
1849        /*
1850         * Update all contexts prior writing the mux configurations as we need
1851         * to make sure all slices/subslices are ON before writing to NOA
1852         * registers.
1853         */
1854        ret = gen8_configure_all_contexts(dev_priv, oa_config);
1855        if (ret)
1856                return ret;
1857
1858        config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1859
1860        config_oa_regs(dev_priv, oa_config->b_counter_regs,
1861                       oa_config->b_counter_regs_len);
1862
1863        return 0;
1864}
1865
1866static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1867{
1868        /* Reset all contexts' slices/subslices configurations. */
1869        gen8_configure_all_contexts(dev_priv, NULL);
1870
1871        I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1872                                      ~GT_NOA_ENABLE));
1873
1874}
1875
1876static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1877{
1878        /* Reset all contexts' slices/subslices configurations. */
1879        gen8_configure_all_contexts(dev_priv, NULL);
1880
1881        /* Make sure we disable noa to save power. */
1882        I915_WRITE(RPM_CONFIG1,
1883                   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1884}
1885
1886static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1887{
1888        /*
1889         * Reset buf pointers so we don't forward reports from before now.
1890         *
1891         * Think carefully if considering trying to avoid this, since it
1892         * also ensures status flags and the buffer itself are cleared
1893         * in error paths, and we have checks for invalid reports based
1894         * on the assumption that certain fields are written to zeroed
1895         * memory which this helps maintains.
1896         */
1897        gen7_init_oa_buffer(dev_priv);
1898
1899        if (dev_priv->perf.oa.exclusive_stream->enabled) {
1900                struct i915_gem_context *ctx =
1901                        dev_priv->perf.oa.exclusive_stream->ctx;
1902                u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1903
1904                bool periodic = dev_priv->perf.oa.periodic;
1905                u32 period_exponent = dev_priv->perf.oa.period_exponent;
1906                u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1907
1908                I915_WRITE(GEN7_OACONTROL,
1909                           (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1910                           (period_exponent <<
1911                            GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1912                           (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1913                           (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1914                           (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1915                           GEN7_OACONTROL_ENABLE);
1916        } else
1917                I915_WRITE(GEN7_OACONTROL, 0);
1918}
1919
1920static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1921{
1922        u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1923
1924        /*
1925         * Reset buf pointers so we don't forward reports from before now.
1926         *
1927         * Think carefully if considering trying to avoid this, since it
1928         * also ensures status flags and the buffer itself are cleared
1929         * in error paths, and we have checks for invalid reports based
1930         * on the assumption that certain fields are written to zeroed
1931         * memory which this helps maintains.
1932         */
1933        gen8_init_oa_buffer(dev_priv);
1934
1935        /*
1936         * Note: we don't rely on the hardware to perform single context
1937         * filtering and instead filter on the cpu based on the context-id
1938         * field of reports
1939         */
1940        I915_WRITE(GEN8_OACONTROL, (report_format <<
1941                                    GEN8_OA_REPORT_FORMAT_SHIFT) |
1942                                   GEN8_OA_COUNTER_ENABLE);
1943}
1944
1945/**
1946 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1947 * @stream: An i915 perf stream opened for OA metrics
1948 *
1949 * [Re]enables hardware periodic sampling according to the period configured
1950 * when opening the stream. This also starts a hrtimer that will periodically
1951 * check for data in the circular OA buffer for notifying userspace (e.g.
1952 * during a read() or poll()).
1953 */
1954static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1955{
1956        struct drm_i915_private *dev_priv = stream->dev_priv;
1957
1958        dev_priv->perf.oa.ops.oa_enable(dev_priv);
1959
1960        if (dev_priv->perf.oa.periodic)
1961                hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1962                              ns_to_ktime(POLL_PERIOD),
1963                              HRTIMER_MODE_REL_PINNED);
1964}
1965
1966static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1967{
1968        I915_WRITE(GEN7_OACONTROL, 0);
1969}
1970
1971static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1972{
1973        I915_WRITE(GEN8_OACONTROL, 0);
1974}
1975
1976/**
1977 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1978 * @stream: An i915 perf stream opened for OA metrics
1979 *
1980 * Stops the OA unit from periodically writing counter reports into the
1981 * circular OA buffer. This also stops the hrtimer that periodically checks for
1982 * data in the circular OA buffer, for notifying userspace.
1983 */
1984static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1985{
1986        struct drm_i915_private *dev_priv = stream->dev_priv;
1987
1988        dev_priv->perf.oa.ops.oa_disable(dev_priv);
1989
1990        if (dev_priv->perf.oa.periodic)
1991                hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1992}
1993
1994static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1995        .destroy = i915_oa_stream_destroy,
1996        .enable = i915_oa_stream_enable,
1997        .disable = i915_oa_stream_disable,
1998        .wait_unlocked = i915_oa_wait_unlocked,
1999        .poll_wait = i915_oa_poll_wait,
2000        .read = i915_oa_read,
2001};
2002
2003/**
2004 * i915_oa_stream_init - validate combined props for OA stream and init
2005 * @stream: An i915 perf stream
2006 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2007 * @props: The property state that configures stream (individually validated)
2008 *
2009 * While read_properties_unlocked() validates properties in isolation it
2010 * doesn't ensure that the combination necessarily makes sense.
2011 *
2012 * At this point it has been determined that userspace wants a stream of
2013 * OA metrics, but still we need to further validate the combined
2014 * properties are OK.
2015 *
2016 * If the configuration makes sense then we can allocate memory for
2017 * a circular OA buffer and apply the requested metric set configuration.
2018 *
2019 * Returns: zero on success or a negative error code.
2020 */
2021static int i915_oa_stream_init(struct i915_perf_stream *stream,
2022                               struct drm_i915_perf_open_param *param,
2023                               struct perf_open_properties *props)
2024{
2025        struct drm_i915_private *dev_priv = stream->dev_priv;
2026        int format_size;
2027        int ret;
2028
2029        /* If the sysfs metrics/ directory wasn't registered for some
2030         * reason then don't let userspace try their luck with config
2031         * IDs
2032         */
2033        if (!dev_priv->perf.metrics_kobj) {
2034                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2035                return -EINVAL;
2036        }
2037
2038        if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2039                DRM_DEBUG("Only OA report sampling supported\n");
2040                return -EINVAL;
2041        }
2042
2043        if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2044                DRM_DEBUG("OA unit not supported\n");
2045                return -ENODEV;
2046        }
2047
2048        /* To avoid the complexity of having to accurately filter
2049         * counter reports and marshal to the appropriate client
2050         * we currently only allow exclusive access
2051         */
2052        if (dev_priv->perf.oa.exclusive_stream) {
2053                DRM_DEBUG("OA unit already in use\n");
2054                return -EBUSY;
2055        }
2056
2057        if (!props->oa_format) {
2058                DRM_DEBUG("OA report format not specified\n");
2059                return -EINVAL;
2060        }
2061
2062        /* We set up some ratelimit state to potentially throttle any _NOTES
2063         * about spurious, invalid OA reports which we don't forward to
2064         * userspace.
2065         *
2066         * The initialization is associated with opening the stream (not driver
2067         * init) considering we print a _NOTE about any throttling when closing
2068         * the stream instead of waiting until driver _fini which no one would
2069         * ever see.
2070         *
2071         * Using the same limiting factors as printk_ratelimit()
2072         */
2073        ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2074                             5 * HZ, 10);
2075        /* Since we use a DRM_NOTE for spurious reports it would be
2076         * inconsistent to let __ratelimit() automatically print a warning for
2077         * throttling.
2078         */
2079        ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2080                            RATELIMIT_MSG_ON_RELEASE);
2081
2082        stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2083
2084        format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2085
2086        stream->sample_flags |= SAMPLE_OA_REPORT;
2087        stream->sample_size += format_size;
2088
2089        dev_priv->perf.oa.oa_buffer.format_size = format_size;
2090        if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2091                return -EINVAL;
2092
2093        dev_priv->perf.oa.oa_buffer.format =
2094                dev_priv->perf.oa.oa_formats[props->oa_format].format;
2095
2096        dev_priv->perf.oa.periodic = props->oa_periodic;
2097        if (dev_priv->perf.oa.periodic)
2098                dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2099
2100        if (stream->ctx) {
2101                ret = oa_get_render_ctx_id(stream);
2102                if (ret)
2103                        return ret;
2104        }
2105
2106        ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2107        if (ret)
2108                goto err_config;
2109
2110        /* PRM - observability performance counters:
2111         *
2112         *   OACONTROL, performance counter enable, note:
2113         *
2114         *   "When this bit is set, in order to have coherent counts,
2115         *   RC6 power state and trunk clock gating must be disabled.
2116         *   This can be achieved by programming MMIO registers as
2117         *   0xA094=0 and 0xA090[31]=1"
2118         *
2119         *   In our case we are expecting that taking pm + FORCEWAKE
2120         *   references will effectively disable RC6.
2121         */
2122        intel_runtime_pm_get(dev_priv);
2123        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2124
2125        ret = alloc_oa_buffer(dev_priv);
2126        if (ret)
2127                goto err_oa_buf_alloc;
2128
2129        ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2130        if (ret)
2131                goto err_lock;
2132
2133        ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2134                                                      stream->oa_config);
2135        if (ret)
2136                goto err_enable;
2137
2138        stream->ops = &i915_oa_stream_ops;
2139
2140        dev_priv->perf.oa.exclusive_stream = stream;
2141
2142        mutex_unlock(&dev_priv->drm.struct_mutex);
2143
2144        return 0;
2145
2146err_enable:
2147        dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2148        mutex_unlock(&dev_priv->drm.struct_mutex);
2149
2150err_lock:
2151        free_oa_buffer(dev_priv);
2152
2153err_oa_buf_alloc:
2154        put_oa_config(dev_priv, stream->oa_config);
2155
2156        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2157        intel_runtime_pm_put(dev_priv);
2158
2159err_config:
2160        if (stream->ctx)
2161                oa_put_render_ctx_id(stream);
2162
2163        return ret;
2164}
2165
2166void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2167                            struct i915_gem_context *ctx,
2168                            u32 *reg_state)
2169{
2170        struct i915_perf_stream *stream;
2171
2172        if (engine->id != RCS)
2173                return;
2174
2175        stream = engine->i915->perf.oa.exclusive_stream;
2176        if (stream)
2177                gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2178}
2179
2180/**
2181 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2182 * @stream: An i915 perf stream
2183 * @file: An i915 perf stream file
2184 * @buf: destination buffer given by userspace
2185 * @count: the number of bytes userspace wants to read
2186 * @ppos: (inout) file seek position (unused)
2187 *
2188 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2189 * ensure that if we've successfully copied any data then reporting that takes
2190 * precedence over any internal error status, so the data isn't lost.
2191 *
2192 * For example ret will be -ENOSPC whenever there is more buffered data than
2193 * can be copied to userspace, but that's only interesting if we weren't able
2194 * to copy some data because it implies the userspace buffer is too small to
2195 * receive a single record (and we never split records).
2196 *
2197 * Another case with ret == -EFAULT is more of a grey area since it would seem
2198 * like bad form for userspace to ask us to overrun its buffer, but the user
2199 * knows best:
2200 *
2201 *   http://yarchive.net/comp/linux/partial_reads_writes.html
2202 *
2203 * Returns: The number of bytes copied or a negative error code on failure.
2204 */
2205static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2206                                     struct file *file,
2207                                     char __user *buf,
2208                                     size_t count,
2209                                     loff_t *ppos)
2210{
2211        /* Note we keep the offset (aka bytes read) separate from any
2212         * error status so that the final check for whether we return
2213         * the bytes read with a higher precedence than any error (see
2214         * comment below) doesn't need to be handled/duplicated in
2215         * stream->ops->read() implementations.
2216         */
2217        size_t offset = 0;
2218        int ret = stream->ops->read(stream, buf, count, &offset);
2219
2220        return offset ?: (ret ?: -EAGAIN);
2221}
2222
2223/**
2224 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2225 * @file: An i915 perf stream file
2226 * @buf: destination buffer given by userspace
2227 * @count: the number of bytes userspace wants to read
2228 * @ppos: (inout) file seek position (unused)
2229 *
2230 * The entry point for handling a read() on a stream file descriptor from
2231 * userspace. Most of the work is left to the i915_perf_read_locked() and
2232 * &i915_perf_stream_ops->read but to save having stream implementations (of
2233 * which we might have multiple later) we handle blocking read here.
2234 *
2235 * We can also consistently treat trying to read from a disabled stream
2236 * as an IO error so implementations can assume the stream is enabled
2237 * while reading.
2238 *
2239 * Returns: The number of bytes copied or a negative error code on failure.
2240 */
2241static ssize_t i915_perf_read(struct file *file,
2242                              char __user *buf,
2243                              size_t count,
2244                              loff_t *ppos)
2245{
2246        struct i915_perf_stream *stream = file->private_data;
2247        struct drm_i915_private *dev_priv = stream->dev_priv;
2248        ssize_t ret;
2249
2250        /* To ensure it's handled consistently we simply treat all reads of a
2251         * disabled stream as an error. In particular it might otherwise lead
2252         * to a deadlock for blocking file descriptors...
2253         */
2254        if (!stream->enabled)
2255                return -EIO;
2256
2257        if (!(file->f_flags & O_NONBLOCK)) {
2258                /* There's the small chance of false positives from
2259                 * stream->ops->wait_unlocked.
2260                 *
2261                 * E.g. with single context filtering since we only wait until
2262                 * oabuffer has >= 1 report we don't immediately know whether
2263                 * any reports really belong to the current context
2264                 */
2265                do {
2266                        ret = stream->ops->wait_unlocked(stream);
2267                        if (ret)
2268                                return ret;
2269
2270                        mutex_lock(&dev_priv->perf.lock);
2271                        ret = i915_perf_read_locked(stream, file,
2272                                                    buf, count, ppos);
2273                        mutex_unlock(&dev_priv->perf.lock);
2274                } while (ret == -EAGAIN);
2275        } else {
2276                mutex_lock(&dev_priv->perf.lock);
2277                ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2278                mutex_unlock(&dev_priv->perf.lock);
2279        }
2280
2281        /* We allow the poll checking to sometimes report false positive EPOLLIN
2282         * events where we might actually report EAGAIN on read() if there's
2283         * not really any data available. In this situation though we don't
2284         * want to enter a busy loop between poll() reporting a EPOLLIN event
2285         * and read() returning -EAGAIN. Clearing the oa.pollin state here
2286         * effectively ensures we back off until the next hrtimer callback
2287         * before reporting another EPOLLIN event.
2288         */
2289        if (ret >= 0 || ret == -EAGAIN) {
2290                /* Maybe make ->pollin per-stream state if we support multiple
2291                 * concurrent streams in the future.
2292                 */
2293                dev_priv->perf.oa.pollin = false;
2294        }
2295
2296        return ret;
2297}
2298
2299static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2300{
2301        struct drm_i915_private *dev_priv =
2302                container_of(hrtimer, typeof(*dev_priv),
2303                             perf.oa.poll_check_timer);
2304
2305        if (oa_buffer_check_unlocked(dev_priv)) {
2306                dev_priv->perf.oa.pollin = true;
2307                wake_up(&dev_priv->perf.oa.poll_wq);
2308        }
2309
2310        hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2311
2312        return HRTIMER_RESTART;
2313}
2314
2315/**
2316 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2317 * @dev_priv: i915 device instance
2318 * @stream: An i915 perf stream
2319 * @file: An i915 perf stream file
2320 * @wait: poll() state table
2321 *
2322 * For handling userspace polling on an i915 perf stream, this calls through to
2323 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2324 * will be woken for new stream data.
2325 *
2326 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2327 * with any non-file-operation driver hooks.
2328 *
2329 * Returns: any poll events that are ready without sleeping
2330 */
2331static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2332                                          struct i915_perf_stream *stream,
2333                                          struct file *file,
2334                                          poll_table *wait)
2335{
2336        __poll_t events = 0;
2337
2338        stream->ops->poll_wait(stream, file, wait);
2339
2340        /* Note: we don't explicitly check whether there's something to read
2341         * here since this path may be very hot depending on what else
2342         * userspace is polling, or on the timeout in use. We rely solely on
2343         * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2344         * samples to read.
2345         */
2346        if (dev_priv->perf.oa.pollin)
2347                events |= EPOLLIN;
2348
2349        return events;
2350}
2351
2352/**
2353 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2354 * @file: An i915 perf stream file
2355 * @wait: poll() state table
2356 *
2357 * For handling userspace polling on an i915 perf stream, this ensures
2358 * poll_wait() gets called with a wait queue that will be woken for new stream
2359 * data.
2360 *
2361 * Note: Implementation deferred to i915_perf_poll_locked()
2362 *
2363 * Returns: any poll events that are ready without sleeping
2364 */
2365static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2366{
2367        struct i915_perf_stream *stream = file->private_data;
2368        struct drm_i915_private *dev_priv = stream->dev_priv;
2369        __poll_t ret;
2370
2371        mutex_lock(&dev_priv->perf.lock);
2372        ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2373        mutex_unlock(&dev_priv->perf.lock);
2374
2375        return ret;
2376}
2377
2378/**
2379 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2380 * @stream: A disabled i915 perf stream
2381 *
2382 * [Re]enables the associated capture of data for this stream.
2383 *
2384 * If a stream was previously enabled then there's currently no intention
2385 * to provide userspace any guarantee about the preservation of previously
2386 * buffered data.
2387 */
2388static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2389{
2390        if (stream->enabled)
2391                return;
2392
2393        /* Allow stream->ops->enable() to refer to this */
2394        stream->enabled = true;
2395
2396        if (stream->ops->enable)
2397                stream->ops->enable(stream);
2398}
2399
2400/**
2401 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2402 * @stream: An enabled i915 perf stream
2403 *
2404 * Disables the associated capture of data for this stream.
2405 *
2406 * The intention is that disabling an re-enabling a stream will ideally be
2407 * cheaper than destroying and re-opening a stream with the same configuration,
2408 * though there are no formal guarantees about what state or buffered data
2409 * must be retained between disabling and re-enabling a stream.
2410 *
2411 * Note: while a stream is disabled it's considered an error for userspace
2412 * to attempt to read from the stream (-EIO).
2413 */
2414static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2415{
2416        if (!stream->enabled)
2417                return;
2418
2419        /* Allow stream->ops->disable() to refer to this */
2420        stream->enabled = false;
2421
2422        if (stream->ops->disable)
2423                stream->ops->disable(stream);
2424}
2425
2426/**
2427 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2428 * @stream: An i915 perf stream
2429 * @cmd: the ioctl request
2430 * @arg: the ioctl data
2431 *
2432 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2433 * with any non-file-operation driver hooks.
2434 *
2435 * Returns: zero on success or a negative error code. Returns -EINVAL for
2436 * an unknown ioctl request.
2437 */
2438static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2439                                   unsigned int cmd,
2440                                   unsigned long arg)
2441{
2442        switch (cmd) {
2443        case I915_PERF_IOCTL_ENABLE:
2444                i915_perf_enable_locked(stream);
2445                return 0;
2446        case I915_PERF_IOCTL_DISABLE:
2447                i915_perf_disable_locked(stream);
2448                return 0;
2449        }
2450
2451        return -EINVAL;
2452}
2453
2454/**
2455 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2456 * @file: An i915 perf stream file
2457 * @cmd: the ioctl request
2458 * @arg: the ioctl data
2459 *
2460 * Implementation deferred to i915_perf_ioctl_locked().
2461 *
2462 * Returns: zero on success or a negative error code. Returns -EINVAL for
2463 * an unknown ioctl request.
2464 */
2465static long i915_perf_ioctl(struct file *file,
2466                            unsigned int cmd,
2467                            unsigned long arg)
2468{
2469        struct i915_perf_stream *stream = file->private_data;
2470        struct drm_i915_private *dev_priv = stream->dev_priv;
2471        long ret;
2472
2473        mutex_lock(&dev_priv->perf.lock);
2474        ret = i915_perf_ioctl_locked(stream, cmd, arg);
2475        mutex_unlock(&dev_priv->perf.lock);
2476
2477        return ret;
2478}
2479
2480/**
2481 * i915_perf_destroy_locked - destroy an i915 perf stream
2482 * @stream: An i915 perf stream
2483 *
2484 * Frees all resources associated with the given i915 perf @stream, disabling
2485 * any associated data capture in the process.
2486 *
2487 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2488 * with any non-file-operation driver hooks.
2489 */
2490static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2491{
2492        if (stream->enabled)
2493                i915_perf_disable_locked(stream);
2494
2495        if (stream->ops->destroy)
2496                stream->ops->destroy(stream);
2497
2498        list_del(&stream->link);
2499
2500        if (stream->ctx)
2501                i915_gem_context_put(stream->ctx);
2502
2503        kfree(stream);
2504}
2505
2506/**
2507 * i915_perf_release - handles userspace close() of a stream file
2508 * @inode: anonymous inode associated with file
2509 * @file: An i915 perf stream file
2510 *
2511 * Cleans up any resources associated with an open i915 perf stream file.
2512 *
2513 * NB: close() can't really fail from the userspace point of view.
2514 *
2515 * Returns: zero on success or a negative error code.
2516 */
2517static int i915_perf_release(struct inode *inode, struct file *file)
2518{
2519        struct i915_perf_stream *stream = file->private_data;
2520        struct drm_i915_private *dev_priv = stream->dev_priv;
2521
2522        mutex_lock(&dev_priv->perf.lock);
2523        i915_perf_destroy_locked(stream);
2524        mutex_unlock(&dev_priv->perf.lock);
2525
2526        return 0;
2527}
2528
2529
2530static const struct file_operations fops = {
2531        .owner          = THIS_MODULE,
2532        .llseek         = no_llseek,
2533        .release        = i915_perf_release,
2534        .poll           = i915_perf_poll,
2535        .read           = i915_perf_read,
2536        .unlocked_ioctl = i915_perf_ioctl,
2537        /* Our ioctl have no arguments, so it's safe to use the same function
2538         * to handle 32bits compatibility.
2539         */
2540        .compat_ioctl   = i915_perf_ioctl,
2541};
2542
2543
2544/**
2545 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2546 * @dev_priv: i915 device instance
2547 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2548 * @props: individually validated u64 property value pairs
2549 * @file: drm file
2550 *
2551 * See i915_perf_ioctl_open() for interface details.
2552 *
2553 * Implements further stream config validation and stream initialization on
2554 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2555 * taken to serialize with any non-file-operation driver hooks.
2556 *
2557 * Note: at this point the @props have only been validated in isolation and
2558 * it's still necessary to validate that the combination of properties makes
2559 * sense.
2560 *
2561 * In the case where userspace is interested in OA unit metrics then further
2562 * config validation and stream initialization details will be handled by
2563 * i915_oa_stream_init(). The code here should only validate config state that
2564 * will be relevant to all stream types / backends.
2565 *
2566 * Returns: zero on success or a negative error code.
2567 */
2568static int
2569i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2570                            struct drm_i915_perf_open_param *param,
2571                            struct perf_open_properties *props,
2572                            struct drm_file *file)
2573{
2574        struct i915_gem_context *specific_ctx = NULL;
2575        struct i915_perf_stream *stream = NULL;
2576        unsigned long f_flags = 0;
2577        bool privileged_op = true;
2578        int stream_fd;
2579        int ret;
2580
2581        if (props->single_context) {
2582                u32 ctx_handle = props->ctx_handle;
2583                struct drm_i915_file_private *file_priv = file->driver_priv;
2584
2585                specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2586                if (!specific_ctx) {
2587                        DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2588                                  ctx_handle);
2589                        ret = -ENOENT;
2590                        goto err;
2591                }
2592        }
2593
2594        /*
2595         * On Haswell the OA unit supports clock gating off for a specific
2596         * context and in this mode there's no visibility of metrics for the
2597         * rest of the system, which we consider acceptable for a
2598         * non-privileged client.
2599         *
2600         * For Gen8+ the OA unit no longer supports clock gating off for a
2601         * specific context and the kernel can't securely stop the counters
2602         * from updating as system-wide / global values. Even though we can
2603         * filter reports based on the included context ID we can't block
2604         * clients from seeing the raw / global counter values via
2605         * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2606         * enable the OA unit by default.
2607         */
2608        if (IS_HASWELL(dev_priv) && specific_ctx)
2609                privileged_op = false;
2610
2611        /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2612         * we check a dev.i915.perf_stream_paranoid sysctl option
2613         * to determine if it's ok to access system wide OA counters
2614         * without CAP_SYS_ADMIN privileges.
2615         */
2616        if (privileged_op &&
2617            i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2618                DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2619                ret = -EACCES;
2620                goto err_ctx;
2621        }
2622
2623        stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2624        if (!stream) {
2625                ret = -ENOMEM;
2626                goto err_ctx;
2627        }
2628
2629        stream->dev_priv = dev_priv;
2630        stream->ctx = specific_ctx;
2631
2632        ret = i915_oa_stream_init(stream, param, props);
2633        if (ret)
2634                goto err_alloc;
2635
2636        /* we avoid simply assigning stream->sample_flags = props->sample_flags
2637         * to have _stream_init check the combination of sample flags more
2638         * thoroughly, but still this is the expected result at this point.
2639         */
2640        if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2641                ret = -ENODEV;
2642                goto err_flags;
2643        }
2644
2645        list_add(&stream->link, &dev_priv->perf.streams);
2646
2647        if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2648                f_flags |= O_CLOEXEC;
2649        if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2650                f_flags |= O_NONBLOCK;
2651
2652        stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2653        if (stream_fd < 0) {
2654                ret = stream_fd;
2655                goto err_open;
2656        }
2657
2658        if (!(param->flags & I915_PERF_FLAG_DISABLED))
2659                i915_perf_enable_locked(stream);
2660
2661        return stream_fd;
2662
2663err_open:
2664        list_del(&stream->link);
2665err_flags:
2666        if (stream->ops->destroy)
2667                stream->ops->destroy(stream);
2668err_alloc:
2669        kfree(stream);
2670err_ctx:
2671        if (specific_ctx)
2672                i915_gem_context_put(specific_ctx);
2673err:
2674        return ret;
2675}
2676
2677static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2678{
2679        return div64_u64(1000000000ULL * (2ULL << exponent),
2680                         1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz);
2681}
2682
2683/**
2684 * read_properties_unlocked - validate + copy userspace stream open properties
2685 * @dev_priv: i915 device instance
2686 * @uprops: The array of u64 key value pairs given by userspace
2687 * @n_props: The number of key value pairs expected in @uprops
2688 * @props: The stream configuration built up while validating properties
2689 *
2690 * Note this function only validates properties in isolation it doesn't
2691 * validate that the combination of properties makes sense or that all
2692 * properties necessary for a particular kind of stream have been set.
2693 *
2694 * Note that there currently aren't any ordering requirements for properties so
2695 * we shouldn't validate or assume anything about ordering here. This doesn't
2696 * rule out defining new properties with ordering requirements in the future.
2697 */
2698static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2699                                    u64 __user *uprops,
2700                                    u32 n_props,
2701                                    struct perf_open_properties *props)
2702{
2703        u64 __user *uprop = uprops;
2704        u32 i;
2705
2706        memset(props, 0, sizeof(struct perf_open_properties));
2707
2708        if (!n_props) {
2709                DRM_DEBUG("No i915 perf properties given\n");
2710                return -EINVAL;
2711        }
2712
2713        /* Considering that ID = 0 is reserved and assuming that we don't
2714         * (currently) expect any configurations to ever specify duplicate
2715         * values for a particular property ID then the last _PROP_MAX value is
2716         * one greater than the maximum number of properties we expect to get
2717         * from userspace.
2718         */
2719        if (n_props >= DRM_I915_PERF_PROP_MAX) {
2720                DRM_DEBUG("More i915 perf properties specified than exist\n");
2721                return -EINVAL;
2722        }
2723
2724        for (i = 0; i < n_props; i++) {
2725                u64 oa_period, oa_freq_hz;
2726                u64 id, value;
2727                int ret;
2728
2729                ret = get_user(id, uprop);
2730                if (ret)
2731                        return ret;
2732
2733                ret = get_user(value, uprop + 1);
2734                if (ret)
2735                        return ret;
2736
2737                if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2738                        DRM_DEBUG("Unknown i915 perf property ID\n");
2739                        return -EINVAL;
2740                }
2741
2742                switch ((enum drm_i915_perf_property_id)id) {
2743                case DRM_I915_PERF_PROP_CTX_HANDLE:
2744                        props->single_context = 1;
2745                        props->ctx_handle = value;
2746                        break;
2747                case DRM_I915_PERF_PROP_SAMPLE_OA:
2748                        props->sample_flags |= SAMPLE_OA_REPORT;
2749                        break;
2750                case DRM_I915_PERF_PROP_OA_METRICS_SET:
2751                        if (value == 0) {
2752                                DRM_DEBUG("Unknown OA metric set ID\n");
2753                                return -EINVAL;
2754                        }
2755                        props->metrics_set = value;
2756                        break;
2757                case DRM_I915_PERF_PROP_OA_FORMAT:
2758                        if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2759                                DRM_DEBUG("Out-of-range OA report format %llu\n",
2760                                          value);
2761                                return -EINVAL;
2762                        }
2763                        if (!dev_priv->perf.oa.oa_formats[value].size) {
2764                                DRM_DEBUG("Unsupported OA report format %llu\n",
2765                                          value);
2766                                return -EINVAL;
2767                        }
2768                        props->oa_format = value;
2769                        break;
2770                case DRM_I915_PERF_PROP_OA_EXPONENT:
2771                        if (value > OA_EXPONENT_MAX) {
2772                                DRM_DEBUG("OA timer exponent too high (> %u)\n",
2773                                         OA_EXPONENT_MAX);
2774                                return -EINVAL;
2775                        }
2776
2777                        /* Theoretically we can program the OA unit to sample
2778                         * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2779                         * for BXT. We don't allow such high sampling
2780                         * frequencies by default unless root.
2781                         */
2782
2783                        BUILD_BUG_ON(sizeof(oa_period) != 8);
2784                        oa_period = oa_exponent_to_ns(dev_priv, value);
2785
2786                        /* This check is primarily to ensure that oa_period <=
2787                         * UINT32_MAX (before passing to do_div which only
2788                         * accepts a u32 denominator), but we can also skip
2789                         * checking anything < 1Hz which implicitly can't be
2790                         * limited via an integer oa_max_sample_rate.
2791                         */
2792                        if (oa_period <= NSEC_PER_SEC) {
2793                                u64 tmp = NSEC_PER_SEC;
2794                                do_div(tmp, oa_period);
2795                                oa_freq_hz = tmp;
2796                        } else
2797                                oa_freq_hz = 0;
2798
2799                        if (oa_freq_hz > i915_oa_max_sample_rate &&
2800                            !capable(CAP_SYS_ADMIN)) {
2801                                DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2802                                          i915_oa_max_sample_rate);
2803                                return -EACCES;
2804                        }
2805
2806                        props->oa_periodic = true;
2807                        props->oa_period_exponent = value;
2808                        break;
2809                case DRM_I915_PERF_PROP_MAX:
2810                        MISSING_CASE(id);
2811                        return -EINVAL;
2812                }
2813
2814                uprop += 2;
2815        }
2816
2817        return 0;
2818}
2819
2820/**
2821 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2822 * @dev: drm device
2823 * @data: ioctl data copied from userspace (unvalidated)
2824 * @file: drm file
2825 *
2826 * Validates the stream open parameters given by userspace including flags
2827 * and an array of u64 key, value pair properties.
2828 *
2829 * Very little is assumed up front about the nature of the stream being
2830 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2831 * i915-perf stream is expected to be a suitable interface for other forms of
2832 * buffered data written by the GPU besides periodic OA metrics.
2833 *
2834 * Note we copy the properties from userspace outside of the i915 perf
2835 * mutex to avoid an awkward lockdep with mmap_sem.
2836 *
2837 * Most of the implementation details are handled by
2838 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2839 * mutex for serializing with any non-file-operation driver hooks.
2840 *
2841 * Return: A newly opened i915 Perf stream file descriptor or negative
2842 * error code on failure.
2843 */
2844int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2845                         struct drm_file *file)
2846{
2847        struct drm_i915_private *dev_priv = dev->dev_private;
2848        struct drm_i915_perf_open_param *param = data;
2849        struct perf_open_properties props;
2850        u32 known_open_flags;
2851        int ret;
2852
2853        if (!dev_priv->perf.initialized) {
2854                DRM_DEBUG("i915 perf interface not available for this system\n");
2855                return -ENOTSUPP;
2856        }
2857
2858        known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2859                           I915_PERF_FLAG_FD_NONBLOCK |
2860                           I915_PERF_FLAG_DISABLED;
2861        if (param->flags & ~known_open_flags) {
2862                DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2863                return -EINVAL;
2864        }
2865
2866        ret = read_properties_unlocked(dev_priv,
2867                                       u64_to_user_ptr(param->properties_ptr),
2868                                       param->num_properties,
2869                                       &props);
2870        if (ret)
2871                return ret;
2872
2873        mutex_lock(&dev_priv->perf.lock);
2874        ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2875        mutex_unlock(&dev_priv->perf.lock);
2876
2877        return ret;
2878}
2879
2880/**
2881 * i915_perf_register - exposes i915-perf to userspace
2882 * @dev_priv: i915 device instance
2883 *
2884 * In particular OA metric sets are advertised under a sysfs metrics/
2885 * directory allowing userspace to enumerate valid IDs that can be
2886 * used to open an i915-perf stream.
2887 */
2888void i915_perf_register(struct drm_i915_private *dev_priv)
2889{
2890        int ret;
2891
2892        if (!dev_priv->perf.initialized)
2893                return;
2894
2895        /* To be sure we're synchronized with an attempted
2896         * i915_perf_open_ioctl(); considering that we register after
2897         * being exposed to userspace.
2898         */
2899        mutex_lock(&dev_priv->perf.lock);
2900
2901        dev_priv->perf.metrics_kobj =
2902                kobject_create_and_add("metrics",
2903                                       &dev_priv->drm.primary->kdev->kobj);
2904        if (!dev_priv->perf.metrics_kobj)
2905                goto exit;
2906
2907        sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2908
2909        if (IS_HASWELL(dev_priv)) {
2910                i915_perf_load_test_config_hsw(dev_priv);
2911        } else if (IS_BROADWELL(dev_priv)) {
2912                i915_perf_load_test_config_bdw(dev_priv);
2913        } else if (IS_CHERRYVIEW(dev_priv)) {
2914                i915_perf_load_test_config_chv(dev_priv);
2915        } else if (IS_SKYLAKE(dev_priv)) {
2916                if (IS_SKL_GT2(dev_priv))
2917                        i915_perf_load_test_config_sklgt2(dev_priv);
2918                else if (IS_SKL_GT3(dev_priv))
2919                        i915_perf_load_test_config_sklgt3(dev_priv);
2920                else if (IS_SKL_GT4(dev_priv))
2921                        i915_perf_load_test_config_sklgt4(dev_priv);
2922        } else if (IS_BROXTON(dev_priv)) {
2923                i915_perf_load_test_config_bxt(dev_priv);
2924        } else if (IS_KABYLAKE(dev_priv)) {
2925                if (IS_KBL_GT2(dev_priv))
2926                        i915_perf_load_test_config_kblgt2(dev_priv);
2927                else if (IS_KBL_GT3(dev_priv))
2928                        i915_perf_load_test_config_kblgt3(dev_priv);
2929        } else if (IS_GEMINILAKE(dev_priv)) {
2930                i915_perf_load_test_config_glk(dev_priv);
2931        } else if (IS_COFFEELAKE(dev_priv)) {
2932                if (IS_CFL_GT2(dev_priv))
2933                        i915_perf_load_test_config_cflgt2(dev_priv);
2934                if (IS_CFL_GT3(dev_priv))
2935                        i915_perf_load_test_config_cflgt3(dev_priv);
2936        } else if (IS_CANNONLAKE(dev_priv)) {
2937                i915_perf_load_test_config_cnl(dev_priv);
2938        }
2939
2940        if (dev_priv->perf.oa.test_config.id == 0)
2941                goto sysfs_error;
2942
2943        ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2944                                 &dev_priv->perf.oa.test_config.sysfs_metric);
2945        if (ret)
2946                goto sysfs_error;
2947
2948        atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2949
2950        goto exit;
2951
2952sysfs_error:
2953        kobject_put(dev_priv->perf.metrics_kobj);
2954        dev_priv->perf.metrics_kobj = NULL;
2955
2956exit:
2957        mutex_unlock(&dev_priv->perf.lock);
2958}
2959
2960/**
2961 * i915_perf_unregister - hide i915-perf from userspace
2962 * @dev_priv: i915 device instance
2963 *
2964 * i915-perf state cleanup is split up into an 'unregister' and
2965 * 'deinit' phase where the interface is first hidden from
2966 * userspace by i915_perf_unregister() before cleaning up
2967 * remaining state in i915_perf_fini().
2968 */
2969void i915_perf_unregister(struct drm_i915_private *dev_priv)
2970{
2971        if (!dev_priv->perf.metrics_kobj)
2972                return;
2973
2974        sysfs_remove_group(dev_priv->perf.metrics_kobj,
2975                           &dev_priv->perf.oa.test_config.sysfs_metric);
2976
2977        kobject_put(dev_priv->perf.metrics_kobj);
2978        dev_priv->perf.metrics_kobj = NULL;
2979}
2980
2981static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2982{
2983        static const i915_reg_t flex_eu_regs[] = {
2984                EU_PERF_CNTL0,
2985                EU_PERF_CNTL1,
2986                EU_PERF_CNTL2,
2987                EU_PERF_CNTL3,
2988                EU_PERF_CNTL4,
2989                EU_PERF_CNTL5,
2990                EU_PERF_CNTL6,
2991        };
2992        int i;
2993
2994        for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2995                if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
2996                        return true;
2997        }
2998        return false;
2999}
3000
3001static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3002{
3003        return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3004                addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3005                (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3006                 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3007                (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3008                 addr <= i915_mmio_reg_offset(OACEC7_1));
3009}
3010
3011static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3012{
3013        return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3014                (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3015                 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3016                (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3017                 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3018                (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3019                 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3020}
3021
3022static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3023{
3024        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3025                addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3026                (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3027                 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3028}
3029
3030static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3031{
3032        return gen8_is_valid_mux_addr(dev_priv, addr) ||
3033                (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3034                 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3035}
3036
3037static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3038{
3039        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3040                (addr >= 0x25100 && addr <= 0x2FF90) ||
3041                (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3042                 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3043                addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3044}
3045
3046static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3047{
3048        return gen7_is_valid_mux_addr(dev_priv, addr) ||
3049                (addr >= 0x182300 && addr <= 0x1823A4);
3050}
3051
3052static uint32_t mask_reg_value(u32 reg, u32 val)
3053{
3054        /* HALF_SLICE_CHICKEN2 is programmed with a the
3055         * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3056         * programmed by userspace doesn't change this.
3057         */
3058        if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3059                val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3060
3061        /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3062         * indicated by its name and a bunch of selection fields used by OA
3063         * configs.
3064         */
3065        if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3066                val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3067
3068        return val;
3069}
3070
3071static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3072                                         bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3073                                         u32 __user *regs,
3074                                         u32 n_regs)
3075{
3076        struct i915_oa_reg *oa_regs;
3077        int err;
3078        u32 i;
3079
3080        if (!n_regs)
3081                return NULL;
3082
3083        if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3084                return ERR_PTR(-EFAULT);
3085
3086        /* No is_valid function means we're not allowing any register to be programmed. */
3087        GEM_BUG_ON(!is_valid);
3088        if (!is_valid)
3089                return ERR_PTR(-EINVAL);
3090
3091        oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3092        if (!oa_regs)
3093                return ERR_PTR(-ENOMEM);
3094
3095        for (i = 0; i < n_regs; i++) {
3096                u32 addr, value;
3097
3098                err = get_user(addr, regs);
3099                if (err)
3100                        goto addr_err;
3101
3102                if (!is_valid(dev_priv, addr)) {
3103                        DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3104                        err = -EINVAL;
3105                        goto addr_err;
3106                }
3107
3108                err = get_user(value, regs + 1);
3109                if (err)
3110                        goto addr_err;
3111
3112                oa_regs[i].addr = _MMIO(addr);
3113                oa_regs[i].value = mask_reg_value(addr, value);
3114
3115                regs += 2;
3116        }
3117
3118        return oa_regs;
3119
3120addr_err:
3121        kfree(oa_regs);
3122        return ERR_PTR(err);
3123}
3124
3125static ssize_t show_dynamic_id(struct device *dev,
3126                               struct device_attribute *attr,
3127                               char *buf)
3128{
3129        struct i915_oa_config *oa_config =
3130                container_of(attr, typeof(*oa_config), sysfs_metric_id);
3131
3132        return sprintf(buf, "%d\n", oa_config->id);
3133}
3134
3135static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3136                                         struct i915_oa_config *oa_config)
3137{
3138        sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3139        oa_config->sysfs_metric_id.attr.name = "id";
3140        oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3141        oa_config->sysfs_metric_id.show = show_dynamic_id;
3142        oa_config->sysfs_metric_id.store = NULL;
3143
3144        oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3145        oa_config->attrs[1] = NULL;
3146
3147        oa_config->sysfs_metric.name = oa_config->uuid;
3148        oa_config->sysfs_metric.attrs = oa_config->attrs;
3149
3150        return sysfs_create_group(dev_priv->perf.metrics_kobj,
3151                                  &oa_config->sysfs_metric);
3152}
3153
3154/**
3155 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3156 * @dev: drm device
3157 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3158 *        userspace (unvalidated)
3159 * @file: drm file
3160 *
3161 * Validates the submitted OA register to be saved into a new OA config that
3162 * can then be used for programming the OA unit and its NOA network.
3163 *
3164 * Returns: A new allocated config number to be used with the perf open ioctl
3165 * or a negative error code on failure.
3166 */
3167int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3168                               struct drm_file *file)
3169{
3170        struct drm_i915_private *dev_priv = dev->dev_private;
3171        struct drm_i915_perf_oa_config *args = data;
3172        struct i915_oa_config *oa_config, *tmp;
3173        int err, id;
3174
3175        if (!dev_priv->perf.initialized) {
3176                DRM_DEBUG("i915 perf interface not available for this system\n");
3177                return -ENOTSUPP;
3178        }
3179
3180        if (!dev_priv->perf.metrics_kobj) {
3181                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3182                return -EINVAL;
3183        }
3184
3185        if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3186                DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3187                return -EACCES;
3188        }
3189
3190        if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3191            (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3192            (!args->flex_regs_ptr || !args->n_flex_regs)) {
3193                DRM_DEBUG("No OA registers given\n");
3194                return -EINVAL;
3195        }
3196
3197        oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3198        if (!oa_config) {
3199                DRM_DEBUG("Failed to allocate memory for the OA config\n");
3200                return -ENOMEM;
3201        }
3202
3203        atomic_set(&oa_config->ref_count, 1);
3204
3205        if (!uuid_is_valid(args->uuid)) {
3206                DRM_DEBUG("Invalid uuid format for OA config\n");
3207                err = -EINVAL;
3208                goto reg_err;
3209        }
3210
3211        /* Last character in oa_config->uuid will be 0 because oa_config is
3212         * kzalloc.
3213         */
3214        memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3215
3216        oa_config->mux_regs_len = args->n_mux_regs;
3217        oa_config->mux_regs =
3218                alloc_oa_regs(dev_priv,
3219                              dev_priv->perf.oa.ops.is_valid_mux_reg,
3220                              u64_to_user_ptr(args->mux_regs_ptr),
3221                              args->n_mux_regs);
3222
3223        if (IS_ERR(oa_config->mux_regs)) {
3224                DRM_DEBUG("Failed to create OA config for mux_regs\n");
3225                err = PTR_ERR(oa_config->mux_regs);
3226                goto reg_err;
3227        }
3228
3229        oa_config->b_counter_regs_len = args->n_boolean_regs;
3230        oa_config->b_counter_regs =
3231                alloc_oa_regs(dev_priv,
3232                              dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3233                              u64_to_user_ptr(args->boolean_regs_ptr),
3234                              args->n_boolean_regs);
3235
3236        if (IS_ERR(oa_config->b_counter_regs)) {
3237                DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3238                err = PTR_ERR(oa_config->b_counter_regs);
3239                goto reg_err;
3240        }
3241
3242        if (INTEL_GEN(dev_priv) < 8) {
3243                if (args->n_flex_regs != 0) {
3244                        err = -EINVAL;
3245                        goto reg_err;
3246                }
3247        } else {
3248                oa_config->flex_regs_len = args->n_flex_regs;
3249                oa_config->flex_regs =
3250                        alloc_oa_regs(dev_priv,
3251                                      dev_priv->perf.oa.ops.is_valid_flex_reg,
3252                                      u64_to_user_ptr(args->flex_regs_ptr),
3253                                      args->n_flex_regs);
3254
3255                if (IS_ERR(oa_config->flex_regs)) {
3256                        DRM_DEBUG("Failed to create OA config for flex_regs\n");
3257                        err = PTR_ERR(oa_config->flex_regs);
3258                        goto reg_err;
3259                }
3260        }
3261
3262        err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3263        if (err)
3264                goto reg_err;
3265
3266        /* We shouldn't have too many configs, so this iteration shouldn't be
3267         * too costly.
3268         */
3269        idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3270                if (!strcmp(tmp->uuid, oa_config->uuid)) {
3271                        DRM_DEBUG("OA config already exists with this uuid\n");
3272                        err = -EADDRINUSE;
3273                        goto sysfs_err;
3274                }
3275        }
3276
3277        err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3278        if (err) {
3279                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3280                goto sysfs_err;
3281        }
3282
3283        /* Config id 0 is invalid, id 1 for kernel stored test config. */
3284        oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3285                                  oa_config, 2,
3286                                  0, GFP_KERNEL);
3287        if (oa_config->id < 0) {
3288                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3289                err = oa_config->id;
3290                goto sysfs_err;
3291        }
3292
3293        mutex_unlock(&dev_priv->perf.metrics_lock);
3294
3295        return oa_config->id;
3296
3297sysfs_err:
3298        mutex_unlock(&dev_priv->perf.metrics_lock);
3299reg_err:
3300        put_oa_config(dev_priv, oa_config);
3301        DRM_DEBUG("Failed to add new OA config\n");
3302        return err;
3303}
3304
3305/**
3306 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3307 * @dev: drm device
3308 * @data: ioctl data (pointer to u64 integer) copied from userspace
3309 * @file: drm file
3310 *
3311 * Configs can be removed while being used, the will stop appearing in sysfs
3312 * and their content will be freed when the stream using the config is closed.
3313 *
3314 * Returns: 0 on success or a negative error code on failure.
3315 */
3316int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3317                                  struct drm_file *file)
3318{
3319        struct drm_i915_private *dev_priv = dev->dev_private;
3320        u64 *arg = data;
3321        struct i915_oa_config *oa_config;
3322        int ret;
3323
3324        if (!dev_priv->perf.initialized) {
3325                DRM_DEBUG("i915 perf interface not available for this system\n");
3326                return -ENOTSUPP;
3327        }
3328
3329        if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3330                DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3331                return -EACCES;
3332        }
3333
3334        ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3335        if (ret)
3336                goto lock_err;
3337
3338        oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3339        if (!oa_config) {
3340                DRM_DEBUG("Failed to remove unknown OA config\n");
3341                ret = -ENOENT;
3342                goto config_err;
3343        }
3344
3345        GEM_BUG_ON(*arg != oa_config->id);
3346
3347        sysfs_remove_group(dev_priv->perf.metrics_kobj,
3348                           &oa_config->sysfs_metric);
3349
3350        idr_remove(&dev_priv->perf.metrics_idr, *arg);
3351        put_oa_config(dev_priv, oa_config);
3352
3353config_err:
3354        mutex_unlock(&dev_priv->perf.metrics_lock);
3355lock_err:
3356        return ret;
3357}
3358
3359static struct ctl_table oa_table[] = {
3360        {
3361         .procname = "perf_stream_paranoid",
3362         .data = &i915_perf_stream_paranoid,
3363         .maxlen = sizeof(i915_perf_stream_paranoid),
3364         .mode = 0644,
3365         .proc_handler = proc_dointvec_minmax,
3366         .extra1 = &zero,
3367         .extra2 = &one,
3368         },
3369        {
3370         .procname = "oa_max_sample_rate",
3371         .data = &i915_oa_max_sample_rate,
3372         .maxlen = sizeof(i915_oa_max_sample_rate),
3373         .mode = 0644,
3374         .proc_handler = proc_dointvec_minmax,
3375         .extra1 = &zero,
3376         .extra2 = &oa_sample_rate_hard_limit,
3377         },
3378        {}
3379};
3380
3381static struct ctl_table i915_root[] = {
3382        {
3383         .procname = "i915",
3384         .maxlen = 0,
3385         .mode = 0555,
3386         .child = oa_table,
3387         },
3388        {}
3389};
3390
3391static struct ctl_table dev_root[] = {
3392        {
3393         .procname = "dev",
3394         .maxlen = 0,
3395         .mode = 0555,
3396         .child = i915_root,
3397         },
3398        {}
3399};
3400
3401/**
3402 * i915_perf_init - initialize i915-perf state on module load
3403 * @dev_priv: i915 device instance
3404 *
3405 * Initializes i915-perf state without exposing anything to userspace.
3406 *
3407 * Note: i915-perf initialization is split into an 'init' and 'register'
3408 * phase with the i915_perf_register() exposing state to userspace.
3409 */
3410void i915_perf_init(struct drm_i915_private *dev_priv)
3411{
3412        if (IS_HASWELL(dev_priv)) {
3413                dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3414                        gen7_is_valid_b_counter_addr;
3415                dev_priv->perf.oa.ops.is_valid_mux_reg =
3416                        hsw_is_valid_mux_addr;
3417                dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3418                dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3419                dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3420                dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3421                dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3422                dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3423                dev_priv->perf.oa.ops.read = gen7_oa_read;
3424                dev_priv->perf.oa.ops.oa_hw_tail_read =
3425                        gen7_oa_hw_tail_read;
3426
3427                dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3428        } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3429                /* Note: that although we could theoretically also support the
3430                 * legacy ringbuffer mode on BDW (and earlier iterations of
3431                 * this driver, before upstreaming did this) it didn't seem
3432                 * worth the complexity to maintain now that BDW+ enable
3433                 * execlist mode by default.
3434                 */
3435                dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3436
3437                dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3438                dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3439                dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3440                dev_priv->perf.oa.ops.read = gen8_oa_read;
3441                dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3442
3443                if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3444                        dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3445                                gen7_is_valid_b_counter_addr;
3446                        dev_priv->perf.oa.ops.is_valid_mux_reg =
3447                                gen8_is_valid_mux_addr;
3448                        dev_priv->perf.oa.ops.is_valid_flex_reg =
3449                                gen8_is_valid_flex_addr;
3450
3451                        if (IS_CHERRYVIEW(dev_priv)) {
3452                                dev_priv->perf.oa.ops.is_valid_mux_reg =
3453                                        chv_is_valid_mux_addr;
3454                        }
3455
3456                        dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3457                        dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3458
3459                        if (IS_GEN8(dev_priv)) {
3460                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3461                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3462
3463                                dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3464                        } else {
3465                                dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3466                                dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3467
3468                                dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3469                        }
3470                } else if (IS_GEN10(dev_priv)) {
3471                        dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3472                                gen7_is_valid_b_counter_addr;
3473                        dev_priv->perf.oa.ops.is_valid_mux_reg =
3474                                gen10_is_valid_mux_addr;
3475                        dev_priv->perf.oa.ops.is_valid_flex_reg =
3476                                gen8_is_valid_flex_addr;
3477
3478                        dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3479                        dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3480
3481                        dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3482                        dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3483
3484                        dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3485                }
3486        }
3487
3488        if (dev_priv->perf.oa.ops.enable_metric_set) {
3489                hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3490                                CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3491                dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3492                init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3493
3494                INIT_LIST_HEAD(&dev_priv->perf.streams);
3495                mutex_init(&dev_priv->perf.lock);
3496                spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3497
3498                oa_sample_rate_hard_limit = 1000 *
3499                        (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3500                dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3501
3502                mutex_init(&dev_priv->perf.metrics_lock);
3503                idr_init(&dev_priv->perf.metrics_idr);
3504
3505                dev_priv->perf.initialized = true;
3506        }
3507}
3508
3509static int destroy_config(int id, void *p, void *data)
3510{
3511        struct drm_i915_private *dev_priv = data;
3512        struct i915_oa_config *oa_config = p;
3513
3514        put_oa_config(dev_priv, oa_config);
3515
3516        return 0;
3517}
3518
3519/**
3520 * i915_perf_fini - Counter part to i915_perf_init()
3521 * @dev_priv: i915 device instance
3522 */
3523void i915_perf_fini(struct drm_i915_private *dev_priv)
3524{
3525        if (!dev_priv->perf.initialized)
3526                return;
3527
3528        idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3529        idr_destroy(&dev_priv->perf.metrics_idr);
3530
3531        unregister_sysctl_table(dev_priv->perf.sysctl_header);
3532
3533        memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3534
3535        dev_priv->perf.initialized = false;
3536}
3537